JP2015519533A - Cooling amount control device, test device using the control device, and control method thereof - Google Patents

Cooling amount control device, test device using the control device, and control method thereof Download PDF

Info

Publication number
JP2015519533A
JP2015519533A JP2015509288A JP2015509288A JP2015519533A JP 2015519533 A JP2015519533 A JP 2015519533A JP 2015509288 A JP2015509288 A JP 2015509288A JP 2015509288 A JP2015509288 A JP 2015509288A JP 2015519533 A JP2015519533 A JP 2015519533A
Authority
JP
Japan
Prior art keywords
cooling
hot air
valve
compressor
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015509288A
Other languages
Japanese (ja)
Other versions
JP6373258B2 (en
Inventor
徐月明
Original Assignee
杭州雪中炭恒温技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州雪中炭恒温技術有限公司 filed Critical 杭州雪中炭恒温技術有限公司
Publication of JP2015519533A publication Critical patent/JP2015519533A/en
Application granted granted Critical
Publication of JP6373258B2 publication Critical patent/JP6373258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2517Head-pressure valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

本発明は、冷却量制御装置、該制御装置を使用した試験装置及び制御方法に関する。冷却量制御装置は、圧縮機2、凝縮機5、蒸発機7、コントローラー1、圧力調整弁4、絞り装置6、熱風弁駆動用制御盤13、及び熱風弁11を備える。制御装置は、熱風弁駆動用制御盤を介して熱風弁11に連接される。圧力調整弁4は、前記冷却装置の圧縮機2の出口と凝縮機5の入口との間に設けられる。絞り装置6は、凝縮機5の出口と蒸発機7の入口と設けられる。熱風弁11の一端は、圧縮機の出口と圧縮調整弁4の前端との間のパイプラインに設けられ、他端は、絞り装置6の後部と蒸発機7の入口との間のパイプラインに設けられる。The present invention relates to a cooling amount control apparatus, a test apparatus using the control apparatus, and a control method. The cooling amount control device includes a compressor 2, a condenser 5, an evaporator 7, a controller 1, a pressure adjustment valve 4, a throttle device 6, a hot air valve drive control panel 13, and a hot air valve 11. The control device is connected to the hot air valve 11 via a hot air valve drive control panel. The pressure regulating valve 4 is provided between the outlet of the compressor 2 and the inlet of the condenser 5 of the cooling device. The expansion device 6 is provided with an outlet of the condenser 5 and an inlet of the evaporator 7. One end of the hot air valve 11 is provided in a pipeline between the outlet of the compressor and the front end of the compression regulating valve 4, and the other end is in a pipeline between the rear portion of the expansion device 6 and the inlet of the evaporator 7. Provided.

Description

本発明は、気候及び環境試験装置の冷却量を正確に制御するための熱風弁熱風バイパス冷却量制御装置に関する。上記制御装置を使用した試験装置は、加熱を使用しないか少なく使用して、環境温度に近い温度あるいは高い温度において冷却システムが動作することを維持でき、これにより、加熱のエネルギー消耗を減少し、エネルギー効率を向上し、ヒーターを使用しなくてもよいことまでできる。制御装置は、簡単な構成、且つ低エネルギー消費という特徴を有している。これは、気候及び環境の試験装置の高精度温度制御の重要な手段として使われることができる。さらに、本発明は、同様に、制御装置を使用した試験装置と、そのような制御装置に使われる方法に関する。   The present invention relates to a hot air valve hot air bypass cooling amount control device for accurately controlling the cooling amount of a climate and environmental test apparatus. The test device using the above control device can maintain the cooling system operating at a temperature close to or higher than the ambient temperature with little or no use of heating, thereby reducing the energy consumption of heating, You can improve energy efficiency and not even use a heater. The control device has a simple configuration and low energy consumption. This can be used as an important tool for high-precision temperature control of climatic and environmental test equipment. Furthermore, the invention likewise relates to a test device using a control device and a method used for such a control device.

気候及び環境試験装置は、恒温タンク及び恒温循環装置、気候及び環境試験チャンバー及び生物人口気候試験チャンバー、低温定温機等を含み、医療衛生、バイオテクノロジー、農林業に関する研究、電気及び電子、計測学的検証、地盤工学、石油化学等の分野における製造、科学研究及び試験室などの面において、幅広く応用できる。    The climate and environmental test equipment includes thermostatic tanks and thermocirculators, climate and environmental test chambers and bio-population climate test chambers, cryostats, etc., medical hygiene, biotechnology, agriculture and forestry research, electricity and electronics, metrology It can be widely applied in the fields of production verification, geotechnical engineering, petrochemistry, etc., scientific research and laboratory.

冷却装置は、気候及び環境試験装置に欠かせない重要な装置の一つである。冷却装置及び技術は、通常動作中に低温(環境温度より低い温度)又は放熱が要求される全てのシステムに適用される。正確な温度制御及び気候及び環境試験装置の分野が少量且つ多様なアプリケーションの特徴の要求のために、冷却量及びエネルギー消耗制御は、重要だがこれまで無視されていた。略全ての気候及び環境試験装置のための温度制御は、継続冷却及び追加加熱補償の従来技術を基礎としており、大量のエネルギーの消耗及び浪費となっている。 The cooling device is one of the important devices indispensable for climate and environmental test equipment. Cooling devices and techniques apply to all systems that require low temperatures (lower than ambient temperature) or heat dissipation during normal operation. The amount of cooling and energy consumption control has been important but has been ignored so far due to the demands of precise temperature control and climate and environmental test equipment in small quantities and diverse application features. Temperature control for almost all climate and environmental test equipment is based on the prior art of continuous cooling and additional heating compensation, resulting in large amounts of energy consumption and waste.

図1に示すように、従来の冷却装置は、基本的に、圧縮機、凝縮機、絞り装置及び蒸発機を有する。絞り装置は、冷却装置の欠かすことができない重要な部品として、毛細管、熱膨張弁及び電子膨張弁など多様な形式を有し、簡単なものから自動制御まで、冷却技術の発展的なコースを証明するサインであり、冷却装置の高精度制御上で電子膨張弁の役目は益々重要になっている。 As shown in FIG. 1, the conventional cooling device basically includes a compressor, a condenser, a throttle device, and an evaporator. The expansion device is an indispensable part of the cooling device, and has various types such as capillaries, thermal expansion valves and electronic expansion valves, demonstrating an advanced course of cooling technology from simple to automatic control. The role of the electronic expansion valve is becoming increasingly important for high-precision control of the cooling device.

冷却量制御に関して、周波数変換圧縮機の冷却技術、電子膨張弁のスロットル技術及び熱ポンプの現代技術が、家庭及び商業用電気製品に広範囲に用いられている。周波数変換圧縮機の冷却技術、電子膨張弁のスロットル技術は、全体として、冷却量制御のために冷却装置に通常組み込まれている。そのような技術の製品における成功は、特定の周波数変換圧縮機と、複雑な加熱度検証及び計算に関わり、製造の投資のための十分な資金なし又は大量生産の製品を設計することなくして、この技術を一般用途向けの製品及び装置に適用することは難しい。伝統的な抵抗電気加熱と比較して、蒸発機及び凝縮機熱ポンプ技術で過熱は、非常に高いエネルギー効率比を有し、その中に加熱と冷却の切り替えを実現する。しかしながら、冷却量制御は、周波数変換圧縮機及び電子膨張弁の技術に基づく必要がある。 Regarding cooling control, frequency conversion compressor cooling technology, electronic expansion valve throttle technology, and modern heat pump technology are widely used in household and commercial appliances. The cooling technology of the frequency conversion compressor and the throttle technology of the electronic expansion valve are generally incorporated in the cooling device as a whole for controlling the cooling amount. The success in products of such technology involves specific frequency conversion compressors and complex heating verification and calculations, without designing sufficient unfunded or mass-produced products for manufacturing investment, It is difficult to apply this technology to products and devices for general use. Compared with traditional resistive electric heating, superheat in evaporator and condenser heat pump technology has a very high energy efficiency ratio, and realizes switching between heating and cooling in it. However, the cooling amount control needs to be based on the technology of the frequency conversion compressor and the electronic expansion valve.

近年、電子膨張弁は、家電製品及び商用冷蔵庫の分野で広範囲に使用されている。特に、それは、絞り装置として用いられ、インバーター・圧縮機冷蔵庫のシステム要求に合致している。その鍵となる機能は、蒸発機の出口における過熱温度を制御する。
電子膨張弁は、通常、凝縮機の出口と、蒸発機の入口との間に設けられる。蒸発機の出口における過熱温度への要求に基づいて、電子膨張弁は、リアルタイムに弁の開口の大きさを分析して判断し、加熱度への制御が最適化され、システム冷却装置の輸出が最適化されるようにする。しかし、正確に制御する際、加熱度の制限を受けたため、冷却輸出制御機能を最適化することができず、システム温度制御が悪くなった。例えば、高精度過熱弁を得るために、蒸発機前後の蒸発温度及び/又は冷却圧力が計測されることが求められていることが多い。そのため、制御回路及びソフトウェアアルゴリズムの複雑度及び信頼度は、システム成功には重要になる。大量生産のエンジニアリング及び製造投資のための工業化及び予算に対しての楽観的な見通しなしに、洗練され且つ信頼性があるシステムのための大きなコストに余裕があることは難しい。ところで、気候及び環境試験装置における適用要求は、下は−90℃、上は+300℃に拡大されている一方、従来の電子膨張弁の適用温度は、環境温度とー40℃との間に限られ、アプリケーションにおける少量且つ多様性の状況において、高精度温度の気候及び環境試験装置内に電子膨張弁を適用することは難しい。
In recent years, electronic expansion valves have been widely used in the field of home appliances and commercial refrigerators. In particular, it is used as a throttle device and meets the system requirements of inverter / compressor refrigerators. Its key function is to control the superheat temperature at the outlet of the evaporator.
The electronic expansion valve is usually provided between the outlet of the condenser and the inlet of the evaporator. Based on the demand for superheat temperature at the outlet of the evaporator, the electronic expansion valve analyzes and determines the size of the valve opening in real time, the control to the degree of heating is optimized, and the export of the system cooling device To be optimized. However, since the degree of heating was limited when accurately controlling, the cooling export control function could not be optimized, and the system temperature control was deteriorated. For example, in order to obtain a high-precision overheat valve, it is often required to measure the evaporation temperature and / or the cooling pressure before and after the evaporator. Therefore, the complexity and reliability of the control circuit and software algorithm are important for system success. It is difficult to afford large costs for a sophisticated and reliable system without an optimistic view of industrialization and budget for mass engineering and manufacturing investments. By the way, the application requirements in the climate and environmental test apparatus have been expanded to −90 ° C. below and + 300 ° C. above, while the application temperature of the conventional electronic expansion valve is limited to between the ambient temperature and −40 ° C. Therefore, it is difficult to apply an electronic expansion valve in a high-accuracy temperature climate and environmental test apparatus in a small and diverse situation in applications.

従来の冷却装置内のパイプラインに補助的な熱風バイパスチャネルが追加され、簡単な通常冷却及び熱風バイパス加熱を実現する。その基本的な動作原理は、高速冷却が要求されるときに、最高冷却量用に熱風バイパスを閉めることである。冷却量も低下の必要性、あるいは加熱要望があったときに、熱風バイパス弁が開き、圧縮機の出口からの高温冷却蒸気が、凝縮機で冷却されることなく蒸発機に直接バイパスされる。その結果、冷却量が抑制され、加熱が可能になる。一定温度が要求される場合に、高温バスバイパス弁は、ある周期で開口及び閉口して冷却量の調整及び一定温度を達成する。それらはよく知られた知識であるが、現在の熱風バイパス技術は以下の不利益がある。   An auxiliary hot air bypass channel is added to the pipeline in the conventional cooling device to achieve simple normal cooling and hot air bypass heating. Its basic operating principle is to close the hot air bypass for maximum cooling when fast cooling is required. When there is a need to reduce the amount of cooling or when there is a request for heating, the hot air bypass valve is opened, and the high-temperature cooling steam from the outlet of the compressor is bypassed directly to the evaporator without being cooled by the condenser. As a result, the amount of cooling is suppressed and heating is possible. When a constant temperature is required, the high-temperature bus bypass valve opens and closes at a certain period to adjust the cooling amount and achieve a constant temperature. Although they are well-known knowledge, the current hot air bypass technology has the following disadvantages.

(1)電磁弁の寿命からの制約により、熱風バイパスの操作間隔は、ある程度制限される。その結果、冷却量の制御精度は限られている。 (1) The operation interval of the hot air bypass is limited to some extent due to restrictions from the life of the solenoid valve. As a result, the control accuracy of the cooling amount is limited.

(2)継続した加熱状況で長い間電磁弁を開いたままにすると、圧縮機の排出圧力は徐々に低下する。その結果、冷却装置は、限定的な加熱又は非加熱のみ可能である。実際は、環境温度に近いあるいはそれより高い温度に動作を維持することは困難である。 (2) If the solenoid valve is kept open for a long time in a continuous heating state, the discharge pressure of the compressor gradually decreases. As a result, the cooling device is only capable of limited heating or non-heating. In practice, it is difficult to maintain operation near or above ambient temperature.

(3) 電磁弁の機能および動作により、弁動作及び熱風流のノイズを含む好ましくないノイズが存在する。 (3) Due to the function and operation of the solenoid valve, there are undesirable noises including valve operation and hot air flow noise.

(4)電磁弁の動作から生じる圧力衝撃のストレスは、追加的な疲労を生じ、電磁弁自体を含む関連する冷却部品及び要素の寿命を短縮する。 (4) Pressure shock stress resulting from the operation of the solenoid valve causes additional fatigue and shortens the life of the associated cooling components and elements including the solenoid valve itself.

本発明は、気候及び環境試験装置内の冷却量システムの制御、温度調整及び省エネルギーに技術的な困難性がある冷却量制御装置と、
上記クレームされた制御装置を使用した気候及び環境試験装置と、
前記気候及び環境試験装置で使用される制御方法とを提供する。
The present invention relates to a cooling amount control device having technical difficulties in control of the cooling amount system in the climate and environmental test apparatus, temperature adjustment and energy saving,
A climate and environmental test device using the claimed control device;
And a control method used in the climate and environmental test apparatus.

言及された関連する技術困難性の本発明の技術的解決策は、
コントローラーと、蒸発機及び凝縮機熱風弁駆動用制御盤を介して熱風弁に連接される冷却装置と、前記冷却装置の圧縮機の出口と凝縮機の入口との間に設けられる圧力調整弁と、前記冷却装置の前記凝縮機の前記出口と前記蒸発機の入口と連接された絞り装置と、その一端が前記圧縮機の出口と前記圧縮調整弁の前端との間パイプラインに設けられ、他端が前記絞り装置の後部と前記蒸発機の入口との間のパイプラインに設けられた熱風弁と、熱風弁駆動用制御盤とを有する冷却量制御装置である。
The technical solution of the present invention of the related technical difficulties mentioned is
A controller, a cooling device connected to the hot air valve via an evaporator and a condenser hot air valve drive control panel, and a pressure regulating valve provided between the compressor outlet and the condenser inlet of the cooling device; A throttle device connected to the outlet of the condenser and the inlet of the evaporator of the cooling device, one end of which is provided in the pipeline between the outlet of the compressor and the front end of the compression regulating valve, A cooling amount control device having a hot air valve provided at a pipeline between a rear portion of the throttle device and an inlet of the evaporator and a hot air valve driving control panel.

前記絞り装置が、熱膨張弁である、上記請求された冷却量制御装置。   The cooling amount control device as claimed in claim 1, wherein the expansion device is a thermal expansion valve.

前記絞り装置が、毛細管である、上記請求された冷却量制御装置。   The cooling amount control device as claimed in claim 1, wherein the throttle device is a capillary tube.

前記絞り装置が、電子膨張弁である、上記請求された冷却量制御装置。   The cooling amount control device as claimed in claim 1, wherein the throttle device is an electronic expansion valve.

前記熱風弁は、連続的に開閉する電動弁あるいは断続的に開閉する電磁弁である上記請求された冷却量制御装置。   The above-described cooling amount control device, wherein the hot air valve is an electric valve that opens and closes continuously or an electromagnetic valve that opens and closes intermittently.

前記冷却装置は、パイプラインで直列に連接された圧縮機、蒸発機及び凝縮機が具備される。   The cooling device includes a compressor, an evaporator, and a condenser connected in series through a pipeline.

前記試験装置は、前記冷却量制御装置、恒温タンク又は恒温槽、温度センサを含み、温度センサ及び冷却量制御装置に置ける蒸発機は皆恒温タンク又は恒温槽に設けられる。また上記温度センサは前記冷却量制御装置のコントローラーに連接されている。   The test apparatus includes the cooling amount control device, a constant temperature tank or a constant temperature bath, and a temperature sensor, and all the evaporators that can be placed in the temperature sensor and the cooling amount control device are provided in the constant temperature tank or the constant temperature bath. The temperature sensor is connected to a controller of the cooling amount control device.

冷却量制御方法は、まず、前記圧力調整弁は、従来の冷却装置の前記圧縮機と前記凝縮機との間に設けられ、次に前記熱風弁の一端が、前記圧縮機の出口と前記圧縮調整弁の前端との間のパイプラインに設けられ、他端が前記絞り装置の後部と前記蒸発機の入口との間のパイプラインに設けられ、熱風弁駆動用制御盤を介して、前記コントローラーに連接し、前記圧力調整弁が安定した排出圧力と熱風温度とを保証し、熱風弁の開閉により排出圧力に影響を与えることを避け、前記絞り装置は、前記冷却装置の凝縮機の出口と前記蒸発機の入口との間に設けられ、前記蒸発温度及び前記過熱度とを自己調整するために用いられ、熱風弁は圧縮機の出口からの高温冷却蒸気を、設定された開口又は頻度により、直接バイパスし、凝縮機中への冷却剤は、圧縮調整弁の操作によって抑制され、システムの冷却輸出をさげ、試験装置の温度は、効率的に加熱あるいは冷却制御することができ、且つ設定された値に高精度に維持される。   In the cooling amount control method, first, the pressure adjusting valve is provided between the compressor and the condenser of the conventional cooling device, and then one end of the hot air valve is connected to the outlet of the compressor and the compression. The controller is provided in a pipeline between the front end of the regulating valve and the other end is provided in a pipeline between the rear portion of the throttle device and the inlet of the evaporator, and the controller is provided via a hot air valve drive control panel. The pressure regulating valve ensures a stable discharge pressure and hot air temperature, avoids affecting the discharge pressure by opening and closing the hot air valve, and the throttle device is connected to the condenser outlet of the cooling device. The hot air valve is provided between the inlet of the evaporator and used for self-adjusting the evaporation temperature and the degree of superheat. , Bypass directly, cool into condenser Agent is suppressed by the operation of the compression regulating valve, lowering the cooling export system, the temperature of the test apparatus can be efficiently controlled heating or cooling, is maintained at a high precision and the value set.

前記熱風弁は、連続的に開閉する電動弁あるいは断続的に開閉する電磁弁である。   The hot air valve is an electric valve that opens and closes continuously or an electromagnetic valve that opens and closes intermittently.

従来の電気弁又は電磁弁が熱風バイパシング弁として用いられ、従来の膨張弁と組み合わされて冷却装置を構成していることが、本発明の有利な効果である。その結果、−30℃より低い動作温度下で冷却装置が稼働する場合や、熱風バイパス弁の開口部が必要以上に大きい場合であっても、気候及び環境試験装置で広範囲に要求されている、300W〜15kWあるいはそれより高い冷却量と、−90〜+20℃の間で動作する冷却装置の高精度な温度制御とのための高精度な制御が容易に実現される。本発明の技術は、冷却量及び温度の高精度な制御が要求される気候及び環境試験装置のための冷却装置の最も重要な制御装置の一つになる。従来の温度膨張弁又は毛細管では冷却量がランダム且つ円滑に制御できないという欠点と、商用製品に適用可能な電子膨張弁は過度な冷却量及び低い制御精度のための大きな開口部を持つという特徴があるという欠点とを取り除くことができる。   It is an advantageous effect of the present invention that a conventional electric valve or electromagnetic valve is used as a hot air bypass valve and is combined with a conventional expansion valve to constitute a cooling device. As a result, even when the cooling device operates under an operating temperature lower than −30 ° C., or even when the opening of the hot air bypass valve is larger than necessary, it is widely required in climate and environmental test equipment. High-accuracy control for the amount of cooling of 300 W to 15 kW or higher and high-accuracy temperature control of the cooling device operating between −90 to + 20 ° C. is easily realized. The technology of the present invention becomes one of the most important control devices of a cooling device for a climate and environmental test device that requires high-precision control of the cooling amount and temperature. The conventional temperature expansion valve or capillary tube has the disadvantage that the amount of cooling cannot be controlled randomly and smoothly, and the electronic expansion valve applicable to commercial products has a feature that it has a large opening for excessive cooling amount and low control accuracy. The shortcoming of being can be removed.

図1は、従来の冷却装置の構成図を示す。
図2は、本発明で請求された冷却量制御装置を使用した試験装置の構成図を示す。
FIG. 1 shows a block diagram of a conventional cooling device.
FIG. 2 shows a configuration diagram of a test apparatus using the cooling amount control apparatus claimed in the present invention.

1. コントローラー
2. 圧縮機
3. 凝縮ファン
4. 圧力調整弁
5. 凝縮機
6. 絞り装置
7. 蒸発機
8. 循環ファン又はポンプ
9. 恒温タンク又は恒温槽
10. 温度センサ
11. 電子膨張弁
12. 冷却パイプライン
13. 熱風弁駆動用制御盤
1. Controller 2. Compressor 3. Condensation fan 4. Pressure regulating valve 5. Condenser 6. Throttle device 7. Evaporator 8. Circulating fan or pump 9. Constant temperature tank or constant temperature tank 10. Temperature sensor 11. Electronic expansion valve 12. Cooling pipeline 13. Hot air valve drive control panel

本発明の好ましい実施例の詳細な記述Detailed Description of the Preferred Embodiments of the Invention

ここで参照番号が構成要素を指し示した図1を参照し、図2に示すように、本発明に係る冷却量制御装置を使用した試験装置は、コントローラー1と、圧縮機2と、凝縮ファン3と、圧力調整弁4と、凝縮機5と、絞り装置6と、蒸発機7と、循環ファン又はポンプ8と、恒温タンク又は恒温槽9と、温度センサ10と、電子膨張弁11と、冷却パイプライン12と、熱風弁駆動用制御盤とを有し、圧縮機2、圧縮機5、絞り装置6及び蒸発機7は、冷却パイプライン12を介して直列に連接されている。凝縮ファン3は、圧縮機5内で冷却のクーリングのために用いられ、循環ファン又はポンプ8は熱交換の改善や、恒温タンク又は恒温槽9内の熱分散の改善に用いられる。この電子膨張弁11は、その一端が圧縮機の出口と圧力調整弁の入口との間のパイプラインに連接され、他端が絞り装置の後部と蒸発機との間のパイプラインに連接された状態で、並列に連接される。熱風弁駆動用制御盤13は、コントローラー1からの電圧又は電流のような駆動信号を受け、電子膨張弁11の開口及び閉口と、開口度とを直接規制する。その機能と仕様に応じて、コントローラー1は基本的に、圧縮機2と、温度センサ10と、凝縮ファン3と、循環ファン又はポンプ8と、熱風弁駆動用制御盤13とに連接されて制御する。温度センサ10及び蒸発機7は、加熱用の温度制御、冷却及び温度維持が要求される恒温タンク又は恒温槽9内に位置している。   Here, referring to FIG. 1 in which reference numerals indicate components, as shown in FIG. 2, a test apparatus using the cooling amount control apparatus according to the present invention includes a controller 1, a compressor 2, and a condensing fan 3. The pressure regulating valve 4, the condenser 5, the expansion device 6, the evaporator 7, the circulation fan or pump 8, the constant temperature tank or constant temperature tank 9, the temperature sensor 10, the electronic expansion valve 11, and the cooling. It has a pipeline 12 and a hot air valve drive control panel, and the compressor 2, the compressor 5, the expansion device 6 and the evaporator 7 are connected in series via the cooling pipeline 12. The condensing fan 3 is used for cooling cooling in the compressor 5, and the circulation fan or pump 8 is used for improving heat exchange and improving heat dispersion in the thermostatic tank or thermostatic bath 9. The electronic expansion valve 11 has one end connected to the pipeline between the outlet of the compressor and the inlet of the pressure regulating valve, and the other end connected to the pipeline between the rear portion of the expansion device and the evaporator. State, connected in parallel. The hot air valve drive control panel 13 receives a drive signal such as voltage or current from the controller 1 and directly regulates the opening and closing of the electronic expansion valve 11 and the degree of opening. Depending on its function and specifications, the controller 1 is basically controlled by being connected to a compressor 2, a temperature sensor 10, a condensing fan 3, a circulation fan or pump 8, and a control panel 13 for driving hot air valves. To do. The temperature sensor 10 and the evaporator 7 are located in a constant temperature tank or a constant temperature tank 9 where temperature control for heating, cooling and temperature maintenance are required.

コントローラー1は、圧縮機2、凝縮ファン3、循環ファン又はポンプ8の動作を開始及び停止できる。温度センサ10を用いることで、コントローラー1は恒温タンク又は恒温槽9内の空気又は液体(熱伝送媒体)の温度を検出できる。コントローラー1の設定温度と比べて、実際の温度が高い場合は電子膨張弁11の開口を小さくし、一方、実際の温度が低い場合は電子膨張弁11の開口を大きくする。実際の温度が安定することで、電子膨張弁11の開口度は一定になる傾向がある。   The controller 1 can start and stop the operation of the compressor 2, the condensation fan 3, the circulation fan or the pump 8. By using the temperature sensor 10, the controller 1 can detect the temperature of air or liquid (heat transfer medium) in the thermostatic tank or the thermostatic chamber 9. When the actual temperature is higher than the set temperature of the controller 1, the opening of the electronic expansion valve 11 is made smaller. On the other hand, when the actual temperature is lower, the opening of the electronic expansion valve 11 is made larger. When the actual temperature is stabilized, the opening degree of the electronic expansion valve 11 tends to be constant.

圧縮機2、圧縮機5、絞り装置6及び蒸発機7は、従来の冷却装置の基本構成要素である。圧縮機2の機能は、蒸発機7からの低圧力/通常温度の冷却剤の蒸気を高圧/高温の冷却剤の蒸気に圧縮する。常用の圧縮機2のモデルは、往復機関、ロータリー、スクロール及びネジがある。凝縮機5の機能は、高圧/高温の冷却剤の蒸気を凝縮ファン3又は他の液体冷媒の放熱冷却により、高圧/常温の液体になる。
凝縮機5は、フィンチューブ、スリーブ、シェルチューブ及び板等のいずれのタイプでもよい。
The compressor 2, the compressor 5, the expansion device 6 and the evaporator 7 are basic components of a conventional cooling device. The function of the compressor 2 is to compress the low pressure / normal temperature coolant vapor from the evaporator 7 into a high pressure / high temperature coolant vapor. Conventional compressor 2 models include a reciprocating engine, a rotary, a scroll, and a screw. The function of the condenser 5 is to convert the vapor of the high-pressure / high-temperature coolant into a high-pressure / normal temperature liquid by radiative cooling of the condensing fan 3 or other liquid refrigerant.
The condenser 5 may be any type such as a fin tube, a sleeve, a shell tube, and a plate.

絞り装置6の機能は、高圧/常温の冷却剤液体を低温低圧の冷却剤液体に変更する。冷却剤は圧力が下がるとき蒸発又は沸騰し、実際に、絞り装置6は、毛細管、熱力膨張弁、電子膨張弁又は他の普通絞り装置を採用してもいい。蒸発機7の機能は、冷却剤液体が蒸発又は気化の場所として、蒸発機7内の周囲の熱を吸収して冷却装置の冷却効果を出し続ける。
最大冷却量を設計する重要な面は、液体冷却剤を、冷却剤液体が蒸発機7パイプライン内に完全に且つ最高過熱5℃の範囲で蒸発し続けることである。
その結果、冷却蒸気が蒸発機7を離れたとき、その温度は、温度制御が要求される恒温タンク又は恒温槽9の動作温度と装置が設置された場所の環境温度の間にする。
The function of the expansion device 6 is to change the high pressure / normal temperature coolant liquid to a low temperature / low pressure coolant liquid. The coolant will evaporate or boil as the pressure drops, and indeed the expansion device 6 may employ a capillary tube, a thermal expansion valve, an electronic expansion valve or other normal expansion device. The function of the evaporator 7 continues to exert the cooling effect of the cooling device by absorbing the ambient heat in the evaporator 7 as a place where the coolant liquid evaporates or vaporizes.
An important aspect of designing the maximum cooling is that the liquid coolant continues to evaporate the coolant liquid completely in the evaporator 7 pipeline and in the range of up to 5 ° C superheat.
As a result, when the cooling steam leaves the evaporator 7, the temperature is set between the operating temperature of the thermostatic tank or the thermostatic tank 9 where temperature control is required and the environmental temperature of the place where the apparatus is installed.

圧力調整弁4は、圧縮機2の放熱温度を維持する特別自動制御装置である。圧力調整弁4は従来の冷却装置用の本質的な構成ではないが、特に本発明については特定の構成要素である。
圧力調整弁4は、放出圧力が高まるに従って、より多くの冷却流を許容するように開口する傾向がある。すなわち、圧力が設定値に達すると、圧力調整弁4は開口を開始する。圧力調整弁4の動作は、圧縮機2の放出圧力に依存し、圧力調整弁4の出口又は凝縮機5内の圧力とは関係ない。
The pressure regulating valve 4 is a special automatic control device that maintains the heat radiation temperature of the compressor 2. The pressure regulating valve 4 is not an essential component for a conventional cooling device, but is a specific component particularly for the present invention.
The pressure regulating valve 4 tends to open to allow more cooling flow as the discharge pressure increases. That is, when the pressure reaches the set value, the pressure regulating valve 4 starts opening. The operation of the pressure regulating valve 4 depends on the discharge pressure of the compressor 2 and is not related to the outlet of the pressure regulating valve 4 or the pressure in the condenser 5.

この場合、電子膨張弁11の動作に起因する放出圧力に対しての影響を最小化できる。その結果、安定した放出圧力及び熱風バイパス温度が保証できる。電子膨張弁11が継続して開口し続けたとしても、一定の放出圧力が安定した熱源を保証し、十分な加熱温度と高精度な温度制御を確かなものにする。
すなわち、圧力調整弁4なしでは、冷却装置は、期待されるエネルギー調整を達成できない。温度制御を要求している恒温タンク又は恒温槽9内で温度が上昇した場合、電子膨張弁11は閉口して通常冷却となる。温度制御を要求している恒温タンク又は恒温槽9内で温度が下降した場合、電子膨張弁11は再び開口する。
圧力調整弁4がないと、開口した電子膨張弁11と処理中の上記加熱により、放出圧力は徐々に低下する。電子膨張弁11は、加熱のために開口状態が保たれるが、加熱温度は十分に高くなく、加熱エネルギーは限られてしまう。同時に、毛細管などの絞り装置6の通常機能を介して、冷却は依然として可能である。
In this case, the influence on the discharge pressure resulting from the operation of the electronic expansion valve 11 can be minimized. As a result, a stable discharge pressure and hot air bypass temperature can be guaranteed. Even if the electronic expansion valve 11 continues to open, a constant discharge pressure ensures a stable heat source and ensures a sufficient heating temperature and highly accurate temperature control.
That is, without the pressure regulating valve 4, the cooling device cannot achieve the expected energy regulation. When the temperature rises in the constant temperature tank or the constant temperature bath 9 that requires temperature control, the electronic expansion valve 11 is closed and normal cooling is performed. When the temperature drops in the constant temperature tank or the constant temperature bath 9 requiring temperature control, the electronic expansion valve 11 opens again.
Without the pressure regulating valve 4, the discharge pressure gradually decreases due to the opened electronic expansion valve 11 and the heating during processing. The electronic expansion valve 11 is kept open for heating, but the heating temperature is not sufficiently high, and the heating energy is limited. At the same time, cooling is still possible via the normal function of the throttle device 6 such as a capillary tube.

恒温タンク又は恒温槽9は、気候及び環境試験装置内の冷却装置に関する最も普及している構成要素である。気候及び環境試験装置の温度範囲及び動作条件の要求を満たすために、恒温タンク又は恒温槽9は通常、内部チャンバー又はバスタンク、囲い及び絶縁物質から構成される。簡単な動作及びアクセスために、恒温タンク又は恒温槽9はオープン又はクローズ自在のドア又はカバーも備えている。動作温度が環境温度よりかなり上の場合に、ドア又はカバーも、シーリング・ガスケット又緩衝材と共に保温されていなければならない。   The thermostat tank or thermostat 9 is the most popular component for cooling devices in climate and environmental test equipment. In order to meet the requirements of the temperature and operating conditions of climate and environmental test equipment, the thermostatic tank or thermostatic bath 9 is usually composed of an internal chamber or bath tank, an enclosure and an insulating material. For easy operation and access, the thermostat or thermostat 9 also includes a door or cover that can be opened or closed. If the operating temperature is well above ambient temperature, the door or cover must also be kept warm with a sealing gasket or cushioning material.

温度センサ10は、恒温タンク又は恒温槽9内の空気及び液体の温度を検出するために用いられる。温度センサ10及び循環ファン又はポンプ8は重要であり、検出された温度の真偽にさまざまな影響を与え、その結果、熱風バイパシング用の電子膨張弁11の動作に影響を与える。   The temperature sensor 10 is used to detect the temperature of air and liquid in the thermostatic tank or the thermostatic bath 9. The temperature sensor 10 and the circulation fan or pump 8 are important and affect the authenticity of the detected temperature in various ways, and consequently the operation of the electronic expansion valve 11 for hot air bypassing.

電子膨張弁11及び熱風弁駆動用制御盤13は、特に本発明の好適な実施例に特有の構成要素である。電子膨張弁11は、電圧又は電流の入力によって及び比例して調整される開口、閉口及び開口度を持つ自動装置である。熱風弁駆動用制御盤13は、コントローラー1からの電圧又は電流のような駆動信号を受け、電子膨張弁11の開口、閉口及び開口度を直接調整する。熱風弁駆動用制御盤13の出力は、電子膨張弁11によって要求される駆動と親和性がなければならない。通常、熱風弁駆動用制御盤13が、0Vの入力電圧又は4mAの電流を受けた場合に、電子膨張弁11は完全に閉口しなければならない。一方、熱風弁駆動用制御盤13が、5Vの入力電圧又は20mAの電流を受けた場合に、電子膨張弁11は完全に開口しなければならない。入力信号が最大値と最小値との間の範囲がある場合に、電子膨張弁11のための位置又は開口度は、入力レベルに対応する。そのため、検出温度がより高く、コントロール1が出力の弁の開口の信号を低減するとき、電子膨張弁11の出力電圧又は電流がより小さくなると、電子膨張弁11の開口度はより小さくなる。その結果、冷却量は増加し、温度が次第に低下する。反対に、検出温度が小さく、コントローラー1の出力電圧又は電流がより大きくなると、コントロール1が出力の弁の開口の信号を増加するとき、電子膨張弁11の開口度はより大きくなる。その結果、冷却量は低下し、温度が次第に上がる。検出温度が安定したときは、コントローラー1の出力電圧又は電流は変化しない状態を保ち、電子膨張弁11の開口度は一定に保たれる。電子膨張弁11の一端は、圧縮機の放出口と圧力調整弁の前端との間のパイプラインに設けられ、そのほかの端は、絞り装置の後部と蒸発機の入口との間のパイプラインに設けられる。熱膨張弁は、蒸発温度の制御と、過熱度の自己調整とに用いられる。設定値に近い温度を用いて、コントローラーは、電子膨張弁11を制御する信号を送り、圧縮機2の放出口からの高温冷却蒸気を、ある程度の開口度で直接バイパスする。凝縮機への冷却流は圧力調整弁4によって制限され、その結果、冷却装置の冷却量が抑制される。このように、加熱と冷却量とは効果的に制御され、温度は設定値に高精度に維持される。上述した目的のための電子膨張弁11は、流量比例弁のタイプとなり得る。コスト削減が温度の高精度制御及び冷却量よりも重要な場合は、電磁弁を用いることもできる。

The electronic expansion valve 11 and the hot air valve drive control panel 13 are components that are specific to the preferred embodiment of the present invention. The electronic expansion valve 11 is an automatic device having an opening, a closing and an opening degree that are adjusted in accordance with and in proportion to voltage or current input. The hot air valve drive control panel 13 receives a drive signal such as voltage or current from the controller 1 and directly adjusts the opening, closing and opening degree of the electronic expansion valve 11. The output of the hot air valve drive control panel 13 must be compatible with the drive required by the electronic expansion valve 11. Normally, when the hot air valve drive control panel 13 receives an input voltage of 0 V or a current of 4 mA, the electronic expansion valve 11 must be completely closed. On the other hand, when the hot air valve drive control panel 13 receives an input voltage of 5 V or a current of 20 mA, the electronic expansion valve 11 must be completely opened. When the input signal has a range between the maximum value and the minimum value, the position or opening degree for the electronic expansion valve 11 corresponds to the input level. Therefore, when the detected temperature is higher and the control 1 reduces the output valve opening signal, the opening degree of the electronic expansion valve 11 becomes smaller as the output voltage or current of the electronic expansion valve 11 becomes smaller. As a result, the cooling amount increases and the temperature gradually decreases. Conversely, when the detected temperature is low and the output voltage or current of the controller 1 is larger, the opening degree of the electronic expansion valve 11 is larger when the control 1 increases the signal of the valve opening of the output. As a result, the cooling amount decreases and the temperature gradually increases. When the detected temperature is stable, the output voltage or current of the controller 1 remains unchanged, and the opening degree of the electronic expansion valve 11 is kept constant. One end of the electronic expansion valve 11 is provided in the pipeline between the discharge port of the compressor and the front end of the pressure regulating valve, and the other end is provided in the pipeline between the rear portion of the expansion device and the inlet of the evaporator. Provided. The thermal expansion valve is used for the control of the evaporation temperature and the self-adjustment of the superheat degree. Using a temperature close to the set value, the controller sends a signal to control the electronic expansion valve 11 and directly bypasses the high-temperature cooling steam from the discharge port of the compressor 2 with a certain degree of opening. The cooling flow to the condenser is limited by the pressure regulating valve 4, and as a result, the cooling amount of the cooling device is suppressed. In this way, the heating and cooling amounts are effectively controlled, and the temperature is maintained at a set value with high accuracy. The electronic expansion valve 11 for the above-mentioned purpose can be a flow proportional valve type. Solenoid valves can also be used when cost reduction is more important than temperature precision control and cooling.

Claims (7)

パイプラインで直列に順番で連接された圧縮機、蒸発機及び凝縮機を有する冷却装置を備える冷却量制御装置であって、
コントローラーと、
冷却装置の圧縮機の出口と凝縮機の入口との間に設けられる圧力調整弁と、
冷却装置の凝縮機の出口と蒸発機の入口との間に設けられる絞り装置と、
熱風弁駆動用制御盤と、
一端が圧縮機の出口と圧縮調整弁の前端との間のパイプラインに設けられ、他端が絞り装置の後部と前記蒸発機の入口との間のパイプラインに設けられて、熱風弁駆動用制御盤を介してコントローラーに連接される熱風弁と
を有することを特徴とする冷却量制御装置。
A cooling amount control device comprising a cooling device having a compressor, an evaporator, and a condenser connected in series in a pipeline,
A controller,
A pressure regulating valve provided between the outlet of the compressor of the cooling device and the inlet of the condenser;
A throttling device provided between the outlet of the condenser of the cooling device and the inlet of the evaporator;
A control panel for driving hot air valves;
One end is provided in the pipeline between the outlet of the compressor and the front end of the compression regulating valve, and the other end is provided in the pipeline between the rear portion of the expansion device and the inlet of the evaporator, for driving the hot air valve And a hot air valve connected to the controller via a control panel.
前記絞り装置は、熱膨張弁であることを特徴とする請求項1に記載の冷却量制御装置。 The cooling amount control device according to claim 1, wherein the expansion device is a thermal expansion valve. 前記絞り装置は、毛細管であることを特徴とする請求項1に記載の冷却量制御装置。 The cooling amount control device according to claim 1, wherein the throttle device is a capillary tube. 前記絞り装置は、電子膨張弁であることを特徴とする請求項1に記載の冷却量制御装置。   The cooling amount control device according to claim 1, wherein the throttle device is an electronic expansion valve. 前記熱風弁は、連続的に開閉する電動弁または断続的に開閉する電磁弁であることを特徴とする請求項1に記載の冷却量制御装置。   2. The cooling amount control device according to claim 1, wherein the hot air valve is an electrically operated valve that opens and closes continuously or an electromagnetic valve that opens and closes intermittently. 請求項1の冷却量制御装置を備える試験装置であって、
前記試験装置は、冷却量制御装置と、恒温タンク又は恒温槽とを備え、
前記冷却量制御装置は、パイプラインで直列に連接された圧縮機、蒸発機及び凝縮機が具備された冷却量用装置を備え、
前記冷却量制御装置は、
コントローラーと、
冷却装置の圧縮機の出口と凝縮機の入口との間に設けられる圧力調整弁と、
冷却装置の凝縮機の出口と蒸発機の入口との間に設けられる絞り装置と、
熱風弁駆動用制御盤と、
一端が圧縮機の出口と圧縮調整弁の前端との間のパイプラインに設けられ、他端が絞り装置の後部と前記蒸発機の入口との間のパイプラインに設けられて、熱風弁駆動用制御盤を介してコントローラーに連接される熱風弁と、
を更に備え、
蒸発機は、恒温タンク又は恒温槽の中に設けられ、恒温タンクク又は恒温槽の中に設けられている温度センサは、前記コントローラーに連接されていることを特徴とする試験装置。
A test apparatus comprising the cooling amount control apparatus according to claim 1,
The test apparatus includes a cooling amount control device, a thermostatic tank or a thermostatic bath,
The cooling amount control device includes a cooling amount device including a compressor, an evaporator, and a condenser connected in series in a pipeline.
The cooling amount control device includes:
A controller,
A pressure regulating valve provided between the outlet of the compressor of the cooling device and the inlet of the condenser;
A throttling device provided between the outlet of the condenser of the cooling device and the inlet of the evaporator;
A control panel for driving hot air valves;
One end is provided in the pipeline between the outlet of the compressor and the front end of the compression regulating valve, and the other end is provided in the pipeline between the rear portion of the expansion device and the inlet of the evaporator, for driving the hot air valve A hot air valve connected to the controller via the control panel;
Further comprising
The evaporator is provided in a constant temperature tank or a constant temperature bath, and a temperature sensor provided in the constant temperature tank or the constant temperature bath is connected to the controller.
請求項6に記載の試験装置を使用して冷却量を制御する冷却量制御方法であって、
まず、従来の冷却装置の前記圧縮機と前記凝縮機との間に圧力調整弁を設け、
次に、熱風弁の一端を、圧縮機の出口と前記圧縮調整弁の前端との間のパイプラインに設け、他端を絞り装置の後部と前記蒸発機の入口との間のパイプラインに設け、
該熱風弁を、熱風弁駆動用制御盤を介して、前記コントローラーに連接し、絞り装置を、冷却装置の凝縮機の出口と前記蒸発機の入口との間に設け、
圧力調整弁は、安定した排出圧力と熱風温度とを確保して、熱風弁の開閉が排出圧力に影響を与えることを防止し、
絞り装置は、蒸発温度及び過熱度とを自己調整し、
熱風弁は、規定の開度で直接的に圧縮機の出口の高温蒸気を排出し、
圧縮調整弁により、凝縮機に流入する冷却剤を制限して、システムの冷却量の輸出を減少することにより、
効果的な加熱及び冷却量の制御を行うとともに、温度を設定された値に高精度に維持することが可能である冷却量制御方法。

A cooling amount control method for controlling a cooling amount using the test apparatus according to claim 6,
First, a pressure regulating valve is provided between the compressor and the condenser of the conventional cooling device,
Next, one end of the hot air valve is provided in the pipeline between the outlet of the compressor and the front end of the compression regulating valve, and the other end is provided in the pipeline between the rear portion of the expansion device and the inlet of the evaporator. ,
The hot air valve is connected to the controller via a hot air valve drive control panel, and a throttle device is provided between the condenser outlet of the cooling device and the inlet of the evaporator,
The pressure regulating valve ensures stable discharge pressure and hot air temperature, and prevents the opening and closing of the hot air valve from affecting the discharge pressure,
The throttle device self-adjusts the evaporation temperature and superheat,
The hot air valve directly discharges high-temperature steam at the outlet of the compressor at a specified opening,
By limiting the coolant flowing into the condenser with a compression regulating valve, and reducing the export of system cooling,
A cooling amount control method capable of performing effective heating and cooling amount control and maintaining the temperature at a set value with high accuracy.

JP2015509288A 2012-05-11 2013-04-23 Cooling amount control device and test device using the control device Active JP6373258B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210145259.6 2012-05-11
CN201210145259.6A CN102635990B (en) 2012-05-11 2012-05-11 Refrigerating output control device and test device and control method using the refrigerating output control device
PCT/CN2013/074548 WO2013166910A1 (en) 2012-05-11 2013-04-23 Refrigerating capacity control device, and test apparatus and control method using the device

Publications (2)

Publication Number Publication Date
JP2015519533A true JP2015519533A (en) 2015-07-09
JP6373258B2 JP6373258B2 (en) 2018-08-15

Family

ID=46620485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015509288A Active JP6373258B2 (en) 2012-05-11 2013-04-23 Cooling amount control device and test device using the control device

Country Status (7)

Country Link
US (1) US20150107283A1 (en)
JP (1) JP6373258B2 (en)
CN (1) CN102635990B (en)
CA (1) CA2872717A1 (en)
DE (1) DE112013002432B4 (en)
GB (1) GB2516389B (en)
WO (1) WO2013166910A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635990B (en) * 2012-05-11 2014-08-13 杭州雪中炭恒温技术有限公司 Refrigerating output control device and test device and control method using the refrigerating output control device
CN103836724A (en) * 2012-11-22 2014-06-04 中国舰船研究设计中心 Constant-temperature air conditioner and refrigeration adjusting method thereof
CN104122846B (en) * 2013-04-24 2016-12-28 武汉航空仪表有限责任公司 A kind of icing tunnel or the temperature stabilization methods of freezing weather room icing tests
US9759451B2 (en) 2013-11-22 2017-09-12 Thermo Fisher Scientific (Asheville) Llc Recirculating bath
CN103697626A (en) * 2013-12-28 2014-04-02 苏州市东华试验仪器有限公司 Refrigerating device
CN105080630B (en) * 2014-04-15 2017-09-15 中国石油化工股份有限公司 The constant temperature system and its experimental method of core holding unit
CN104121736A (en) * 2014-07-18 2014-10-29 合肥天鹅制冷科技有限公司 Liquid cooling source unit with function of precisely controlling temperature and control method
CN108224823A (en) * 2018-02-12 2018-06-29 深圳市亿凌捷科技有限公司 Full load air-conditioning device and its control method
CN108725299A (en) * 2018-06-29 2018-11-02 天津商业大学 Multi-temperature zone vibration proof refrigerating transport vehicle
CN109481000B (en) * 2018-12-26 2023-11-21 上海导向医疗系统有限公司 Pressure-adjustable refrigeration device for cryotherapy and cryotherapy system
US11221165B2 (en) * 2019-09-17 2022-01-11 Laird Thermal Systems, Inc. Temperature regulating refrigeration systems for varying loads
CN115235131A (en) * 2021-04-22 2022-10-25 东莞市升微机电设备科技有限公司 Temperature and humidity adjusting device and method for refrigeration equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134441A (en) * 1989-10-18 1991-06-07 Sanyo Electric Co Ltd Abnormality alarming device in absorption freezer
JP2005180751A (en) * 2003-12-18 2005-07-07 Mitsubishi Heavy Ind Ltd Refrigeration device, and operation control method of the same
JP2007017093A (en) * 2005-07-08 2007-01-25 Mitsubishi Heavy Ind Ltd Refrigerating device
JP2007303807A (en) * 2006-04-11 2007-11-22 Mayekawa Mfg Co Ltd Operation method for hot water supply device, hot water supply device and fluid heater
JP2009092318A (en) * 2007-10-10 2009-04-30 Kawasaki Thermal Engineering Co Ltd Method and device for energy saving control operation of steam absorptive freezer
JP2011075185A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Constant-temperature storage
JP2011106721A (en) * 2009-11-17 2011-06-02 Seimitsu:Kk Precise temperature control air conditioner
JP4712910B1 (en) * 2010-12-28 2011-06-29 株式会社朝日工業社 Precision air conditioner

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368364A (en) * 1966-01-06 1968-02-13 American Air Filter Co Refrigeration control system
US3734810A (en) * 1971-06-16 1973-05-22 Integrated Dev & Mfg Co Heating and cooling system
US3768274A (en) * 1972-08-28 1973-10-30 Fruit Growers Express Co System for controlling cooling and heating of a loading space
JPS63162272U (en) * 1987-04-13 1988-10-24
JPH087313Y2 (en) * 1989-10-13 1996-03-04 三菱重工業株式会社 Refrigerator control device
US5211025A (en) * 1990-03-02 1993-05-18 H.A. Phillips & Co. Slug surge suppressor for refrigeration and air conditioning systems
US5319940A (en) * 1993-05-24 1994-06-14 Robert Yakaski Defrosting method and apparatus for a refrigeration system
JP3347907B2 (en) * 1994-02-10 2002-11-20 ホシザキ電機株式会社 Refrigerant circulation circuit for ice machines, etc.
US5584186A (en) * 1994-11-21 1996-12-17 Hoshizaki Denki Kabushiki Kaisha Refrigerant circuit for ice making machine etc.
JPH09196523A (en) * 1996-01-16 1997-07-31 Mitsubishi Heavy Ind Ltd Refrigerating device
FR2753412B1 (en) * 1996-09-17 1998-11-13 Valeo Climatisation HEATING DEVICE FOR VEHICLE USING AN EVAPORATOR AS A HEAT SOURCE
FR2756913B1 (en) * 1996-12-09 1999-02-12 Valeo Climatisation REFRIGERANT FLUID CIRCUIT COMPRISING AN AIR CONDITIONING LOOP AND A HEATING LOOP, PARTICULARLY FOR A MOTOR VEHICLE
US6076366A (en) * 1998-04-03 2000-06-20 Denso Corporation Refrigerating cycle system with hot-gas bypass passage
JP2000314692A (en) * 1999-04-28 2000-11-14 Shimadzu Corp Thermostatic tank
JP3576866B2 (en) * 1999-05-10 2004-10-13 株式会社テージーケー Refrigeration cycle with bypass line for vehicles
JP2002248929A (en) * 2001-02-21 2002-09-03 Denso Corp Freezing cycle device
US6658875B2 (en) * 2001-04-25 2003-12-09 Gsle Development Corporation Method and apparatus for temperature control in a refrigeration device
US20040168451A1 (en) * 2001-05-16 2004-09-02 Bagley Alan W. Device and method for operating a refrigeration cycle without evaporator icing
US6775993B2 (en) * 2002-07-08 2004-08-17 Dube Serge High-speed defrost refrigeration system
JP4467899B2 (en) 2003-02-24 2010-05-26 株式会社デンソー Refrigeration cycle equipment
JP2005331183A (en) * 2004-05-20 2005-12-02 Hoshizaki Electric Co Ltd Freezer
CN2778382Y (en) * 2005-03-10 2006-05-10 天津商学院 Homothermal environment box equipped with jacket
US7895850B2 (en) * 2005-04-15 2011-03-01 Comforture, L.P. Modulating proportioning reversing valve
US20070137228A1 (en) * 2005-09-28 2007-06-21 Gang Li Heat pump system having a defrost mechanism for low ambient air temperature operation
CN200968691Y (en) * 2006-10-17 2007-10-31 珠海慧生能源技术发展有限公司 Full heat recovery type cold and hot water energy-saving set
US20080156034A1 (en) * 2006-12-28 2008-07-03 Whirlpool Corporation Distributed refrigeration system with custom storage modules
CN101158495A (en) * 2007-08-15 2008-04-09 阿尔西制冷工程技术(北京)有限公司 Refrigeration system capable of controlling refrigerating capacity
JP5100416B2 (en) * 2008-01-25 2012-12-19 三菱電機株式会社 Reheat dehumidifier and air conditioner
JP2009210213A (en) * 2008-03-05 2009-09-17 Hitachi Ltd Air conditioner for railway vehicle
US8549867B2 (en) * 2009-11-02 2013-10-08 Lennox Industries Inc. Heat pump control system using passive defrost
US8826679B2 (en) * 2010-12-01 2014-09-09 General Electric Company Refrigerator energy and temperature control
CN202304157U (en) * 2011-08-30 2012-07-04 康特能源科技(苏州)有限公司 Air water heat pump defrosting device
CN102635990B (en) * 2012-05-11 2014-08-13 杭州雪中炭恒温技术有限公司 Refrigerating output control device and test device and control method using the refrigerating output control device
CN202581985U (en) * 2012-05-11 2012-12-05 杭州雪中炭恒温技术有限公司 Refrigeration capacity control device and test equipment with same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134441A (en) * 1989-10-18 1991-06-07 Sanyo Electric Co Ltd Abnormality alarming device in absorption freezer
JP2005180751A (en) * 2003-12-18 2005-07-07 Mitsubishi Heavy Ind Ltd Refrigeration device, and operation control method of the same
JP2007017093A (en) * 2005-07-08 2007-01-25 Mitsubishi Heavy Ind Ltd Refrigerating device
JP2007303807A (en) * 2006-04-11 2007-11-22 Mayekawa Mfg Co Ltd Operation method for hot water supply device, hot water supply device and fluid heater
JP2009092318A (en) * 2007-10-10 2009-04-30 Kawasaki Thermal Engineering Co Ltd Method and device for energy saving control operation of steam absorptive freezer
JP2011075185A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Constant-temperature storage
JP2011106721A (en) * 2009-11-17 2011-06-02 Seimitsu:Kk Precise temperature control air conditioner
JP4712910B1 (en) * 2010-12-28 2011-06-29 株式会社朝日工業社 Precision air conditioner

Also Published As

Publication number Publication date
CN102635990B (en) 2014-08-13
WO2013166910A1 (en) 2013-11-14
US20150107283A1 (en) 2015-04-23
CN102635990A (en) 2012-08-15
DE112013002432B4 (en) 2022-04-21
GB2516389A (en) 2015-01-21
GB2516389B (en) 2018-08-29
JP6373258B2 (en) 2018-08-15
GB201419067D0 (en) 2014-12-10
CA2872717A1 (en) 2013-11-14
DE112013002432T5 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP6373258B2 (en) Cooling amount control device and test device using the control device
KR100423681B1 (en) Method for controlling an electronic expansion valve based on cooler pinch and discharge superheat
Buzelin et al. Experimental development of an intelligent refrigeration system
Nunes et al. Modeling, simulation and optimization of a vapor compression refrigeration system dynamic and steady state response
Rasmussen et al. Non-linear and adaptive control of a refrigeration system
JP4795709B2 (en) Constant temperature and humidity device
RU2700057C2 (en) Evaporator liquid heater for reducing coolant charge
CN107339820B (en) High-precision temperature-control water circulation cooling equipment
JP2016529463A (en) Temperature control system with programmable ORIT valve
CN109579356B (en) Temperature control multi-online heat pump system with heat recovery function and control method
JP2009236403A (en) Geothermal use heat pump device
CN207230985U (en) The water circulation cooling device of high accuracy temperature control
CN203687437U (en) Refrigerating system with refrigerating capacity adjusting function and environmental laboratory
CN113457752A (en) Control method of alternating damp-heat test chamber and alternating damp-heat test chamber
JP7118550B2 (en) refrigeration equipment
GB2485623A (en) Heating system and method of heating an area by control of evaporating and/or condensing temperature of a refrigerant
JP4583290B2 (en) Air conditioning system
RU2368850C2 (en) Control means of cooling loop with internal heat exchanger
Gao The Impact of thermostatic expansion valve heating on the performance of air-source heat pumps in heating mode
CN106440453B (en) Split type air source heating system and control method thereof
CN209147486U (en) A kind of refrigeration system
KR101233865B1 (en) Air conditioner and control method thereof
CN202581985U (en) Refrigeration capacity control device and test equipment with same
KR20200111067A (en) Condensing pressure control method of heat pump
CN109341126A (en) A kind of refrigeration system and control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161219

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6373258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250