JP2005154813A - Compound structure steel plate having excellent bore expandability - Google Patents

Compound structure steel plate having excellent bore expandability Download PDF

Info

Publication number
JP2005154813A
JP2005154813A JP2003392961A JP2003392961A JP2005154813A JP 2005154813 A JP2005154813 A JP 2005154813A JP 2003392961 A JP2003392961 A JP 2003392961A JP 2003392961 A JP2003392961 A JP 2003392961A JP 2005154813 A JP2005154813 A JP 2005154813A
Authority
JP
Japan
Prior art keywords
less
phase
hard
ferrite
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003392961A
Other languages
Japanese (ja)
Inventor
Toru Hoshi
亨 星
Takayuki Futatsuka
貴之 二塚
Saiji Matsuoka
才二 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003392961A priority Critical patent/JP2005154813A/en
Publication of JP2005154813A publication Critical patent/JP2005154813A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound structure steel plate which is appropriate for automobile structural members requiring working, such as bore expansion, and has excellent bore expandability. <P>SOLUTION: The compound structure steel sheet consists, by mass%, 0.01 to 0.2% C, ≤2.0% Si, ≤3.0% Mn, ≤0.08% P, ≤0.03% S, 0.01 to 0.1% Al, ≤0.01% N and the balance substantially iron, and is composed of a structural form in which the ferrite grains of the main phase are coated by coupling of the grains of a hard second phase. The compound structure steel sheet satisfies the following formula (1) when the overall circumferential length of a piece of the ferrite grain is defined as L and the length of the hard second phase existing around the ferrite grains as L<SB>2</SB>: L<SB>2</SB>≥0.7×L...(1). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、本発明は穴拡げ性に優れた複合組織鋼板に関し、特に自動車等の構造部材に適する複合組織鋼板に関する。   The present invention relates to a composite structure steel plate excellent in hole expansibility, and more particularly to a composite structure steel plate suitable for a structural member such as an automobile.

近年、自動車産業においては、環境問題等を背景として、高強度鋼板の適用による自動車車体の軽量化が検討されている。自動車用構造材に要求される特性としては、強度とともに種々の加工性、材料寿命を決定する破壊への耐性が要求される。疲労破壊等は鋼中の硬質な非金属介在物を起点として亀裂が進展し、破壊に至るため、清浄性を向上させる等の対応が取られている。   In recent years, in the automobile industry, with the background of environmental problems and the like, reduction in weight of an automobile body by applying a high-strength steel sheet has been studied. The properties required for automotive structural materials are required to have various workability as well as strength and resistance to breakage that determines material life. Fatigue fractures and the like are based on hard non-metallic inclusions in the steel, and cracks develop, leading to fractures. Therefore, measures such as improving cleanliness are taken.

同様な破壊挙動が、硬質な第二相と軟質な主相よりなる複合組織鋼板においても確認されている。また、高強度を有し、構造部材として用いられる鋼板には穴拡げ加工性が要求される。この穴拡げ加工では、疲労破壊と定性的に類似な亀裂の進展を呈する。そのため複合組織鋼板では、高強度化に伴う硬質第二相の比率増加やその硬度のために、穴拡げ性の低下が著しい。このため、複合組織鋼板は単相組織鋼板と比較して優れた特性を有するにもかかわらず、構造部材として使用する場合にはその適用部材(用途)が制限されているのが現状である。   A similar fracture behavior has been confirmed in a composite structure steel plate composed of a hard second phase and a soft main phase. Moreover, the hole expansion workability is requested | required of the steel plate which has high intensity | strength and is used as a structural member. This hole expansion process exhibits crack growth that is qualitatively similar to fatigue fracture. Therefore, in the composite structure steel plate, the hole expandability is remarkably lowered due to the increase in the ratio of the hard second phase accompanying the increase in strength and the hardness thereof. For this reason, the present condition is that the application member (use) is restricted when using it as a structural member, although a composite structure steel plate has the characteristic superior to a single phase structure steel plate.

このような硬質第二相を有する鋼板に高加工性を付与するための組織形態制御方法が提案されている。例えば、特許文献1には、主相フェライトと第二相(ベイナイト、パーライト)の組織形態について開示されている。また特許文献2には主相ポリゴナルフェライトと第二相(ベイナイト)を微細分散させる方法が、特許文献3には主相(ポリゴナルフェライト)の粒界に板状セメンタイトを微細分散させる方法が、それぞれ開示されている。   A structure morphology control method for imparting high workability to a steel plate having such a hard second phase has been proposed. For example, Patent Document 1 discloses a structural form of main phase ferrite and second phase (bainite, pearlite). Patent Document 2 discloses a method in which main phase polygonal ferrite and second phase (bainite) are finely dispersed. Patent Document 3 discloses a method in which plate-like cementite is finely dispersed at the grain boundaries of main phase (polygonal ferrite). , Respectively.

しかし、これらはいずれも第二相を微細分散させる方法であり、穴拡げ加工時の亀裂の発生を抑制することに着目してなされた発明である。このため、穴拡げ加工時の亀裂の進展抑制について検討されておらず、穴拡げ性は必ずしも良好なものとは言えない。
特開平5−51646号公報 特開平5−98353号公報 特開平9−170048号公報
However, these are all methods for finely dispersing the second phase, and are inventions that have been made with a focus on suppressing the occurrence of cracks during hole expansion. For this reason, it has not been studied to suppress crack propagation during hole expansion processing, and the hole expandability is not necessarily good.
JP-A-5-51646 Japanese Patent Laid-Open No. 5-98353 JP-A-9-170048

本発明はかかる事情に鑑みてなされたものであって、穴拡げ等の加工が必要な自動車構造部材に適する、穴拡げ性に優れた複合組織鋼板を提供することを目的とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the composite structure steel plate excellent in hole expansibility suitable for the automotive structural member which needs processes, such as hole expansion.

本発明者らは、複合組織鋼板において、従来技術では不十分であった穴拡げ性を大幅に改善して上記課題を解決するために、亀裂の発生を抑制するとともにその亀裂の進展を抑制することが重要であることを見出した。さらに、硬質第二相を活用し、かつ、その硬質第二相の組織形態に着目して、硬質第二相の形態が穴拡げ性に及ぼす影響について検討を重ねた結果、硬質第二相をフェライト粒界に連続的に分布させることにより亀裂の発生およびその進展を抑制可能であることを見出した。   In the composite steel sheet, the inventors of the present invention suppress the occurrence of cracks and suppress the development of cracks in order to significantly improve the hole expandability, which was insufficient with the prior art, and to solve the above problems. I found it important. Furthermore, as a result of repeatedly investigating the influence of the hard second phase on hole expansibility using the hard second phase and paying attention to the structure of the hard second phase, It has been found that the cracks can be prevented from occurring and progressing by continuously distributing the ferrite grain boundaries.

本発明は、このような知見に基づいてなされたものであり、mass%で、C:0.01〜0.2%、Si:2.0%以下、Mn:3.0%以下、P:0.08%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.01%以下で、残部が実質的に鉄からなり、硬質第二相の粒が連結することにより主相のフェライト粒が被覆された組織形態をなし、1個のフェライト粒の全周長をL、フェライト粒の周囲に存在する硬質第二相の長さをLとしたときに、下記(1)式の関係を満足することを特徴とする、穴拡げ性に優れた複合組織鋼板、を提供する。
≧0.7×L ・・・ (1)
This invention is made | formed based on such knowledge, and is mass%, C: 0.01-0.2%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.08% or less, S: 0.03% or less, Al: 0.01 to 0.1%, N: 0.01% or less, the balance being substantially made of iron, and grains of hard second phase When the structure forms a structure in which the ferrite grains of the main phase are coated by joining, the entire circumference of one ferrite grain is L, and the length of the hard second phase existing around the ferrite grain is L 2 Further, the present invention provides a composite structure steel plate excellent in hole expansibility, characterized by satisfying the relationship of the following formula (1).
L 2 ≧ 0.7 × L (1)

また、本発明は、上記複合組織鋼板において、Cr:1%以下、Mo:1%以下、V:1%以下、Ni:1%以下、B:0.01%以下、Ti:0.3%以下、Nb:0.3%以下のうち1種以上を含有する、穴拡げ性に優れた複合組織鋼板、を提供する。   Further, the present invention is the above composite steel sheet, Cr: 1% or less, Mo: 1% or less, V: 1% or less, Ni: 1% or less, B: 0.01% or less, Ti: 0.3% Hereinafter, the composite structure steel plate excellent in hole expansibility containing 1 or more types out of Nb: 0.3% or less is provided.

本発明に係る複合組織鋼板は、穴拡げ加工時の亀裂の発生が抑制され、かつ、亀裂の進展も抑制されるために、穴拡げ加工性に優れる。   The composite structure steel plate according to the present invention is excellent in hole expansion workability because generation of cracks during hole expansion processing is suppressed and the progress of cracks is also suppressed.

以下、発明の詳細について説明する。
まず、成分組成について説明する。
本発明に係る複合組織鋼板は、 mass%で、C:0.01〜0.2%、Si:2.0%以下、Mn:3.0%以下、P:0.08%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.01%以下で、残部が実質的に鉄からなる。さらに、Cr:1%以下、Mo:1%以下、V:1%以下、Ni:1%以下、B:0.01%以下、Ti:0.3%以下、Nb:0.3%以下のうち1種以上を含有してもよい。
Hereinafter, details of the invention will be described.
First, the component composition will be described.
The composite structure steel plate according to the present invention is mass%, C: 0.01 to 0.2%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.08% or less, S: It is 0.03% or less, Al: 0.01 to 0.1%, N: 0.01% or less, and the balance is substantially made of iron. Furthermore, Cr: 1% or less, Mo: 1% or less, V: 1% or less, Ni: 1% or less, B: 0.01% or less, Ti: 0.3% or less, Nb: 0.3% or less One or more of them may be contained.

C:0.01〜0.2%
Cは、一定量の硬質第二相を生成させ、硬質第二相の強度を確保するために必要な元素であり、そのために0.01%以上含有することが必要である。一方、その含有量が0.2%を超えると、加工性、溶接性の劣化が著しく、本発明が対象とする自動車用鋼板に適さない。したがって、C含有量を0.01〜0.2%の範囲とする。硬質第二相の連続性を強固にし、かつフェライト粒界を占有するのに必要な量と硬質第二相の強度を高めることにより穴拡げ性を向上させることが可能であることから、その含有量を0.1%以上とすることが望ましい。
C: 0.01 to 0.2%
C is an element necessary for generating a certain amount of the hard second phase and ensuring the strength of the hard second phase, and for that purpose, it is necessary to contain 0.01% or more. On the other hand, if the content exceeds 0.2%, the workability and weldability are remarkably deteriorated, which is not suitable for the automotive steel plate targeted by the present invention. Therefore, the C content is set to a range of 0.01 to 0.2%. Since it is possible to improve the hole expandability by increasing the strength of the hard second phase and the amount necessary to occupy the ferrite grain boundary and strengthen the continuity of the hard second phase The amount is desirably 0.1% or more.

Si:2.0%以下
Siは、強度確保および低温変態相を安定して得るために有効な元素であるが、その含有量が2.0%を超えると、赤スケールによる表面性状劣化、メッキ密着性の低下、化成処理の不良等の問題が顕著となり、実用鋼板として適さない。したがって、Si含有量を2.0%以下とする。
Si: 2.0% or less Si is an effective element for ensuring strength and stably obtaining a low-temperature transformation phase. However, if its content exceeds 2.0%, surface property deterioration due to red scale, plating Problems such as poor adhesion and poor chemical conversion treatment become prominent and are not suitable as practical steel sheets. Therefore, the Si content is set to 2.0% or less.

Mn:3.0%以下
Mnは、一般に鋼中のSをMnSとして析出させてスラブの熱間割れを防止するのに有効である。本発明では、硬質第二相を形成させるために、焼入れ性を向上させるMnを一定量添加することが望ましい。しかし、Mn含有量が3.0%を超えると、スラブコストの著しい上昇を招くだけでなく、加工性の劣化を招く。したがって、Mn含有量を3.0%以下とする。焼入れ性向上を発揮させるためには、Mn含有量を0.3%以上、さらには0.8%以上とすることが望ましい。
Mn: 3.0% or less Generally, Mn is effective in preventing S from hot cracking of slab by precipitating S in steel as MnS. In the present invention, in order to form a hard second phase, it is desirable to add a certain amount of Mn that improves hardenability. However, if the Mn content exceeds 3.0%, not only the slab cost is significantly increased, but also the workability is deteriorated. Therefore, the Mn content is 3.0% or less. In order to improve the hardenability, the Mn content is preferably 0.3% or more, and more preferably 0.8% or more.

P:0.08%以下
Pは、強度確保および低温変態相を安定して得るために有効な元素であるが、その含有量が0.08%を超えると、耐二次加工脆性を劣化させる等の弊害を生じる。また、亜鉛メッキ鋼板とした場合に合金化処理性の低下を引き起こす。したがって、P含有量を0.08%以下とする。
P: 0.08% or less P is an element effective for securing strength and stably obtaining a low-temperature transformation phase. However, if its content exceeds 0.08%, the secondary work brittleness resistance is deteriorated. This causes harmful effects such as Moreover, when it is set as a galvanized steel plate, the alloying processability falls. Therefore, the P content is 0.08% or less.

S:0.03%以下
Sは、熱間加工性を低下させ、スラブの熱間割れ感受性を高め、その含有量が0.03%を超えると、微細なMnSの析出により加工性を劣化させる。したがって、S含有量を0.03%以下とする。
S: 0.03% or less S reduces hot workability and increases the hot cracking susceptibility of the slab. If the content exceeds 0.03%, the workability deteriorates due to the precipitation of fine MnS. . Therefore, the S content is set to 0.03% or less.

Al:0.01〜0.1%
Alは、鋼の脱酸に寄与するとともに、鋼中の不用な固溶Nを窒化物として固定する役割がある。この効果は、Al含有量が0.01%未満では十分ではなく、0.1%を超えても含有量に見合う効果が得られない。したがって、Al含有量を0.01〜0.1%の範囲とする。
Al: 0.01 to 0.1%
Al contributes to the deoxidation of steel and has a role of fixing unnecessary solid solution N in the steel as nitrides. This effect is not sufficient if the Al content is less than 0.01%, and even if it exceeds 0.1%, an effect commensurate with the content cannot be obtained. Therefore, the Al content is in the range of 0.01 to 0.1%.

N:0.01%以下
Nは、時効性の観点から固溶状態で残存させることは望ましくなく、その含有量は少ない方がよい。N含有量が0.01%を超えると、過剰な窒化物の存在により延性、靭性が劣化する。したがって、N含有量を0.01%以下とする。
N: 0.01% or less It is not desirable for N to remain in a solid solution state from the viewpoint of aging, and its content is preferably as small as possible. If the N content exceeds 0.01%, ductility and toughness deteriorate due to the presence of excess nitride. Therefore, the N content is 0.01% or less.

Cr、Mo、V:それぞれ1%以下
Cr、Mo、Vは、フェライト生成元素であり、フェライト相+低温変態相の複合組織を得るために有効であるから、必要に応じて添加することができる。しかし、含有量がそれぞれ1%を超えると、コストに見合う効果が得られないので、Cr、Mo、Vを添加する場合は、その含有量をそれぞれ1%以下とする。
Cr, Mo, V: 1% or less respectively Cr, Mo, V are ferrite-forming elements and are effective for obtaining a composite structure of ferrite phase + low-temperature transformation phase, and can be added as necessary. . However, if the content exceeds 1%, an effect commensurate with the cost cannot be obtained. Therefore, when Cr, Mo, V is added, the content is 1% or less.

Ni:1%以下
Niは、溶接性を阻害せずに、焼入れ性および靭性を向上させる効果があるから、必要に応じて添加することができる。しかし、その含有量が1%を超えても、コストに見合う効果が得られない。このため、Niを添加する場合には、その含有量を1%以下とする。
Ni: 1% or less Ni has an effect of improving hardenability and toughness without impairing weldability, and can be added as necessary. However, even if the content exceeds 1%, an effect commensurate with the cost cannot be obtained. For this reason, when adding Ni, the content is made 1% or less.

B:0.01%以下
Bは、焼入れ性向上に有効な元素であり、低温変態相を安定して生成するために、必要に応じて添加することができる。但し、Bを0.01%を超えて添加してもコストに見合う効果が得られないので、Bを添加する場合には、その含有量を0.01%以下とする。
B: 0.01% or less B is an element effective for improving the hardenability, and can be added as necessary in order to stably generate a low-temperature transformation phase. However, since an effect commensurate with the cost cannot be obtained even if B is added in excess of 0.01%, the content is made 0.01% or less when B is added.

Ti、Nb:それぞれ0.3%以下
Ti、Nbは、窒化物を形成し、Nを固定する働きがある。Alに代わり、 Ti、NbによりNを固定することにより、結晶粒の微細化が図られ 靭性が向上するので、必要に応じてこれら元素を添加してもよい。但し、これらの含有量がそれぞれ0.3%を超えても、コストに見合う効果が得られないので、これらを添加する場合には、その含有量をそれぞれ0.3%以下とする。
Ti and Nb: each 0.3% or less Ti and Nb have a function of forming nitrides and fixing N. By fixing N with Ti or Nb instead of Al, the crystal grains are refined and the toughness is improved. Therefore, these elements may be added as necessary. However, even if these contents exceed 0.3%, an effect commensurate with the cost cannot be obtained. Therefore, when these are added, the contents are each set to 0.3% or less.

本発明の複合組織鋼板には、上記成分の他、残部は実質的に鉄であればよく、不可避的な不純物や、発明の作用・効果を損なわない範囲内の他の微量元素は許容される。   In the composite steel sheet of the present invention, in addition to the above components, the balance may be substantially iron, and inevitable impurities and other trace elements within a range that does not impair the function and effect of the invention are allowed. .

次に組織について説明する。
本発明の複合組織鋼板は、硬質第二相によりフェライト相の粒界が被覆されている組織形態を有する。そして、その占有率(被覆率)は下記(1)式を満足させることが必要である。
≧0.7×L ・・・ (1)
但し、L:1個のフェライト粒の全周長、
:フェライト粒の周囲に存在する硬質第二相の長さ
Next, the organization will be described.
The composite structure steel plate of the present invention has a structure form in which a grain boundary of a ferrite phase is covered with a hard second phase. The occupation ratio (coverage ratio) must satisfy the following formula (1).
L 2 ≧ 0.7 × L (1)
Where L: the entire circumference of one ferrite grain,
L 2 : Length of the hard second phase existing around the ferrite grains

本発明は、フェライト粒が硬質第二相により被覆された組織形態とすることによって複合組織鋼板の穴拡げ性の大幅な向上を図ったものである。従来から、複合組織鋼板は、優れた強度−延性バランスを示すため、自動車用鋼板等に広く使用されている。さらに、上述したように、硬質第二相を活用した穴拡げ性の改善も試みられてきた。しかしながら、従来技術では、十分な穴拡げ特性の改善が達成されていないのが現状である。   The present invention is intended to greatly improve the hole expansibility of a composite structure steel sheet by adopting a structure in which ferrite grains are coated with a hard second phase. Conventionally, a composite structure steel sheet has been widely used for automobile steel sheets and the like because it exhibits an excellent strength-ductility balance. Furthermore, as described above, attempts have been made to improve hole expansibility using the hard second phase. However, in the prior art, sufficient improvement of the hole expansion characteristic has not been achieved.

本発明者らは、特に硬質第二相の組織形態に注目し、硬質第二相の組織形態を変化させた系統的試料を準備し、電子顕微鏡下で亀裂伝播の観察を行った。その結果、穴拡げ時の亀裂発生・伝播挙動に硬質第二相の組織形態が極めて重要な役割を果たしていることを見出した。すなわち、従来技術にみられる硬質第二相とフェライト相の界面に発生した亀裂は、フェライト相内を進展後、貫通する。しかし、フェライト相の粒が硬質第二相により被覆されることにより、硬度差の大きい相界面が増加し、割れの発生源となる局所的応力が緩和される。しかも、進展してきた亀裂は硬質第二相で停留し、容易に亀裂は進展せず、穴拡げ性を向上させることを知見し、本発明に至った。   The present inventors paid particular attention to the structure of the hard second phase, prepared systematic samples in which the structure of the hard second phase was changed, and observed crack propagation under an electron microscope. As a result, we found that the structure of the hard second phase plays an extremely important role in the crack initiation and propagation behavior during hole expansion. That is, the crack generated at the interface between the hard second phase and the ferrite phase, which is found in the prior art, penetrates after passing through the ferrite phase. However, when the ferrite phase grains are coated with the hard second phase, the phase interface having a large hardness difference is increased, and the local stress that is the source of cracks is relieved. Moreover, it has been found that the cracks that have progressed are retained in the hard second phase, the cracks do not easily propagate, and the hole expandability is improved, leading to the present invention.

本発明によるミクロ組織の一例を、従来鋼と合わせて図1に示す。本発明鋼は従来鋼とは全く異なる組織形態、すなわちマルテンサイトを主体とする硬質第二相(図1(b)において黒く見える部分)によりフェライト相の粒子(図1(b)において白く見える部分)粒が被覆された組織形態を有する。但し、本発明において、不可避的に、局部的な硬質相の不連続が存在することがあり得る。   An example of the microstructure according to the present invention is shown in FIG. 1 together with conventional steel. The steel of the present invention has a completely different structure from that of the conventional steel, that is, a ferrite phase particle (a portion that appears white in FIG. 1B) due to a hard second phase mainly composed of martensite (a portion that appears black in FIG. 1B). ) Having a grain morphology coated with grains; However, in the present invention, local hard phase discontinuities may inevitably exist.

次に、本発明の硬質第二相によるフェライト相が被覆された状態について詳細に説明する。硬質第二相によるフェライト粒の被覆とは、フェライト粒に接した状態の硬質第二相が存在し、隣りあうフェライト粒の間が硬質第二相粒によって占有された形態を言う。しかし、フェライト粒の全周を被覆した形態である必要はない。このとき、被覆率は、前記(1)式に示されるように70%以上であればよく、85%以上であることがより望ましい。   Next, the state in which the ferrite phase of the hard second phase of the present invention is coated will be described in detail. The coating of the ferrite grains with the hard second phase refers to a form in which a hard second phase in contact with the ferrite grains exists and between adjacent ferrite grains is occupied by the hard second phase grains. However, it is not necessary that the entire periphery of the ferrite grain is covered. At this time, the coverage may be 70% or more as shown in the formula (1), and more preferably 85% or more.

複合組織鋼板の組織観察およびフェライト粒の被覆率の測定は、通常の組織観察と同様に、以下の手法により実施することができる。すなわち、まず鋼板の特定部(エッジ近傍等の非定常部以外の部位)の任意位置から組織観察用のサンプルを切出し、板表面を除く位置を観察部位とする。このとき、断面方向からの観察では、断面観察用に埋め込み研磨し、複合組織を顕在化するのに適切なエッチング液を用いて腐食させた後、板厚の1/4位置を観察すればよい。また平面からの観察では、表面を板厚の1/4研磨し、同じく腐食後、観察すればよい。このとき、観察装置として光学顕微鏡を用いることもできるが、硬質第二相が微細な場合は、電子顕微鏡を用いることが好ましい。このような観察装置を用い10視野程度撮影後、画像解析装置に画像データを取り込み、解析することで、硬質第二相によるフェライト粒の被覆率を確認することができる。硬質第二相とは、マルテンサイト、ベイナイト、残留オーステナイト等の低温変態相であり、これらの1種または2種以上を含むのものである。   The observation of the structure of the composite structure steel plate and the measurement of the ferrite grain coverage can be carried out by the following method, similarly to the normal structure observation. That is, first, a sample for tissue observation is cut out from an arbitrary position of a specific part (part other than the unsteady part such as the vicinity of the edge) of the steel sheet, and the position excluding the plate surface is taken as the observation part. At this time, in the observation from the cross-sectional direction, after burying and polishing for cross-sectional observation, and corroding with an etching solution appropriate for revealing the composite structure, a quarter position of the plate thickness may be observed. . Further, in the observation from the plane, the surface may be polished by 1/4 of the plate thickness, and similarly observed after corrosion. At this time, an optical microscope can be used as the observation device, but when the hard second phase is fine, it is preferable to use an electron microscope. After capturing about 10 fields of view using such an observation apparatus, the coverage of ferrite grains by the hard second phase can be confirmed by capturing and analyzing image data in the image analysis apparatus. The hard second phase is a low-temperature transformation phase such as martensite, bainite, and retained austenite, and includes one or more of these.

このような複合組織鋼板は、熱延板を600℃以上Ac点+70℃以下の温度で箱型焼鈍し、その後(α+γ)域の温度で連続焼鈍することによって製造することができる。箱型焼鈍の際の温度は650℃以上Ac点以下が好ましく、650℃以上Ac点以下がより好ましい。連続焼鈍の際の温度は、本発明に必要不可欠な低温変態相を得るために重要である。α単相域では低温変態相が得られず、またγ域では熱延板焼鈍工程によってフェライト+バンド状のパーライトに制御した組織に初期化されてしまう。 Such a composite structure steel plate can be manufactured by box-annealing a hot-rolled sheet at a temperature of 600 ° C. or higher and Ac 3 points + 70 ° C. or lower and then continuously annealing at a temperature in the (α + γ) region. The temperature during the box annealing is preferably 650 ° C. or more and Ac 3 points or less, and more preferably 650 ° C. or more and Ac 1 point or less. The temperature during the continuous annealing is important for obtaining a low-temperature transformation phase essential for the present invention. In the α single phase region, a low temperature transformation phase cannot be obtained, and in the γ region, it is initialized to a structure controlled to ferrite + band-like pearlite by a hot-rolled sheet annealing process.

本発明の鋼板は、熱延鋼板、亜鉛系メッキ鋼板を主対象とするが、冷延鋼板であってもよい。溶融亜鉛メッキ鋼板においては、合金化処理を施してもよい。また。これら溶融亜鉛メッキ鋼板には、メッキ後にさらに有機被膜処理を施してもよい。本発明においては、スラブを熱間圧延するにあたり、加熱炉で加熱後に圧延してもよいし、加熱することなく直接圧延してもよく、得られた熱延鋼板に対して焼きならしまたは焼きなまし処理を施してもよい。   The steel sheet of the present invention is mainly a hot-rolled steel sheet and a zinc-based plated steel sheet, but may be a cold-rolled steel sheet. The hot dip galvanized steel sheet may be subjected to an alloying treatment. Also. These hot dip galvanized steel sheets may be further subjected to organic coating treatment after plating. In the present invention, when the slab is hot-rolled, it may be rolled after being heated in a heating furnace, or may be directly rolled without being heated, and the obtained hot-rolled steel sheet is normalized or annealed. Processing may be performed.

冷延鋼板では、冷圧率を通常の範囲内で40〜80%程度とすればよい。但し、冷圧率の高い方が微細なフェライト粒が得られるので、焼鈍時間および最終的な穴拡げ性の観点から有利である。   In a cold-rolled steel sheet, the cold pressure rate may be about 40 to 80% within a normal range. However, the higher the cold pressure ratio, the finer ferrite grains can be obtained, which is advantageous from the viewpoint of annealing time and final hole expansibility.

本発明に係る鋼板を得ることができる製造方法は、上記に限るものではない。そして、その製造方法にかかわらず、たとえ冷延組織であっても図1に示したような組織形態、すなわちフェライト粒が硬質第二相により被覆された組織形態が得られれば、優れた穴拡げ性が得られる。   The manufacturing method which can obtain the steel plate which concerns on this invention is not restricted above. Regardless of the manufacturing method, even if it is a cold-rolled structure, if a structure form as shown in FIG. Sex is obtained.

表1に示す鋼番1〜10を溶製後、連続鋳造によりスラブを製造した。これらのスラブを1200℃に加熱後、通常操業の仕上温度(Ar点以上)で熱間圧延を行い、巻取温度550〜600℃で巻き取った後、表2に示す条件で箱型焼鈍および連続焼鈍を施し、熱延鋼板を製造した。こうして得られた熱延鋼板を酸洗後、一部を連続溶融亜鉛メッキラインに通板した。これらの鋼板について、最終ミクロ組織と硬質第二相によるフェライト粒の被覆率、引張強度および穴拡げ性を調査した。なお、表1のNo.1〜No.7は本発明の組成範囲を満たすものであり、No.8〜No.10は本発明の組成範囲から外れるものである。 After melting steel numbers 1 to 10 shown in Table 1, slabs were produced by continuous casting. After heating these slabs to 1200 ° C, they are hot-rolled at a finishing temperature of normal operation (Ar 3 points or more), wound at a winding temperature of 550 to 600 ° C, and then subjected to box annealing under the conditions shown in Table 2 And the continuous annealing was given and the hot-rolled steel plate was manufactured. The hot-rolled steel sheet thus obtained was pickled and then partially passed through a continuous hot dip galvanizing line. These steel sheets were examined for the ferrite grain coverage, tensile strength, and hole expansibility by the final microstructure and the hard second phase. In Table 1, No. 1-No. No. 7 satisfies the composition range of the present invention. 8-No. 10 is outside the composition range of the present invention.

表2にこれらの結果を示す。また、図2に本発明の組成範囲を満たすものについて、上記被覆率と穴拡げ率との関係を示す。表2および図2に示すように、本発明の組成を満たし、かつ、硬質第二相によるフェライト粒の被覆率が前記(1)式を満足する本発明例は、比較例(従来鋼)より穴拡げ性が大幅に向上することが確認された。これに対し、被覆率の条件を満たさない比較例では、穴拡げ性の向上はみられなかった。   Table 2 shows these results. FIG. 2 shows the relationship between the coverage ratio and the hole expansion ratio for those satisfying the composition range of the present invention. As shown in Table 2 and FIG. 2, the example of the present invention satisfying the composition of the present invention and the ferrite grain coverage by the hard second phase satisfies the formula (1) is more than the comparative example (conventional steel). It was confirmed that the hole expandability was greatly improved. On the other hand, in the comparative example that does not satisfy the coverage condition, the hole expandability was not improved.

Figure 2005154813
Figure 2005154813

Figure 2005154813
Figure 2005154813

本発明の複合組織鋼板は、穴拡げ等の加工が必要な自動車構造部材に好適である。   The composite structure steel plate of the present invention is suitable for automobile structural members that require processing such as hole expansion.

従来鋼と本発明による複合組織鋼板のミクロ組織の一例を示す写真。The photograph which shows an example of the microstructure of the conventional structure steel and the composite structure steel plate by this invention. フェライト粒の被覆率と穴拡げ率との関係を示す説明図。Explanatory drawing which shows the relationship between the coverage of a ferrite grain, and a hole expansion rate.

Claims (2)

mass%で、C:0.01〜0.2%、Si:2.0%以下、Mn:3.0%以下、P:0.08%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.01%以下で、残部が実質的に鉄からなり、硬質第二相の粒が連結することにより主相のフェライト粒が被覆された組織形態をなし、1個のフェライト粒の全周長をL、フェライト粒の周囲に存在する硬質第二相の長さをLとしたときに、下記(1)式の関係を満足することを特徴とする、穴拡げ性に優れた複合組織鋼板。
≧0.7×L ・・・ (1)
In mass%, C: 0.01 to 0.2%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.08% or less, S: 0.03% or less, Al: 0 .01-0.1%, N: 0.01% or less, the balance being substantially made of iron, and the structure of the ferrite phase of the main phase is covered by joining the grains of the hard second phase , the entire circumferential length of one of the ferrite grains L, and the length of the hard second phase present around the ferrite grains is taken as L 2, and satisfies the following relationship (1) , A composite steel sheet with excellent hole expandability.
L 2 ≧ 0.7 × L (1)
Cr:1%以下、Mo:1%以下、V:1%以下、Ni:1%以下、B:0.01%以下、Ti:0.3%以下、Nb:0.3%以下のうち1種以上を含有することを特徴とする請求項1に記載の、穴拡げ性に優れた複合組織鋼板。   1% of Cr: 1% or less, Mo: 1% or less, V: 1% or less, Ni: 1% or less, B: 0.01% or less, Ti: 0.3% or less, Nb: 0.3% or less The composite structure steel plate excellent in hole expansibility of Claim 1 containing the seed | species or more.
JP2003392961A 2003-11-21 2003-11-21 Compound structure steel plate having excellent bore expandability Pending JP2005154813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392961A JP2005154813A (en) 2003-11-21 2003-11-21 Compound structure steel plate having excellent bore expandability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392961A JP2005154813A (en) 2003-11-21 2003-11-21 Compound structure steel plate having excellent bore expandability

Publications (1)

Publication Number Publication Date
JP2005154813A true JP2005154813A (en) 2005-06-16

Family

ID=34719501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392961A Pending JP2005154813A (en) 2003-11-21 2003-11-21 Compound structure steel plate having excellent bore expandability

Country Status (1)

Country Link
JP (1) JP2005154813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179071A (en) * 2010-03-01 2011-09-15 Nippon Steel Corp High-tensile cold-rolled steel sheet and method of producing the same
JP2014173151A (en) * 2013-03-11 2014-09-22 Nippon Steel & Sumitomo Metal High strength hot rolled steel sheet excellent in processability and fatigue characteristic and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179071A (en) * 2010-03-01 2011-09-15 Nippon Steel Corp High-tensile cold-rolled steel sheet and method of producing the same
JP2014173151A (en) * 2013-03-11 2014-09-22 Nippon Steel & Sumitomo Metal High strength hot rolled steel sheet excellent in processability and fatigue characteristic and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6264505B1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
RU2567960C1 (en) High-strength steel sheet galvanised by hot immersion
KR101930186B1 (en) High-strength galvanized steel sheet and method for producing the same
JP5365216B2 (en) High-strength steel sheet and its manufacturing method
WO2019181950A1 (en) High-strength cold-rolled steel sheet and manufacturing method therefor
US20120152411A1 (en) High-strength galvanized steel sheet and method of manufacturing the same
JP5114747B2 (en) Manufacturing method of high-strength steel sheet with extremely good balance between hole expansibility and ductility and manufacturing method of galvanized steel sheet
CN113166828B (en) Cold-rolled and heat-treated steel sheet and method for manufacturing same
WO2021070951A1 (en) Cold-rolled steel sheet and method for producing same
JP2007016319A (en) High tensile hot-dip galvanized steel sheet, and method for producing the same
JP2007302992A (en) High strength hot rolled steel sheet and galvanized steel sheet having excellent stretch flange formability and method for producing them
JP2016141859A (en) High-strength steel sheet, high-strength plated steel sheet, high-strength molten zinc plated steel sheet, high-strength alloyed molten zinc plated steel sheet, and method of producing the same
TW201319267A (en) Alloyed hot-dip galvanized steel sheet
JP2011256404A (en) Hot dip metal coated steel sheet and method for producing the same
US11499204B2 (en) Martensitic stainless steel sheet, method for manufacturing same, and spring member
JP2007070649A (en) Hot dip galvanized high strength steel sheet and alloyed hot dip galvanized high strength steel sheet having excellent corrosion resistance and hole expandability, and method for producing them
JP2005264323A (en) High strength steel sheet having excellent deep drawability and stretch flange formability and its production method
JP2006063360A (en) High tensile hot-dip galvanized steel sheet and its manufacturing method
JP6409916B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
CN111868282B (en) Steel plate
WO2018030502A1 (en) High-strength steel sheet, and production method therefor
JP2019123905A (en) Two-phase stainless steel wire for prestressed concrete tendon, two-phase stainless steel wire, and prestressed concrete tendon
CN111954723B (en) High-strength steel sheet and high-strength galvanized steel sheet
JP2005154813A (en) Compound structure steel plate having excellent bore expandability
JP2018080362A (en) High-strength steel sheet, manufacturing method thereof and high-strength galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Effective date: 20090217

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A02