JP2015507700A - Abrasion-resistant austenitic steel with excellent machinability and ductility and method for producing the same - Google Patents

Abrasion-resistant austenitic steel with excellent machinability and ductility and method for producing the same Download PDF

Info

Publication number
JP2015507700A
JP2015507700A JP2014550002A JP2014550002A JP2015507700A JP 2015507700 A JP2015507700 A JP 2015507700A JP 2014550002 A JP2014550002 A JP 2014550002A JP 2014550002 A JP2014550002 A JP 2014550002A JP 2015507700 A JP2015507700 A JP 2015507700A
Authority
JP
Japan
Prior art keywords
steel material
steel
machinability
wear
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014550002A
Other languages
Japanese (ja)
Other versions
JP6014682B2 (en
Inventor
スン−ギ イ、
スン−ギ イ、
ジョン−キョ チェ、
ジョン−キョ チェ、
ヘ−グン ノ、
ヘ−グン ノ、
ヒュン−クァン チョ、
ヒュン−クァン チョ、
イン−シク ス、
イン−シク ス、
ハク−チョル イ、
ハク−チョル イ、
イン−ギュ パク、
イン−ギュ パク、
ホンージュ イ、
ホンージュ イ、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110145213A external-priority patent/KR101353665B1/en
Priority claimed from KR1020120151507A external-priority patent/KR101461735B1/en
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2015507700A publication Critical patent/JP2015507700A/en
Application granted granted Critical
Publication of JP6014682B2 publication Critical patent/JP6014682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

重量%で、8〜15%のマンガン(Mn)、23%<33.5C−Mn≰37%の関係を満たす炭素(C)、1.6C−1.4(%)≰Cu≰5%を満たす銅(Cu)、硫黄(S):0.03〜0.1%、カルシウム(Ca):0.001〜0.01%、残部Fe及びその他の不可避不純物を含む、被削性と延性に優れた耐磨耗オーステナイト系鋼材及びその製造方法が提供される。本発明によれば、鋼材の内部の炭化物形成を抑制することにより鋼材の劣化を防止し、耐磨耗性を十分に確保することにより腐食環境でも長期間使用可能な被削性に優れた鋼材を提供することができる。8% to 15% manganese (Mn) by weight%, carbon (C) satisfying the relationship of 23% <33.5C-Mn≰37%, 1.6C-1.4 (%) ≰Cu≰5% Filling copper (Cu), sulfur (S): 0.03-0.1%, calcium (Ca): 0.001-0.01%, balance Fe and other inevitable impurities, machinability and ductility An excellent wear-resistant austenitic steel material and a method for producing the same are provided. According to the present invention, steel material excellent in machinability that can be used for a long time even in a corrosive environment by preventing the deterioration of the steel material by suppressing the formation of carbide inside the steel material and sufficiently ensuring the wear resistance. Can be provided.

Description

本発明は、被削性と延性に優れた耐磨耗オーステナイト系鋼材及びその製造方法に関する。   The present invention relates to a wear-resistant austenitic steel material excellent in machinability and ductility and a method for producing the same.

鉱産産業、オイル及びガス産業(Oil and Gas Industries)の成長に伴い、採掘、輸送及び精製過程で用いられる鋼材の磨耗が大きな問題となっている。特に、最近、石油を代替する化石燃料としてオイルサンド(Oil Sands)に関する開発が本格化するにつれ、オイル、砂利、砂等が含まれたスラリーによる鋼材の磨耗が生産コストの増加を起こす主な原因となっており、よって、耐磨耗性に優れた鋼材の開発及び適用に関する需要が大きく増加している。   With the growth of the mining industry, oil and gas industries (Oil and Gas Industries), the wear of steel materials used in mining, transportation and refining processes has become a major problem. In particular, as the development of oil sands (Oil Sands) as a fossil fuel that substitutes for oil has recently become full-fledged, the main cause of the increase in production costs due to the wear of steel due to slurry containing oil, gravel, sand, etc. Therefore, the demand for the development and application of steel materials with excellent wear resistance is greatly increasing.

既存の鉱産産業では、耐磨耗性に優れたハドフィールド(Hadfield)鋼が主に用いられてきた。上記ハドフィールド鋼はマンガン含量が高い高強度鋼であり、このような鋼材の耐磨耗性を高くするために高含量の炭素と多量のマンガンを含有させてオーステナイト組織及び磨耗抵抗性を増加させようとする努力がなされてきた。しかしながら、ハドフィールド鋼の高い炭素含量は、オーステナイト粒界に沿ってネットワーク状の炭化物を高温で生成させて鋼材の物性、特に、延性を急激に低下させる。   In the existing mining industry, Hadfield steel having excellent wear resistance has been mainly used. The above Hadfield steel is a high strength steel with a high manganese content, and in order to increase the wear resistance of such steel materials, a high content of carbon and a large amount of manganese are added to increase the austenite structure and wear resistance. Efforts have been made to do so. However, the high carbon content of hadfield steel produces network-like carbides along the austenite grain boundaries at a high temperature, which sharply lowers the properties of the steel material, particularly the ductility.

このようなネットワーク状の炭化物析出を抑制するために、高温で溶体化処理をするか又は熱間加工後に常温に急冷させて高マンガン鋼を製造する方法が提案された。しかしながら、鋼材の厚さが厚い場合は急冷による炭化物抑制効果が十分でない上、溶接が必要な場合は溶接後に冷却速度を調節するのが困難であるため、このようなネットワーク状の炭化物析出を抑制するのが困難であり、これにより、鋼材の物性が急激に劣化するという問題が発生する。また、高マンガン鋼のインゴット又は鋳片が凝固する間にマンガン及び炭素等の合金元素による偏析が必然的に発生し、これは熱間圧延等の後加工時にさらに悪化するため、最終製品において深化した偏析帯に沿って炭化物の部分的析出がネットワーク状に発生し、その結果、微細組織の不均一性を助長して物性を劣化させる結果をもたらす。   In order to suppress such network-like carbide precipitation, a method has been proposed in which a high manganese steel is produced by solution treatment at a high temperature or by rapid cooling to a normal temperature after hot working. However, if the steel material is thick, the carbide suppression effect due to rapid cooling is not sufficient, and if welding is required, it is difficult to adjust the cooling rate after welding, so this type of networked carbide precipitation is suppressed. This causes a problem that the physical properties of the steel material deteriorate rapidly. In addition, segregation by alloying elements such as manganese and carbon occurs inevitably during the solidification of high manganese steel ingots or slabs, which is further deteriorated during post-processing such as hot rolling, and deepens in the final product. Along with the segregation zone, the partial precipitation of carbides occurs in a network, and as a result, the non-uniformity of the fine structure is promoted and the physical properties are deteriorated.

耐磨耗性の向上のためには炭素の含量を増加させる必要があり、炭化物析出による物性劣化を防止するためにマンガン含量を増加させることを一般の方法として用いることができるが、これは、合金量と製造単価の上昇をもたらす。また、上記マンガン添加によって一般の炭素鋼と比べて耐食性の低下をもたらすため、耐食性が求められる分野への適用に限界がある。   In order to improve the wear resistance, it is necessary to increase the carbon content, and in order to prevent deterioration of physical properties due to carbide precipitation, increasing the manganese content can be used as a general method. Increases alloy volume and manufacturing unit price. Moreover, since the above manganese addition causes a decrease in corrosion resistance compared to general carbon steel, there is a limit to application in fields where corrosion resistance is required.

また、オーステナイト系高マンガン鋼は、高い加工硬化によって被削性が劣り、これにより、切削工具の寿命が減少するため、工具コストが増加し、工具の交替に関連した休止期間が増加する等、生産コストを増加させるという問題がある。   In addition, austenitic high manganese steel is inferior in machinability due to high work hardening, thereby reducing the life of the cutting tool, increasing the tool cost, increasing the downtime associated with tool replacement, etc. There is a problem of increasing production costs.

本発明の目的は、炭化物の生成を効果的に抑制したことにより被削性、延性及び耐磨耗性が向上したオーステナイト系鋼材及びその製造方法を提供することである。   An object of the present invention is to provide an austenitic steel material having improved machinability, ductility and wear resistance by effectively suppressing the formation of carbides and a method for producing the same.

しかしながら、本発明が解決しようとする課題は上述した課題に限定されず、記載されていない他の課題は以下の記載から当業者に明確に理解され得る。   However, the problem to be solved by the present invention is not limited to the problem described above, and other problems not described can be clearly understood by those skilled in the art from the following description.

上記のような目的を達成するために、本発明の一実施形態によれば、重量%で、8〜15%のマンガン(Mn)、23%<33.5C−Mn≦37%の関係を満たす炭素(C)、1.6C−1.4(%)≦Cu≦5%を満たす銅(Cu)、残部Fe及びその他の不可避不純物を含む、被削性と延性に優れた耐磨耗オーステナイト系鋼材が提供される。   In order to achieve the above object, according to an embodiment of the present invention, 8% to 15% manganese (Mn) and 23% <33.5C-Mn ≦ 37% are satisfied by weight%. Wear-resistant austenitic steel with excellent machinability and ductility, including carbon (C), copper (Cu) satisfying 1.6C-1.4 (%) ≦ Cu ≦ 5%, remaining Fe and other inevitable impurities Steel is provided.

本発明の他の実施形態によれば、重量%で、8〜15%のマンガン(Mn)、23%<33.5C−Mn≦37%の関係を満たす炭素(C)、1.6C−1.4(%)≦Cu≦5%を満たす銅(Cu)、残部Fe及びその他の不可避不純物を含む鋼スラブを1050〜1250℃の温度に再加熱する段階と、800℃〜1050℃の温度で仕上げ熱間圧延して鋼板を製造する段階と、上記熱間圧延された鋼板を10〜100℃/sの冷却速度で600℃以下となるように冷却する段階とを含む、被削性と延性に優れた耐磨耗オーステナイト系鋼材の製造方法が提供される。   According to another embodiment of the present invention, by weight percent, 8-15% manganese (Mn), carbon (C) satisfying the relationship 23% <33.5C-Mn ≦ 37%, 1.6C-1 Re-heating the steel slab containing copper (Cu) satisfying 4 (%) ≦ Cu ≦ 5%, the balance Fe and other inevitable impurities to a temperature of 1050 to 1250 ° C., and a temperature of 800 ° C. to 1050 ° C. Machinability and ductility, including a step of producing a steel sheet by finish hot rolling and a step of cooling the hot-rolled steel sheet to 600 ° C. or less at a cooling rate of 10 to 100 ° C./s. A method for producing a wear-resistant austenitic steel material having excellent resistance is provided.

本発明によれば、鋼材の内部の炭化物形成を抑制することにより鋼材の劣化を防止し、耐磨耗性を十分に確保することにより腐食環境でも長期間使用可能な鋼材を提供することができる。   According to the present invention, it is possible to provide a steel material that can be used for a long time even in a corrosive environment by preventing the deterioration of the steel material by suppressing the formation of carbide inside the steel material and sufficiently ensuring the wear resistance. .

図1は、本発明の一実施例によるマンガンと炭素との関係を示すグラフである。FIG. 1 is a graph showing the relationship between manganese and carbon according to an embodiment of the present invention. 図2は、本発明の一実施例による鋼材の内部の微細組織を観察した写真である。FIG. 2 is a photograph of the microstructure inside the steel material according to one embodiment of the present invention. 図3は、本発明の一実施例による硫黄含量と被削性との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the sulfur content and machinability according to an embodiment of the present invention.

以下、本発明の属する技術分野における通常の知識を有する者が容易に実施することができるように本発明の被削性と延性に優れたオーステナイト系鋼材及びその製造方法を詳細に説明する。   Hereinafter, the austenitic steel material excellent in machinability and ductility of the present invention and the manufacturing method thereof will be described in detail so that those having ordinary knowledge in the technical field to which the present invention belongs can easily carry out.

本発明者らは、鋼材について、高い磨耗性を有し且つ炭化物による延性低下の問題を起こさずに被削性を向上させるためには、鋼材の成分を適切に制御する必要があることを確認し、本発明に至った。   The present inventors have confirmed that it is necessary to appropriately control the components of the steel material in order to improve the machinability without causing the problem of reduced ductility due to the carbide and having high wear properties. The present invention has been achieved.

即ち、本発明は、耐磨耗性を確保するためにマンガンと炭素を添加し、且つ炭素による炭化物形成を最小化するためにマンガン含量による炭素含量を調節し、また、更なる元素添加によって炭化物形成を積極的に抑制することにより耐磨耗性のみならず延性も十分に確保すると共に、カルシウム及び硫黄の含量を調節することによりオーステナイト系高マンガン鋼の被削性を顕著に改善する鋼材の組成を見出すに至った。   That is, the present invention adds manganese and carbon to ensure wear resistance, adjusts the carbon content by manganese content to minimize carbide formation by carbon, and further adds carbides by adding elements. A steel material that not only improves wear resistance by actively suppressing formation, but also sufficiently improves ductility, and significantly improves the machinability of austenitic high manganese steel by adjusting the content of calcium and sulfur. The composition has been found.

本発明の鋼材は、重量%で、8〜15%のマンガン(Mn)、23%<33.5C−Mn≦37%の関係を満たす炭素(C)、1.6C−1.4(%)≦Cu≦5%を満たす銅(Cu)、残部Fe及びその他の不可避不純物を含む組成を有することができる。   The steel material of the present invention is 8% to 15% manganese (Mn) by weight%, carbon (C) satisfying the relationship of 23% <33.5C-Mn ≦ 37%, 1.6C-1.4 (%). It may have a composition containing copper (Cu) satisfying ≦ Cu ≦ 5%, the balance Fe and other inevitable impurities.

上記各成分の数値を限定する理由を説明すると、下記の通りである。なお、以下の各成分の含量の単位は、特に記載されていない限り、重量%である。   The reason for limiting the numerical values of the respective components will be described as follows. In addition, the unit of the content of the following each component is weight% unless otherwise indicated.

マンガン(Mn):8〜15%
マンガンは、本発明のような高マンガン鋼に添加される最も重要な元素であって、オーステナイトを安定化する役割をする元素である。本発明において、主組織としてオーステナイトを得るためには、マンガンが8%以上含まれるのが良い。即ち、マンガンの含量が8%未満の場合は、フェライトが形成されてオーステナイト組織を十分に確保することができない。また、マンガンの含量が15%を超える場合は、マンガン添加による耐食性低下、製造工程上の困難、製造単価上昇等の問題があり、引張強度を減少させて加工硬化が減少するという短所がある。
Manganese (Mn): 8-15%
Manganese is the most important element added to the high manganese steel as in the present invention, and is an element that serves to stabilize austenite. In the present invention, in order to obtain austenite as the main structure, 8% or more of manganese is preferably contained. That is, when the manganese content is less than 8%, ferrite is formed and the austenite structure cannot be sufficiently secured. On the other hand, when the manganese content exceeds 15%, there are problems such as a decrease in corrosion resistance due to the addition of manganese, difficulty in the production process, and an increase in production unit cost, and there is a disadvantage that the work strength is reduced by reducing the tensile strength.

炭素(C):23%<33.5C−Mn≦37%
炭素は、オーステナイトを安定化させて常温でオーステナイト組織が得られるようにする元素であって、鋼材の強度を増加させ、特に、オーステナイトの内部に固溶されて加工硬化を増加させることにより高い耐磨耗性を確保するための最も重要な元素である。しかしながら、上述したように炭素が十分に添加されない場合は、オーステナイト安定度が足りないためマルテンサイトが形成されるか、又はオーステナイトの加工硬化が小さいため十分な耐磨耗性を得るのが困難であり、一方、炭素の含量が多すぎる場合は、炭化物形成を抑制するのが困難である。
Carbon (C): 23% <33.5C-Mn ≦ 37%
Carbon is an element that stabilizes austenite so that an austenite structure can be obtained at room temperature, and increases the strength of steel materials. It is the most important element for ensuring wear resistance. However, as described above, when carbon is not sufficiently added, martensite is formed because of insufficient austenite stability, or it is difficult to obtain sufficient wear resistance due to small work hardening of austenite. On the other hand, if the carbon content is too high, it is difficult to suppress carbide formation.

したがって、本発明において、炭素の含量は、炭素と他に一緒に添加される元素との関係に留意して決められることが好ましい。このために、本発明者が見出した炭化物形成に関する炭素とマンガンとの関係を図1に示した。炭化物は炭素によって形成されるが、炭素が独立して炭化物形成に影響を及ぼすのではなく、炭素がマンガンと複合的に作用してその形成傾向に影響を及ぼす。図1にマンガンとの関係における炭素の適正含量を示した。   Therefore, in the present invention, the carbon content is preferably determined in consideration of the relationship between carbon and other elements added together. For this purpose, the relationship between carbon and manganese related to carbide formation found by the present inventors is shown in FIG. Although carbide is formed by carbon, carbon does not independently affect carbide formation, but carbon acts in a complex manner with manganese to affect its tendency to form. FIG. 1 shows the proper carbon content in relation to manganese.

炭化物形成を防止するためには、他の成分が本発明で規定する範囲を満たすという前提の下で33.5C−Mn(C、Mnは各成分の含量を重量%の単位で示したものである。)の値を37以下に制御するのが良い。これは、図面の平行四辺形領域のうち傾斜した右側境界を意味する。33.5C−Mnが37を超える場合は、鋼材の延性に悪影響を及ぼすほどに炭化物が生成される恐れがある。但し、炭素含量が低すぎる場合、即ち、33.5C−Mnが23未満の場合は、鋼材の加工硬化による耐磨耗性向上効果が得られない。したがって、上記33.5C−Mnは23以上であることが好ましい。以上のことから、本発明において、炭素は、23<33.5C−Mn≦37を満たすように添加されることが好ましい。   In order to prevent the formation of carbides, 33.5C-Mn (C and Mn are the contents of each component in units of% by weight under the premise that the other components satisfy the range specified in the present invention. It is better to control the value of 37) or less. This means an inclined right boundary in the parallelogram region of the drawing. When 33.5C-Mn exceeds 37, a carbide | carbonized_material may be produced | generated so that it may have a bad influence on the ductility of steel materials. However, when the carbon content is too low, that is, when 33.5C-Mn is less than 23, the effect of improving the wear resistance by work hardening of the steel material cannot be obtained. Therefore, the 33.5C-Mn is preferably 23 or more. From the above, in the present invention, carbon is preferably added so as to satisfy 23 <33.5C-Mn ≦ 37.

銅(Cu):1.6C−1.4(%)≦Cu≦5%
銅は、炭化物中の固溶度が非常に低くてオーステナイト内での拡散が遅いため、オーステナイトと炭化物との界面に濃縮される傾向がある。これにより、微細な炭化物の核が生成される場合は、その周囲を取り囲むことにより炭素の更なる拡散による炭化物の成長が遅くなり、その結果、炭化物の生成及び成長が抑制される。したがって、本発明では、このような効果を得るために銅を添加する。このような銅添加量は、独立して決定されず、炭化物の生成傾向によって決定されることが好ましい。即ち、銅の含量を1.6C−1.4重量%以上に決めることが炭化物の生成抑制に有利である。銅の含量が1.6C−1.4未満の場合は、炭素による炭化物形成を抑制するのが困難であり、銅の含量が5重量%を超える場合は、鋼材の熱間加工性を低下させるという問題があるため、その上限を5重量%に制限することが好ましい。特に、本発明において、耐磨耗性の向上のために添加される炭素含量を考慮すると、上記炭化物生成抑制効果を十分に得るためには0.3重量%以上添加されるのが好ましく、2重量%以上添加されるのがより好ましい。
Copper (Cu): 1.6C-1.4 (%) ≦ Cu ≦ 5%
Copper has a very low solid solubility in carbides and is slow to diffuse in austenite, and therefore tends to be concentrated at the interface between austenite and carbide. As a result, when fine carbide nuclei are generated, surrounding the periphery of the nuclei slows the growth of the carbides due to further diffusion of carbon, and as a result, the formation and growth of carbides is suppressed. Therefore, in the present invention, copper is added to obtain such an effect. Such a copper addition amount is not determined independently, but is preferably determined by a tendency to form carbides. That is, determining the copper content to be 1.6C-1.4% by weight or more is advantageous for suppressing the formation of carbides. When the copper content is less than 1.6C-1.4, it is difficult to suppress the formation of carbides by carbon, and when the copper content exceeds 5% by weight, the hot workability of the steel is reduced. Therefore, it is preferable to limit the upper limit to 5% by weight. In particular, in the present invention, considering the carbon content added for improving the wear resistance, 0.3% by weight or more is preferably added in order to sufficiently obtain the above carbide formation suppressing effect. It is more preferable to add at least wt%.

本発明の残りの成分は鉄(Fe)である。但し、通常の製造過程では、原料又は周囲環境から意図しない不純物が不可避に混入される可能性があるため、これを排除することはできない。これらの不純物は当業者であれば誰でも分かるものであるため、本明細書ではその詳細な内容を省略する。   The remaining component of the present invention is iron (Fe). However, in a normal manufacturing process, unintended impurities may be inevitably mixed from the raw material or the surrounding environment, and thus cannot be excluded. Since those skilled in the art can understand these impurities, detailed description thereof is omitted in this specification.

本発明の鋼材は、上記成分に加えて、被削性を改善するために硫黄(S)及びカルシウム(Ca)をさらに含むことができる。   In addition to the said component, the steel materials of this invention can further contain sulfur (S) and calcium (Ca) in order to improve machinability.

硫黄(S):0.03〜0.1%
硫黄は、一般にマンガンと共に添加されて化合物である硫化マンガンを形成し、切削加工時に容易に切断され分離されて切削性を向上させる元素として知られている。切削加工熱によって溶融されるため、チップと切削工具との摩擦力を減少させ、これにより、工具の表面潤滑による切削工具の磨耗減少、切削工具上での切削チップの蓄積防止等の効果をもたらすため、切削工具の寿命を増加させる。但し、硫黄の含量が多すぎる場合は、熱間加工時に延伸された多量の粗大な硫化マンガンによって鋼材の機械的特性を減少させ、硫化鉄の形成によって熱間加工性を害する可能性があるため、その上限を0.1%とすることが好ましい。これに対し、硫黄が0.03%未満添加される場合は、切削性改善の効果がないため、その下限を0.03%に制限することが好ましい。
Sulfur (S): 0.03-0.1%
Sulfur is generally known as an element that is added together with manganese to form manganese sulfide, which is a compound, and is easily cut and separated during cutting to improve machinability. Since it is melted by the cutting heat, the frictional force between the tip and the cutting tool is reduced, and this brings about effects such as reduction of wear of the cutting tool due to surface lubrication of the tool and prevention of accumulation of cutting tips on the cutting tool. Therefore, the life of the cutting tool is increased. However, if the sulfur content is too high, the mechanical properties of the steel material may be reduced by the large amount of coarse manganese sulfide drawn during hot working, and hot workability may be impaired by the formation of iron sulfide. The upper limit is preferably 0.1%. On the other hand, when less than 0.03% of sulfur is added, since there is no effect of improving machinability, it is preferable to limit the lower limit to 0.03%.

カルシウム(Ca):0.001〜0.01%
カルシウムは、硫化マンガンの形状を制御するために主に用いられる元素である。カルシウムは、硫黄に対して大きな親和力を有するため、カルシウム硫化物を形成すると共に硫化マンガンに固溶されて存在し、上記カルシウム硫化物を核として硫化マンガンが晶出するため、熱間加工時に硫化マンガンの延伸を抑制して球状の形状を維持するようにすることにより被削性を改善する。但し、カルシウムの含量が0.01%を超える場合は、効果が飽和し、また、カルシウムの実収率が低いことから含有量を増やすには多量添加する必要があるため、製造コストの面で好ましくなく、0.001%未満の場合は、効果が少ないため、その下限を0.001%に制限することが好ましい。
Calcium (Ca): 0.001 to 0.01%
Calcium is an element mainly used to control the shape of manganese sulfide. Since calcium has a large affinity for sulfur, it forms calcium sulfide and is dissolved in manganese sulfide. Since manganese sulfide crystallizes with the calcium sulfide as a nucleus, it is sulfided during hot working. Machinability is improved by suppressing the extension of manganese and maintaining a spherical shape. However, when the calcium content exceeds 0.01%, the effect is saturated, and since the actual yield of calcium is low, it is necessary to add a large amount to increase the content, which is preferable in terms of production cost. However, when the content is less than 0.001%, the effect is small.

本発明の鋼材は、上記成分に加えて、クロム(Cr)をさらに含むことにより、耐食性をさらに改善することができる。   The steel material of the present invention can further improve the corrosion resistance by further containing chromium (Cr) in addition to the above components.

クロム(Cr):8%以下(0%は除く)
一般に、マンガンは鋼材の耐食性を低下させる元素であり、上記範囲のマンガン含量において一般の炭素鋼に比べて耐食性が低下するという短所があるが、本発明では、クロムを添加することにより耐食性を向上させている。また、上記範囲のクロム添加によって強度も向上させることができる。但し、その含量が8重量%を超える場合は、製造コストの上昇をもたらす上、材料内に固溶された炭素と共に粒界に沿って炭化物を形成して、延性、特に、硫化物応力誘起亀裂抵抗性を減少させ、フェライトが生成されて主組織としてオーステナイトが得られないため、その上限を8重量%に限定することが好ましい。特に、上記耐食性向上効果を極大化するためには、クロムを2重量%以上添加するのがより良い。このようにクロムの添加によって耐食性を向上させることにより、スラリーパイプ用鋼材又は耐サワー(sour)鋼材等にも広く適用することができる。
Chromium (Cr): 8% or less (excluding 0%)
In general, manganese is an element that lowers the corrosion resistance of steel, and there is a disadvantage that the corrosion resistance is lower than that of ordinary carbon steel in the above-mentioned range of manganese content, but in the present invention, corrosion resistance is improved by adding chromium. I am letting. Further, the strength can be improved by adding chromium in the above range. However, if the content exceeds 8% by weight, the production cost is increased, and carbides are formed along the grain boundaries together with carbon dissolved in the material, and ductility, in particular, sulfide stress-induced cracks. It is preferable to limit the upper limit to 8% by weight because resistance is reduced and ferrite is generated and austenite cannot be obtained as the main structure. In particular, in order to maximize the effect of improving the corrosion resistance, it is better to add 2% by weight or more of chromium. Thus, by adding corrosion resistance by adding chromium, it can be widely applied to steel materials for slurry pipes or sour steel materials.

上述した組成の鋼材は、オーステナイト系鋼材であって、内部組織中にオーステナイトが面積分率で90%以上含まれた鋼材を意味する。上記オーステナイトは、その後の加工過程で高い加工硬化によって鋼材に高い硬度を付与する。上記オーステナイトの他に、マルテンサイト、ベイナイト、パーライト、フェライト等の不可避に形成された不純物組織が一部含まれ得る。なお、各組織の含量は、炭化物等の析出物を含まず、鋼材の相(phase)の量を合計したものを100%としたときの含量である。   The steel material of the composition mentioned above is an austenitic steel material, and means a steel material in which austenite is contained in the internal structure by 90% or more by area fraction. The austenite imparts high hardness to the steel material by high work hardening in the subsequent working process. In addition to the austenite, an inevitably formed impurity structure such as martensite, bainite, pearlite, and ferrite may be included. In addition, the content of each structure | tissue is a content when the thing which does not contain precipitates, such as a carbide | carbonized_material, and adds up the quantity of the phase (steel) of steel materials is set to 100%.

また、本発明の鋼材には、炭化物が面積分率で10%以下(全面積基準)含まれることが好ましい。上記炭化物は、鋼材の延性を悪化させるものであるため、その量ができるだけ少ないのが良い。本発明の鋼材は、上記炭化物の面積比率が10%以下であるため、耐磨耗鋼に用いられるときに延性不足による早期破断、衝撃靱性減少等の問題を起こさない。   Moreover, it is preferable that the steel material of the present invention contains 10% or less (based on the total area) of carbide in an area fraction. Since the above-mentioned carbide deteriorates the ductility of the steel material, the amount is preferably as small as possible. Since the steel material of the present invention has an area ratio of the carbide of 10% or less, it does not cause problems such as early breakage due to insufficient ductility and reduction in impact toughness when used in wear-resistant steel.

以下、上述した本発明の耐磨耗オーステナイト系鋼材を製造する方法を説明する。上記鋼材は通常の鋼材製造方法により製造されることができ、上記通常の鋼材製造方法にはスラブを再加熱した後に粗圧延及び仕上げ圧延する通常の熱間圧延方法が含まれ得る。熱間圧延後には通常の範囲で冷却する過程が行われ得る。なお、本発明者らが見出した好ましい一例を挙げると、下記の通りである。   Hereinafter, a method for producing the above-described wear-resistant austenitic steel material of the present invention will be described. The steel material can be manufactured by a normal steel material manufacturing method, and the normal steel material manufacturing method can include a normal hot rolling method in which rough rolling and finish rolling are performed after reheating the slab. After hot rolling, a process of cooling in a normal range can be performed. A preferred example found by the present inventors is as follows.

まず、重量%で、8〜15%のマンガン(Mn)、23%<33.5C−Mn≦37%の関係を満たす炭素(C)、1.6C−1.4(%)≦Cu≦5%を満たす銅(Cu)、残部Fe及びその他の不可避不純物を含む鋼スラブを用意する。   First, 8% to 15% manganese (Mn) by weight%, carbon (C) satisfying the relationship of 23% <33.5C-Mn ≦ 37%, 1.6C-1.4 (%) ≦ Cu ≦ 5 %, A steel slab containing copper (Cu), the balance Fe, and other inevitable impurities is prepared.

上記鋼スラブは、前述したように硫黄(S)及びカルシウム(Ca)をさらに含むことができる。   As described above, the steel slab can further include sulfur (S) and calcium (Ca).

また、上記鋼スラブは、前述したようにクロム(Cr)をさらに含むことができる。   Moreover, the steel slab can further include chromium (Cr) as described above.

次に、上記鋼スラブを1050〜1250℃の温度に再加熱する。   Next, the steel slab is reheated to a temperature of 1050 to 1250 ° C.

熱間圧延のためにスラブ又はインゴット(ingot)を加熱炉で再加熱する工程が必要である。この際、再加熱温度が1050℃未満と低すぎる場合は、圧延中に荷重が大きくかかるという問題があり、合金成分も十分に固溶されない。これに対し、再加熱温度が高すぎる場合は、結晶粒が過度に成長して強度が低くなるという問題があり、特に、発明鋼の組成範囲では炭化物の粒界が溶融されるか又は鋼材の固相線温度を超えて再加熱されることにより鋼材の熱間圧延性を害する恐れがあるため、その上限を1250℃に制限する。   A step of reheating the slab or ingot in a heating furnace is necessary for hot rolling. At this time, if the reheating temperature is too low as less than 1050 ° C., there is a problem that a large load is applied during rolling, and the alloy components are not sufficiently dissolved. On the other hand, when the reheating temperature is too high, there is a problem that the crystal grains grow excessively and the strength becomes low. In particular, in the composition range of the inventive steel, the grain boundary of the carbide is melted or the steel material Since the steel sheet may be reheated beyond the solidus temperature, the hot rolling property of the steel material may be impaired, so the upper limit is limited to 1250 ° C.

次に、800℃〜1050℃の温度で仕上げ熱間圧延して鋼板を製造する。   Next, finish hot rolling is performed at a temperature of 800 ° C. to 1050 ° C. to manufacture a steel plate.

圧延温度は、800℃〜1050℃である。800℃未満で圧延が行われる場合は、圧延荷重が大きくかかり、炭化物が析出したり粗大に成長したりすることにより、目標とする延性が得られないため、その上限を1050℃とする。   The rolling temperature is 800 ° C to 1050 ° C. When rolling is performed at a temperature lower than 800 ° C., a large rolling load is applied, and the target ductility cannot be obtained by precipitation of carbides or coarse growth. Therefore, the upper limit is set to 1050 ° C.

次に、上記熱間圧延された鋼板を10〜100℃/sの冷却速度で600℃以下となるように冷却する。   Next, the hot-rolled steel plate is cooled to 600 ° C. or lower at a cooling rate of 10 to 100 ° C./s.

仕上げ圧延後の鋼材の冷却は、粒界炭化物形成を抑制するのに十分な冷却速度で行われなければならない。冷却速度が10℃/s未満の場合は、炭化物形成を避けるのに十分でなく、冷却中に粒界に炭化物が析出することから、鋼材の早期破断による延性低下及びこれによる耐磨耗性劣化の問題が発生するため、冷却速度が速いほど有利である。加速冷却の範囲内では、上記冷却速度の上限を特に制限する必要がない。但し、通常の加速冷却時にも冷却速度が100℃/sを超えるのは困難である。   The steel material after finish rolling must be cooled at a cooling rate sufficient to suppress the formation of grain boundary carbides. When the cooling rate is less than 10 ° C./s, it is not sufficient to avoid carbide formation, and carbide precipitates at the grain boundaries during cooling, resulting in a decrease in ductility and early wear resistance degradation due to early fracture of steel. Therefore, the higher the cooling rate, the more advantageous. There is no need to particularly limit the upper limit of the cooling rate within the range of accelerated cooling. However, it is difficult for the cooling rate to exceed 100 ° C./s even during normal accelerated cooling.

一方、高速で冷却しても、高温で冷却が止まる場合は、炭化物が生成されたり成長したりする恐れがある。したがって、本発明の一具現では、上記冷却を600℃以下まで行う必要がある。   On the other hand, if the cooling stops at a high temperature even if the cooling is performed at a high speed, carbides may be generated or grow. Therefore, in one embodiment of the present invention, it is necessary to perform the cooling to 600 ° C. or less.

以下、実施例を挙げて本発明を詳細に説明する。但し、下記実施例は、本発明をより詳細に説明するための例に過ぎず、本発明の権利範囲を制限するものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are merely examples for explaining the present invention in more detail, and do not limit the scope of rights of the present invention.

[実施例1]
下記表1に記載の成分系及び組成範囲を満たすスラブを表2に記載の一連の再加熱、熱間圧延及び冷却工程により製造した後、微細組織、延伸率、強度、炭化物比率等を測定して下記表3に示した。なお、表1の各成分の含量の単位は重量%である。
[Example 1]
After producing a slab satisfying the component system and composition range described in Table 1 by the series of reheating, hot rolling and cooling processes described in Table 2, the microstructure, stretch ratio, strength, carbide ratio, etc. are measured. The results are shown in Table 3 below. In addition, the unit of the content of each component in Table 1 is% by weight.

Figure 2015507700
Figure 2015507700

Figure 2015507700
Figure 2015507700

Figure 2015507700
Figure 2015507700

また、上記それぞれの比較例及び発明例に該当する鋼材に対してASTM G65に基づいた磨耗実験とASTM G31に基づいた浸漬実験による腐食速度試験を行い、その結果を表4に示した。   Moreover, the corrosion rate test by the abrasion experiment based on ASTM G65 and the immersion experiment based on ASTM G31 was performed with respect to the steel material corresponding to each said comparative example and invention example, The result was shown in Table 4.

Figure 2015507700
Figure 2015507700

比較例A1は、33.5C−Mnの値が6.8で、本発明で制御する範囲に該当せず、その結果、オーステナイト安定化元素である炭素の含量不足による多量のマルテンサイト形成によって目標とするオーステナイト組織が得られなかった。   Comparative Example A1 has a value of 33.5C-Mn of 6.8 and does not fall within the range controlled by the present invention. As a result, the target is formed by the formation of a large amount of martensite due to insufficient carbon content of the austenite stabilizing element. No austenite structure was obtained.

また、比較例A2は、マンガン及び炭素の含量は本発明で制御する範囲に該当するが、銅が添加されなかったことにより、炭化物の生成を抑制することができず、多量の炭化物が結晶粒界に沿って形成されたため、目標とする微細組織及び延伸率が得られなかった。炭化物形成による固溶炭素の減少及び鋼材の早期破断によって十分な加工硬化が得られなかったことから磨耗量が相対的に高いことが分かる。   In Comparative Example A2, the manganese and carbon contents fall within the range controlled by the present invention. However, since copper was not added, the formation of carbides could not be suppressed, and a large amount of carbides were crystal grains. Since it was formed along the boundary, the target microstructure and stretch ratio could not be obtained. It can be seen that the amount of wear is relatively high because sufficient work hardening has not been obtained due to the reduction of solute carbon due to carbide formation and the early fracture of the steel material.

また、比較例A3とA4も、マンガンと炭素の含量は本発明で制限する範囲に該当するが、銅添加量が本発明で規定する範囲に達していないことから、上記比較例A2と同様に多量の炭化物が形成されたため、目標とする微細組織及び延伸率が得られなかった。銅添加量が本発明で制御する範囲に該当しない場合は、炭化物形成を効果的に抑制することができないため、固溶炭素の減少及び延伸率減少による早期破断によって十分な加工硬化が得られないことから耐磨耗性が減少することが分かる。   In addition, Comparative Examples A3 and A4 also fall within the range where the contents of manganese and carbon are limited by the present invention, but since the amount of copper addition does not reach the range defined by the present invention, the same as Comparative Example A2 above. Since a large amount of carbide was formed, the target microstructure and stretch ratio could not be obtained. If the amount of copper added does not fall within the range controlled by the present invention, carbide formation cannot be effectively suppressed, and sufficient work hardening cannot be obtained by early rupture due to a decrease in solid solution carbon and a reduction in stretch rate. This shows that the wear resistance is reduced.

比較例A5は、組成は本発明の条件を満たすが、圧延後の冷却速度が本発明で規定する範囲を外れて遅いことから、炭化物の生成を抑制するのが困難であり、これにより、延性が減少した。   In Comparative Example A5, the composition satisfies the conditions of the present invention, but since the cooling rate after rolling is slow outside the range specified in the present invention, it is difficult to suppress the formation of carbides. Decreased.

これに対し、発明例A1〜A6は、本発明で制御する成分系及び組成範囲をすべて満たす鋼種であり、銅添加によって粒界炭化物形成が効果的に抑制されたことから物性の劣化がない。具体的には、高い炭素含量でも銅添加によって炭化物が効果的に抑制されたことにより、目標とする微細組織及び物性が得られた。炭素がオーステナイトに十分に固溶され、粒界炭化物形成も効果的に抑制されたことにより、安定な延伸率及び高い引張強度が得られたため、十分な加工硬化が確保されて磨耗量が減少した。   In contrast, Invention Examples A1 to A6 are steel types that satisfy all the component systems and composition ranges controlled by the present invention, and there is no deterioration in physical properties because the formation of grain boundary carbides is effectively suppressed by the addition of copper. Specifically, even when the carbon content was high, the carbides were effectively suppressed by the addition of copper, and the target microstructure and physical properties were obtained. Since carbon was sufficiently dissolved in austenite and grain boundary carbide formation was effectively suppressed, a stable stretch ratio and high tensile strength were obtained, so sufficient work hardening was ensured and the amount of wear decreased. .

特に、発明例A5〜A6は、クロムがさらに添加されたことにより、腐食評価実験で腐食速度が遅くて耐食性も向上した。即ち、クロム添加によって、発明例A1〜A4と比べて耐食性向上効果により優れる。また、クロム添加によって、固溶強化による強度向上も得られた。   In particular, Invention Examples A5 to A6 were further added with chromium, so that the corrosion rate was slow and the corrosion resistance was improved in the corrosion evaluation experiment. That is, by adding chromium, the effect of improving corrosion resistance is superior to that of Invention Examples A1 to A4. Moreover, the strength improvement by solid solution strengthening was also obtained by chromium addition.

図2は、上記発明例A2により製造された鋼材の微細組織写真を示したものである。これから本発明で制御する範囲内の銅添加によって高い炭素含量でも炭化物が存在しないことが確認できる。   FIG. 2 shows a microstructure photograph of the steel material produced by the invention example A2. From this, it can be confirmed that there is no carbide even at a high carbon content by adding copper within the range controlled by the present invention.

[実施例2]
下記表5に記載の成分系を満たす発明例及び比較例として、連続鋳造を用いて鋼スラブを製造した。なお、表5の各成分の含量の単位は重量%である。
[Example 2]
Steel slabs were manufactured using continuous casting as invention examples and comparative examples satisfying the component systems described in Table 5 below. The unit of the content of each component in Table 5 is% by weight.

Figure 2015507700
Figure 2015507700

このように製造された鋼スラブを表6の条件で再加熱した後、熱間仕上げ圧延し冷却して鋼板を製造した。   The steel slab thus produced was reheated under the conditions shown in Table 6, then hot finish rolled and cooled to produce a steel plate.

Figure 2015507700
Figure 2015507700

上記製造された鋼板について、オーステナイト分率、炭化物分率、延伸率、降伏強度及び引張強度を測定して下記表7に示した。被削性評価のために、直径10mmの高速工具鋼ドリルを用いて回転速度130rpm、ドリル前進速度0.08mm/revの条件で鋼材に穴を繰り返し空け、ドリルが磨耗されて寿命が尽きるまでの穴数を測定して表7に示した。   About the manufactured said steel plate, the austenite fraction, the carbide | carbonized_material fraction, the extending | stretching rate, the yield strength, and the tensile strength were measured, and it showed in following Table 7. For machinability evaluation, a high-speed tool steel drill with a diameter of 10 mm was used to repeatedly drill holes in the steel material at a rotational speed of 130 rpm and a drill advance speed of 0.08 mm / rev until the drill was worn out and the life was exhausted. The number of holes was measured and shown in Table 7.

Figure 2015507700
Figure 2015507700

また、上記比較例及び発明例の鋼板についてASTM G65に基づいた磨耗実験とASTM G31に基づいた浸漬実験による腐食速度を測定し、その結果を表8に示した。   Moreover, the corrosion rate by the abrasion experiment based on ASTM G65 and the immersion experiment based on ASTM G31 was measured about the steel plate of the said comparative example and invention example, The result was shown in Table 8.

Figure 2015507700
Figure 2015507700

本実施例は、炭素とマンガンの含量が本発明で制御する成分系及び組成範囲をすべて満たす鋼種であり、銅添加によって粒界炭化物形成が効果的に抑制されたことから物性の劣化がない。具体的には、高い炭素含量でも銅添加によって炭化物が効果的に抑制されたことにより、目標とする微細組織及び物性が得られた。炭素がオーステナイトに十分に固溶され、粒界炭化物形成も効果的に抑制されたことにより、安定な延伸率及び高い引張強度が得られたため、十分な加工硬化が確保されて磨耗量が減少した。   This example is a steel type in which the carbon and manganese contents satisfy all the component systems and composition ranges controlled by the present invention, and there is no deterioration in physical properties because the formation of grain boundary carbides is effectively suppressed by the addition of copper. Specifically, even when the carbon content was high, the carbides were effectively suppressed by the addition of copper, and the target microstructure and physical properties were obtained. Since carbon was sufficiently dissolved in austenite and grain boundary carbide formation was effectively suppressed, a stable stretch ratio and high tensile strength were obtained, so sufficient work hardening was ensured and the amount of wear decreased. .

比較例B1〜B5は、硫黄及びカルシウムが添加されていないか又は本発明で制御する範囲を外れているため、被削性が劣る。   Comparative Examples B1 to B5 are inferior in machinability because sulfur and calcium are not added or are out of the range controlled by the present invention.

これに対し、発明例B1〜B5は、硫黄及びカルシウムの添加量が本発明で制御する成分系及び組成範囲をすべて満たす鋼種であり、比較例と比較して被削性に優れる。特に、発明例B2〜B4は、硫黄含量を変化させたものであり、硫黄含量の増加によって被削性がより改善された。   In contrast, Invention Examples B1 to B5 are steel types in which the addition amounts of sulfur and calcium satisfy all the component systems and composition ranges controlled by the present invention, and are excellent in machinability as compared with Comparative Examples. In particular, Invention Examples B2 to B4 were obtained by changing the sulfur content, and the machinability was further improved by increasing the sulfur content.

図3は、硫黄含量による被削性を示したものである。図3を参照することにより、硫黄含量の増加によって被削性が増加したことが確認できる。   FIG. 3 shows the machinability depending on the sulfur content. Referring to FIG. 3, it can be confirmed that the machinability is increased by increasing the sulfur content.

Claims (8)

重量%で、8〜15%のマンガン(Mn)、23%<33.5C−Mn≦37%の関係を満たす炭素(C)、1.6C−1.4(%)≦Cu≦5%を満たす銅(Cu)、残部Fe及びその他の不可避不純物を含む、被削性と延性に優れた耐磨耗オーステナイト系鋼材。   8% to 15% manganese (Mn) by weight%, carbon (C) satisfying the relationship of 23% <33.5C-Mn ≦ 37%, 1.6C-1.4 (%) ≦ Cu ≦ 5% A wear-resistant austenitic steel material excellent in machinability and ductility, including copper (Cu) filling, balance Fe and other inevitable impurities. 前記鋼材は、重量%で、硫黄(S):0.03〜0.1%、カルシウム(Ca):0.001〜0.01%をさらに含む、請求項1に記載の被削性と延性に優れた耐磨耗オーステナイト系鋼材。   The machinability and ductility according to claim 1, wherein the steel material further includes, by weight%, sulfur (S): 0.03-0.1% and calcium (Ca): 0.001-0.01%. Excellent wear-resistant austenitic steel. 前記鋼材は、8重量%以下(0%は除く)のクロム(Cr)をさらに含む、請求項1又は2に記載の被削性と延性に優れた耐磨耗オーステナイト系鋼材。   The wear-resistant austenitic steel material having excellent machinability and ductility according to claim 1 or 2, wherein the steel material further contains 8% by weight or less (excluding 0%) of chromium (Cr). 前記鋼材の微細組織は、オーステナイトが面積分率で90%以上である、請求項1又は2に記載の被削性と延性に優れた耐磨耗オーステナイト系鋼材。   The wear-resistant austenitic steel material excellent in machinability and ductility according to claim 1 or 2, wherein the microstructure of the steel material is 90% or more in area fraction of austenite. 前記鋼材は、炭化物を面積分率で10%以下含む、請求項1又は2に記載の被削性と延性に優れた耐磨耗オーステナイト系鋼材。   The wear-resistant austenitic steel material excellent in machinability and ductility according to claim 1 or 2, wherein the steel material contains carbide in an area fraction of 10% or less. 重量%で、8〜15%のマンガン(Mn)、23%<33.5C−Mn≦37%の関係を満たす炭素(C)、1.6C−1.4(%)≦Cu≦5%を満たす銅(Cu)、残部Fe及びその他の不可避不純物を含む鋼スラブを1050〜1250℃の温度に再加熱する段階と、
800℃〜1050℃の温度で仕上げ熱間圧延して鋼板を製造する段階と、
前記熱間圧延された鋼板を10〜100℃/sの冷却速度で600℃以下となるように冷却する段階
とを含む、被削性と延性に優れた耐磨耗オーステナイト系鋼材の製造方法。
8% to 15% manganese (Mn) by weight%, carbon (C) satisfying the relationship of 23% <33.5C-Mn ≦ 37%, 1.6C-1.4 (%) ≦ Cu ≦ 5% Reheating the steel slab containing copper (Cu), balance Fe and other inevitable impurities to a temperature of 1050-1250 ° C .;
A step of producing a steel sheet by hot rolling at a temperature of 800 ° C. to 1050 ° C .;
A method for producing a wear-resistant austenitic steel material excellent in machinability and ductility, comprising the step of cooling the hot-rolled steel sheet at a cooling rate of 10 to 100 ° C./s to 600 ° C. or less.
前記鋼スラブは、重量%で、硫黄(S):0.03〜0.1%、カルシウム(Ca):0.001〜0.01%をさらに含む、請求項6に記載の被削性と延性に優れた耐磨耗オーステナイト系鋼材の製造方法。   The steel slab, by weight%, further includes sulfur (S): 0.03-0.1% and calcium (Ca): 0.001-0.01%. A method for producing wear-resistant austenitic steel with excellent ductility. 前記鋼スラブは、8重量%以下(0%は除く)のクロム(Cr)をさらに含む、請求項6又は7に記載の被削性と延性に優れた耐磨耗オーステナイト系鋼材の製造方法。   The method for producing a wear-resistant austenitic steel material excellent in machinability and ductility according to claim 6 or 7, wherein the steel slab further contains 8% by weight or less (excluding 0%) of chromium (Cr).
JP2014550002A 2011-12-28 2012-12-27 Wear-resistant austenitic steel with excellent ductility and method for producing the same Active JP6014682B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020110145213A KR101353665B1 (en) 2011-12-28 2011-12-28 Austenitic steel with excellent wear resistance and ductility
KR10-2011-0145213 2011-12-28
KR1020120151507A KR101461735B1 (en) 2012-12-21 2012-12-21 Austenitic wear resistant steel having superior machinability and ductility
KR10-2012-0151507 2012-12-21
PCT/KR2012/011536 WO2013100613A1 (en) 2011-12-28 2012-12-27 Wear resistant austenitic steel having superior machinability and ductility method for producing same

Publications (2)

Publication Number Publication Date
JP2015507700A true JP2015507700A (en) 2015-03-12
JP6014682B2 JP6014682B2 (en) 2016-10-25

Family

ID=48697961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014550002A Active JP6014682B2 (en) 2011-12-28 2012-12-27 Wear-resistant austenitic steel with excellent ductility and method for producing the same

Country Status (5)

Country Link
US (1) US20140356220A1 (en)
EP (1) EP2799582B1 (en)
JP (1) JP6014682B2 (en)
CN (1) CN104204262B (en)
WO (1) WO2013100613A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509198A (en) * 2016-12-23 2020-03-26 ポスコPosco Austenitic steel excellent in wear resistance and toughness and method for producing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799581B1 (en) * 2011-12-28 2019-11-27 Posco Wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones thereof and method for producing same
US20140261918A1 (en) 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Enhanced wear resistant steel and methods of making the same
KR101665821B1 (en) * 2014-12-24 2016-10-13 주식회사 포스코 Low temperature steels having superior surface quality and method for production thereof
CN104818435B (en) * 2015-03-13 2017-01-25 北京科技大学 Preparation method for NM400 grade wear-resistant steel plate with corrosion resistance
KR101920973B1 (en) * 2016-12-23 2018-11-21 주식회사 포스코 Austenitic steel having excellent surface properties and method for manufacturing thereof
KR102020381B1 (en) * 2017-12-22 2019-09-10 주식회사 포스코 Steel having excellent wear resistnat properties and method for manufacturing the same
WO2020054553A1 (en) * 2018-09-12 2020-03-19 Jfeスチール株式会社 Steel material and production method therefor
WO2023233186A1 (en) * 2022-06-02 2023-12-07 Arcelormittal High manganese hot rolled steel and a method of production thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481118A (en) * 1977-12-12 1979-06-28 Sumitomo Metal Ind Ltd Nonmagnetic steel excellent in mechanical properties
JPH02270937A (en) * 1985-10-18 1990-11-06 Ube Ind Ltd High manganese steel having high rolling contact fatigue properties and its manufacture
JP2008520830A (en) * 2004-11-24 2008-06-19 アルセロールミタル・フランス Method for producing austenitic iron / carbon / manganese steel sheets with very high strength and elongation properties and excellent homogeneity
JP2008528809A (en) * 2005-02-02 2008-07-31 コラス・スタール・ベー・ブイ Austenitic steel having high strength and formability, method for producing the steel, and use thereof
JP2009506206A (en) * 2005-08-23 2009-02-12 ポスコ High-manganese-type high-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP2012107325A (en) * 2010-10-29 2012-06-07 Kobe Steel Ltd High-proof stress nonmagnetic steel
JP2013515864A (en) * 2009-12-28 2013-05-09 ポスコ Austenitic steel with excellent ductility

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2206847A (en) * 1938-07-11 1940-07-02 Battelle Memorial Institute Alloy steel
US2310308A (en) * 1940-04-25 1943-02-09 Morrison Railway Supply Corp Alloy
JPS5481119A (en) * 1977-12-12 1979-06-28 Sumitomo Metal Ind Ltd Nonmagnetic steel excellent in machinability
US4494988A (en) * 1983-12-19 1985-01-22 Armco Inc. Galling and wear resistant steel alloy
RU2102518C1 (en) * 1994-12-27 1998-01-20 Черняк Саул Самуилович Wear resistant cast steel
JP4877688B2 (en) * 2001-08-10 2012-02-15 本田技研工業株式会社 Austenitic tool steel with excellent machinability and method for producing austenitic tools
US6761777B1 (en) * 2002-01-09 2004-07-13 Roman Radon High chromium nitrogen bearing castable alloy
KR100857697B1 (en) * 2006-12-28 2008-09-08 주식회사 포스코 ethod of manufacturing an austenitic stainless steel added low Ni for improving hot workability
KR100955203B1 (en) * 2007-11-05 2010-04-29 한국기계연구원 Cold-rolled high Mn steel with ultra-high strength and good ductility, and manufacturing method thereof
JP5504680B2 (en) * 2008-07-23 2014-05-28 大同特殊鋼株式会社 Free-cutting alloy tool steel
KR101322170B1 (en) * 2009-12-28 2013-10-25 주식회사 포스코 Steel with high ductility
CN102286704B (en) * 2011-08-26 2013-03-06 三一重型装备有限公司 Wear-resistant corrosion-resistant high-manganese steel and preparation method thereof
CN102286703A (en) * 2011-08-26 2011-12-21 三一重型装备有限公司 High-manganese steel and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481118A (en) * 1977-12-12 1979-06-28 Sumitomo Metal Ind Ltd Nonmagnetic steel excellent in mechanical properties
JPH02270937A (en) * 1985-10-18 1990-11-06 Ube Ind Ltd High manganese steel having high rolling contact fatigue properties and its manufacture
JP2008520830A (en) * 2004-11-24 2008-06-19 アルセロールミタル・フランス Method for producing austenitic iron / carbon / manganese steel sheets with very high strength and elongation properties and excellent homogeneity
JP2008528809A (en) * 2005-02-02 2008-07-31 コラス・スタール・ベー・ブイ Austenitic steel having high strength and formability, method for producing the steel, and use thereof
JP2009506206A (en) * 2005-08-23 2009-02-12 ポスコ High-manganese-type high-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP2013515864A (en) * 2009-12-28 2013-05-09 ポスコ Austenitic steel with excellent ductility
JP2012107325A (en) * 2010-10-29 2012-06-07 Kobe Steel Ltd High-proof stress nonmagnetic steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509198A (en) * 2016-12-23 2020-03-26 ポスコPosco Austenitic steel excellent in wear resistance and toughness and method for producing the same
US11566308B2 (en) 2016-12-23 2023-01-31 Posco Co., Ltd Austenitic steel material having excellent abrasion resistance and toughness and manufacturing method the same

Also Published As

Publication number Publication date
CN104204262B (en) 2018-02-02
JP6014682B2 (en) 2016-10-25
US20140356220A1 (en) 2014-12-04
EP2799582A1 (en) 2014-11-05
EP2799582B1 (en) 2019-06-19
CN104204262A (en) 2014-12-10
WO2013100613A1 (en) 2013-07-04
EP2799582A4 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP6014682B2 (en) Wear-resistant austenitic steel with excellent ductility and method for producing the same
JP6078554B2 (en) Austenitic steel material excellent in cryogenic toughness in machinability and weld heat affected zone and method for producing the same
JP5879448B2 (en) Abrasion-resistant austenitic steel with excellent toughness of weld heat-affected zone and method for producing the same
KR102218051B1 (en) High-hardness, high-toughness, wear-resistant steel plate and manufacturing method thereof
JP6980788B2 (en) Austenitic steel with excellent wear resistance and its manufacturing method
KR101033711B1 (en) Wear-resistant steel sheet having excellent wear resistance at high temperatures and excellent bending workability and method for manufacturing the same
CN108368585B (en) Wear-resistant steel material having excellent toughness and internal quality, and method for producing same
KR101679498B1 (en) Superhigh-tensile steel plate for welding
CN102747290A (en) Economical wear-resistant steel and manufacturing method thereof
KR20190045314A (en) Surface hardened steel, method of manufacturing the same, and method of manufacturing gear parts
JP2020509211A (en) Austenitic steel with excellent surface properties and method for producing the same
KR101353665B1 (en) Austenitic steel with excellent wear resistance and ductility
KR101461735B1 (en) Austenitic wear resistant steel having superior machinability and ductility
JP6736959B2 (en) Steel plate manufacturing method
KR101461736B1 (en) Austenitic steel having excellent machinability and superior cryogenic toughness in weld heat-affected zone and manufacturing method thereof
KR101714929B1 (en) Austenitic steel having excellent wear resistance and method for manufacturing the same
JP2015080813A (en) Composite rolling-roll made by centrifugal casting
KR101546138B1 (en) Hot-rolled steel sheet and manufacturing method of the same
CN111492082B (en) Steel material having excellent wear resistance and method for producing same
JP2013014799A (en) Austenitic s containing free-cutting stainless steel
CN112912526B (en) High manganese steel material with excellent oxygen cutting performance and preparation method thereof
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP5881552B2 (en) Austenitic S-containing free-cutting stainless steel
JP2003268487A (en) Non-heat-treated steel
KR20150089581A (en) Steel and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6014682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250