JP2015520363A - センサハウジング用制振ダンパ - Google Patents

センサハウジング用制振ダンパ Download PDF

Info

Publication number
JP2015520363A
JP2015520363A JP2015508983A JP2015508983A JP2015520363A JP 2015520363 A JP2015520363 A JP 2015520363A JP 2015508983 A JP2015508983 A JP 2015508983A JP 2015508983 A JP2015508983 A JP 2015508983A JP 2015520363 A JP2015520363 A JP 2015520363A
Authority
JP
Japan
Prior art keywords
sensor
tube member
probe according
damping mass
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015508983A
Other languages
English (en)
Other versions
JP6216775B2 (ja
Inventor
デビット, ユージン ウィクルンド,
デビット, ユージン ウィクルンド,
Original Assignee
ローズマウント インコーポレイテッド
ローズマウント インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローズマウント インコーポレイテッド, ローズマウント インコーポレイテッド filed Critical ローズマウント インコーポレイテッド
Publication of JP2015520363A publication Critical patent/JP2015520363A/ja
Application granted granted Critical
Publication of JP6216775B2 publication Critical patent/JP6216775B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/26Compensating for effects of pressure changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/46Pitot tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/6888Thermoelectric elements, e.g. thermocouples, thermopiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

センサプローブは、管部材、センサ素子、及び制振用質量体を備える。管部材は、流体通路内を流動するプロセス流体中に設けるためのものであり、流体通路に結合される第1端部と、プロセス流体中に挿入される第2端部とを備える。センサ素子は管部材に接している。制振用質量体は、管部材に組み付けられており、プロセス流体中に挿入されているときに、管部材の振動を低減するように構成されている。【選択図】図1

Description

本発明は、流体処理と、圧力、温度、液位、及び流量といったプロセス変数の計測に用いるセンサとに関し、具体的には、流動する流体の温度を検出するために用いるサーモウェルに関する。但し、本発明は、プロセス流体中に挿入するように構成されたハウジングの中にセンサが配設されるあらゆるプローブに適用することが可能である。
一般的に、サーモウェルは、パイプなどの流体通路の壁を貫通して延設される管部材を備えており、管部材の外面がプロセス流体との間で熱伝導を行うようになっている。熱電対または抵抗温度検知器(RTD)といった温度センサが、管部材の内面との間で熱伝導を行うことによりプロセス流体の温度を計測する。管部材を通る配線によって温度センサが伝送器電子回路に接続され、この伝送器電子回路は、適切な配線またはワイヤレスネットワークを介し、プロセス制御ネットワークと電気的に接続されるのが一般的である。従って、温度センサから得た温度データを処理し、プロセス制御室のワークステーションに伝達することが可能である。
流体通路内では、センサ用の管部材が、プロセス流体の流動によって生じた力を受けることになる。即ち、管部材は、流体励起振動を含む様々なストレス要因に晒される。一般的に流体励起振動は、管部材を共振振動させるような周期的に変化する力を発生させる渦の放出やその他の乱流の影響によって生じる。これらの力は、管部材を前後に揺さぶり、即ち振動させ、機械的ストレスを増大させると共に、管部材及びこれに組み付けられるセンサの双方の耐用寿命を短縮させることになる。流体励起振動は、固有共鳴振動数の近傍で発生すると、繰り返しの変形作用などの疲労によって壊滅的な故障に致る可能性のある強制共振振動が発生し、特に問題となる。高い流動抵抗もしくは大きな静圧勾配といった別のストレス要因が伴う場合、または管部材構造の腐食、疲労、もしくは浸食が伴う場合は、比較的小さな振動であっても問題となり得る。
大きな振動負荷を生じるような共振周波数を回避して特定のサーモウェルを使用することが可能な流量に関し、ASME(米国機械学会)のPTC19.3に示されるようなガイドラインが設けられている。これまで、管部材の振動に関わる問題については、管部材の強度を増すことによって対処してきた。このようなアプローチにより、厚みを増した管部材の壁や特殊な構造が必要となり、コストの増大、装置のサイズ拡大や重量増、感度の低下、及び応答時間の増大が生じる。一方、センサ用の管部材は、管部材を覆う境界層を剥離させて、渦の干渉を抑制する乱流生成構造を設けるなどして、(流体励起振動の原因となる)渦の放出を抑制するように構成されていた。例えば、ガーネット(Garnett)らに与えられ、ローズマウント社(Rosemount Inc.)を譲受人とする米国特許を示す特許文献1には、螺旋状の流動調整部材の使用が開示されている。
米国特許第7836780号明細書
しかしながら、そのようなアプローチを振動低減のために適用しても、管部材内のセンサは、長時間にわたる使用後にセンサに損傷が生じる可能性のあるような大きさの負荷を依然として受ける。従って、サーモウェルや平均ピトーセンサに用いられるような管部材に対し、更なる負荷、特に振動によって受ける負荷の低減が求められている。
本発明は、流体通路内を流動する流体の特性を検出するためのセンサプローブを対象とするものである。センサプローブは、管部材、センサ素子、及び制振用質量体を備える。管部材は、流体通路内を流動するプロセス流体中に設けるためのものであり、流体通路に結合される第1端部と、プロセス流体中に挿入される第2端部とを有する。センサ素子は管部材に接している。制振用質量体は、管部材に組み付けられており、管部材がプロセス流体中に挿入されているときに、管部材の振動を低減するように構成されている。
温度センサと、プロセス流体の流体通路内に挿入されるサーモウェルに組み付けられた制振用質量体とを備えたプロセス伝送器の概略断面図である。 内蔵片持ち梁により構成された制振用質量体を示す、図1のサーモウェルの縦方向断面図である。 外付け振り子体により構成された制振用質量体を示す、図1のサーモウェルの縦方向断面図である。 様々な形状を有してスクイズフィルムダンピング効果を付加的に得るように構成された制振用質量体の一例を示す、図3のサーモウェルの横方向断面図である。 様々な形状を有してスクイズフィルムダンピング効果を付加的に得るように構成された制振用質量体の一例を示す、図3のサーモウェルの横方向断面図である。 様々な形状を有してスクイズフィルムダンピング効果を付加的に得るように構成された制振用質量体の一例を示す、図3のサーモウェルの横方向断面図である。 センサハウジングが、制振質量体を組み付け可能な平均ピトーセンサを備えている、本発明のもう1つの実施形態を示す部分的な斜視図である。
図1は、本発明の一実施形態として、プロセス伝送器12を示す概略断面図であり、プロセス伝送器12は、温度センサ14と、流体通路であるプロセス流体管20内に挿入されるサーモウェル18に組み付けられた制振用質量体16とを備えている。また、プロセス伝送器12は、伝送器ハウジング22、ハウジング孔24、伝送器回路26、温度センサ用端子28、及び通路32を有したサーモウェル用取付部材30を備える。サーモウェル18は、管部材34、サーモウェルキャビティ36、第1端部38、第2端部40、及びプロセス用接続部42を備えている。温度センサ14は、保護管44、温度センサ先端部46、及び温度センサ用リード線48を備える。温度センサ14及び管部材34を含むサーモウェル18は、流動するプロセス流体中に挿入されるプローブを構成する。
伝送器ハウジング22は、伝送器回路26を含め、プロセス伝送器12の内部構成部品を収容する。伝送器回路26は、温度センサ用リード線48を介して温度センサ14と電気的に接続される温度センサ用端子28を備える。本発明の様々な実施形態として、温度センサ14は、公知の任意の感温素子で構成することができる。例えば、熱電対または抵抗温度検知素子(RTD)で温度センサ14を構成してもよい。また、本発明の別の実施形態として、圧力センサ、液位センサ、或いは流量センサといった、別の形式のセンサを管部材34内に挿入するようにしてもよい。温度センサ14は、細長い筒状の保護管44内に収容されている。温度センサ用リード線48には、伝送器回路26における温度センサ用端子28の複数の接続点のそれぞれに対するさまざまな電気的接続を行う複数の電線が含まれる。既に知られているように、伝送器回路26は、有線式制御ループまたはワイヤレスネットワークのいずれかを介し、温度センサ14の出力を監視可能な制御室に接続することが可能となっている。
本実施形態によれば、サーモウェル用取付部材30の一端が伝送器ハウジング22のハウジング孔24内に挿入され、サーモウェル用取付部材30の他端がサーモウェル18内に挿入される。サーモウェル18の第1端部38が、サーモウェル用取付部材30を受容し、第1端部38と第2端部40との間に位置するプロセス接続部42を介し、サーモウェル18がプロセス流体管20に結合される。第2端部40は、孔50からプロセス流体管20内に挿入される。サーモウェル用取付部材30の通路32は、伝送器ハウジング22の内部を、サーモウェル18内のサーモウェルキャビティ36に連通する。温度センサ14の保護管44は、伝送器ハウジング22の内部から、通路32を通って、サーモウェルキャビティ36の中まで延設される。保護管44は、サーモウェル18に接している必要はないが、様々な実施形態として、図3に示すように、保護管44がサーモウェル18に接するようにして、両者間での熱伝導を増大させるようにしてもよい。サーモウェル18は、第2端部40がプロセス流体RFの乱流経路中に位置するように、プロセス流体管20内の流路52内に挿入される。これに代わる実施形態として、プロセス流体が流動することにより管部材34の振動が生じるような任意の流体通路で、プロセス流体管20を構成することが可能である。
図示した実施形態では、プロセス流体RFが、速度ベクトルVで示すように、図1の紙面に直交する軸線方向にプロセス流体管20内を流動する。サーモウェル18は、矢印Xで示すように、軸線方向に直交する横断方向Xに延設される。サーモウェル18は、これら軸線方向または横断方向に対して斜めとなる方向に向けて、プロセス流体管20内に延設されるようにしてもよい。サーモウェル18は、横断方向の軸を中心とした回転については特に方向性がなく、任意の回転位置で孔50に取り付けることができる。いずれにしても、プロセス流体RFの速度ベクトルVは、管部材34の振動を発生させる上で十分な大きさとなる。
図示した実施形態において、サーモウェル18は、第1端部38が開口すると共に第2端部40が閉塞したサーモウェルキャビティ36を有する細長い管部材34を備える。管部材34は、温度センサ14または別の形式のセンサを収容するセンサハウジングを構成する。管部材34は、圧力センサ、液位センサ、または流量センサの要求に適合するような別の検出用開口を備えていてもよい。例えば、管部材34は、圧力センサがプロセス流体から直接圧力を検出することができるようシールされた孔を備えていてもよい。図1の実施形態において、管部材34は、全長にわたって径が一定の円形断面を有した円筒からなる。即ち、管部材34は、横断方向の軸周りに回転させた場合に、管部材34の外面と保護管44の外面との間の距離が、管部材34の全長にわたって一定となる。管部材34は、保護管44に沿って延びる横断方向の軸からの距離が一定でないような別の形状の円柱体で構成してもよい。図2及び図3に示すように、サーモウェル18の管部材34は、第1端部38に近いほど大きな径を有し、第2端部40に近いほど小さな径を有するようなテーパ形状としてもよい。また、別の実施形態として、管部材34は、テーパ形状とせずに、横断方向で段階的に径が変化するようにしてもよい。更に別の実施形態として、管部材34は、直線で囲まれた形状の断面、楕円形状断面、及びT字状断面といった円形ではない断面形状を有していてもよいが、断面形状はこれらに限定されるものではない。
サーモウェル18のプロセス用接続部42は、プロセス流体管20に形成された孔50に組み付けられる。図示した実施形態において、プロセス用接続部42は、プロセス流体管20の孔50に形成されたネジ部に螺合するネジ部を備えているが、別の形式の機構を用いて、サーモウェルをプロセス流体管に固定するようにしてもよい。プロセス用接続部42は、流路52内からプロセス流体管20の外部にプロセス流体が漏出しないように、産業プロセスを密封する。また、プロセス用接続部42は、サーモウェル18のプロセス側と非プロセス側との分離も行う。サーモウェル18の非プロセス側には、サーモウェル18の内部に延設されるサーモウェルキャビティ36、並びに第1端部38及びプロセス用接続部42の外面など、プロセス流体から隔離されるサーモウェル18の全ての部位が含まれる。サーモウェルキャビティ36は、温度センサ先端部46が第2端部40に近接するようにして、温度センサ14を挿入できるように大きさが定められる。温度センサ先端部46とサーモウェル18との間の熱伝導は、管部材34に熱伝導流体を充填することで、または図3に示すように、温度センサ先端部46がサーモウェル18に接触するようにすることで、改善することができる。サーモウェル18のプロセス側の部分は、プロセス流体管20内を流動するプロセス流体、特に流路52内にある第2端部40の末端部分近傍を流動するプロセス流体に晒される。
サーモウェル18のプロセス側におけるプロセス流体の軸線方向の流動により、サーモウェル18に対して作用する様々な力が発生する。なお、軸線方向の流速は、スパン方向の位置x(プロセス流体管20の内壁から直交方向に計測した位置)の関数となり、平均流速Vは、プロセス流体が流動する構造体の全体で共通化される。これらの速度特性は、軸線方向や軸線方向に対して傾斜した方向への不均一な流れ場を含んだ乱流の特徴を示している。乱れた流れ場により、サーモウェル18の振動を引き起こし得る2つの要因が生じる。第1は、乱流が、広範な周波数領域にわたって分散したエネルギを有していることである。第2に、サーモウェルの構造体と乱流との相互作用により、特定の周波数において干渉性のある流体現象が生じることである。
サーモウェルの延設範囲における様々な位置で境界層の剥離を発生させる手法を用いて渦の放出を抑制することにより、乱流による振動を低減するべく、多くの努力がなされてきた。これにより、渦の干渉が抑制され、乱流によってサーモウェルに加わる力が低減される。前述の特許文献1には、渦の放出を許容可能なレベルまで抑制するために、サーモウェルの形状や外面に対して行うことが可能な様々な修正が開示されている。
しかしながら、サーモウェル18の振動を更に抑制し、管部材34が影響を受けるような広範な周波数領域から生じうる共振周波数振動の可能性を排除するのが望ましい。例えば、渦の放出を抑制する対策をとった後であっても、プロセス流体中には、サーモウェルをその共振周波数において励起するのに十分なエネルギが残留する。乱流中のエネルギに起因した機械的共振の励起は、1995年ケンブリッジ大学出版局発行のユリエル・フリッシュ(Uriel Frisch)著「乱流・A.N.コルモゴロフの遺産(Turbulence: The Legacy of A. N. Kolmogorov)」に述べられており、同書には共振の排除の難しさについても述べられている。本発明では、サーモウェル18に制振質量体16を設け、プロセス流体の乱流から受ける振動の力に対抗して、発生周波数領域におけるピーク振幅を低減する。具体的には、制振質量体16のパラメータである質量、ばね定数、及び減衰係数を選択することにより、予測される周波数領域における振幅を低減することが可能である。汎用体本体についての、質量、ばね定数、及び減衰係数の相関関係については、1956年マグローヒル出版社発行のJ.P.デン・ハートフ(J. P. Den Hartog)著「機械的振動(Mechanical Vibrations)」第4版に述べられており、同書には最適化されたパラメータの選択に関連付けられた振幅の低減についても述べられている。本発明では、これらの関係がサーモウェル18及び制振質量体16に適合されて適用され、選定された流れ場におけるサーモウェル18の共振周波数振動が抑制される。
図2は、一実施形態として、内蔵片持ち梁53により構成された制振用質量体16を示す、図1のサーモウェル18の縦方向断面図である。また、サーモウェル18は、管部材34、サーモウェルキャビティ36、第1端部38、第2端部40、プロセス用接続部42、及び流動調整部材54を備える。内蔵片持ち梁53は、プレート56、中空円柱体58、及び孔60を備える。制振用質量体16は、溶接点62において、管部材34に結合されている。
プロセス用接続部42は、螺合などにより伝送器ハウジング22(図1)に組み付けられる。また、プロセス用接続部42は、プロセス用接続部42内にある保護管44の周囲に密着するOリングなどのシールを備えていてもよい。こうして、サーモウェルキャビティ36がプロセス流体から隔離される一方、管部材34の外面は、プロセス流体の乱流に晒されることになる。温度センサ14の保護管44は、温度センサ先端部46が、第2端部40において制振用質量体16のすぐそばに位置するように、伝送器ハウジング22(図1)から管部材34のサーモウェルキャビティ36内に延設されている。前述したように、温度センサ先端部46は、第2端部40に接触するように構成されていてもよい。図示した実施形態において、管部材34の第2端部40は開口しており、この第2端部40の開口を、プレート56が密封している。
管部材34及び保護管44は、中心軸線CAに沿って、伝送器ハウジング22から概ね垂直に延設されている。中心軸線CAは、プロセス流体の軸線方向の流動に対して直交する方向に延びる。図2に示す実施形態では、管部材34の外周面64が、第1端部38から第2端部40にかけて、次第に中心軸線CAに近付いている。従って、管部材34を形成する壁は、第2端部40よりも第1端部38の方が厚くなっている。但し、内周面66は、中心軸線CAと平行となるように、概ね垂直に延設されている。即ち、外周面64は内周面66に対して傾斜している。必要に応じ、前述したように、円柱状ハウジングなどといった、別の形状の管部材34を用いて流動抵抗を低減し、渦の放出を抑制する効果を高めるようにしてもよい。一例として、流動調整部材54を外周面64に設けることにより、渦の放出を抑制する。図示した実施形態において、前述したガーネット(Garnett)らに与えられた特許に示されるように、流動調整部材54は、外周面64を取り巻く螺旋状のリブからなる。管部材34は、流動調整部材を用いずに制振用質量体を使用するようにしてもよい。
本実施形態では、制振用質量体16のプレート56が第2端部40を封止して、サーモウェルキャビティ36をプロセス流体から隔離した状態に維持する。従って、図示した実施形態において、プレート56は、管部材34の外周面64と同じ径を有している。中空円柱体58は、縦長の環状体、即ち管からなり、保護管44の周面を全周にわたって取り囲む側壁を有している。中空円柱体58は、断面積A0で、例えばリング状などの円形、または例えば矩形状などの直線で囲まれた形状の断面を有していてもよい。中空円柱体58は、保護管44と同心状となるように、プレート56からサーモウェルキャビティ36内に延設されている。中空円柱体58は、プレート56に対して直角に、中心軸線CAを中心として長さLにわたって延設されている。但し、中空円柱体58は、別の状態で延設されていてもよい。固定端68はプレート56に結合しており、自由端70は規制を受けておらず、サーモウェルキャビティ36内において距離y2の移動が可能となっている。従って、中空円柱体58も内周面66及び保護管44に対して平行となっている。別の実施形態として、制振用質量体16は、プレート56から延設されて保護管44を断続的に取り囲む1以上の片持ち梁で構成するようにしてもよい。例えば、中実で正方形の断面を有した4つの片持ち梁が、保護管44の周囲を間隔をあけて取り囲むように、90度毎に設けられるようにしてもよい。
プレート56と中空円柱体58とは、同一の材料から一体的に形成され、単一部材を構成するのが好ましい。別の実施形態として、これらプレート56及び中空円柱体58は、溶接または螺合といった、任意の適切な手段により結合される別部材として構成するようにしてもよい。制振用質量体16は、溶接点64を容易に形成することができるよう、管部材34と同じ材料で形成してもよい。但し、別の実施形態では、制振用質量体16が管部材34とは異なる材料で形成される。一実施形態において、制振用質量体16と管部材34とは、ステンレス合金からなる。また、別の実施形態では、プレート56と管部材34との螺合を利用するなど、別の機械的手段により、制振用質量体16が管部材34に固定される。
サーモウェル18がプロセス流体PF(図1)などによる乱流に晒される際、管部材34は、プロセス流体の流速及び管部材34の物理的特性に応じた特定の周波数及び振幅で振動する。管部材34の振動は、周波数ωで振幅aの振動となる。軽微な制振が、プロセス流体及び別の要素によってなされる。このような軽微な制振を伴うサーモウェル18の振動は、2次微分方程式によって表される。サーモウェル18は、下記式(1)に従って振動し、当該式(1)において、Mはサーモウェル18の質量、Cはサーモウェル18の減衰係数、Kはサーモウェル18のばね定数、y1はサーモウェル18のたわみ量、tは時間、P0Sin(ωt)は、振動の振幅a及び周波数ωによって定まる励振力である。
Figure 2015520363
サーモウェル18は、それ自体が、1自由度を有した2次系(ばね定数K及び減衰係数C)として振る舞う。流動する流体中の片持ち梁によって自然に得られる軽微な制振は、0.1よりも大幅に小さい減衰係数Cに相当するものとなる。このような軽微な制振を伴い、共振周波数におけるサーモウェル18の振動は、大幅に拡大され、機械的な故障の要因となる可能性のある繰り返しの応力サイクルを引き起こす。
本発明では、制振用質量体16が、サーモウェル18に組み合わされてサーモウェル18の振動に抗することにより、ダンパとして作用する。本発明の制振用質量体16は、大幅に高めた減衰係数を実現することにより、共振状態における撓みの最大振幅を低減することができる。例えば、サーモウェル18の第2端部40における振動は、梁である中空円柱体58の固定端68に同様の動きを発生させ、固定端68の動きによって自由端70に距離y2の変位が生じる。中空円柱体58の弾性率E、慣性モーメントI、長さL、及び断面積A0といった特性値により、サーモウェル18の振動に抗する制振体または吸収体となるような、特定の質量m、ばね定数k、及び減衰係数cを有した制振用質量体16が定まる。制振用質量体16及びサーモウェル18は、下記式(2)及び式(3)に従って振動し、これら式中、力P0Sin(ωt)は、振動の振幅a及び周波数ωによって定まる励振力である。
Figure 2015520363
Figure 2015520363
制振用質量体16の付加により、2自由度を有した2次系(ばね定数K及びk、並びに減衰係数C及びc)となる。なお、式(2)及び(3)において、質量Mによって得られる制振効果は、簡素化のために減衰係数Cに関する式を省略できる程度に僅かなものである。既知の関係を用い、管部材34の共振周波数に厳密に適合するように、内蔵片持ち梁53などの制振用質量体16の質量m、長さL、断面積A0、慣性モーメントI、及び弾性率Eを選定する。このような選定により、内蔵片持ち梁53は、正方向と負方向とに振動する力をサーモウェル18に印加し、プロセス流体の流動によって与えられる振動を抑制する。このような機構の作用は、管部材34の共振周波数における振幅を大幅に低減するものであり、変形応力の大きさが低減されて疲労破損に対する耐久性が向上する。
サーモウェル18の制振を行う上で制振用質量体16を更に補助するため、液体または気体といった流体を管部材34に充填し、内蔵片持ち梁53の減衰係数cを所望の値とするようにしてもよい。即ち、内蔵片持ち梁53には、この内蔵片持ち梁53が動いたときに、充填流体が通過して流動可能な孔60が設けられる。充填流体中の内蔵片持ち梁53の動きにより、内蔵片持ち梁53の移動速度に比例した抑制力が生じ、減衰係数cが所望の値となる。図示するように、孔60は、中空円筒部材58の壁を貫通して径方向に延設されており、中心軸線CAから見て様々な方向に指向されている。充填流体、並びに孔60の数及び大きさは、所望の減衰係数cが得られるように選定することができる。抑制力は、孔のない内蔵片持ち梁53においても、充填流体中で内蔵片持ち梁53が動く際に作用しうる。既に知られているように、充填流体は、サーモウェル18と温度センサ先端部46との間の熱伝導を増大させるようなものを用いることも可能である。
図3は、もう1つの実施形態として、外付け振り子体72により構成された制振用質量体16を示す、図1のサーモウェル18の縦方向断面図である。また、サーモウェル18は、上述したような、管部材34、サーモウェルキャビティ36、第2端部40、及び流動調整部材54を備える。制振用質量体16は、キャップ74、ディスク76、ロッド78、及び孔80を備える。キャップ74は、溶接点82において管部材34に結合され、ロッド78は、溶接点84において管部材34に結合されている。管部材34とキャップ74との間には、内部領域86が形成されている。
図3の実施形態において、管部材34は、第2端部40が一体的に封止されている。即ち、管部材34の外周面64が端面88につながっている。同様に、内周面66は内面90につながっている。このようにして、サーモウェルキャビティ36は、管部材34の残部と一体的な材料により、サーモウェル18の外部から密封されている。
ロッド78は、管部材34と同じ材料で形成して、溶接点84の形成を容易にするのが好ましい。同様に、キャップ74は、管部材34と同じ材料で形成して、溶接点82の形成を容易にするのが好ましい。一実施形態では、キャップ74及びロッド78がステンレス合金で形成される。別の実施形態では、キャップ74及びロッド78が、管部材34とは異なる材料で形成される。更に別の実施形態では、キャップ74及びロッド78が、螺合など、別の機械的手段によって管部材34に固定される。例えば、ロッド78を端面88内に螺合させると共に、キャップ74を外周面64に螺合させるようにしてもよい。キャップ74は、管部材34の延長部を形成する。ディスク76は、ロッド78と同じ材料またはステンレス合金などといった、任意の適切な材料からなり、溶接、ろう付け、または機械的結合などの任意の適切な手段によってロッド78に固定することができる。
図示した実施形態において、キャップ74は、管部材34の端面88から軸線方向に下方に延設される。キャップ74は、中空に加工されて内部領域86を形成する円盤状の円筒体からなる。即ち、キャップ74は、円環状の側壁によって取り囲まれた平坦な円形端壁を備えている。なお、キャップ74は、ドーム状をなして流動抵抗を低減するなど、別の所望の目的を達成するような別の形状を有していもよい。図示した実施形態において、キャップ74は、管部材34の第2端部40とほぼ同じ径を有している。なお、キャップ74は、管部材34の径より小径とするなど、別の大きさであってもよい。内部領域86は、ディスク76が振動によりキャップ74内で移動する上で十分な空間が得られるような大きさとなっている。従って、キャップ74は、ロッド78及びディスク76を収容すると共に、ディスク76の変位を許容する上で十分な深さを有している。
ロッド78は、管部材34の第2端部40から下方に向け、概ね温度センサ14と同一軸線上に位置するように延設される。但し、ロッド78は、これとは異なる配置としてもよい。一実施形態において、ロッド78は、管部材34の端面88の中心に設けられる。ロッド78は、均一の断面積を有し、全ての移動方向で均一の撓み量と減衰係数cとが得られるようになっている。図示した実施形態において、ロッド78は、ディスク76及び端面88に結合するための平坦な端面を有した円柱体からなる。図示するように、ロッド78の長さは、ロッド78の径より長くすることにより、ばね定数kを低減すると共に、振り子効果が増すようにすることができる。但し、制振を行う上で十分な振り子効果をディスク76において得るにあたり、ロッド78の長さをロッド78の径より長くしなくてもよい。図示した実施形態において、ディスク76は、平坦な端面を有した円柱体からなる。ディスク76の径をディスク76の高さより大きくして、ロッド78との結合位置を重心位置に近付けた状態で質量mが得られるようにすることにより、プロセス流体の流動における制振用質量体16の占有度合いを低減している。
サーモウェル18の振動により、ロッド78及びディスク76の変位が生じる。図2の実施形態と同様に、サーモウェル18の振動を抑制するように外付け振り子体72の特性を選定することにより、共振周波数における振動及び繰り返しの変形作用による疲労の蓄積を防止する。なお、外付け振り子体72をより複雑な機構とし、所望の制振が行われるように、ロッド78及びディスク76の特性の双方を変更してもよい。例えば、ロッド78の長さ及び径は、主にばね定数kに寄与し、ディスク76の大きさは、主に外付け振り子体72の質量mに寄与する。減衰係数cは、充填流体中を移動する外付け振り子体72の速度に比例した抑制力によって定まる。
更に、ディスク76は、内部領域86内の充填流体を、付け振り子体72のばね定数k及び減衰係数cに対して寄与させる孔80を備えているのが好ましい。孔80は、様々な方向でディスク76を貫通して延設され、様々な方向での制振を行う。例えば、図3においては、3つの孔がディスク76を紙面に平行に貫通し、2つの孔がディスク76を紙面に垂直に貫通している。これに類似して、曲がりくねった通路網が内部に形成された多孔質体でディスク76を構成することもできる。一実施形態において、この多孔質体は金属焼結体からなる。図2の実施形態と同様に、充填流体内でディスク76が動く際などに制振効果を得る上で、充填流体用の孔を設けなくてもよい。充填流体は、液体または気体とすることが可能であり、サーモウェル18が晒される温度範囲の全域にわたって、流体の特性、とりわけ粘性を維持するものが選択される。
図4A〜図4Cは、図3の制振用質量体16の横方向断面図であって、様々な形状を有したディスク76が、スクイズフィルムダンピング効果を付加的に得るように構成されている。図4Aは多角形断面のディスク76Aを示し、図4Bは円形断面のディスク76Bを示し、図4Cは星形断面のディスク76Bを示している。スクイズフィルムダンピング効果は、2つの面が、流体を間に介在させた状態で互いに近接して配置されているときに生じる。2つの面が互いに近接して配置されることにより、間に介在する流体は、押しつぶされたり引っ張られたりして、これら2つの面の相対的な移動の速度を低下させる。スクイズフィルムダンピング効果は、間隙の大きさに対する表面積の比が大きい場合に大きなものとなる。本発明に適切なスクイズフィルムダンピング効果は、シリコーンオイルなどのダンピング液の場合に、約1mmまでの間隙で得ることができる。但し、別のダンピング液の場合には、別の大きさの間隙とすることが可能である。
本発明に関しては、2つの面が、これら面の間に含まれる一定の体積の充填流体と同軸状に位置して、キャップ74の内周面92が外側同心面となり、ディスク76の外周面94が内側同心面となる。ディスク76が振動してキャップ74に接近する際、外周面94は、動きに対向する内周面92との間で、充填流体を押しつぶしたり引っ張ったりする。具体的には、図4Aに示すように、ディスク76Aの外周面94が、外面96A及び外面96Bを含む八角形を形成している。外面96Aが内周面92に近づく際には、キャップ74とディスク76との間の領域から流体が押し出される(押しつぶされる)一方、外面96Bと内周面92との間の領域内に流体が引き込まれる(引っ張られる)。押しつぶされる際には、流体の粘性により、内周面92と外面96Aとの間の領域から流体が流出する速度が制限される。同様に、引っ張られる際には、内周面92と外面96Bとの間の領域内に流体が流入する速度が制限される。このような押しつぶしや引っ張りにより、振動を抑制する背圧が2つの面の間に生じる。振動の抑制は、面積の拡大によって更に効果的となる。多角形断面を構成するディスク76Aの外面や、星形断面を構成するディスク76Cの外面のようにすることで、円形断面のディスク76Bに比べ、より多くの流体を圧押しつぶしたり引っ張ったりすることができる。キャップ74に対するディスク76の回転位置とは方向的に関わりなく、任意の断面形状のディスク76を用いることが可能である。例えば、図4Aや図4Cのものより数の多いまたは少ない外面で形成される多角形断面または星形断面を適用することが可能である。また、スクイズフィルムダンピング効果は、図2の実施形態においても得ることが可能であり、この場合、中空円柱体58は、距離y2が短くなるように、管部材34の内周面66に近接して配置される。
図5は、センサハウジングが、制振質量体を組み付け可能な平均ピトーセンサ100を備えている、本発明のもう1つの実施形態を示す部分的な斜視図である。平均ピトーセンサ100は、上部102、下部104、内部キャビティ106、仕切り108、第1開口110、第1チャンバ112、第2チャンバ114A及び114B、第1平坦面116、並びに第2平坦面118A及び118Bを備える。平均ピトーセンサ100は、図1の伝送器ハウジング22などの伝送器ハウジングに組み付けられる1区切りの縦長の管部を備えている。上部102は、ハウジング孔24(図1)に平均ピトーセンサ100が結合される伝送器ハウジング22の方に向いており、下部104は、プロセス流体PF(図1)の方に向いている。伝送器ハウジング22内に位置する平均ピトーセンサ100の上端部には、伝送器回路26(図1)と電気的に接続されると共に、第1チャンバ112、並びに第2チャンバ114A及び114Bに流体的に連通するようにして、差圧センサが組み付けられている。例えば、平均ピトーセンサ100は、エマーソン(Emerson、登録商標)305IS Ultra産業用プロセス伝送器と組み合わせて用いることができる。
第1チャンバ112を含む仕切り108は、内部キャビティ106内に延設されて第2チャンバ114A及び114Bを形成している。第1開口110は、平均ピトーセンサ100の第1平坦面116を貫通して延設され、第1チャンバ112に連通している。第1開口110は、図5に示すような単一の溝孔としてもよいし、第1平坦面116に延設される複数の溝孔、第1平坦面116に延設される単一の開口孔、または第1平坦面116に延設される一連の開口孔であってもよい。第2平坦面118Aは、第2チャンバ114Aに連通する第2開口(図示せず)を、また第2平坦面118Bは、第2チャンバ114Bに連通する第2開口(図示せず)を、それぞれ備えている。上述した差圧センサは、既に知られているように、一方のダイヤフラムを第1チャンバ112に露出させ、他方のダイヤフラムを第2チャンバ114A及び114Bに露出させるようにして、平均ピトーセンサ100に組み付けられる。一実施形態として、平均ピトーセンサ100は、米国ミネソタ州のイーデンプレーリー(Eden Prairie)にあるローズマウント社(Rosemount Inc.)から購入可能な、ローズマウント485アニュバー(Rosemount 485 Annubar、登録商標)からなる。別の実施形態では、平均ピトーセンサ100が、米国ミネソタ州のイーデンプレーリー(Eden Prairie)にあるローズマウント社(Rosemount Inc.)から購入可能な、ローズマウント585アニュバー(Rosemount 585 Annubar、登録商標)からなる。第1平坦面116は、差圧センサが全圧を検出できるようにプロセス流体の上流方向に向いており、第2平坦面118A及び118Bは、差圧センサが後流における圧力を検出できるようにプロセス流体の下流方向に向いている。T字状断面形状の管部を有した平均ピトーセンサに関して説明を行っているが、別の形状の管部を有した平均ピトーセンサを用いることも可能である。例えば、平均ピトーセンサ100は、菱形、または直線で囲まれた形の断面形状を有していてもよい。また、平均ピトーセンサ100は、平坦面を有していなくてもよく、円形または楕円の断面形状を有していてもよい。
本発明の制振用質量体は、平均ピトーセンサ100の下端部に組み付けることが可能である。例えば、下部104を封止状態とし、図3に示すキャップ74、ディスク76、及びロッド78と同様の、キャップ、ディスク、及びロッドを、平均ピトーセンサ100の外面に結合してもよい。また、下部104を開口して、図2に示す内蔵片持ち梁53のような片持ち梁を内部キャビティ106内に挿入し、図2に示すプレート56のようなプレートで塞ぐようにしてもよい。こうして制振用質量体を取り付けることにより、上述したようにして平均ピトーセンサ100の振動を低減または排除するように、制振用質量体を構成することができる。
本発明は、流動するプロセス流体中に配設して使用するセンサプローブのハウジングの振動を低減する方法及び装置を提供する。特定の変動範囲の乱流が生じるプロセス流体中に挿入されるように予め構成されたセンサハウジングに対し、当該特定の変動範囲の乱流におけるセンサハウジングの共振周波数が定まる。これに対応し、センサハウジングの共振を抑制する上で十分な力を有して特定の変動範囲の乱流中で振動する制振用質量体が構成される。本発明の一部の実施形態においては、制振用質量体が片持ち梁で構成される。片持ち梁のばね定数、減衰係数、及び質量の大きさは、センサハウジングのピーク振動を抑制するために必要な制振作用が得られるように選定される。センサハウジングの振動の低減は、センサハウジングの寿命に加え、内蔵されるセンサ素子の寿命をも引き延ばす。プロセス流体の温度を検出するサーモウェル管や、プロセス流体の圧力を検出する平均ピトーセンサのピトー管といったセンサハウジングを、本発明の制振用質量体と組み合わせて使用することが可能である。
制振用質量体は、センサハウジングの内側または外側に装着される。一実施形態において、制振用質量体は、センサハウジング内に延設されてセンサを取り囲む中空円柱体をなすような片持ち梁からなる。別の実施形態では、制振用質量体が、センサハウジングの外面から延設されたロッドによって吊り下げられたディスクのような振り子体からなる。但し、これらの部材は、別の変形例と組み合わせることが可能である。制振用質量体は、センサハウジングの振動のピーク振幅を低減する。制振用質量体は、貫通孔または多孔構造による通路といった内部通路を設けることが可能であり、空気または液体といった流体中に配設して更なる制振機構が備えられるようにしてもよい。また、制振用質量体は、互いに近接して設けられた2つの面の間に流体が設けられるスクイズフィルムダンパとして構成することも可能である。更に、制振用質量体は、プロセス流体の境界層の剥離を生じさせる流動調整部材を組み合わせることも可能である。これらの特徴を、いずれか1つまたは組み合わせて適用する場合、センサハウジングの疲労寿命を大幅に延長することができる。個々の制振用質量体の振動低減特性及び振動緩和特性は、予め定められた流動状態の範囲内でプロセス流体が流動し、その結果として乱流により生じる力が判っているような既知のプロセス制御システムにおいて使用しようとするセンサハウジングに対し、個別に設定し選択することができる。従って、所望のセンサハウジングを得るべく製造を行う際に、制振用質量体の特性を調整または変更するようにしてもよい。
具体的な実施形態に基づき本発明を説明したが、本発明の範囲から逸脱することなく、様々な変更が可能であると共に、均等物で本発明の各構成要素を置き換えることが可能であることが当業者に理解されよう。また、本発明の本質的な範囲から逸脱することなく、特定の状況やものを本発明の教示に適合させるためのさまざまな変形が可能である。従って、本発明は、開示した特定の実施形態に限定されるものではなく、添付の特許請求の範囲内に含まれる全ての形態を含むものである。

Claims (31)

  1. 流体通路内のプロセス流体中に設けるための管部材であって、前記流体通路に結合される第1端部、及び前記プロセス流体中に挿入される第2端部を有する管部材と、
    前記管部材に接するセンサ素子と、
    前記管部材に組み付けられ、前記プロセス流体中に挿入されているときに前記管部材の振動を低減するように構成された制振用質量体と
    を備えることを特徴とするセンサプローブ。
  2. 前記制振用質量体は、前記プロセス流体の流動によって生じる振動の周波数領域におけるピーク振幅を低減する質量、減衰係数、及びばね定数を有することを特徴とする請求項1に記載のセンサプローブ。
  3. 前記制振用質量体は、前記管部材の内側に設けられることを特徴とする請求項1に記載のセンサプローブ。
  4. 前記制振用質量体は、前記管部材の外側に設けられることを特徴とする請求項1に記載のセンサプローブ。
  5. 前記制振用質量体の周囲を流動可能に前記制振用質量体を取り囲む流体を更に備えることを特徴とする請求項1に記載のセンサプローブ。
  6. 前記制振用質量体は、前記制振用質量体を貫通する複数の孔を有することを特徴とする請求項5に記載のセンサプローブ。
  7. 前記複数の孔は、互いに異なる方向に向けて延設された孔を含むことを特徴とする請求項6に記載のセンサプローブ。
  8. 前記制振用質量体は、多孔質体からなることを特徴とする請求項6に記載のセンサプローブ。
  9. 前記制振用質量体は、スクイズフィルムダンパを備えることを特徴とする請求項5に記載のセンサプローブ。
  10. 前記制振用質量体は、多角形、星形、及び円形の群から選択された断面形状を有することを特徴とする請求項9に記載のセンサプローブ。
  11. 前記管部材は、前記管部材の外側に設けられ、前記管部材を通り過ぎるプロセス流体の渦の放出を抑制する流動調整部材を有することを特徴とする請求項1に記載のセンサプローブ。
  12. 前記制振用質量体は、前記管部材に片持ち支持されることを特徴とする請求項1に記載のセンサプローブ。
  13. 前記管部材の前記第1端部は開口し、
    前記管部材の前記第1端部は閉塞し、
    前記センサ素子は、前記管部材の前記第1端部から延設されることを特徴とする請求項12に記載のセンサプローブ。
  14. 前記制振用質量体は、前記管部材の前記第2端部に配置されて、前記管部材を封止することを特徴とする請求項13に記載のセンサプローブ。
  15. 前記制振用質量体は、
    前記管部材の前記第2端部を封止するプレートと、
    前記プレートから前記管部材の内部に延設される片持ち梁と
    を備えることを特徴とする請求項14に記載のセンサプローブ。
  16. 前記片持ち梁は、前記センサ素子を取り囲む中空円柱体を備えることを特徴とする請求項15に記載のセンサプローブ。
  17. 前記片持ち梁と前記管部材との間に設けられる流体を更に備え、
    前記片持ち梁は、スクイズフィルムダンピング効果が得られるように、前記管部材に近接して配置される
    ことを特徴とする請求項16に記載のセンサプローブ。
  18. 前記制振用質量体は、閉塞した前記第2端部の外側に配置されることを特徴とする請求項13に記載のセンサプローブ。
  19. 前記制振用質量体は、
    前記管部材に結合されるキャップと、
    閉塞した前記第2端部から前記キャップ内に延設される振り子体と
    を備えることを特徴とする請求項18に記載のセンサプローブ。
  20. 前記振り子体は、
    閉塞した前記第2端部に位置する一端から前記キャップ内に位置する他端まで延設されるロッドと、
    前記ロッドの前記他端に結合された円柱状のディスクと
    を備えることを特徴とする請求項19に記載のセンサプローブ。
  21. 前記振り子体と前記管部材との間に設けられる流体を更に備え、
    前記振り子体は、スクイズフィルムダンピング効果が得られるように、前記管部材に近接して配置される
    ことを特徴とする請求項19に記載のセンサプローブ。
  22. 前記センサ素子は、温度センサからなることを特徴とする請求項1に記載のセンサプローブ。
  23. 前記センサ素子は、差圧センサからなることを特徴とする請求項1に記載のセンサプローブ。
  24. 前記管部材は、前記プロセス流体と接する内部空間を有した平均ピトーセンサを備え、
    前記差圧センサは、前記内部空間と流体的に連通している
    ことを特徴とする請求項23に記載のセンサプローブ。
  25. 前記平均ピトーセンサは、
    前記内部空間を第1チャンバと第2チャンバとに分離する仕切りと、
    前記第1チャンバに連通する第1開口と、
    前記第2チャンバに連通する第2開口とを備え、
    前記差圧センサは、前記第1チャンバ及び第2チャンバと流体的に連通している
    ことを特徴とする請求項24に記載のセンサプローブ。
  26. 前記平均ピトーセンサは、
    前記第1開口を有した第1平坦面と、
    前記第2開口を有し、前記第1平坦面の裏側に位置する第2平坦面と
    を更に備えることを特徴とする請求項25に記載のセンサプローブ。
  27. 流体通路内を流動するプロセス流体中に設けるように構成されたセンサハウジングにおける振動を低減する方法であって、
    前記プロセス流体の流動特性を定める工程と、
    前記プロセス流体中に設けられて前記流体通路に結合されるセンサハウジングの共振周波数を定める工程と、
    振動すると共に前記センサハウジングの共振周波数の振動を低減する制振用質量体を、前記流動特性に対応して構成する工程と
    前記センサハウジングに前記制振用質量体を装着する工程と
    を備えることを特徴とする方法。
  28. 前記制振用質量体が前記センサハウジングの振動を低減する上で十分な力を生成するような、前記制振用質量体のばね定数、減衰係数、及び質量を選定する工程と、
    前記プロセス流体中に前記センサハウジングを配置する工程と
    を更に備えることを特徴とする請求項27に記載の方法。
  29. 流体を前記制振用質量体の周囲に流動させて前記センサハウジングの振動を更に低減する工程を更に備えることを特徴とする請求項28に記載の方法。
  30. 前記センサハウジングの外側に設けられた流動調整部材を通過するように前記プロセス流体を流動させて、前駆プロセス流体の境界層の剥離を生じさせる工程を更に備えることを特徴とする請求項27に記載の方法。
  31. 前記制振用質量体と前記センサハウジングとの間の流体によりスクイズフィルムダンパ効果を得る工程を更に備えることを特徴とする請求項27に記載の方法。
JP2015508983A 2012-04-27 2013-03-27 センサハウジング用制振ダンパ Active JP6216775B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/458,303 US9086303B2 (en) 2012-04-27 2012-04-27 Vibration damper for sensor housing
US13/458,303 2012-04-27
PCT/US2013/034089 WO2013162813A1 (en) 2012-04-27 2013-03-27 Vibration damper for sensor housing

Publications (2)

Publication Number Publication Date
JP2015520363A true JP2015520363A (ja) 2015-07-16
JP6216775B2 JP6216775B2 (ja) 2017-10-18

Family

ID=48897090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015508983A Active JP6216775B2 (ja) 2012-04-27 2013-03-27 センサハウジング用制振ダンパ

Country Status (8)

Country Link
US (2) US9086303B2 (ja)
EP (1) EP2841896B1 (ja)
JP (1) JP6216775B2 (ja)
CN (2) CN103376183B (ja)
CA (1) CA2864596A1 (ja)
IN (1) IN2014MN01587A (ja)
RU (1) RU2613626C2 (ja)
WO (1) WO2013162813A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10156480B2 (en) * 2009-09-03 2018-12-18 Rosemount Inc. Thermowell vibration frequency diagnostic
US9322492B2 (en) * 2012-08-23 2016-04-26 Westinghouse Electric Company Llc Pipeline clamp for vibration measurement
US9188488B2 (en) * 2013-03-14 2015-11-17 Rosemount Inc. Vibration detection in thermowells
US9804002B2 (en) * 2013-09-04 2017-10-31 Cameron International Corporation Integral sensor
US9250107B2 (en) * 2013-09-17 2016-02-02 Dieterich Standard, Inc. Customizable averaging pitot tube probe and process variable transmitter
NO20140215A1 (no) * 2014-02-19 2015-08-20 Tech Damper As Intrusivt måleutstyr for måling i en strømning
DE102014005069A1 (de) * 2014-04-07 2015-10-08 Abb Technology Ag Sensoreinrichtung mit Schutzrohr
US9874464B2 (en) 2014-12-18 2018-01-23 Wastequip, Llc Sensor mount
US9885610B2 (en) 2014-12-22 2018-02-06 Rosemount Inc. Thermowell system with vibration detection
US10281303B2 (en) * 2015-03-23 2019-05-07 Rosemount Aerospace, Inc. Air data probe with improved performance at angle of attack operation
US9891111B2 (en) * 2015-06-30 2018-02-13 Rosemount Inc. Thermowell with infrared sensor
CN105067111B (zh) * 2015-09-25 2018-04-24 四川升拓检测技术股份有限公司 适合于振动/波动测试的传感器耦合装置及阻尼调试方法
US10545037B2 (en) * 2016-08-01 2020-01-28 Saudi Arabian Oil Company Flow line insert with indentations
US11090101B2 (en) * 2018-05-02 2021-08-17 Medtronic Cryocath Lp Soft balloon device and system
CN108844649B (zh) * 2018-07-04 2019-12-13 苏州理合文科技有限公司 一种罗茨泵工作温度测量方法
CN109798943A (zh) * 2019-03-01 2019-05-24 孙良荣 一种基于电阻应变式传感器的水表或流量计结构
US11691573B2 (en) * 2020-03-18 2023-07-04 Pony Ai Inc. Aerodynamically enhanced sensor housing
US20230067012A1 (en) * 2020-03-24 2023-03-02 Andritz Inc. Pellet mill roll temperature sensing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190667A (ja) * 1997-12-26 1999-07-13 Ishikawajima Harima Heavy Ind Co Ltd 熱電対型温度計
JP2000018323A (ja) * 1998-07-03 2000-01-18 Mitsubishi Heavy Ind Ltd 振り子式制振装置
JP2004294147A (ja) * 2003-03-26 2004-10-21 Yamatake Corp 流速計
JP3126141U (ja) * 2006-08-03 2006-10-12 出光興産株式会社 温度計の保護管構造

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001045A (en) 1975-03-03 1977-01-04 Sangamo Weston Limited Thermocouple
US4312235A (en) 1980-09-02 1982-01-26 United Technologies Corporation Sensor and meter for measuring the mass flow of a fluid stream
US4525081A (en) 1983-09-09 1985-06-25 Rosemount Inc. Vibration dampened beam
US4791818A (en) * 1987-07-20 1988-12-20 Itt Corporation Cantilever beam, insertable, vortex meter sensor
US4958938A (en) 1989-06-05 1990-09-25 Rosemount Inc. Temperature transmitter with integral secondary seal
US5117695A (en) 1990-10-12 1992-06-02 Teledyne Industries, Inc. Vibration attenuation assembly
US5276433A (en) 1991-04-11 1994-01-04 Brissco Equipment Limited Methods and apparatus for temperature sensing
GB2300270B (en) 1992-10-30 1997-01-29 Solartron Group Ltd Thermocouple probe
US5404760A (en) 1993-10-27 1995-04-11 Westinghouse Electric Corporation Blade path thermocouple and exhaust gas extraction probe for combustion turbines
JPH11230245A (ja) 1998-02-10 1999-08-27 Tokai Rubber Ind Ltd 空気圧加振式の能動型制振器
US6148751A (en) 1998-12-16 2000-11-21 High Seas Engineering, Llc Vibration and drag reduction system for fluid-submersed hulls
US6470755B1 (en) * 1999-08-05 2002-10-29 Dieterich Standard, Inc. Noise reducing differential pressure measurement probe
US6485175B1 (en) 1999-08-06 2002-11-26 Pgi International, Ltd. Temperature sensing device for metering fluids
US6544257B2 (en) * 2000-07-03 2003-04-08 Olympus Optical Co., Ltd. Thermal treatment apparatus
US6435036B1 (en) 2000-07-17 2002-08-20 Matsushita Electric Industrial Co., Ltd. Vortex flow meter
US6948884B2 (en) 2001-03-14 2005-09-27 Technip France Vortex-induced vibration reduction device for fluid immersed cylinders
FR2831630B1 (fr) * 2001-10-29 2004-01-30 Hutchinson Support antivibratoire hydraulique comportant un clapet de decouplage clipse
US6641121B1 (en) * 2002-01-03 2003-11-04 Meritor Light Vehicle Technology, Llc Damping structure
US7523662B2 (en) * 2002-10-25 2009-04-28 Endress + Hauser Flowtec Ag Process meter
US20040114665A1 (en) * 2002-12-12 2004-06-17 Sun Park Cantilevered thermocouple rake
EP1720018A3 (en) * 2003-02-03 2007-03-21 Denso Corporation Ceramic package for mounting electronic components
US6868741B2 (en) 2003-03-05 2005-03-22 Veris, Inc. Device and method enabling fluid characteristic measurement utilizing fluid acceleration
US7186131B2 (en) * 2003-03-19 2007-03-06 Kulite Semiconductor Products, Inc. Vibration isolated transducer connector
US6957586B2 (en) 2003-08-15 2005-10-25 Saudi Arabian Oil Company System to measure density, specific gravity, and flow rate of fluids, meter, and related methods
WO2006127718A1 (en) 2005-05-24 2006-11-30 Shell Internationale Research Maatschappij B.V. Apparatus with strake elements and methods for installing strake elements
EP1820922A1 (en) * 2006-02-15 2007-08-22 Dtu Tuned liquid damper
US8215193B2 (en) 2006-10-03 2012-07-10 Alan John Duff Method and apparatus for simplified and hygienic access to a fluid chamber
JP4569638B2 (ja) * 2007-01-31 2010-10-27 株式会社デンソー 温度センサ
DE102007037046A1 (de) * 2007-08-06 2009-02-12 Robert Bosch Gmbh Zusatzhandgriffvorrichtung
US7695190B2 (en) * 2007-11-13 2010-04-13 General Electric Company Thermocouple rake truss
US7836780B2 (en) 2008-02-26 2010-11-23 Rosemount Inc. Sensor tube with reduced coherent vortex shedding
DE102008035423A1 (de) * 2008-07-30 2010-02-04 Airbus Uk Ltd. Resonanter Strömungssensor sowie Verwendung und Herstellverfahren desselben
US10156480B2 (en) 2009-09-03 2018-12-18 Rosemount Inc. Thermowell vibration frequency diagnostic
US8770837B2 (en) 2009-12-21 2014-07-08 Nuovo Pignone S.P.A. Fatigue resistant thermowell and methods
GB2483931B (en) * 2010-09-27 2015-12-23 Endet Ltd Combined fluid sampling and monitoring probe
EP2623817B1 (en) * 2010-09-29 2017-12-20 Toyota Jidosha Kabushiki Kaisha Colloidal damper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190667A (ja) * 1997-12-26 1999-07-13 Ishikawajima Harima Heavy Ind Co Ltd 熱電対型温度計
JP2000018323A (ja) * 1998-07-03 2000-01-18 Mitsubishi Heavy Ind Ltd 振り子式制振装置
JP2004294147A (ja) * 2003-03-26 2004-10-21 Yamatake Corp 流速計
JP3126141U (ja) * 2006-08-03 2006-10-12 出光興産株式会社 温度計の保護管構造

Also Published As

Publication number Publication date
JP6216775B2 (ja) 2017-10-18
CA2864596A1 (en) 2013-10-31
US9086303B2 (en) 2015-07-21
IN2014MN01587A (ja) 2015-05-08
EP2841896A1 (en) 2015-03-04
CN203116754U (zh) 2013-08-07
EP2841896A4 (en) 2015-12-16
US20130283928A1 (en) 2013-10-31
US20150308866A1 (en) 2015-10-29
RU2014137395A (ru) 2016-04-10
WO2013162813A1 (en) 2013-10-31
US9671255B2 (en) 2017-06-06
CN103376183A (zh) 2013-10-30
EP2841896B1 (en) 2018-10-24
CN103376183B (zh) 2017-10-27
RU2613626C2 (ru) 2017-03-21

Similar Documents

Publication Publication Date Title
JP6216775B2 (ja) センサハウジング用制振ダンパ
CN202204632U (zh) 用于感测过程流体的压力的压力传感器和过程控制变送器
EP2220486B1 (en) System and method of assessing a property of a flowing fluid
JP5888330B2 (ja) 対称共振器を有する流体特性測定装置
JP2019511713A (ja) センサ用センサアセンブリ、並びにそれを備えて形成されたセンサ及び測定システム
JP4129881B2 (ja) 防爆高温対応形マルチ渦流量計
CN102749266B (zh) 流体特性测量器及测量流体密度的方法
JP3744913B2 (ja) 渦流量計センサ及び渦流量計
US8181539B2 (en) Pressure isolated strain gauge torque sensor
JP5058879B2 (ja) Mems加速度センサ
EP3353526B1 (en) A density sensor and density sensor manufacturing method
US3530726A (en) Accelerometer
JP5412269B2 (ja) 流体力計測装置
JP3046363B2 (ja) カルマン渦流量計用センサ
JP3153748B2 (ja) 渦流量計センサ
CN219038226U (zh) 一种振弦式传感器及压力计
RU2460049C1 (ru) Датчик импульсных давлений жидкостных, газообразных и смешанных сред с нестационарной температурой
CN114966095A (zh) 确定介质的至少一个参数的测量装置、传感器单元和方法
RU43637U1 (ru) Датчик вихревого расходомера
RU2331076C1 (ru) Вибрационный датчик
JP3071997B2 (ja) 渦流量計センサ
Atkinson et al. Analysis of a flat annular-shaped diaphragm for use in a down-hole pressure transducer
Dau et al. A dual axis silicon gyroscope based on thermal convective effect [ship applications]

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6216775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250