JP2015518423A - ソーラエネルギーシステムの部品を製造するための方法 - Google Patents

ソーラエネルギーシステムの部品を製造するための方法 Download PDF

Info

Publication number
JP2015518423A
JP2015518423A JP2014561234A JP2014561234A JP2015518423A JP 2015518423 A JP2015518423 A JP 2015518423A JP 2014561234 A JP2014561234 A JP 2014561234A JP 2014561234 A JP2014561234 A JP 2014561234A JP 2015518423 A JP2015518423 A JP 2015518423A
Authority
JP
Japan
Prior art keywords
tube
pressure
length
ejector
specific length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014561234A
Other languages
English (en)
Inventor
マイケル デニス、
マイケル デニス、
Original Assignee
エンドレス ソーラー コーポレイション リミテッド
エンドレス ソーラー コーポレイション リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012901003A external-priority patent/AU2012901003A0/en
Application filed by エンドレス ソーラー コーポレイション リミテッド, エンドレス ソーラー コーポレイション リミテッド filed Critical エンドレス ソーラー コーポレイション リミテッド
Publication of JP2015518423A publication Critical patent/JP2015518423A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/041Means for controlling fluid parameters, e.g. pressure or temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/005Machines, plants or systems, using particular sources of energy using solar energy in compression type systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/46Component parts, details or accessories; Auxiliary operations characterised by using particular environment or blow fluids other than air
    • B29C2049/4602Blowing fluids
    • B29C2049/465Blowing fluids being incompressible
    • B29C2049/4658Blowing fluids being incompressible oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49391Tube making or reforming

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

本開示はソーラエネルギーシステムの部品を製造する方法を提供する。この方法は、チューブを用意するステップを備える。チューブは少なくとも特定長さのチューブがその内部と外部との間の圧力が適切に異なると変形する材料を含む。この方法は、特定長さのチューブを受容するように配置される、キャビティを有するダイを用意するステップを備える。キャビティは、ソーラエネルギーシステムの部品の形状に対応する形状を定める。さらに方法は、ダイのキャビティに特定長さのチューブを位置決めするステップを備える。さらに方法は、特定長さのチューブの少なくとも一部が、ソーラエネルギーシステムの部品の形状に対応する形状に拡張するように、特定長さのチューブの内部における流体の相対圧力を、キャビティ内の圧力及び特定長さのチューブの内部の外側の圧力に対して増加するステップを備える。

Description

本発明はソーラエネルギーシステムの部品を製造する方法に関し、特に、限定されるものではないが、ソーラ冷却システムのようなソーラエネルギーシステムのイジェクタを製造するための方法に関する。
冷暖房及び冷蔵ユニットのような冷却システムは、かなりの量の電気エネルギーを必要とする。ここで、かなりの量の電気エネルギーは、たいてい汚染及び温室ガスの排出に関係する石化燃料から生成される。
光起電性のソーラパネル(Photovoltaic solar panels)は太陽の光を電気に変換するために用いられる。そして、冷却システムのコンプレッサに電気を供給する。これは、石化燃料の消費を削減するかもしれないが、効率は相対的に低く、さらに資本費用は相対的に高い。
蒸気駆動イジェクタ熱ポンプ冷却システムが、石化燃料により動力が供給される蒸気ボイラが装備された建築物内における非常に大きな空間の冷暖房のために用いられている。大きなサイズの最適な適用の限界を超えたイジェクタ熱ポンプ冷却システムの適用は、少なくともある程度、大きなスケールの効率的及び廉価な適切なイジェクタが困難であることがはっきりしているので、商業的に成功ではない。
本発明の第1態様によれば、ソーラエネルギーシステムの部品を製造する方法が提供される。この方法は、
少なくとも特定長さのチューブがその内部と外部との間の圧力が適切に異なると変形する材料を含むチューブを用意するステップと、
特定長さのチューブを受容するように配置される、ソーラエネルギーシステムの部品の形状に対応する形状を定める、キャビティを有するダイを用意するステップと、
ダイのキャビティに特定長さのチューブを位置決めするステップと、
特定長さのチューブの少なくとも一部が、ソーラエネルギーシステムの部品の形状に対応する形状に拡張するように、特定長さのチューブの内部における流体の相対圧力を、キャビティ内の圧力及び特定長さのチューブの内部の外側の圧力に対して増加するステップとを備える。
ソーラエネルギーシステムの部品は、イジェクタであり、流体をポンピングするために配置される。イジェクタはソーラ冷却アプリケーションに適する冷却イジェクタである。
本発明の実施形態は、比較的に速いレートで、かつ典型的にはエネルギー消費を削減して、イジェクタの製造を容易にする。
本発明の第2態様によれば、ソーラエネルギーシステムのイジェクタを製造する方法が提供される。この方法は、
少なくとも特定長さのチューブがその内部と外部との間の圧力が適切に異なると変形する材料を含むチューブを用意するステップと、
特定長さのチューブを受容するように配置される、イジェクタの形状に対応する形状を定める、キャビティを有するダイを用意するステップと、
ダイのキャビティに特定長さのチューブを位置決めするステップと、
特定長さのチューブの少なくとも一部が、イジェクタの形状に対応する形状に拡張するように、特定長さのチューブの内部における流体の相対圧力を、キャビティ内の圧力及び特定長さのチューブの内部の外側の圧力に対して増加するステップとを備える。
イジェクタは流体をポンピングするために配置される。イジェクタはソーラ冷却アプリケーションに適する冷却イジェクタである。
以下の記載は、本発明の第1及び第2態様が有する特徴を紹介する。
一実施形態にあって、相対圧力を増加するステップは、特定長さのチューブの少なくとも一部が、特定長さのチューブの一部がダイのキャビティに接触するまでに拡張されるように、実行される。
特定長さのチューブの内部における流体の相対圧力を、キャビティ内の圧力及び特定長さのチューブの内部の外側の圧力に対して増加するステップは、チューブの内部内の圧力を増加することを含む。代替的に、特定長さのチューブの内部における流体の相対圧力を、キャビティ内の圧力及び特定長さのチューブの内部の外側の圧力に対して増加するステップは、キャビティ内の圧力及び特定長さのチューブの内部の外側の流体の圧力を減少してもよい。
一つの詳細な実施形態にあって、チューブを用意するステップはチューブを形作ることを含む。例えば、チューブは初期にはイジェクタの狭いスロート(throat)部の外径よりも広いチューブ外径を有する。さらに方法は、チューブが不均一な外径を有するようにチューブの外径を局部的に低減することを含む。例えば、この方法は、イジェクタのスロート部にてチューブの外径を部分的に低減することを含む。チューブの外径を低減するステップは、回転のスエージ加工(swaging)のような適切なプロセスを含んでよい。チューブの外径は選択されて、チューブの外径を低減することは、チューブの内部内における相対的な圧力を増加するステップが、均一でかつより小さな外径を有するチューブの使用に比較して少ない拡張になるように、実行される。結果的に、拡張の結果として、チューブの材料の裂けの可能性も低減される。
さらに、チューブを用意するステップは、チューブ材料の付加量が特定長さのチューブの他の領域よりも、より拡張にさらされる特定長さのチューブの一領域に配置されるように、予め形成されるか又は予め機械加工されたチューブ材料を用いる。結果的に、拡張の結果として、チューブの材料の裂けの可能性もさらに低減される。
本発明は、さらに、相対的な圧力を増加するステップよりも前又はそのステップの間に特定長さのチューブを加熱するステップをも含む。特定長さのチューブを加熱することは、材料の加工硬化(work hardening)を減じるかもしれない。一実施形態にあって、チューブは金属材料を含み、さらに特定長さのチューブは、金属材料が脆性状態から延性状態に変化する遷移温度を上回る温度に加熱される。チューブの材料は、熱処理された材料のフォームにて用意され、さらに方法は、イジェクタの形成の後に材料特性を向上するためにチューブ材料を加熱処理することを含んでもよい。
一実施形態にあって、相対圧力を増加するステップは、周方向応力が特定長さのチューブの少なくとも一部に誘発され、さらに周方向応力が特定長さの一部の降伏強度(yield strength)よりも大きいように、実行される。
チューブは、金属材料を含む必要はなく、代替的に他の適切な材料を含んでよい。例えば、チューブは、高分子材料、ガラス又はセラミックのような非金属材料を含む。適切な金属材料の例としては、鋼、銅、アルミニウム、真鍮、炭素鋼、合金、及び比較的低炭素成分を含む高延伸スチールを含む。
一実施形態にあって、本発明は、特定長さのチューブを拡張している間に軸方向の圧縮を、特定長さのチューブに加えるステップを備える。拡張の間に軸方向の圧縮を特定長さのチューブに加えるのは、チューブ材料の破裂の危険性を低減する。方法は、さらに特定長さのチューブとダイとの間に潤滑油を配置するステップを備える。潤滑油は、チューブとダイとの間の摩擦を低減する。潤滑油は、例えば、二硫化モリブデンであってもよいが、他の適切な潤滑油が用いられもよい。適切な代替の潤滑油は、グラファイト、窒化ホウ素、チョーク、カルシウムフッ化物、セリウムフッ化物、及び二硫化タングステンを含む。
イジェクタの形状に関する形状は、イジェクタの圧縮部の形状を含む。前記形状は、圧縮部及びノズルハウジングが一体に形成されるようにイジェクタのノズルハウジングを含む。
特定長さのチューブの内部の流体は、典型的には液状物質であり、前記方法は特定長さのチューブの内部を液状物質で満たすステップを備える。流体は、実質的に有害ないかなる効果をこうむることなく、チューブ材料の熱処置のための適切な温度に流体が加熱されるように選択される。流体は、圧縮されるか及び/又はダイから外されるときに流体が蒸発しないように通常、選択される。流体は、典型的には可燃性ではない。例えば、流体はシリコン油であってもよい。
本発明の一実施形態にあって、ダイが配置され、チューブ材料は、特定長さのチューブの内部における相対圧力が低減されると、チューブが径にあってわずかに収縮(「スプリングバック」)されるように、選択される。これは特定長さのチューブのダイからの分離を容易にする。このような径の収縮はチューブ材料に依存し、全ての材料がそのような収縮を示すものではないことが正しく理解されるであろう。
本方法は、流体の温度を局部的又は全体的に制御するステップを備えてもよい。この流体の温度を制御するためのステップは、多くの利点を提供する。例えば、適度な加熱温度は、チューブの破裂を導くかもしれない材料における局部的なストレスを防ぐのを支援するために用いられる。いくつかの場合にあって、チューブ材料は、特定長さの拡張の後に、急速冷却にさらされてもよい。
本発明の一実施形態にあって、方法は流体の一時的な圧力特性を判断するステップを備え、このステップは特定長さのチューブの内部の相対圧力の増加の比率と特定長さのチューブの内部の相対圧力の低減の比率を判断することを含む。相対圧力を増加するステップは判断された一時的な圧力特性によって少なくとも部分的に特定される。
本発明は、発明の詳細な説明における実施形態からより十分に理解されるであろう。説明には、添付の図面についての参照番号が適用される。
本発明の実施形態に従ってイジェクタを製造するための方法を示すフローチャートである。 本発明の実施形態に従って製造されるイジェクタの概略的な断面図である。 本発明の実施形態に従って製造されるイジェクタの圧縮部の概略的な(ワイヤフレーム)の斜視図である。 図2の圧縮部の立体的な斜視図である。 図2の圧縮部の側面図である。 本発明の実施形態に従って図2の圧縮部を製造するために用いられる一つのダイの二つの部分の断面図である。 図2の圧縮部が本発明の実施形態に従って製造される、チューブ周辺に位置決めされた図6のダイを示す図である。 本発明の実施形態に従うイジェクタ冷却システムの一具現化例の概略的な構成図である。
本発明の複数の実施形態は、イジェクタのような、ソーラエネルギーシステムの部品を製造するための方法に関する。
先ず始めに、図1を参照して、本発明の一実施形態についての方法10を説明する。さらに詳細な方法の説明は、図2乃至8を参照して以下に記載される。
ソーラエネルギーシステムの部品を製造するための方法10は、チューブを用意する始めのステップ12を備える。チューブは銅又は他の適切な材料からなる。チューブ材料は、チューブが、チューブの内部と外部の間の圧力が適切に異なるときに変形するように、選択される。詳細を後述するように、チューブは、チューブの径が局部的に減少されるように処理される部分を備える。ステップ14では、特定長さのチューブを受容するように配置されるキャビティを有する型(die、ダイという)が用意される。キャビティは、ソーラエネルギーシステムの部品の形状に対応する形状を定める。
ステップ16では、特定長さのチューブをダイのキャビティに位置決めする。ステップ18では、特定長さのチューブの少なくとも一部が、ソーラエネルギーシステムの部品の形状に対応する形状まで拡張するように、特定長さのチューブの内部内の、キャビティ内及び特定長さのチューブの内部の外に対する相対液圧を増加する。
ここで図2を参照しながら、本発明の実施形態のさらに詳細を説明する。図2は本発明に従った方法を用いて形成されたイジェクタ20を示す。イジェクタ20は、冷却サイクルにて加熱ポンプを駆動するように動作する。この場合、イジェクタは電気的に駆動される圧縮器の代わりに用いられる。イジェクタ20は、可動する部品を備えないので、広範囲な商業及び家庭の使用に最適である。イジェクタ20は、圧縮効果を発生するために電気エネルギーよりもむしろ熱エネルギーを用いる。図8は、熱エネルギーをイジェクタ20に供給する、ソーラパネル204を備えるソーラ冷却システム200の具体例を示す。
図2に示された具体例にあって、イジェクタ20は、部分的に閉鎖される端部25と開口端部29を有する中空体22を備える。イジェクタ20は、しばしば円筒形とされるが、この実施形態にあっては、実質的に中央軸36周りに対称とされる。中空体22は、圧縮部34に取り付けられるノズルハウジング42を有する。ノズル30は中空体22の部分的に閉鎖される端部25を貫通する。ノズル30は、中空体22の外側の入口38及び中空体22の内側の出口40を有する。ノズル30は、入口38と出口40の中間のくびれ部31を有する。
他のデザインが予想されることが容易に理解されるであろう。例えば、両方の端部25、29は開放されていてもよいし、イジェクタ20は蒸発器の流れが開放端部25を通して軸方向に流れるように配置されてもよいし、さらにノズル30がノズルハウジング42の側部を介してイジェクタ20の中空体22に入ってもよい。さらに、デザインが環状の形状とされるノズル及び複数ノズルが予想されることも理解されるであろう。
ノズルハウジング42は、エントリチャンバ24を定める。エントリチャンバ24の壁32は、そこにて形成されるエントレイン流(entrained flow)の入口34を形成する。圧縮部44はエントリチャンバ24と繋がっている混合チャンバ26を定める。圧縮部44は、拡散チャンバ28と、混合及び拡散チャンバと繋がる中間チャンバ27をも定める。図3乃至5は、イジェクタ20の圧縮部44を示す。
圧縮部44を製造するための方法の実施形態は、図6及び7を参照して説明される。図6は、ダイ100の断面図である。ダイ100は、通常、円筒状であり、初めは相互に分離されているダイ部品101及び102を含む。ダイ100は、ダイ部品101及び102が一緒にされたときに形成される。ダイ100は、例えば図2に示されるイジェクタ20のようなイジェクタの一部の形状を相補する形状を有する内部空間を有して形成される。
イジェクタ部を形成するためにチューブ104をダイ100に挿入する前に、チューブ104は、変形又は機械加工されてもよい。この具体例にあって、チューブ104は初期にはイジェクタ20の狭いスロート(throat)部の外径よりも広いチューブ外径を有する。この方法は、チューブ104が不均一な外径を有する(図6及び7には示されない)ように、チューブ104のスロート部の外径を局部的に低減することを含む。この具体例にあって、このチューブ104の外径は、回転するスエージ加工(swaging)を用いて局部的に低減される。チューブ104の外径は選択され、チューブ104の外径の低減は、イジェクタ部の構成に要求される拡張が低減されるように、実行される。結果的に、拡張の結果として、チューブ104の材料の裂けの可能性も低減される。
さらに、チューブ104は、チューブ材料の付加量がチューブの他の領域よりも、より拡張にさらされるチューブの一領域に配置されるように予め機械加工されてもよい。
チューブ104はその後、ダイ部分101、102に離隔された間に挿入される。流体110がその後にチューブの第1端部112に導入される。流体は、シリコンオイルであってよく、有害な効果を引き起こしてしまう流体を用いることなく、チューブをアニーリングするために、適切な温度に加熱される好ましい流体である。流体が加熱されるか、又は減圧されたときに、及び特にチューブがダイから外されたときに、蒸発することのない流体であることが好ましい。さらに流体は可燃性でないことが好ましい。チューブの第2端部114は例えば、締め付け閉鎖されるか又は蓋を被せられる。チューブ内の流体110の圧力は、その後、適切なポンプを用いて増加される。この実施形態にあって、ポンプは、ピストンタイプポンプであるが、他の実施形態では適切なポンプ、例えば制限されるものではないが、回転型の排水ポンプ、往復運動タイプのポジティブ排水ポンプ(ピストン又は膜ポンプのような)、及び線形タイプのポジティブ排水ポンプ(ロープポンプ又はチェインポンプのような)を備える具体例であってもよい。
チューブ内の増加された流体圧力は、チューブの周方向強さよりも大きいチューブの周方向応力(hoop stress)が、チューブ104を、ダイ部101、102のそれぞれのダイ部106、108に接触するように可塑的に変形するように誘発される。
全般的に、しかし必然的に、流体圧力の増加の間、ダイ部106、108は、例えばクランプ又は万力のような機械的な押圧により保持される。
チューブ104は、適切な材料によってなる。図4乃至7の具体例にあって、チューブ104は銅又はステンレス鋼のチューブである。チューブ材料の他の具体例は、低炭素含有の高延伸スチールを含む。いくつかの具現化例にあって、チューブは、高分子材料、ガラス又はセラミックを含む。
流体の圧力によってチューブの壁が外側に向かってあおられると生じる、チューブの壁が薄くなることを補償するために流体圧力が増加されると、軸方向の圧縮がチューブ104に適用される。例えば、チューブ104は、液体ピストン、ラック及びピニオン又は他の適切な圧縮手段によって、一緒に動くようにされる顎部によってダイ100の両側部の二つの点にて捉まれる。全般的に、チューブ104に適用される軸方向の張力は、そのアプリケーションよりも前に判断される。これは、プロセスのコンピュータによる有限エレメント分析を用いて判断されてもよい。製造の間、チューブ104は、材料の局部的な薄さという結果をもたらすように、ダイ100にあって拡張される。これは、チューブの破裂をまねく可能性がある。軸方向の張力の適用がこの望まれない副作用を和らげる。
潤滑油が、チューブ104とダイ部106、108の間に配置される。潤滑油は、例えば、二硫化モリブデンであってもよいが、他の適切な潤滑油が用いられもよい。潤滑油は、軸方向の圧縮をチューブに適用している間に好都合である。
チューブ104は、材料の脆性延性遷移温度より上に、拡張の前に加熱される。方法は、銅チューブにあっては1085℃当たりの、チューブ材料の溶融温度を下回って実行されもする。材料に応じて脆性延性遷移温度及び溶融温度の値が変動することが理解されるであろう。チューブ104の材料は、熱処理される形状にあっても適用される。
流体圧力はその後、チューブ104の外側面がダイ面106、108の全体に接触するように、チューブ104がダイ104内で拡張されるまで増加される。その後、圧力がかけられる。少なくともいくつかの適切なチューブ材料にあって、チューブ104が、液体の圧力が低減されると、収縮(「スプリングバック」)するように、ダイ100は形成される。
イジェクタ20の形成された部分は、その後に、機械加工され、さらにイジェクタ20を形成するための周知の技術を用いて処理される。
流体の温度は方法を改良するために制御されてもよい。流体の温度を制御するためのステップは、多くの利点を提供する。例えば、適度な加熱温度は、チューブの破裂を導くかもしれない材料における局部的なストレスを防ぐのを支援するために用いられる。いくつかの場合にあって、チューブ材料は、急速冷却にさらされてもよく、これは冷却流体をチューブに収容することによって達成される。さらに、油圧成形の後に冷却流体を収容することは、ダイからチューブが除去されるのを十分に容易にするようにチューブを縮小させる。
一時的な圧力特性はダイにチューブを配置するよりも前に判断される。これは、例えば本発明に係る方法のコンピュータによる有限エレメント分析によって判断されてもよい。流体の圧力は、コンピュータによる有限エレメント分析の出力によって定められるように増加及び/又は減少されてもよい。
圧縮部を形成するために増加された圧力によりチューブが変形された後、万力又は圧力が解放されてダイ部106及び108が分離される。流体は形成された圧縮部から排出され、続いてチューブはダイから取り出され、さらに洗浄される。圧縮部44は、もし必要ならば、機械加工されるか、または削って仕上げられ、さらに、制限されるものではないが、ろう付け、溶接又は接着剤の使用を含む適切な手段によりノズルハウジング42に取り付けられる。一実施形態にあって、相補的なネジ筋(山)が圧縮部44及びノズルハウジング42に形成され、ノズルハウジング42を圧縮部44に取付けるために、圧縮部44及びノズルハウジング42は噛み合わせられる。
代替的に、ダイは圧縮部34及びノズルハウジング42が一体に形成されるようにノズルハウジング42の構成を扱いやすいようにするために構成されてもよい。
イジェクタ20の動作は、図3及び8を参照することにより全体的に理解されると思われる。蒸気源は、ノズル30の外側端部38に結合される。蒸気はノズル30を通過し、内側端部40を通って、ノズルを離れる。イジェクタ20を通る蒸気の通路は、エントレイン流の入口34にて、圧力の減少を引き起こす。エントレイン流の入り口34は、制限されるものではないが、ヒドロフルオロカーボン、ヒドロカーボン、アルコール及び水を含む具体例のような、冷却剤となる流体を有する容器とつながる。図8の具現化例にあって、容器は蒸発器208内に収容される。エントレイン流の入り口34における相対的に低い圧力は、容器内の残留冷却剤を順番に冷却する冷却水の蒸発を引き起こす。冷却された冷却剤は、冷暖房のような続いて起こる冷却アプリケーションのために用いられる。
加熱ポンプ冷却サイクルは、高温度サブサイクル210及び低温度サブサイクル212を含む。高温度サブサイクル210にあって、熱は熱源(太陽光集積装置204のような)から蒸気発生器を介してイジェクタ20に伝達され、冷却剤の飽和温度をわずかに上回る温度にて蒸気発生器内の流体を作動するイジェクタサイクルの蒸発を引き起こす。蒸気はその後、ノズル30を介して、流体が加速されるイジェクタに流れる。
ポンプ201はイジェクタ20を動作する異なる圧力を発生することを要求されるが、流体が圧縮されるために、電気は相対的に小さいことが要求される。加熱ポンプ内の他の全ての部品は従来のものであっても又は従来のものでなくてもよい。
蒸気エンタルピーの大部分は、運動エネルギーに変換されるので、エネルギーの保存は、入口ハウジング22内の蒸気温度及び圧力が非常に小さいことを示唆する。入口ハウジング内の低圧力は、蒸発器からの蒸気の流れを引き出すように作用する。
蒸気発生器と蒸発器の流れは、インジェクタの中で混合され、さらに混合された流れは圧縮ショックを経験する。このように熱の圧縮は、従来の熱ポンプにおける電気的な圧縮に代わる。さらなる圧縮が、イジェクタから現れた音速以下の流れが次にコンデンサ206に流れ込むように拡散チャンバにて生じる。
コンデンサ206では、熱は作動流体(冷却剤)から周辺に除去され、結果としてコンデンサの出口にて凝縮された冷却剤液体となる。イジェクタ20は、この点にて冷却剤の飽和温度がコンデンサ冷却媒体よりも高くなるように、十分な出口圧力を提供する必要があり、さもなければ熱は除去されず、さらにサイクルは動作をやめる。これはイジェクタの機能不全モードであり、過度の凝縮の背圧(condensing backpressure)によって引き起こされる。機能不全は、例えば蒸気発生器214からの発生器の大きな圧力及び温度の適用によって克服することができる。
コンデンサ206を離れた液体の冷却剤は、その後、拡張弁を介しての減圧の後、蒸発器208に入る一つと、冷却ポンプ201を介して増加する圧力を受けた後に蒸気発生器214に循環して戻る他という、二つの流れに分離される。冷却流体は、蒸気に蒸発され、周囲からの熱を吸収し、冷却され、イジェクタ20に運ばれて、サイクルは完結する。
イジェクタ熱ポンプサイクルは、蒸発より前のサブ冷却することから及び圧縮を通しての過熱最小化することから、利益を得る。
イジェクタ機能は、冷却剤の選択の自由を提供しつつ、かつ圧縮器の潤滑油の互換性の要求によっても複雑とはされない。さらに、蒸気発生器及び蒸発器の両方のポートは本質的に開放チューブなので、液体の詰まりを許容する。
イジェクタの性能をモデル化する手段が多数ある。モデル化は、非理想反応用のマイナ調整を伴う熱力学の圧縮流理論、又はコンピュータによる流体力学を用いる計算上から得られるか、及び/又は有限のエレメント分析に基づいている。モデリングは以下の参照文献を援用できる。
Eames, IW, Aphornratana, S & Haider, H 1995, ‘A theoretical and experimental study of a small-scale steam jet refrigerator’, International Journal of Refrigeration, vol.18, no. 6, pp. 378-86.
Huang B., Petrenko V., Chang J, Lin C., Hu S., ‘A combined cycle refrigeration system using ejector cooling cycle as bottoming cycle’, Journal of Refrigeration 24 (2001) 391-399.
Zhu C., Wen L., Shock Circle method for ejector performance evaluation, Energy Conversion and Management, Vol 48, pp2533-2541, 2007.
Eames I., ‘A new prescription for the design of supersonic jet pumps: the cpmstamt rate of momentum change method’, Applied Thermal Engineering, Vol 22,
pp121-131, 2002.
コンピュータによる流体力学(Computational Fluid Dynamics(CFD))は、ハードウェアによるコンピュータの性能の進歩を伴って過去10年に亘って成熟した。これにより、超音波ショック効果、実在ガス反応、準安定性冷却剤状態、境界層流、境界層はがれなどを含めた詳細なイジェクタプロセスを研究者に研究させている。実在ガスモデルに関係するかなり高い乱流超音波圧縮流の複雑さのため、高度に発達したCFDパッケージのみがイジェクタモデリングに適切なのかもしれない。イジェクタモデルは、Fluent又はANSYS CFD、又は他の適切なソフトを用いる。
乱流モデルの選択は、CFDモデリングために必要とされる。標準的なk-ε乱流モデルは十分ではない。特に、ハイブリッドk-ω-sst モデルは、Bsrtosiewicz Y., Aidoun Z., Desevaux P., Mercadier Y.,によって記載される、超音波イジェクタモデリングのための6つの乱流モデルの評価におけるCFD実験インテグレーション(CFD experiments integration in the evaluation of six turbulence models for supersonic ejector modelling)、CFDインテグレーションの処置及び実験(Proceedings of Integrating CFD and Experiments)、Glasgow, 2003)によって良好な結果が提供されると思われる。
実際のインジェクタ流の描写は、透明なイジェクタによって提供される先進のビジュアライゼーション(visualisation)技術によって提供される。
開示された実施形態については、多数の変形及び/又は改良が作られることは明らかである。それゆえ、本実施形態は、例示されたすべての具体例にあって考慮されるが、制限されるものではない。例えば、イジェクタの部品は、チューブ104の内側領域内の相対圧力が増加されることになる、チューブ104の外側の領域についての圧力を低減することによって形成されてもよい。
以前の公報としての参照は、オーストラリア又は他の国における当業者の共通の全般的な知識の一部の承認ではない。

Claims (22)

  1. 少なくとも特定長さのチューブがその内部と外部との間の圧力が適切に異なると変形する材料を含むチューブを用意するステップと、
    特定長さのチューブを受容するように配置される、ソーラエネルギーシステムの部品の形状に対応する形状を定める、キャビティを有するダイを用意するステップと、
    ダイのキャビティに特定長さのチューブを位置決めするステップと、
    特定長さのチューブの少なくとも一部が、ソーラエネルギーシステムの部品の形状に対応する形状に拡張するように、特定長さのチューブの内部における流体の相対圧力を、キャビティ内の圧力及び特定長さのチューブの内部の外側の圧力に対して増加するステップと
    を備えるソーラエネルギーシステムの部品を製造するための方法。
  2. 前記ソーラエネルギーシステムの部品は、イジェクタである請求項1記載の方法。
  3. 少なくとも特定長さのチューブがその内部と外部との間の圧力が適切に異なると変形する材料を含むチューブを用意するステップと、
    特定長さのチューブを受容するように配置される、イジェクタの形状に対応する形状を定める、キャビティを有するダイを用意するステップと、
    ダイのキャビティに特定長さのチューブを位置決めするステップと、
    特定長さのチューブの少なくとも一部が、イジェクタの形状に対応する形状に拡張するように、特定長さのチューブの内部における流体の相対圧力を、キャビティ内の圧力及び特定長さのチューブの内部の外側の圧力に対して増加するステップと
    を備えるソーラエネルギーシステムのイジェクタを製造するための方法。
  4. 特定長さのチューブの内部における流体の相対圧力を、キャビティ内の圧力及び特定長さのチューブの内部の外側の圧力に対して増加するステップは、チューブの内部内の圧力を増加することを含む請求項1〜3のいずれか一項記載の方法。
  5. チューブを用意するステップはチューブを形作ることを含み、さらに前記方法はチューブが不均一な外径を有するようにチューブの外径を局部的に低減することを含む請求項1〜4のいずれか一項記載の方法。
  6. チューブの外径は選択されて、チューブの外径を低減することは、チューブの内部内における相対的な圧力を増加するステップが、均一でかつより小さな外径を有するチューブの使用に比較して少ない拡張になるように、実行される請求項5記載の方法。
  7. チューブを用意するステップは、チューブ材料の付加量が特定長さのチューブの他の領域よりも、より拡張にさらされる特定長さのチューブの一領域に配置されるように、予め形成されるか又は予め機械加工されたチューブ材料を用いる請求項1〜6のいずれか一項記載の方法。
  8. 相対的な圧力を増加するステップよりも前又はそのステップの間に特定長さのチューブを加熱するステップを含む請求項1〜7のいずれか一項記載の方法。
  9. チューブは金属材料を含み、さらに特定長さのチューブは、金属材料が脆性状態から延性状態に変化する遷移温度を上回る温度に加熱される請求項8記載の方法。
  10. 相対圧力を増加するステップは、周方向応力が特定長さのチューブの少なくとも一部に誘発され、さらに周方向応力が特定長さの一部の降伏強度(yield strength)よりも大きいように、実行される請求項1〜9のいずれか一項記載の方法。
  11. チューブは非金属材料を含む請求項1〜8のいずれか一項記載の方法。
  12. 特定長さのチューブを拡張している間に軸方向の圧縮を、特定長さのチューブに加える請求項1〜11のいずれか一項記載の方法。
  13. 特定長さのチューブとダイとの間に潤滑油を配置するステップを備える請求項1〜12のいずれか一項記載の方法。
  14. ソーラエネルギーシステムのイジェクタ又は部品の形状に関係する形状は前記イジェクタの圧縮部の形状を含む請求項1〜13のいずれか一項記載の方法。
  15. 前記形状は、圧縮部及びノズルハウジングが一体に形成されるようにイジェクタのノズルハウジングを含む請求項14記載の方法。
  16. 流体は液状物質であり、前記方法は特定長さのチューブの内部を液状物質で満たすステップを備える請求項1〜15のいずれか一項記載の方法。
  17. ダイが配置され、チューブ材料は、特定長さのチューブの内部における相対圧力が低減されると、チューブが径にあってわずかに収縮されるように、選択される請求項1〜16のいずれか一項記載の方法。
  18. 流体の温度を制御するステップを備える請求項1〜17のいずれか一項記載の方法。
  19. 液体の温度を制御するステップは、特定長さのチューブの拡張の後に、そのチューブ材料を急速冷却する請求項18記載の方法。
  20. 流体の一時的な圧力特性を判断するステップを備える請求項18又は19記載の方法。
  21. 特定長さのチューブの内部の相対圧力の増加の比率と特定長さのチューブの内部の相対圧力の低減の比率を判断することを含む請求項20記載の方法。
  22. 相対圧力を増加するステップは判断された一時的な圧力特性によって少なくとも部分的に特定される請求項20又は21記載の方法。
JP2014561234A 2012-03-14 2013-03-14 ソーラエネルギーシステムの部品を製造するための方法 Withdrawn JP2015518423A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2012901003A AU2012901003A0 (en) 2012-03-14 An Ejector and a method for making the Ejector
AU2012901003 2012-03-14
PCT/AU2013/000248 WO2013134823A1 (en) 2012-03-14 2013-03-14 A method of fabricating a component of a solar energy system

Publications (1)

Publication Number Publication Date
JP2015518423A true JP2015518423A (ja) 2015-07-02

Family

ID=49160150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014561234A Withdrawn JP2015518423A (ja) 2012-03-14 2013-03-14 ソーラエネルギーシステムの部品を製造するための方法

Country Status (7)

Country Link
US (1) US20150040399A1 (ja)
EP (1) EP2825364A4 (ja)
JP (1) JP2015518423A (ja)
CN (1) CN104220231A (ja)
AU (1) AU2013232734A1 (ja)
IN (1) IN2014MN01701A (ja)
WO (1) WO2013134823A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108526284A (zh) * 2018-04-18 2018-09-14 保隆(安徽)汽车配件有限公司 一种管件内高压外低压成型方法及成型机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT975448E (pt) * 1997-04-16 2002-11-29 Cosma Int Inc Prensa de moldacao hidraulica de alta pressao
EA001686B1 (ru) * 1997-07-18 2001-06-25 Косма Интернэшнл Инк. Способ и устройство для формования удлиненного трубного металлического элемента
UY25199A1 (es) * 1997-10-07 1999-04-07 Cosma Int Inc Metodo y aparato para hidroformacion sin arrugas de componentes tubulares oblicuos
NZ525377A (en) * 2000-10-19 2003-09-26 Cosma Int Inc Apparatus and method for hydroforming a tubular part with shaping along entire length of tube
JP4207570B2 (ja) * 2001-05-22 2009-01-14 三菱自動車工業株式会社 ハイドロフォーム成形方法
US20030221514A1 (en) * 2002-03-19 2003-12-04 Peter Amborn Hollow shaft and method of manufacturing a hollow shaft
DE102005050868A1 (de) * 2004-11-30 2006-06-01 Ford Global Technologies, LLC, Dearborn Druckgesteuertes superplastisches Umformen
JP4610405B2 (ja) * 2005-04-22 2011-01-12 プレス工業株式会社 ハイドロフォーム方法およびその装置
US7266982B1 (en) * 2005-06-10 2007-09-11 Guza David E Hydroforming device and method
US7434432B1 (en) * 2005-08-18 2008-10-14 Hi-Tech Welding And Forming, Inc. Die apparatus and method for high temperature forming of metal products
US7305860B2 (en) * 2005-11-10 2007-12-11 Gm Global Technology Operations, Inc. Method for tube forming
US7393421B2 (en) * 2006-04-10 2008-07-01 Gm Global Technology Operations, Inc. Method for in-die shaping and quenching of martensitic tubular body
JP2008149343A (ja) * 2006-12-15 2008-07-03 Toyota Motor Corp チューブハイドロフォーミング方法
US20080300552A1 (en) * 2007-06-01 2008-12-04 Cichocki Frank R Thermal forming of refractory alloy surgical needles
WO2013002872A2 (en) * 2011-06-10 2013-01-03 Carrier Corporation Ejector with motive flow swirl

Also Published As

Publication number Publication date
EP2825364A1 (en) 2015-01-21
WO2013134823A1 (en) 2013-09-19
AU2013232734A1 (en) 2014-09-11
CN104220231A (zh) 2014-12-17
US20150040399A1 (en) 2015-02-12
EP2825364A4 (en) 2015-11-11
IN2014MN01701A (ja) 2015-05-29

Similar Documents

Publication Publication Date Title
US10358975B2 (en) Compressed air energy storage and power generation device
CN203928625U (zh) 用于管翅式换热器的除油装置
DE102006043139A1 (de) Vorrichtung zur Gewinnung von mechanischer oder elektrischer Energie aus der Abwärme eines Verbrennungsmotors eines Kraftfahrzeugs
US10683776B2 (en) Device and method for converting heat into mechanical energy
AU2013273913A1 (en) An ejector
JP2007178072A (ja) 車両用空調装置
KR20180005281A (ko) 열 펌프 배열체를 작동시키기 위한 방법, 및 열 펌프 배열체
CN111555530B (zh) 一种适用于电动汽车的电机
JP2015518423A (ja) ソーラエネルギーシステムの部品を製造するための方法
CN106796064B (zh) 用于安装热交换器设备的方法和热交换器设备
DE102011118042A1 (de) Verfahren und Anordnung für einen thermisch angetriebenen Verdichter im Kreisprozess
JP2018512531A (ja) 熱を機械エネルギーに変換する装置用の作動流体、装置および方法
EP3033498B1 (en) Heat recovery and upgrading method and compressor for using in said method
AU2014101402A4 (en) A method of fabricating an ejector for a solar energy system
JP5529432B2 (ja) ヒートポンプ装置
AU2019216253A1 (en) Enhanced air conditioner using waste heat for fixed or mobile applications
EP2263050B1 (en) Liquefier for a heat pump, heat pump, and method of manufacturing a liquefier
CN103603788B (zh) 一种真空低温泵中的二级冷板
JP2008255926A (ja) ランキンサイクルシステム
Aidoun et al. Ejector applications in refrigeration and heating: An overview of modelling, operation and recent developments
KR100871734B1 (ko) 열 에너지를 기계 에너지로 변환하는 방법 및 장치
Mishra et al. A thermodynamic analysis of ejector type vapour refrigeration system using eco-friendly refrigerants
KR20110041660A (ko) 냉장고의 소음저감형 어큐뮬레이터
WO2005049973A3 (de) Verfahren und vorrichtung zur umwandlung von wärme in mechanische arbeit
Saudagar et al. Experimental analysis of vapour compression refrigeration system with diffuser at condenser inlet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160301

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160601