JP2015506469A - 色素の光活性化型化学退色 - Google Patents

色素の光活性化型化学退色 Download PDF

Info

Publication number
JP2015506469A
JP2015506469A JP2014549074A JP2014549074A JP2015506469A JP 2015506469 A JP2015506469 A JP 2015506469A JP 2014549074 A JP2014549074 A JP 2014549074A JP 2014549074 A JP2014549074 A JP 2014549074A JP 2015506469 A JP2015506469 A JP 2015506469A
Authority
JP
Japan
Prior art keywords
sample
certain embodiments
signal
signal generating
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014549074A
Other languages
English (en)
Other versions
JP6148682B2 (ja
JP2015506469A5 (ja
Inventor
ナタラジャン,アルンクマール
スッド,アヌップ
カーヌマレ,ラクシュミ・シリーシャ
チャン,クウォック・ポン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2015506469A publication Critical patent/JP2015506469A/ja
Publication of JP2015506469A5 publication Critical patent/JP2015506469A5/ja
Application granted granted Critical
Publication of JP6148682B2 publication Critical patent/JP6148682B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

生体試料中の複数の標的を検出するための光活性化型化学退色の使用を含む方法を提供する。これらの方法は、複数の標的を含む生体試料を準備する段階と、1以上のプローブを、試料中に存在する1以上の標的と結合させる段階と、プローブ由来の信号を検出する段階とを含む。方法は、結合プローブを含む試料と電子移動試薬とを接触させる段階と、試料に照射して、それによって、光活性化型化学退色によってプローブを実質的に不活性化する光反応を開始する段階とをさらに含む。方法は、1以上のプローブを試料中に存在する1以上の標的と結合させる段階と、プローブ由来の信号を検出する段階とをさらに含む。結合、観測及び退色のプロセスは、反復して繰り返すことができる。【選択図】 図1

Description

本発明は、色素の光活性化型化学退色に関する。
生体試料中の異なる標的を観測するために、様々な方法が生物学及び医学において使用することができる。例えば、組織学的切片及び他の細胞学的調製物におけるタンパク質の分析は、組織化学、免疫組織化学(IHC)、又は免疫蛍光法の技術を用いて実施することができる。生体試料中のタンパク質の分析はまた、例えば、固相免疫測定法を用いて、例えばウェスタンブロットの技術を使用して、又は、例えばフローサイトメトリーを用いて実施することができる細胞ベースのアッセイを用いて行うことができる。
既存の技術の多くは、単一の試料中、(例えば、IHC又は検出可能な標的の数が蛍光ベース検出システムによって制限される蛍光ベースのウェスタンブロットのように)一度にごくわずかな数の標的しか検出することができない。標的のさらなる分析は、供給源からの追加の生体試料を使用することが必要となる場合があり、標的の相対的特性、例えば、生体試料中の複数の生物学的標的の存在、非存在、濃度及び/又は空間分布などを決定する能力が制限される。さらに、場合によっては、限られた量の試料しか分析に利用できないことがあり、或いは、さらなる分析に個別の試料が必要とされる場合がある。
個別の試料を反復的に分析する方法は、米国特許第7629125号及び同第7741046号に開示されている。特に、米国特許第7741046号は、信号発生基を不活性化するために(例えば、蛍光色素を退色するために)酸化を使用することを含む、生体試料中の複数の標的を検出する方法を提供している。酸化反応系は、酸化剤、例えば過酸化水素を使用することにより達成される。
さらに、信号は、信号発生基を照射に連続暴露することによって、すなわち、光退色によって不活性化することができる。酸化による信号不活性化と同様に、このプロセスは時間がかかる可能性があり、完結せず、信号とノイズの比が小さくなる場合がある。さらに、試料を照射に連続的に曝露させることによって、生体試料に損傷をもたらすこともある。従って、生物学的標的を逐次分析するためのより高速で、より穏やかで、より感度の高い方法が依然として必要とされている。
米国特許出願公開2008/0118944
本発明においては、ハイスループット多重化試料分析のための新規方法を開示している。これらの方法は、例えば、信号のサイクルプロセスを使用し、この場合、各サイクルにおいて、光化学反応段階は、同一信号発生基、例えば発蛍光団を追加のマーカー、例えばタンパク質を検出するための後続サイクルに再利用される。これらの方法は、例えば、識別しようとする生体試料、とりわけ、生体試料中の複数の生物学的標的の存在、非存在、濃度及び/又は空間分布を連続的に分析するために用いることができる。光反応段階は、電子移動剤、例えばホウ酸塩を適用し、例えば、試料に可視光を照射することによって光反応を開始し、信号発生基、例えば蛍光色素を不活性化させることを包含し得る。
ある実施形態では、開示されている方法の利点は、各サイクルでの信号の速やかな破壊を含み得る。例えば、ある場合には、クエンチングは、従来法では15分を超える時間であったのに対し、約20秒であることが観測される。ある実施形態では、開示されている方法は、例えば信号とノイズの比が大きくなる高発現標的であっても、残留蛍光の非存在によって特徴づけることもできる。また、開示されている方法は、生体試料又はその成分、例えばエピトープを損傷せず、同一試料を何十という多数のサイクルで使用することができる。さらに、ある実施形態では、蛍光色素の光退色を直接比較した場合、開示されている方法は、生体試料成分を損傷する可能性のある高出力光を必要としないので有利である。
ある実施形態では、本発明は、生体試料中の複数の標的をプロービングする方法であって、
(a)1以上のプローブを、複数の標的を含む生体試料中に存在する1以上の標的と結合させる段階と、
(b)段階(a)で結合した1以上のプローブ由来の信号を検出する段階と、
(c)段階(a)の結合プローブを含む試料を電子移動試薬と接触させる段階と、
(d)段階(c)の試料を照射する段階と、
(e)1以上のプローブを段階(d)の試料中に存在する1以上の標的と結合させる段階と、
(f)段階(e)で結合したプローブ由来の信号を検出する段階と
を含む方法である。
ある実施形態では、段階(a)のプローブは光信号発生基を含んでおり、段階(b)で観測される信号は光信号である。別の実施形態では、光信号発生基は蛍光信号発生基であり、段階(b)で観測される光信号は蛍光信号である。
ある実施形態では、段階(a)は、2以上のプローブを2以上の標的と結合させることを含む。
ある実施形態では、段階(d)の試料の照射は、緩衝液の存在下で実施される。ある実施形態では、照射はpH5〜9で実施される。ある実施形態では、照射はpH6〜8で実施される。
ある実施形態では、段階(d)の試料の照射は、4〜50℃の温度で実施される。好ましい実施形態では、試料の照射は20〜30℃の温度で実施される。
ある実施形態では、段階(d)の試料の照射は、350nm〜1.3μMの波長の光に試料を露光することにより行なわれる。ある実施形態では、試料の照射は、400〜700nmの波長の光に試料を露光することにより実施される。
ある実施形態では、電子移動試薬はホウ酸塩である。ある実施形態では、ホウ酸塩は次の構造式で表される。
式中、R1、R2及びR3は各々独立にアルキル、アルケニル、アルキニル、アリール又はヘテロアリールであって、アルキル、アルケニル、アルキニル、アリール又はヘテロアリールは、(C1〜C4)アルキル、(C1〜C4)アルコキシ、(C1〜C4)アルキルアミノ、アミノ、ヒドロキシル、シアノ、ハロゲン、又はニトロからなる群から選択される1以上の置換基で適宜置換されていてもよく、
4は、アルキル、アルケニル又はアルキニルであって、アルキル、アルケニル又はアルキニルは、(C1〜C4)アルキル、(C1〜C4)アルコキシ、(C1〜C4)アルキルアミノ、アミノ、ヒドロキシル、シアノ、ハロゲン、又はニトロからなる群から選択される1以上の置換基で適宜置換されていてもよく、
+は、有機カチオン及び無機カチオンからなる群から選択される。
ある実施形態では、R1、R2及びR3は各々アリールである。ある実施形態では、アリールはフェニルである。ある実施形態では、フェニルは非置換フェニルである。
ある実施形態では、R4は適宜置換されていてもよいアルキルである。ある実施形態では、R4は非置換ブチルである。
ある実施形態では、R1、R2及びR3は各々適宜置換されていてもよいアリールであり、R4は適宜置換されていてもよいアルキルである。別の実施形態では、R1、R2及びR3は各々非置換フェニルであり、R4は非置換ブチルであり、ホウ酸塩はトリフェニルブチルボレート塩である。
ある実施形態では、M+は無機カチオンである。ある実施形態では、無機カチオンはLi+、Na+又はK+である。
ある実施形態では、プローブは結合剤と信号発生基を含む。ある実施形態では、信号発生基は蛍光信号発生基である。ある実施形態では、蛍光信号発生基はシアニン色素を含む。ある実施形態では、シアニン色素はCy3又はCy5である。
ある実施形態では、シアニン色素はCy3であり、段階(e)の試料の照射は光学フィルターを使用することにより達成され、520〜580nmの波長の光に試料を露光することを含み、Cy3の選択的光励起が生じる。
ある実施形態では、シアニン色素はCy5であり、段階(e)の試料の照射は光学フィルターを使用することにより達成され、620〜680nmの波長の光に試料を露光することを含み、Cy5の選択的光励起が生じる。
ある実施形態では、段階(a)の生体試料は細胞オルガネラ、全細胞又は組織切片を含む。ある実施形態では、試料はタンパク質、炭水化物又は核酸を含む。
ある実施形態では、段階(c)〜(f)は、1回以上繰り返される。ある実施形態では、段階(c)〜(f)は、5回以上、15回以上、30回以上、60回以上、100回以上、又は150回以上繰り返される。ある実施形態では、段階(c)〜(f)は、25〜30回繰り返される。別の実施形態では、段階(c)〜(f)は、2〜10回繰り返される。
ある実施形態では、段階(c)及び(d)は、約20秒〜約60分間実施される。ある実施形態では、段階(c)及び(d)は、約20秒〜約15分間実施される。ある実施形態では、段階(c)及び(d)は、約20秒〜約5分間実施される。
ある実施形態では、段階(c)及び(d)は、4〜50℃の温度で行なわれる。好ましい実施形態では、段階(c)及び(d)は、20〜30℃の温度で行なわれる。
ある実施形態では、方法は、観測段階(b)、段階(f)、又は段階(b)及び(f)で観測される信号の1以上の強度値を測定することも含む。ある実施形態では、方法は、強度値と試料中に存在する標的の量とを相関させることをさらに含む。
ある実施形態では、段階(a)のプローブ及び段階(e)のプローブは各々信号発生基を含む。ある実施形態では、段階(a)の信号発生基は、段階(e)の信号発生基と同一である。別の実施形態では、段階(a)の信号発生基は、段階(e)の信号発生基とは異なる。
ある実施形態では、段階(b)及び段階(f)で観測される信号は、単一の検出チャネルで両方とも検出可能である。別の実施形態では、段階(b)又は段階(f)で観測される信号は、異なる検出チャネルで独立して検出可能である。
ある実施形態では、プローブとは異なる生体試料の成分は、有意に修飾されない。
ある実施形態では、検出可能な信号は段階(d)の後に観測されない。
ある実施形態では、信号発生基は、発色団、又はラマン活性タグを含む。
ある実施形態では、本発明は、生体試料中の複数の標的をプロービングする方法であって、
(a)複数のプローブを生体試料中に存在する複数の標的と結合させる段階と、
(b)段階(a)で結合した第1の組のプローブ由来の第1の組の信号を検出する段階と、
(c)段階(a)の結合プローブを含む試料を電子移動試薬と接触させる段階と、
(d)段階(c)の試料を照射する段階と、
(e)段階(a)で結合した第2の組のプローブ由来の第2の組の信号を発生させる段階と、
(f)第2の組の信号を検出する段階と
を含む方法である。
ある実施形態では、段階(d)の試料の照射は、光活性化型化学退色によって信号発生基を実質的に不活性化する光反応を開始する。ある実施形態では、光反応は、分子間の電子移動を含む。別の実施形態では、光反応は、分子内の電子移動を含む。
ある実施形態では、信号発生基は不可逆的に修飾される。ある実施形態では、信号発生基は、光活性化型化学退色によって信号発生基を不活性化する光反応によって不可逆的に修飾される。
ある実施形態では、本発明は、ハイスループット多重化生体試料分析法であって、信号のサイクルプロセスを含み、各サイクルにおいて、染色及びイメージング後、電子移動試薬を適用し生体試料の照射を行う分析方法である。
ある実施形態では、方法は、プローブとは異なる生体試料の成分を有意に修飾することなく、信号を速やかにサイクルさせる。
ある実施形態では、本発明は、生体試料中の複数の標的をプロービングするキットであって、
信号発生基に結合する結合剤を含む複数のプローブと、
信号発生基と結合した場合、照射により信号発生基を退色することができる電子移動試薬と
を含むキットである。
ある実施形態では、本発明は、光標識生物学的標的を示している一連の2以上の画像であって、当該画像が生体試料中の複数の標的をプロービングするプロセスで得られるものであって、上記プロセスが、
(a)複数の標的を含む生体試料中に存在する1以上の標的に1以上の光プローブを結合させる段階と、
(b)段階(a)で結合した光プローブ由来の信号を検出する段階と、
(c)段階(a)で結合した光プローブを含む試料を電子移動試薬と接触させる段階と、
(d)段階(c)の試料を照射する段階と、
(e)1以上の光プローブを段階(d)の試料中に存在する1以上の標的と結合させる段階と、
(f)段階(e)で結合した光プローブ由来の信号を検出する段階と
を含んでいる、画像である。
ある実施形態では、本発明は、生体試料中の標的をプロービングする方法であって、
(a)1以上のプローブを複数の標的を含む生体試料中に存在する1以上の標的と結合させる段階と、
(b)段階(a)で結合したプローブ由来の信号を検出する段階と、
(c)段階(a)の結合プローブを含む試料を電子移動試薬と接触させる段階と、
(d)段階(c)の試料を照射する段階と
を含む方法である。
ある実施形態では、本発明は、生体試料中の複数の標的をプロービングする方法であって、
(a)1以上のプローブを複数の標的を含む生体試料中に存在する1以上の標的と結合させる段階と、
(b)1以上の対照プローブを試料中に存在する1以上の標的と結合させる段階と、
(c)段階(a)で結合させたプローブ由来の信号と段階(b)で結合させた対照プローブ由来の対照信号を検出する段階と、
(d)段階(c)の試料を、対照プローブではなくプローブと選択的に反応し得る電子移動試薬と接触させる段階と、
(e)段階(d)の試料を照射する段階と、
(f)1以上のプローブを段階(e)の試料中に存在する1以上の標的と結合させる段階と、
(g)段階(f)で結合したプローブ由来の信号を検出する段階と
を含む方法である。
ある実施形態では、段階(a)及び(b)は同時に実施される。ある実施形態では、段階(g)は、段階(b)で結合した対照プローブ由来の信号を検出することも含む。
図1は、異なる濃度のトリフェニルブチルボレートリチウム塩とインキュベーションし、4分間又は10分間照射した後に、550nmでのCy3色素の吸光度を示すグラフのグレイスケール画像である。 図2は、光活性化型化学退色の前と後にCy3結合サイトケラチンで染色した試料のグレイスケール画像を示す。 図3は、光活性化型化学退色の前と後にCy5結合パンカドヘリンで染色した試料のグレイスケール画像を示す。 図4は、光活性化型化学退色の前と後のBODIPY色素の蛍光スペクトルのグレイスケール画像を示す。 図5は、光活性化型化学退色の前と後のローダミン色素の蛍光スペクトルのグレイスケール画像を示す。 図6は、光活性化型化学退色の前と後の1,3−ジクロロ−7−ヒドロキシ−9,9−ジメチル−2(9H)−アクリジノン(DDAO)色素の蛍光スペクトルのグレイスケール画像を示す。
定義
単数形の「a」「an」及び「the」には、文脈上明白に他の意味を指定しない限り、複数の指示語が含まれる。本出願において、明細書及び特許請求の範囲を通して使用される近似する用語は、それが関連している基本的機能に変化を及ぼさない許容範囲で変動し得るすべての定量表現を修飾するために適用することができる。従って、「約」などの用語によって修飾される数値は、指定された厳密な数値に限定するものではない。特に断りのない限り、本明細書及び特許請求の範囲で使用されている、成分の量、分子量などの特性、反応条件等を示すすべての数字は、すべての事例において、「約」という用語によって修飾されているものとして理解されたい。従って、反対のことを示さない限り、以下の明細書及び添付の特許請求の範囲において示す数値パラメータは、本発明によって得ることが求められる所望の特性に応じて変動し得る近似値である。最低限でも、各数値パラメータは、報告されている有効数字の数を踏まえ、通常の四捨五入の方法を適用することによって少なくとも解釈されるべきである。
本明細書で用いる「アルキル」という用語は、飽和脂肪族基を意味し、例えば、直鎖アルキル基(例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなど)、枝分れアルキル基(イソプロピル、tert−ブチル、イソブチルなど)が挙げられる。特定の実施形態では、直鎖又は枝分れアルキルは、その骨格中に6個以下の炭素原子を有する(例えば、直鎖についてはC1〜C6、枝分れについてはC3〜C6)か、又はその骨格に4個以下の炭素原子を有する(例えば、直鎖についてはC1〜C4、分岐鎖についてはC3〜C4)。「C1〜C6」アルキルという用語は、1〜6個の炭素原子を含むアルキル基を意味する。「C1〜C4」アルキルという用語は、1〜4個の炭素原子を含むアルキル基を意味する。さらに、アルキルという用語は、「非置換アルキル」及び「置換アルキル」の両方を包含し、後者は炭化水素骨格の1以上の炭素上の水素を置換している置換基を有するアルキル部分を意味する。このような置換基としては、例えば、(C1〜C4)アルキル、(C1〜C4)アルコキシ、アミノ((C1〜C4)アルキルアミノ及び(C1〜C4)ジアルキルアミノを含む)、ヒドロキシル、シアノ、ハロゲン又はニトロが挙げられる。シクロアルキルは、例えば、上記の置換基でさらに置換することができる。
本明細書で用いる「アルケニル」という用語は、上記のアルキルに鎖長及び置換の可能性の点では類似しているが、ただし1以上の二重結合を含有する、不飽和脂肪族基を意味する。例えば、「アルケニル」という用語には、直鎖アルケニル基(例えば、エチレニル、プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニルなど)、枝分れアルケニル基が包含される。さらに、「アルケニル」という用語は「非置換アルケニル」及び「置換アルケニル」の両方を包含し、後者は、炭化水素骨格の1以上の炭素上の水素を置換している置換基を有するアルケニル部分を意味する。このような置換基としては、例えば、(C1〜C4)アルキル、(C1〜C4)アルコキシ、アミノ((C1〜C4)アルキルアミノ及び(C1〜C4)ジアルキルアミノを含む)、ヒドロキシル、シアノ、ハロゲン又はニトロが挙げられる。
本明細書で用いる「アルキニル」という用語は、上記のアルキルに鎖長と置換の可能性という点では類似しているが、ただし1以上の三重結合を含有する、不飽和脂肪族基を意味する。例えば、「アルキニル」という用語には、直鎖アルキニル基(例えばエチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、デシニルなど)、又は枝分れアルキニル基が包含される。さらに、「アルキニル」という用語は「非置換アルキニル」及び「置換アルキニル」の両方を包含し、後者は、炭化水素骨格の1以上の炭素上の水素を置換している置換基を有するアルキニル部分を意味する。このような置換基としては、例えば、(C1〜C4)アルキル、(C1〜C4)アルコキシ、アミノ((C1〜C4)アルキルアミノ及び(C1〜C4)ジアルキルアミノを含む)、ヒドロキシル、シアノ、ハロゲン又はニトロが挙げられる。
本明細書で用いる「アルコキシ」という用語は、酸素原子に共有結合されている置換及び非置換のアルキル、アルケニル及びアルキニル基を意味する。アルコキシ基の例としては、限定するものではないが、メトキシ、エトキシ、イソプロピルオキシ、プロポキシ、ブトキシ及びペントキシ基が挙げられる。特定の実施形態では、直鎖又は枝分れアルコキシは、その骨格中に4個以下の炭素原子を有する(例えば、直鎖についてはC1〜C4、枝分れについてはC3〜C4)。「C1〜C4」アルキルという用語は、1〜4個の炭素原子を含有するアルキル基を意味する。
本明細書で用いる「アミン」又は「アミノ」という用語は、窒素原子が1以上の炭素又はヘテロ原子に共有結合されている化合物又は置換基を意味する。この用語は、窒素が1以上のさらなるアルキル基に結合されている基及び化合物を含む「アルキルアミノ」を包含する。「ジアルキルアミノ」という用語は、窒素原子が2以上のさらなるアルキル基に結合されている基を包含する。特定の実施形態では、これらのアルキル基は、それらの骨格中に4個以下の炭素原子を有する(例えば、直鎖についてはC1〜C4、枝分れについてはC3〜C4)。(C1〜C4)アルキルアミノという用語は、窒素が1以上のさらなるC1〜C4アルキル基に結合されている基及び化合物を意味する。(C1〜C4)ジアルキルアミノという用語は、窒素が2以上のさらなるC1〜C4アルキル基に結合されている基及び化合物を意味する。
本明細書で用いる「アリール」という用語は、0個〜4個のヘテロ原子を含んでいてもよい、例えば5員及び6員の単環芳香族基などの基を意味し、例えば、ベンゼン、フェニル、ピロール、フラン、チオフェン、チアゾール、イソチアゾール、イミダゾール、トリアゾール、テトラゾール、ピラゾール、オキサゾール、イソオキサゾール、ピリジン、ピラジン、ピリダジン、及びピリミジンなどである。さらに、「アリール」という用語は、多環式アリール基を包含し、例えば、三環式、二環式の基であって、例えば、ナフタレン、ベンゾオキサゾール、ベンゾジオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、ベンゾチオフェン、メチレンジオキシフェニル、キノリン、イソキノリン、ナフチリジン、インドール、ベンゾフラン、プリン、ベンゾフラン、デアザプリン又はインドリジンである。環構造中にヘテロ原子を有するこれらのアリール基は、「アリール複素環」、「ヘテロアリール」又は「ヘテロ芳香族」と呼ばれることもある。芳香族環は、上記のような置換基、例えば、(C1〜C4)アルキル、(C1〜C4)アルコキシ、アミノ((C1〜C4)アルキルアミノ及び(C1〜C4)ジアルキルアミノを含む)、ヒドロキシル、シアノ、ハロゲン又はニトロにより環の1以上の位置で置換され得る。アリール基は、芳香族ではない脂環式環又はヘテロ環と縮合又は架橋され、多環(例えば、テトラリン)を形成することもできる。ヘテロアリールという用語は、不飽和環状化合物、例えば、アジリン、オキシレン、ジチエト、ピロリン、ピロール、フラン、ジヒドロフラン、ジヒドロチオフェン、チオフェン、ピラゾール、イミダゾール、オキサゾール、チアゾール、イソチアゾール、1,2,3−トリアゾール、1,2,4−トリアゾール、ジチアゾール、テトラゾール、ピリジン、ピラン、ピリミジン、ピラン、チオピラン、ジアジン、チアジン、ダイオキシン、トリアジン及びテトラゼンを包含する。
本明細書で用いる「抗体」という用語は、別の分子の特別な空間的構造及び極性構造へ特異的に結合し、それによりそれと相補的であると定義される免疫グロブリンを意味する。抗体は、モノクローナルであってもポリクローナルであってもよく、当該技術分野で公知の技術、例えば、宿主を免疫化して血清(ポリクローナル)を採取することによって、又はハイブリッドの継代細胞系を調製して分泌タンパク質(モノクローナル)を採取することによって、又は少なくとも天然抗体の特異的結合に要求されるアミノ酸配列をコードするヌクレオチド配列又はその変異型をクローニングして発現させることによって調製することができる。抗体には、完全な免疫グロブリン又はそのフラグメントが包含されていてもよく、その免疫グロブリンとしては、様々なクラス及びアイソタイプ、例えば、IgA、IgD、IgE、IgG1、IgG2a、IgG2b及びIgG3、IgMが挙げられる。機能性の抗体フラグメントには、全長抗体に似た親和性で結合を保持することが可能な抗体の部分(例えば、Fab、Fv及びF(ab’).sub.2、又はFab’)が包含され得る。さらに、免疫グロブリン又はそのフラグメントの凝集体、ポリマー、及びコンジュゲートも、特定分子への結合親和性が実質的に維持される限り、適宜使用することができる。
本明細書で用いる「結合剤」という用語は、生体試料中の1以上の標的に結合し得る分子を意味する。結合剤は、標的に特異的に結合することができる。適切な結合剤としては、天然ペプチド又は修飾ペプチド、タンパク質(例えば、抗体、Affibodies、若しくはアプタマー)、核酸(例えば、ポリヌクレオチド、DNA、RNA、若しくはアプタマー)、多糖(例えば、レクチン、糖)、脂質、酵素、酵素基質又は阻害剤、リガンド、受容体、抗原、又はハプテンの1以上を包含し得る。適切な結合剤は、分析しようとする試料と検出に利用可能な標的に応じて選択することができる。例えば、試料中の標的はリガンドを含んでいてもよく、かつ結合剤は受容体を含んでいてもよく、或いは、標的は受容体を含んでいてもよく、かつ結合剤はリガンドを含んでいてもよい。同様に、標的は抗原を含んでいてもよく、かつ結合剤は抗体又は抗体フラグメントを含んでいてもよく、その逆であってもよい。一部の実施形態では、標的は核酸を含んでいてもよく、かつ結合剤は相補的な核酸を含んでいてもよい。ある実施形態では、標的と結合剤の両方とも、互いに結合し得るタンパク質を含んでいてもよい。
本明細書で用いる「生体試料」という用語は、対象となる生体より入手した試料を意味し、例えば、インビボ又はインビトロで入手した生体組織又は体液に由来する試料が挙げられる。そのような試料には、限定するものではないが、ヒトを始めとする哺乳動物から単離した体液(例えば、血液、血漿、血清、又は尿)、臓器、組織、画分、細胞及び細胞オルガネラがある。生体試料はまた、組織を始めとする生体試料の切片(例えば、臓器又は組織の切片部分)を含んでいてもよい。生体試料はまた、生体試料からの抽出物、例えば、生体液(例、血液又は尿)からの抗原又は核酸を含んでいてもよい。生体試料は、タンパク質、炭水化物又は核酸を含んでいてもよい。
生体試料は、原核生物起源、古細菌起源、又は真核生物起源(例えば、昆虫、原生動物、鳥類、魚類、爬虫類)のものであってもよい。ある実施形態では、生体試料は、哺乳動物(例えば、ラット、マウス、ウシ、イヌ、ロバ、モルモット、又はウサギ)である。特定の実施形態では、生体試料は、霊長動物(例えば、チンパンジー、又はヒト)起源である。
本明細書で用いる「対照プローブ」という用語は、信号発生基又は直接染色することが可能な信号発生基に結合される結合剤を有する薬剤であり、それによって信号発生基が、電子移動試薬と接触させ、その後の照射を行った後に、80パーセント以上の信号を保持するものを意味する。対照プローブ中の適切な信号発生基は、電子移動試薬と接触させ、照射したときに、実質的には不活性化されず、例えば、光活性化型化学退色により実質的には退色されない。信号発生基の適切な例としては、使用する条件下で退色を受けないフルオロフォア(例えば、DAPI)が挙げられる。
本明細書で用いる「酵素」という用語は、基質の化学反応を触媒することができるタンパク分子を意味する。ある実施形態では、適切な酵素は、基質の化学反応を触媒して試料中に存在する受容体(例えば、フェノール基)に結合し得る反応生成物を生成する。受容体は、外因性(即ち、試料又は固体支持体に外的に付着する受容体)でも、内因性(試料又は固体支持体に本来存在する受容体)であってもよい。適切な酵素の例としては、ペルオキシダーゼ、オキシダーゼ、ホスファターゼ、エステラーゼ、及びグリコシダーゼが挙げられる。適切な酵素の具体例としては、西洋ワサビペルオキシダーゼ、アルカリホスファターゼ、β−D−ガラクトシダーゼ、リパーゼ、及びグルコースオキシダーゼが挙げられる。
本明細書で用いる「酵素基質」という用語は、酵素により化学的に触媒され反応生成物を生成する化学化合物を意味する。ある実施形態では、反応生成物は、試料中に存在する受容体に結合し得る。ある実施形態では、本発明の方法で使用される酵素基質としては、非発色性基質又は非化学発光性基質を挙げることができる。信号発生基は標識として酵素基質へ結合させることができる。
本明細書で用いる「電子移動試薬」という用語は、光励起を受けることができる分子との光化学反応に関与し得る試薬を意味する。この用語はまた、光励起を受けることができる分子との光反応に関与し得る試薬を含む組成物を意味する。ある実施形態では、光励起を受けることができる分子は、信号発生基であってもよい。ある実施形態では、電子移動試薬は、光反応の過程で信号発生基に電子を供与することができる。代替の実施形態では、電子移動試薬は、光反応の過程で信号発生基から電子を受容することができる。
一部の実施形態では、光反応の過程で信号発生基に電子供与する電子移動試薬は、ホウ酸塩であってもよい。別の実施形態では、ホウ酸塩はトリフェニルブチルボレートである。
代替の実施形態では、光励起分子からの電子を受容する電子移動試薬は、オニウム塩[例えば、ジフェニルヨードニウムヘキサフルオロホスフェート(DPI)若しくはジメチルフェナシルスルホニウムテトラフルオロボレート(DMPS)]、又はテトラブチルアンモニウムブチルトリフェニルボレート(TBAB)であってもよい。
本明細書で用いる「フルオロフォア」又は「蛍光信号発生基」という用語は、特定の波長の光に曝露させることによって励起されたときに、異なる波長の光を放出する化学化合物を意味する。フルオロフォアは、それらの発光プロフィール又は「色」の観点から記載されることもある。緑色のフルオロフォア(例えば、Cy3、FITC、及びオレゴングリーン)は、一般に、515〜540ナノメートルの範囲の波長のそれらの発光を特徴とし得る。赤色のフルオロフォア(例えば、テキサスレッド、Cy5、及びテトラメチルローダミン)は、一般に、590〜690ナノメートルの範囲の波長のそれらの発光を特徴とし得る。フルオロフォアの例としては、限定するものではないが、4−アセトアミド−4’−イソチオシアナートスチルベン−2,2’−ジスルホン酸、アクリジン、アクリジン及びアクリジンイソチオシアネートの誘導体、5−(2’−アミノエチル)アミノナフタレン−1−スルホン酸(EDANS)、4−アミノ−N−[3−ビニルスルホニル)フェニル]ナフタルイミド−3,5−ジスルホネート(ルシファーイエローVS)、N−(4−アニリノ−1−ナフチル)マレイミド、アントラニルアミド、ブリリアントイエロー、クマリン、クマリン誘導体、7−アミノ−4−メチルクマリン(AMC、クマリン120)、7−アミノ−トリフルオロメチルクルアリン(クマリン151)、シアノシン、4’,6−ジアミニジノ−2−フェニルインドール(DAPI)、5’,5’’−ジブロモピロガロール−スルホンフタレイン(ブロモピロガロールレッド)、7−ジエチルアミノ−3−(4’−イソチオシアナートフェニル)−4−メチルクマリン、4,4’−ジイソチオシアナートジヒドロ−スチルベン−2,2’−ジスルホン酸、4,4’−ジイソチオシアナートスチルベン−2,2’−ジスルホン酸、5−[ジメチルアミノ]ナフタレン−1−スルホニルクロリド(DNS、ダンシルクロリド)、フルオレセイン及び誘導体、例えば5−カルボキシフルオレセイン(FAM)、5−(4,6−ジクロロトリアジン−2−イル)アミノフルオレセイン(DTAF)、2’,7’−ジメトキシ−4’,5’−ジクロロ−6−カルボキシフルオレセイン(JOE)、フルオレセイン、フルオレセインイソチオシアナート(FITC)、QFITC(XRITC)、フルオレスカミン誘導体(アミンとの反応の際に蛍光)、IR144、IR1446、マラカイトグリーンイソチオシアナート、4−メチルウンベリフェロン、オルトクレゾールフタレイン、ニトロチロシン、パラローズアニリン、フェノールレッド、B−フィコエリスリン、o−フタルジアルデヒド誘導体(アミンとの反応の際に蛍光)、ピレン及び誘導体、例えばピレン、ピレンブチレート、及びスクシンイミジル1−ピレンブチレート、リアクティブレッド4(Cibacron.RTM. ブリリアントレッド3B−A)、ローダミン及び誘導体、例えば6−カルボキシ−X−ローダミン(ROX)、6−カルボキシローダミン(R6G)、リサミンローダミンBスルホニルクロリド、ローダミン(Rhod)、ローダミンB、ローダミン123、ローダミンXイソチオシアナート、スルホローダミンB、スルホローダミン101、及びスルホローダミン101のスルホニルクロリド誘導体(テキサスレッド)、N,N,N’,N’−テトラメチル−6−カルボキシローダミン(TAMRA)、テトラメチルローダミン、テトラメチルローダミンイソチオシアナート(TRITC)、リボフラビン、ロゾール酸とランタニドキレート誘導体、シアニン、ピレリウム色素、スクアライン、1,3−ジクロロ−7−ヒドロキシ−9,9−ジメチル−2(9H)−アクリジノン(DDAO)、及びジメチルアクリジノン(DAO)が挙げられる。ある実施形態では、フルオロフォアは、シアニン、ローダミン、BODIPY又は1,3−ジクロロ−7−ヒドロキシ−9,9−ジメチル−2(9H)−アクリジノン(DDAO)の色素である。好ましい実施形態では、フルオロフォアはシアニン色素である。別の実施形態では、シアニン色素はCy3又はCy5である。
本明細書で用いる「in situ」という用語は、一般に、ある事象が原位置で、例えば、無傷の臓器若しくは組織で、又は臓器若しくは組織の代表的な部分において起こることを意味する。ある実施形態では、標的のin situ分析は、生物、臓器、組織試料、又は細胞培養物を始めとする、様々な供給源に由来する細胞で実施することができる。in situ分析は、標的がその起源の部位から取り出された場合に失われる可能性がある状況(contextual)情報を提供する。従って、標的のin situ分析は、細胞膜が完全に無傷であるか又は部分的に無傷であり、標的結合プローブが細胞の内部に残っている場合における、全細胞内又は組織試料内に位置する標的結合プローブの分析について記載する。さらに、本発明で開示されている方法を利用し、固定されているか固定されていない細胞又は組織試料において標的をin situ分析することができる。
本明細書で用いる「照射」又は「照射する」という用語は、試料又は溶液を非電離照射へ暴露させる操作又はプロセスを意味する。ある実施形態では、非電離照射の波長は350nm〜1.3μmである。好ましい実施形態では、非電離放射は、波長が400〜700nmの可視光である。照射は、試料又は溶液を、特定の波長又はある範囲の波長の照射を放射することができる放射線源、例えばランプに暴露させることにより行うことができる。ある実施形態では、光励起を受けることができる分子は、照射の結果、光励起される。ある実施形態では、光励起を受けることができる分子は、信号発生基、例えば蛍光信号発生基である。ある実施形態では、蛍光信号発生基へ照射すると、蛍光信号発生基と電子移動試薬の間で光反応が開始される。ある実施形態では、照射により光反応が開始され、実質的に、光活性化型化学退色によって信号発生基を不活性化する。
光学フィルターは、試料又は溶液の特定の波長又はある範囲の波長への照射を制限するために使用することができる。ある実施形態では、光学フィルターを使用して、光励起を受けることができる1以上の分子を選択的光励起するための狭い範囲の波長に照射を制限することができる。「選択的光励起」という用語は、光励起を受けることができる1以上の分子が、照射後に基底電子状態のままで光励起を受けることができる他の1以上の分子の存在下で光励起される、操作又はプロセスを意味する。
ある実施形態では、光励起を受けることができる分子は、蛍光色素、例えばシアニン色素である。さらなる一実施形態では、520〜580nmの範囲の波長に限定される照射は、Cy3色素の選択的光励起に使用される。別の別の実施形態では、620〜680nmの範囲の波長に限定される照射は、Cy5色素の選択的光励起に使用される。代替の実施形態では、特定波長での試料への照射は、レーザーを使用することにより行うこともできる。
本明細書で用いる「ペルオキシダーゼ」という用語は、電子ドナーと一緒に酵素基質の酸化反応を触媒する酵素の種類を意味する。ペルオキシダーゼ酵素の例としては、西洋ワサビペルオキシダーゼ、シトクロムCペルオキシダーゼ、グルタチオンペルオキシダーゼ、ミクロペルオキシダーゼ、ミエロペルオキシダーゼ、ラクトペルオキシダーゼ、又はダイズペルオキシダーゼが挙げられる。
本明細書で用いる「ペルオキシダーゼ基質」という用語は、ペルオキシダーゼによって化学的に触媒され反応生成物を生成する化学化合物を意味する。ある実施形態では、本発明の方法で使用されるペルオキシダーゼ基質としては、非発色性基質又は非化学発光性基質が包含され得る。蛍光信号発生基は、標識としてペルオキシダーゼ基質へ結合させることができる。
本明細書で用いる「退色」、「光活性化型化学退色」又は「光誘起型化学退色」という用語は、信号発生基によって形成された信号が光反応の過程で修飾される、操作又はプロセスを意味する。特定の実施形態では、信号発生基は不可逆的に修飾される。
ある実施形態では、信号は光活性化型化学退色の結果、縮小又は除去される。ある実施形態では、信号発生基は完全に退色化され、すなわち、信号強度が約100%減少する。ある実施形態では、信号は光信号であり、信号発生基は光信号発生基である。「光活性化型化学退色」という用語は、例えば、フルオロフォアなどの信号発生基の連続照射を行った後、又は光への連続暴露を行った後に、光退色、又は電子移動試薬の非存在下で生じ得る信号(例えば蛍光信号)の消失を排除することを意味する。
本明細書で用いる「光励起」という用語は、分子が放射線エネルギーの吸収時に(例えば照射時に)基底電子状態から励起電子状態に移行する、操作又はプロセスを意味する。光励起分子は、例えば、電子移動反応において、化学反応に関与し得る。ある実施形態では、光励起を受けることができる分子は信号発生基(例えば蛍光信号発生基)である。
本明細書で用いる「光反応」又は「光誘起反応」という用語は、1以上の反応物質の光励起の結果、開始及び/又は進行する化学反応を意味する。光反応における反応物質は、電子移動試薬及び光励起を受けることができる分子であってもよい。ある実施形態では、光反応は、電子移動試薬から光励起を受けた分子(すなわち光励起分子)までの電子移動を包含し得る。別の実施形態では、光反応は、光励起を受けた分子から電子移動試薬への電子移動も包含し得る。ある実施形態では、光励起を受けることができる分子は、蛍光信号発生基ー(例えばフルオロフォア)である。ある実施形態では、光反応によって、光反応の1以上の成分の不可逆な修飾が生じる。ある実施形態では、光反応は、実質的に光活性化された化学的退色によって信号発生基を不活性化する。
ある実施形態では、光反応は、電子移動試薬と光励起分子の間の分子間電子移動を包含していてもよく、例えば、電子移動試薬と光励起分子の間の結合が一時的な場合に電子移動が生じ、電子移動の直前に形成され、電子移動後に分離する。
ある実施形態では、光反応は、例えば、電子移動プロセスの開始前に、共有結合又は静電的相互作用によって、例えば、電子移動試薬と光励起分子が互いに結合した場合に電子移動が生じる、電子移動試薬と光励起分子の間の分子内電子移動を包含していてもよい。分子内電子移動に関する光反応は、例えば、光励起を受けることができる分子と電子移動試薬が反対の電荷を担持し、静電相互作用によって保持される複合体を形成する場合に生じ得る。例えばカチオン色素、例えば、カチオン性シアニン色素とトリフェニルブチルボレートアニオンは複合体を形成することができ、この場合、分子内電子移動は照射時にシアニン部分とホウ酸部分の間で生じ得る。
本明細書で用いる「プローブ」という用語は、結合剤と標識、例えば、信号発生基又は酵素を有する薬剤を意味する。ある実施形態では、結合剤と標識(信号発生基又は酵素)は、単一の実体において具体化される。結合剤と標識は、直接的に(例えば、結合剤へ取り込まれた蛍光分子を介して)又は間接的に(例えば、リンカーを介して)結合され、単一段階で生体試料へ適用させることができる。代替の実施形態では、結合剤と標識は、個別の実体(例えば、標的及び酵素に結合可能な一次抗体、又は一次抗体を結合可能な信号発生基で標識された二次抗体)において具体化される。結合剤と標識(信号発生基又は酵素)が別々の実体である場合、それらは、生体試料へ単一段階又は複数段階で適用させることができる。本明細書で用いる「蛍光プローブ」という用語は、蛍光信号発生基に結合される結合を有する薬剤を意味する。ある実施形態では、プローブは、観測信号が光信号であるように、光信号発生基を含んでいてもよい。ある実施形態では、プローブは、観測信号が蛍光信号であるように、蛍光信号発生基を含んでいてもよい。
本明細書で用いる「信号発生基」という用語は、1以上の検出技術(例えば、分光分析、熱量測定、分光学、又は目視検査)を使用して検出可能な信号を提供することができる分子を意味する。検出可能な信号の適切な例としては、光信号、及び電気信号が挙げられる。信号発生基の例としては、1以上の発色団、フルオロフォア、又はラマン活性タグが挙げられる。上記のように、プローブに関しては、ある実施形態では、信号発生基と結合剤は単一の実体に存在していてもよい(例えば、蛍光標識を有する標的結合タンパク質)。或いは、結合剤と信号発生基は、試料へ導入する前又は導入する際に互いに会合する個別の実体(例えば、受容体タンパク質と、その特定の受容体タンパク質に対する標識抗体)であってもよい。
ある実施形態では、信号発生基は光信号発生基であってもよい。ある実施形態では、光信号発生基は蛍光信号発生基、例えばフルオロフォアであってもよい。好ましい実施形態では、蛍光信号発生基はシアニン色素、例えばCy3、Cy5、Cy7であってもよい。ある実施形態では、信号発生基、例えばフルオロフォアは電荷されていてもよい。一実施形態では、信号発生基はカチオン性蛍光色素である。
本明細書で用いる「固体支持体」という用語は、生体試料中に存在する標的をその上に固定化して、次いで、本発明で開示している方法によって検出し得る物品を意味する。標的は、物理的な吸着により、共有結合形成により、又はそれらの組合せにより固体支持体上に固定化することができる。固体支持体としては、ポリマー、ガラス、又は金属材料を挙げることができる。固体支持体の例としては、膜、マイクロタイタープレート、ビーズ、フィルター、試験紙、スライド、カバースリップ、及び試験管が挙げられる。
本明細書で用いる「特異的結合」という用語は、2つの異なる分子のうちの一つが他方に対して、別の分子に対する実質的に低い認識に比べて特異的である認識を意味する。分子は、その表面上又は空洞中に、静電的相互作用、水素結合、又は疎水性相互作用の1以上より生じる二分子間の特異的認識をもたらす領域を有し得る。特異的結合の例としては、限定するものではないが、抗体−抗原相互作用、酵素−基質相互作用、ポリヌクレオチド相互作用などが挙げられる。ある実施形態では、結合剤分子は、周囲条件の下で、例えば、約6〜約8のpHと、約0℃〜約37℃の範囲の温度の下で、標的に対して約105-1以上の固有の平衡結合定数(KA)を有していてもよい。
本明細書で用いる「標的」という用語は、生体試料中に存在する場合に検出され得る生体試料の成分を意味する。標的は、それに対して天然に存在する特異的結合剤(例えば、抗体)が存在するか、又はそれに対して特異的結合剤(例えば、低分子結合剤若しくはアプタマー)を製造することができる任意の物質であってもよい。一般に、結合剤は、標的の1以上の個別の化学部分又は標的の三次元構造成分(例えば、ペプチドフォールディングから得られる3D構造)を介して標的に結合することができる。標的としては、天然ペプチド又は修飾ペプチド、タンパク質(例えば、抗体、親和体、又はアプタマー)、核酸(例えば、ポリヌクレオチド、DNA、RNA、又はアプタマー)、多糖(例えば、レクチン又は糖)、脂質、酵素、酵素基質、リガンド、受容体、抗原、又はハプテンの1以上を挙げることができる。ある実施形態では、標的としては、タンパク質又は核酸を挙げることができる。
本発明は、分析、診断、又は予後の用途に適用可能な方法、例えば、分析物検出、蛍光活性化細胞選別(FACS)、組織化学、免疫組織化学、又は免疫蛍光などに一般に関する実施形態を包含する。ある実施形態では、本発明で開示されている方法は、組織化学、免疫染色、免疫組織化学、イムノアッセイ、又は免疫蛍光法に特に適用され得る。ある実施形態では、本発明において開示されている方法は、免疫ブロッティング法、例えば、ウェスタンブロット、又はイムノアッセイ、例えば、酵素結合免疫吸着法(ELISA)に特に適用することができる。
開示の方法は、一般に、単一生体試料における複数の標的の検出に関する。ある実施形態では、同一検出チャネルを使用して、単一生体試料中の複数の標的を検出する方法を開示する。標的は、懸濁液中の細胞の表面上、細胞塗抹標本の表面上、組織切片の表面上、DNAマイクロアレイの表面上、タンパク質マイクロアレイの表面上、又は固体支持体(例えば、ゲル、ブロット、ガラススライド、ビーズ、又はELISAプレート)の表面上に存在していてもよい。
本発明で開示されている方法は、生体試料の完全性にほとんど又は全く影響することなく、同一生体試料中の複数の標的を検出することができる。同一生体試料中の標的を検出することによって、生体試料中の標的に関する空間的な情報をさらに提供することができる。本発明で開示されている方法は、限定された量の生体試料が分析に利用可能であり、同一試料を複数の分析を行うために処理しなければならない場合の分析用途にも適用することができる。本発明で開示されている方法はまた、プローブと標的を実質的に除去することなく、固体状態の試料(例えば、組織切片)又は固体支持体に付着している試料(例えば、ブロット)の複数の分析を促進することもできる。さらに、同一検出チャネルは試料中の異なる標的の検出に利用することができ、複数の標的の分析に関する化学的要求をより少なくすることが可能である。これらの方法は、分解可能な信号に限度があることから同時に検出可能な標的の数が制限され得る検出方法に基づいた分析をさらに容易にすることができる。例えば、蛍光ベースの検出を使用した場合、同時に検出することができる標的の数は、その励起光及び発光波長特性に基づき約5種の蛍光信号しか分解できないので、約5種まで限定される可能性がある。ある実施形態では、本発明で開示されている方法は、蛍光ベースの検出システムを使用し、5種よりも多い標的を検出することができる。
ある実施形態では、方法は、信号のサイクルプロセスを含むハイスループット多重化生体試料分析であって、各サイクルにおいて、染色及びイメージング後、電子移動試薬を適用し生体試料の照射を行う分析である。この方法は、プローブとは異なる生体試料の成分を有意に修飾することなく、信号を速やかにサイクルさせる。
ある実施形態では、生体試料中の複数の標的を検出する方法は、生体試料中の標的の連続検出を含む。この方法は、一般に、生体試料中の第1の組の標的を検出する段階、第1の組の標的由来の信号を光誘起型化学退色によって退色させる段階を含む。ある実施形態では、方法は、生体試料中の第2の組の標的を検出することをさらに含む。方法は、第2の組の標的由来の信号を光誘起型化学退色させた後、生体試料中の第3の組の標的を検出する段階を繰り返すこと等をさらに含んでいてもよい。
ある実施形態では、方法は、生体試料を第1のプローブと接触させる段階と、第1のプローブを第1の標的に物理的と結合させる段階とを含む。この方法は、第1のプローブ由来の第1の信号を検出する段階をさらに含む。電子移動試薬をプローブに適用し、電子移動試薬とプローブを含む試料を照射して第1の信号を修飾する光反応を開始させる。本方法は、生体試料を第2のプローブと接触させ、第2のプローブを生体試料中の第2の標的に物理的と結合させ、次いで第2のプローブ由来の第2の信号を検出することをさらに含む。
ある実施形態では、方法はまた、生体試料を複数の多数の組のプローブと接触させる段階と、複数のプローブを複数の標的に物理的と結合させる段階とを含む。この方法は、複数のプローブの第1の組由来の第1の組の信号を検出することをさらに包含する。電子移動試薬は複数のプローブに適用され、試料は照射され、それによって、複数のプローブの第1の組由来の第1の組の信号を修飾させる光反応が開始される。方法は、複数の標的の第2の組由来の第2の組の信号を形成させる段階と、第2の組の信号を検出する段階をさらに包含する。第2の組の信号の形成は、第2の組のプローブを、信号発生基を含む個別の成分と結合させる段階を含んでいてもよい。例えば、第2の組のプローブはビオチンタグを含んでいてもよく、信号発生基を含む成分はまた、ビオチンタグを結合することができるストレプトアビジンを含んでいてもよい。或いは、第2の組の信号の形成は、例えば、フルオロフォアと消光剤との対の間の距離を変えることによって、信号形成成分をマスキングしないことを含んでいてもよい。さらなる別の実施形態では、第2の組の信号は、第2の組のプローブに関する非標識相補配列に標識化核酸プローブをハイブリダイゼーションすることにより形成させることができる。
別の実施形態では、方法は、複数の標的を含有する試料を準備する段階と、酵素に結合されている結合を有する1以上のプローブを試料中に存在する1以上の標的と結合させる段階を含む。この方法には、結合プローブを信号発生基に結合されている酵素基質と反応させ、信号発生基由来の信号を検出することをさらに包含する。光反応の過程で信号発生基と酵素をともに実質的に不活性化する電子移動試薬を試料へ適用する。方法はまた、酵素を不活性化する任意の個別の段階をも包含する。酵素不活性化の段階は、例えば、酵素不活性化試薬の適用を含んでいてもよい。方法は、酵素に結合されている結合を有する1以上の後続プローブを、試料中に存在する1以上の標的と結合させることをさらに包含する。方法は、結合プローブを、信号発生基に結合されている酵素基質と反応させ、信号発生基由来の信号を検出することをさらに包含する。
さらに別の実施形態では、方法は、複数の標的を含む生体試料を準備する段階と、1以上のプローブを試料中に存在する1以上の標的と結合させる段階とを含む。この方法は、結合プローブ由来の信号を検出することをさらに包含する。結合プローブを電子移動試薬と接触させ、結合プローブ及び電子移動試薬を含む試料に照射を行い、それによってプローブを退色させる。方法は、1以上の後続プローブを、試料中に存在する1以上の標的と結合させ、次いで後続結合プローブ由来の信号を検出することをさらに包含する。
さらに別の実施形態では、方法は、複数の標的を含む生体試料を準備する段階と、1以上の蛍光プローブを試料中に存在する1以上の標的と結合させる段階とを含む。この方法は、1以上の対照プローブを試料中の1以上の標的と結合させる段階をさらに包含する。結合プローブを電子移動試薬と接触させ、結合プローブ及び電子移動試薬を含む試料に照射を行い、それによってプローブは退色されるが、対照プローブは退色されない。方法は、1以上の後続プローブを試料中に存在する1以上の標的と結合させ、次いで後続結合プローブ由来の信号を検出することをさらに包含する。
さらに別の実施形態では、上記の方法は、光学的に標識した生物学的標的を示す一連の2以上の画像を提供する。
生体試料
本発明の一実施形態による生体試料は、固体であっても液体であってもよい。生体試料の適切な例としては、限定するものではないが、培養物、血液、血漿、血清、唾液、脳脊髄液、胸膜液、乳、リンパ液、痰、精液、尿、糞、涙液、唾液、注射針による吸引物、皮膚の外部切片、気道、腸管、及び尿生殖路、腫瘍、臓器、細胞培養物若しくは細胞培養物成分、又は固体組織切片が挙げられる。細胞培養物は、混合細胞培養物、幹細胞コロニー、又は各種の癌若しくは初代細胞系に由来する培養物を包含し得る。ある実施形態では、生体試料は、そのままの状態で、即ち、対象とする標的の採取及び/又は単離を行うことなく分析することができる。代替の実施形態では、標的の採取及び単離は、分析前に実施することができる。ある実施形態では、本発明で開示している方法は、生体試料のインビトロ分析に特に適し得る。
生体試料としては、その物理状態、例えば、限定するものではないが、凍結若しくは染色されている状態又は別の方法で処理されている状態を問わない、任意の上記の試料を包含していてもよい。ある実施形態では、生体試料は、天然の試料と天然では混ざらない化合物、例えば、保存剤、抗凝固剤、緩衝液、固定剤、栄養素、抗生物質等を包含していてもよい。
ある実施形態では、生体試料は、組織試料又は切片、全細胞、細胞成分、例えば、細胞オルガネラ、サイトスピン、又は細胞塗抹標本を包含していてもよい。ある実施形態では、生体試料は、組織試料を本質的にに包含する。組織試料は、類似機能を有し得る、生体被験者の組織から得られる類似細胞の収集物を包含していてもよい。ある実施形態では、組織試料は、ヒトの組織から得られる類似細胞の収集物を包含していてもよい。ヒト組織の適切な例としては、限定するものではないが、(1)上皮、(2)血管、骨及び軟骨を始めとする結合組織、(3)筋肉組織、並びに(4)神経組織が挙げられる。組織試料の供給源は、新鮮、凍結、及び/又は保存状態の臓器又は組織試料又は生検又は吸引物から得られる固体組織、血液又は任意の血液成分、体液、例えば、脳脊髄液、羊水、腹膜液、又は間質液、或いは、被検体の妊娠期又は発生期におけるあらゆる時点から得た細胞であってもよい。ある実施形態では、組織試料は、初代細胞又は培養細胞又は細胞系を包含していてもよい。
ある実施形態では、生体試料は、健康又は疾患状態の組織試料から得た組織切片(例えば、結腸、乳房組織、前立腺から得た組織切片)を包含する。組織切片は、組織試料の一部分又は小片、例えば、組織試料から切り取った組織又は細胞の薄片を包含していてもよい。ある実施形態では、もし本発明で開示されている方法を用いて、2以上の(形態学又は分子のレベルでの)異なる標的に関して組織試料の同一切片を分析するならば、組織試料の複数の切片を取って分析へ供することができる。ある実施形態では、組織マイクロアレイを使用することができる。ある実施形態では、組織試料の同一切片を5以上の(形態学又は分子のレベルで)異なる標的に関して分析することができる。ある実施形態では、組織試料の同一切片は、5よりも多くの(形態学又は分子レベルで)異なる標的に関して分析することができる。ある実施形態では、組織試料の同一切片は、形態学レベルと分子レベルの両方で分析することができる。
組織切片は、生体試料として利用する場合、約100マイクロメートル未満である範囲、約50マイクロメートル未満である範囲、約25マイクロメートル未満である範囲、又は約10マイクロメートル未満である範囲の厚さを有することができる。
ある実施形態では、生体試料は1以上のタンパク質、炭水化物又は核酸を含んでいてもよい。ある実施形態では、生体試料又は生体試料中の標的は固体支持体へ付着させることができる。固体支持体としては、マイクロアレイ(例えば、DNA又はRNAマイクロアレイ)、ゲル、ブロット、ガラススライド、ビーズ、又はELISAプレートを挙げることができる。ある実施形態では、生体試料又は生体試料中の標的は、ナイロン、ニトロセルロース、及びポリビニリデンジフルオリドから選択される膜へ付着させることができる。ある実施形態では、固体支持体は、ポリスチレン、ポリカーボネート、及びポリプロピレンから選択されるプラスチック表面を含むことができる。
標的
標的は、生体試料の表面に存在しても(例えば、組織切片の表面上の抗原)、試料のバルク中に存在していてもよい(例えば、緩衝溶液中の抗体)。ある実施形態では、標的は、生体試料の表面に本来存在していない可能性があり、標的を表面上で利用できるように生体試料を処理しなければならないことがある(例えば、抗原賦活化、酵素消化、エピトープ回復、又はブロッキング)。ある実施形態では、標的は、体液、例えば、血液、血漿、血清、又は尿などに存在していてもよい。一部の別の実施形態では、標的は、組織中に、細胞表面又は細胞内部のいずれかに固定させることができる。
分析しようとする標的の適切性は、生体試料に必要とされる分析の種類及び特性により決定することができる。ある実施形態では、標的は、生体試料中の分析物の存在又は非存在についての情報を提供することができる。別の実施形態では、標的は、生体試料の状態についての情報を提供することができる。例えば、生体試料が組織試料を含む場合には、本発明で開示されている方法を使用し、異なる種類の細胞又は組織の比較、異なる発生段階の比較、疾患又は異常の存在の検出、或いは疾患又は異常の種類の決定に有用となり得る標的を検出することができる。
標的としては、1以上のペプチド、タンパク質(例えば、抗体、親和体、又はアプタマー)、核酸(例えば、ポリヌクレオチド、DNA、RNA、又はアプタマー)、多糖(例えば、レクチン又は糖)、脂質、酵素、酵素基質、リガンド、受容体、抗原、又はハプテンが挙げられる。ある実施形態では、標的は、本質的に、タンパク質又は核酸を包含することができる。別の実施形態では、複数のタイプの標的、例えば、核酸、多糖、脂質、酵素、酵素基質、リガンド、受容体、抗原又はハプテンは、同一生体試料中で、1以上のサイクルにおいて検出且つ/又は分析することができる。上記の1以上の標的は特定の細胞に特徴的であってもよいが、他の標的は特定の疾患又は症状に関連していてもよい。ある実施形態では、本発明で開示されている方法を使用して検出及び分析され得る標的としては、限定するものではないが、予後標的、ホルモン標的又はホルモン受容体標的、リンパ球様標的、腫瘍標的、細胞周期関連標的、神経組織標的及び腫瘍標的、或いはクラスター分化標的を挙げることができる。
予後標的の適切な例としては、酵素標的、例えば、ガラクトシルトランスフェラーゼII、ニューロン特異的エノラーゼ、プロトンATPase−2、又は酸ホスファターゼなどが挙げられる。
ホルモン標的又はホルモン受容体標的の適切な例としては、ヒト絨毛性性腺刺激ホルモン(HCG)、副腎皮質刺激ホルモン、癌胎児性抗原(CEA)、前立腺特異抗原(PSA)、エストロゲン受容体、プロゲステロン受容体、アンドロゲン受容体、gC1q−R/p33補体受容体、IL−2受容体、p75神経栄養因子受容体、PTH受容体、甲状腺ホルモン受容体、又はインスリン受容体を挙げることができる。
リンパ球様標的の適切な例としては、α−1−アンチキモトリプシン、α−1−アンチトリプシン、B細胞標的、bcl−2、bcl−6、Bリンパ球抗原36kD、BM1(骨髄性標的)、BM2(骨髄性標的)、ガレクチン−3、グランザイムB、HLAクラスI抗原、HLAクラスII(DP)抗原、HLAクラスII(DQ)抗原、HLAクラスII(DR)抗原、ヒト好中球デフェンシン、免疫グロブリンA、免疫グロブリンD、免疫グロブリンG、免疫グロブリンM、κ軽鎖、κ軽鎖、λ軽鎖、リンパ球/組織球抗原、マクロファージ標的、ムラミダーゼ(リゾチーム)、p80未分化リンパ腫キナーゼ、プラズマ細胞標的、分泌性白血球プロテアーゼ阻害剤、T細胞抗原受容体(JOVI1)、T細胞抗原受容体(JOVI3)、ターミナルデオキシヌクレオチジルトランスフェラーゼ、又は非クラスター化B細胞標的を挙げることができる。
腫瘍標的の適切な例としては、αフェトプロテイン、アポリポタンパク質D、BAG−1(RAP46タンパク質)、CA19−9(Sialyl lewisa)、CA50(癌関連ムチン抗原)、CA125(卵巣癌抗原)、CA242(腫瘍関連ムチン抗原)、クロモグラニンA、クラステリン(アポリポタンパク質J)、上皮膜抗原、上皮関連抗原、上皮特異的抗原、グロス嚢胞性疾患流体タンパク質−15、肝細胞特異的抗原、ヘレグリン、ヒト胃ムチン、ヒト乳脂肪球、MAGE−1、マトリックスメタロプロテイナーゼ、メランA、メラノーマ標的(HMB45)、メソセリン、メタロチオネイン、小眼球症転写因子(MITF)、Muc−1コア糖タンパク質、Muc−1糖タンパク質、Muc−2糖タンパク質、Muc−5AC糖タンパク質、Muc−6糖タンパク質、ミエロペルオキシダーゼ、Myf−3(横紋筋肉腫標的)、Myf−4(横紋筋肉腫標的)、MyoD1(横紋筋肉腫標的)、ミオグロブリン、nm23タンパク質、胎盤アルカリホスファターゼ、プレアルブミン、前立腺特異的抗原、前立腺酸性ホスファターゼ、前立腺インヒビンペプチド、PTEN、腎細胞癌標的、小腸ムチン抗原、テトラネクチン、甲状腺転写因子−1、マトリックスメタロプロテイナーゼ1の組織阻害剤、マトリックスメタロプロテイナーゼ2の組織阻害剤、チロシナーゼ、チロシナーゼ関連タンパク質−1、ビリン、又はフォンウィルブラント因子が挙げられる。
細胞周期関連標的の適切な例としては、アポトーシスプロテアーゼ活性化因子−1、bcl−w、bcl−x、ブロモデオキシウリジン、CAK(cdk−活性化キナーゼ)、細胞アポトーシス感受性タンパク質(CAS)、カスパーゼ2、カスパーゼ8、CPP32(カスパーゼ−3)、CPP32(カスパーゼ−3)、サイクリン依存性キナーゼ、サイクリンA、サイクリンB1、サイクリンD1、サイクリンD2、サイクリンD3、サイクリンE、サイクリンG、DNA断片化因子(N末端)、Fas(CD95)、Fas結合デスドメインタンパク質、Fasリガンド、Fen−1、IPO−38、Mcl−1、ミニ染色体維持タンパク質、ミスマッチ修復タンパク質(MSH2)、ポリ(ADP−リボース)ポリメラーゼ、増殖細胞核内抗原、p16タンパク質、p27タンパク質、p34cdc2、p57タンパク質(Kip2)、p105タンパク質、Stat1α、トポイソメラーゼI、トポイソメラーゼIIα、トポイソメラーゼIIIα、又はトポイソメラーゼIIβが挙げられる。
神経組織及び腫瘍標的の適切な例としては、αBクリスタリン、α−インターネキシン、αシヌクレイン、アミロイド前駆体タンパク質、βアミロイド、カルビンジン、コリンアセチルトランスフェラーゼ、興奮性アミノ酸トランスポーター1、GAP43、グリア線維性酸性タンパク質、グルタミン酸受容体2、ミエリン塩基性タンパク質、神経成長因子受容体(gp75)、神経芽細胞腫標的、ニューロフィラメント68kD、ニューロフィラメント160kD、ニューロフィラメント200kD、ニューロン特異的エノラーゼ、ニコチン性アセチルコリン受容体α4、ニコチン性アセチルコリン受容体β2、ペリフェリン、タンパク遺伝子産物9、S−100タンパク質、セロトニン、SNAP−25、シナプシンI、シナプトフィシン、tau、トリプトファンヒドロキシラーゼ、チロシンヒドロキシラーゼ、又はユビキチンを挙げることができる。
クラスター分化標的の適切な例としては、CD1a、CD1b、CD1c、CD1d、CD1e、CD2、CD3δ、CD3ε、CD3γ、CD4、CD5、CD6、CD7、CD8α、CD8β、CD9、CD10、CD11a、CD11b、CD11c、CDw12、CD13、CD14、CD15、CD15s、CD16a、CD16b、CDw17、CD18、CD19、CD20、CD21、CD22、CD23、CD24、CD25、CD26、CD27、CD28、CD29、CD30、CD31、CD32、CD33、CD34、CD35、CD36、CD37、CD38、CD39、CD40、CD41、CD42a、CD42b、CD42c、CD42d、CD43、CD44、CD44R、CD45、CD46、CD47、CD48、CD49a、CD49b、CD49c、CD49d、CD49e、CD49f、CD50、CD51、CD52、CD53、CD54、CD55、CD56、CD57、CD58、CD59、CDw60、CD61、CD62E、CD62L、CD62P、CD63、CD64、CD65、CD65s、CD66a、CD66b、CD66c、CD66d、CD66e、CD66f、CD68、CD69、CD70、CD71、CD72、CD73、CD74、CDw75、CDw76、CD77、CD79a、CD79b、CD80、CD81、CD82、CD83、CD84、CD85、CD86、CD87、CD88、CD89、CD90、CD91、CDw92、CDw93、CD94、CD95、CD96、CD97、CD98、CD99、CD100、CD101、CD102、CD103、CD104、CD105、CD106、CD107a、CD107b、CDw108、CD109、CD114、CD115、CD116、CD117、CDw119、CD120a、CD120b、CD121a、CDw121b、CD122、CD123、CD124、CDw125、CD126、CD127、CDw128a、CDw128b、CD130、CDw131、CD132、CD134、CD135、CDw136、CDw137、CD138、CD139、CD140a、CD140b、CD141、CD142、CD143、CD144、CDw145、CD146、CD147、CD148、CDw149、CDw150、CD151、CD152、CD153、CD154、CD155、CD156、CD157、CD158a、CD158b、CD161、CD162、CD163、CD164、CD165、CD166、及びTCR−ζが挙げられる。
他の適切な予後標的としては、中心体タンパク質−F(CENP−F)、ジアンチン(giantin)、インボルクリン、ラミンA&C(XB10)、LAP−70、ムチン、核孔複合体タンパク質、p180ラメラ体タンパク質、ran、r、カテプシンD、Ps2タンパク質、Her2−neu、P53、S100、上皮標的抗原(EMA)、TdT、MB2、MB3、PCNA、又はKi67が挙げられる。
プローブ
既に定義したとおり、プローブは、結合剤と標識、例えば、信号発生基又は酵素を有する薬剤を意味する。
ある実施形態では、結合剤と標識(信号発生基又は酵素)を、直接的に(即ち、いかなるリンカーもなしに)互いと結合させることができる。別の実施形態では、結合剤と標識(信号発生基又は酵素)は、リンカーを介して互いと結合させることができる。本発明で使用される場合、「結合させる」とは、一般に、任意の物理化学的手段によって、互いに安定的に結合されている2つの実体(例えば、結合剤及び信号発生基)を意味する。この結合の特性は、それがいずれの実体の有効性も実質的には損なわないものであってもよい。結合剤及び標識は、共有結合性又は非共有結合性の相互作用を介して互いに結合することができる。非共有結合性の相互作用としては、限定するものではないが、疎水性相互作用、イオン性相互作用、水素結合相互作用、高親和性相互作用(例えば、ビオチン−アビジン又はビオチン−ストレプトアビジン複合体形成)、又は他の親和性相互作用を挙げることができる。
ある実施形態では、結合剤と標識(信号発生基又は酵素)を、適切な条件下で、反応して連結を形成させることができる官能基を介して、互いに化学的に連結させることができる。官能基の組合せの適切な例としては、限定するものではないが、アミンエステルとアミン又はアニリン、アシルアジドとアミン又はアニリン、ハロゲン化アシルとアミン、アニリン、アルコール、又はフェノール、アシルニトリルとアルコール又はフェノール、アルデヒドとアミン又はアニリン、ハロゲン化アルキルとアミン、アニリン、アルコール、フェノール、又はチオール、アルキルスルホネートとチオール、アルコール又はフェノール、無水物とアルコール、フェノール、アミン又はアニリン、ハロゲン化アリールとチオール、アジリジンとチオール又はチオエーテル、カルボン酸とアミン、アニリン、アルコール、又はハロゲン化アルキル、ジアゾアルカンとカルボン酸、エポキシドとチオール、ハロアセトアミドとチオール、ハロトリアジンとアミン、アニリン又はフェノール、ヒドラジンとアルデヒド又はケトン、ヒドロキシアミンとアルデヒド又はケトン、イミドエステルとアミン又はアニリン、イソシアネートとアミン又はアニリン、及びイソチオシアネートとアミン又はアニリンを挙げることができる。上記の官能基対の一方の官能基は、結合剤に存在しており、対応する官能基は信号発生基又は酵素に存在していてもよい。例えば、結合剤はカルボン酸を含んでいてもよく、信号発生基又は酵素はアミン、アニリン、アルコール又はハロゲン化アシルを含んでいてもよく、またその逆であってもよい。結合剤と信号発生基又は酵素の間のコンジュゲーションは、この場合、アミド又はエステル結合の形成によって行うことができる。
ある実施形態では、結合剤は、信号発生基で(例えば、結合剤がタンパク質である場合、合成中に、検出可能な標識アミノ酸を使用して)、又は酵素で(例えば、結合剤が酵素である場合)で内在的に標識化することができる。内在的に標識化されている結合剤は、検出に、別の信号発生基又は酵素が必要でない場合がある。むしろ、内在的な標識は、プローブを検出可能にするのに十分であることもある。代替の実施形態では、結合剤は、特異的信号発生基又は酵素にそれを結合させることによって標識化することができる(即ち、外因的標識化)。
ある実施形態では、結合剤と標識(信号発生基又は酵素)は、単一の実体において具体化される。代替の実施形態では、結合剤と標識(信号発生基又は酵素)は、個別の実体において具体化される(例えば、標的に結合可能な一次抗体と、一次抗体に結合可能な酵素又は信号発生基標識化二次抗体、或いは標的に結合可能なハプテン標識一次抗体と、そのハプテン標識化一次抗体に結合可能な酵素又は信号発生基標識化抗ハプテン抗体)。結合剤と信号発生基又は酵素が別々の実体である場合、それらを生体試料に単一の段階又は複数の段階で適用することができる。ある実施形態では、結合剤と標識(信号発生基又は酵素)は、生体試料への適用前に予め結合され、生体試料に単一の段階で適用される、別々の実体である。さらに別の実施形態では、結合剤と標識(信号発生基又は酵素)は、生体試料へ独立して適用され、適用後に組み合わされる別々の実体である。
結合剤
本発明で開示されている方法は、特定の方法で、標的へ物理的に結合する結合剤を使用するものである。ある実施形態では、結合剤は、十分な特異性をもって標的に結合することができ、即ち、結合剤は、別のいかなる分子に結合するよりも大きな親和性で標的に結合することができる。ある実施形態では、結合剤は、別の分子に結合することができるが、その結合は、非特異的結合がバックグラウンドレベルであるか、それに近い可能性があるようなものである。ある実施形態では、対象の標的に対する結合剤の親和性は、別の分子へのその親和性の2倍以上、5倍以上、10倍以上、又はそれ以上の範囲であってもよい。ある実施形態では、親和性の差が最大である結合剤を使用することができるが、それらは、標的に対する親和性が最大のものでなくてもよい。
ある実施形態では、標的と結合剤の間の結合は物理的な結合によって影響を受けることがある。物理的な結合は、非共有結合性相互作用の使用によりもたらされる結合を含んでいてもよい。非共有結合性相互作用としては、限定するものでないが、疎水性相互作用、イオン性相互作用、水素結合相互作用、又は親和性相互作用(例えば、ビオチン−アビジン又はビオチン−ストレプトアビジン複合体形成)が挙げられる。ある実施形態では、標的と結合剤は、物理的な結合をもたらすその2つの間の特異的認識を生じる、その表面上又は空洞中の領域を有していてもよい。ある実施形態では、結合剤は、それらの分子形状の一部の相互適合に基づいて生体標的に結合することができる。
結合剤とその対応標的は、結合対と考えられ、その限定されない例としては、免疫型の結合対、例えば、抗原/抗体、抗原/抗体フラグメント、又はハプテン/抗ハプテン、非免疫型の結合対、例えば、ビオチン/アビジン、ビオチン/ストレプトアビジン、葉酸/葉酸結合タンパク質、ホルモン/ホルモン受容体、レクチン/特定の炭水化物、酵素/酵素、酵素/基質、酵素/基質類似体、酵素/擬似基質(酵素活性により触媒されることがない基質類似体)、酵素/補因子、酵素/調節剤、酵素/阻害剤、又はビタミンB12/内因子などが挙げられる。結合対の他の適切な例としては、相補的核酸断片(DNA配列、RNA配列、LNA配列、及びPNA配列、又は文献で公知の他の改変された核酸)、プロテインA/抗体、プロテインG/抗体、核酸/核酸結合タンパク質、又はポリヌクレオチド/ポリヌクレオチド結合タンパク質を挙げることができる。
ある実施形態では、結合剤は、配列特異的又は構造特異的結合剤であってもよく、この場合、結合剤によって認識及び結合される標的の配列又は構造は、その標的に十分に特異的であればよい。
ある実施形態では、結合剤は、構造特異的であってもよく、標的の一次、二次、又は三次構造を認識することができる。標的の一次構造としては、その原子組成及びそれらの原子を連結している化学結合(立体化学を含む)の詳細が挙げられ、例えば、タンパク質のアミノ酸の線状配列の種類及び特質である。標的の二次構造は、生体分子の部分の全体的な三次元形態を意味し得る。例えば、タンパク質においては、二次構造は、離れたアミノ酸が互いに近接することをもたらす、ペプチド「骨格」鎖の様々なコンホメーションへのフォールディングを意味し得る。二次構造の適切な例としては、限定するものではないが、αヘリックス、βプリーツシート、又はランダムコイルが挙げられる。標的の三次構造は、その全体的な三次元構造であってもよい。標的の四次構造は、1以上の別の標的又は巨大分子とのその非共有結合性相互作用(例えばタンパク質相互作用)により形成される構造であってもよい。四次構造の例は、ヘモグロビンがつくられる4つのグロビンタンパク質サブユニットによって形成される構造であってもよい。本発明の実施形態による結合剤は、上記構造のいずれに対しても特異的である。
構造特異的結合剤の例としては、タンパク質標的に結合し得るタンパク質特異的分子が挙げられる。適切なタンパク質特異的分子の例としては、抗体及び抗体フラグメント、核酸(例えば、タンパク質標的を認識するアプタマー)、又はタンパク質基質(非触媒性)が挙げられる。
ある実施形態では、標的は抗原を包含していてもよく、結合剤は抗体を包含していてもよい。適切な抗体としては、それらが標的抗原に特異的に結合する限り、モノクローナル抗体、ポリクローナル抗体、多重特異的抗体(例えば、二重特異的抗体)、又は抗体フラグメントが挙げられる。
ある実施形態では、生体試料は、細胞又は組織試料を包含していてもよく、本発明で開示されている方法は、免疫組織化学(IHC)で使用することができる。免疫化学は、組織又は細胞に関する情報(例えば、正常細胞に対する疾患細胞)を提供するために、抗体ベースの結合剤に標的抗原を結合させることを伴う。本発明で開示されている方法において結合剤として適する抗体(及び対応する疾患/病的細胞)の例としては、限定するものではないが、抗エストロゲン受容体抗体(乳癌)、抗プロゲステロン受容体抗体(乳癌)、抗p53抗体(複数の癌)、抗Her−2/neu抗体(複数の癌)、抗EGFR抗体(表皮増殖因子、複数の癌)、抗カテプシンD抗体(乳癌及び他の癌)、抗Bcl−2抗体(アポトーシス細胞)、抗E−カドヘリン抗体、抗CA125抗体(卵巣癌及び他の癌)、抗CA15−3抗体(乳癌)、抗CA19−9抗体(結腸癌)、抗c−erbB−2抗体、抗P−糖タンパク質抗体(MDR、多剤耐性)、抗CEA抗体(癌胎児性抗原)、抗網膜芽細胞腫タンパク質(Rb)抗体、抗rasオンコプロテイン(p21)抗体、抗ルイスX(CD15ともいう)抗体、抗Ki−67抗体(細胞増殖)、抗PCNA(複数の癌)抗体、抗CD3抗体(T細胞)、抗CD4抗体(ヘルパーT細胞)、抗CD5抗体(T細胞)、抗CD7抗体(胸腺細胞、未熟T細胞、NKキラー細胞)、抗CD8抗体(サプレッサーT細胞)、抗CD9/p24抗体(ALL)、抗CD10(CALLAともいう)抗体(一般的な急性リンパ球性白血病)、抗CD11c抗体(単球、顆粒球、AML)、抗CD13抗体(骨髄単球細胞、AML)、抗CD14抗体(成熟単球、顆粒球)、抗CD15抗体(ホジキン病)、抗CD19抗体(B細胞)、抗CD20抗体(B細胞)、抗CD22抗体(B細胞)、抗CD23抗体(活性化B細胞、CLL)、抗CD30抗体(活性化T細胞及びB細胞、ホジキン病)、抗CD31抗体(血管新生マーカー)、抗CD33抗体(骨髄細胞、AML)、抗CD34抗体(内皮幹細胞、間質性腫瘍)、抗CD35抗体(樹状細胞)、抗CD38抗体(血漿細胞、活性化T細胞、B細胞、及び骨髄細胞)、抗CD41抗体(血小板、巨核球)、抗LCA/CD45抗体(白血球共通抗原)、抗CD45RO抗体(ヘルパー、インデューサーT細胞)、抗CD45RA抗体(B細胞)、抗CD39、CD100抗体、抗CD95/Fas抗体(アポトーシス)、抗CD99抗体(ユーイング肉腫マーカー、MIC2遺伝子産物)、抗CD106抗体(VCAM−1、活性化内皮細胞)、抗ユビキチン抗体(アルツハイマー病)、抗CD71(トランスフェリン受容体)抗体、抗c−myc(オンコプロテイン及びハプテン)抗体、抗サイトケラチン(トランスフェリン受容体)抗体、抗ビメンチン(内皮細胞)抗体(B細胞及びT細胞)、抗HPVタンパク質(ヒト乳頭腫ウイルス)抗体、抗κ軽鎖抗体(B細胞)、抗λ軽鎖抗体(B細胞)、抗メラノソーム(HMB45)抗体(メラノーマ)、抗前立腺特異的抗原(PSA)抗体(前立腺癌)、抗S−100抗体(メラノーマ、唾液、グリア細胞)、抗tau抗原抗体(アルツハイマー病)、抗フィブリン抗体(上皮細胞)、抗ケラチン抗体、抗サイトケラチン抗体(腫瘍)、抗α−カテニン(細胞膜)、又は抗Tn−抗原抗体(結腸癌、腺癌、及び膵臓癌)が挙げられる。
適切な抗体の他の具体例としては、限定するものではないが、抗増殖細胞核内抗原、クローンpc10(Sigma Aldrich、P8825)、抗平滑筋αアクチン(SmA)、クローン1A4(Sigma、A2547)、ウサギ抗βカテニン(Sigma、C2206)、マウス抗パンサイトケラチン、クローンPCK−26(Sigma、C1801)、マウス抗エストロゲン受容体α、クローン1D5(DAKO、M7047)、βカテニン抗体、クローン15B8(Sigma、C7738)、ヤギ抗ビメンチン(Sigma、V4630)、サイクルアンドロゲン受容体クローンAR441(DAKO、M3562)、フォンウィルブラント因子7、ケラチン5、ケラチン8/18、e−カドヘリン、Her2/neu、エストロゲン受容体、p53、プロゲステロン受容体、βカテニン、ロバ抗マウス(Jackson Immunoresearch、715−166−150)又はロバ抗ウサギ(Jackson Immunoresearch、711−166−152)を挙げることができる。
ある実施形態では、結合剤は、配列特異的であってもよい。配列特異的な結合剤は核酸を包含していてもよく、その結合剤は、標的中のヌクレオチド又はその誘導体の特定の線状配列を認識することができる。ある実施形態では、線状配列は、結合剤中の対応する相補的ヌクレオチドに各々結合し得る、連続するヌクレオチド又はその誘導体を包含していてもよい。代替の実施形態では、この配列は、プローブ上に対応する相補的残基を有さない1、2、又はそれ以上のヌクレオチドがある場合、連続していなくてもよい。核酸ベースの結合剤の適切な例としては、限定するものではないが、DNA又はRNAのオリゴヌクレオチド又はポリヌクレオチドが挙げられる。ある実施形態では、適切な核酸としては、核酸類似体、例えば、ジオキシゲニンdCTP、ビオチンdcTP 7−アザグアノシン、アジドチミジン、イノシン、又はウリジンが挙げられる。
特定の実施形態では、結合剤と標的の両方が核酸を包含していてもよい。ある実施形態では、核酸ベースの結合剤は、核酸標的とワトソンクリック結合を形成することができる。別の実施形態では、核酸結合剤は、核酸標的とフーグスティーン結合を形成し、それによって三重鎖を形成することができる。フーグスティーン結合によって結合する核酸結合剤は、核酸標的の主溝に入り、そこに位置している塩基とハイブリダイズすることができる。上記結合剤の適切な例としては、核酸の副溝及び主溝を認識及び結合する分子が挙げられる(例えば、いくつかの形態の抗生物質)。特定の実施形態では、核酸結合剤は、核酸標的とワトソンクリック及びフーグスティーンの両結合を形成することができる(例えば、ビスPNAプローブは、核酸に対してワトソンクリックとフーグスティーンの両結合が可能である)。
核酸結合剤の長さはまた、結合の特異性を決定することもできる。結合剤と核酸標的の間の単一ミスマッチのエネルギーコストは、より短い配列がより長い配列よりも相対的に高くなり得る。ある実施形態では、より小さい核酸結合剤のハイブリダイゼーションは、より長い核酸プローブのハイブリダイゼーションよりも特異的である。その理由は、より長いプローブがミスマッチに対してより修正可能であって、条件に応じて核酸に連続して結合することができるからである。特定の実施形態では、より短い結合剤は、所定の温度及び塩濃度において、より低い結合安定性を示すことがある。この場合、短い配列への結合により高い安定性を示す結合剤を用いることができる(例えば、ビスPNA)。ある実施形態では、核酸結合剤は、約4ヌクレオチド〜約12ヌクレオチド、約12ヌクレオチド〜約25ヌクレオチド、約25ヌクレオチド〜約50ヌクレオチド、約50ヌクレオチド〜約100ヌクレオチド、約100ヌクレオチド〜約250ヌクレオチド、約250ヌクレオチド〜約500ヌクレオチド、又は約500ヌクレオチド〜約1000ヌクレオチドの範囲の長さを有していてもよい。ある実施形態では、核酸結合剤は、約1000ヌクレオチドよりも大きい範囲の長さを有していてもよい。核酸結合剤の長さに関わらず、結合剤のすべてのヌクレオチド残基は、核酸標的中の相補的ヌクレオチドへハイブリダイズしないこともある。例えば、結合剤は長さが50ヌクレオチドの残基を含んでいてもよく、しかもこれらのヌクレオチド残基の25残基のみが核酸標的にハイブリダイズすることができる。ある実施形態では、ハイブリダイズし得るヌクレオチド残基は、相互に連続していてもよい。核酸結合剤は、一本鎖であってもよいし、又は二次構造を含んでいてもよい。ある実施形態では、生体試料は細胞又は組織試料を含んでいてもよく、また生体試料は核酸結合剤を使用してin situハイブリダイゼーション(ISH)に供することもできる。ある実施形態では、組織試料は、免疫組織化学(IHC)に加えてin situハイブリダイゼーションに供し、試料から所望する情報を得ることができる。
結合剤の種類及び標的に関わらず、結合剤と標的の間の結合特異性は、結合条件に依存して影響を受けることもある(例えば、相補的核酸の場合、ハイブリダイゼーション条件)。適切な結合条件は、pH、温度、又は塩濃度の1以上を調節することにより実現することができる。
結合剤は、内在的に標識化(信号発生基若しくは酵素が結合剤の合成中に付けられる)してもよいし、又は外在的に標識化(信号発生基又は酵素が後続の段階中に付けられる)してもよい。例えば、タンパク質ベースの結合剤については、標識アミノ酸を使用することによって、内在的に標識化した結合剤を製造することができる。同様に、内在的に標識化した核酸は、核酸合成に用いられる方法に応じて伸長する核酸へ直接的に信号発生基標識化ヌクレオチド又は信号発生基標識化ヌクレオシドホスホラミダイトを取り込む方法を使用して合成することができる。ある実施形態では、結合剤は、信号発生基又は酵素が後続の段階で取り込まれ得るような方法で合成することができる。例えば、この後続の標識化は、活性アミノ基又はチオール基を核酸又はペプチド鎖へ導入することによる化学的な手段によって行うことができる。ある実施形態では、タンパク質(例えば、抗体)又は核酸(例えば、DNA)などの結合剤は、適正な化学物質を使用し直接的に化学標識することができる。
ある実施形態では、より大きな特異性又は特定の実施形態では信号の増幅を提供する、結合剤の組合せを使用することができる。従って、ある実施形態では、結合剤のサンドイッチを使用することができ、この場合、第1の結合剤は標的に結合し二次結合を提供するのに用いられ、第2の結合剤は標識を含んでいても含んでいなくてもよく、それは(必要に応じて)三次結合をさらに提供することができ、この場合、三次結合メンバーは標識を含んでいてもよい。
結合剤の組合せの適切な例としては、一次抗体−二次抗体、相補的核酸、又は他のリガンド−受容体対(例えば、ビオチン−ストレプトアビジン)が挙げられる。適切な結合剤対のいくつかの具体的な例としては、c−mycエピトープを有する組換え発現タンパク質に対するマウス抗myc、His−Tagエピトープを有する組換えタンパク質に対するマウス抗HisG、エピトープ−タグを有する組換えタンパク質に対するマウス抗express(商標)、ヤギIgG一次分子に対するウサギ抗ヤギ、核酸に対する相補的核酸配列、チオレドキシン融合タンパク質に対するマウス抗チオ、融合タンパク質に対するウサギ抗GFP、α−D−ガラクトースに対するジャカリン、並びに、炭水化物結合タンパク質、糖、ニッケル結合マトリクス、又はヘパリンに対するメリビオースを挙げることができる。
ある実施形態では、一次抗体と二次抗体の組合せを結合剤として使用することができる。一次抗体は、標的の特異的領域に結合することができ、二次抗体は、一次抗体に結合することができる。二次抗体は、一次抗体への結合の前に信号発生基又は酵素に付けてもよく、又は、後続の段階で、信号発生基又は酵素と結合させることができる。代替の実施形態では、一次抗体と特異的結合リガンド−受容体対(例えば、ビオチン−ストレプトアビジン)を使用することができる。一次抗体をこの対の一方のメンバー(例えば、ビオチン)に付け、他のメンバー(例えば、ストレプトアビジン)には信号発生基又は酵素で標識化することができる。二次抗体、アビジン、ストレプトアビジン、又はビオチンは、互いに独立して、信号発生基又は酵素で標識化することができる。
ある実施形態では、本発明で開示されている方法は、免疫染色法に利用することができ、一次抗体を使用して、標的タンパク質に特異的と結合させることができる。二次抗体を使用して一次抗体に特異的と結合させ、それにより、もしあれば、一次抗体と後続の試薬(例えば、信号発生基又は酵素)の間に架橋を形成させることができる。例えば、一次抗体は、マウスIgG(マウスにおいて産生される抗体)であってもよく、対応する二次抗体は、マウスIgGの領域に結合することが可能な領域を有するヤギ抗マウス(ヤギにおいて産生される抗体)であってもよい。
ある実施形態では、信号増幅は、いくつかの二次抗体が一次抗体上のエピトープに結合し得る場合に得ることができる。免疫染色法において、一次抗体は、この方法で使用される第一抗体であってもよく、二次抗体は、この方法で使用される二次抗体であってもよい。別の実施形態では、三次抗体は、信号をさらに増加させるために使用することができる。例えば、マウスにおいて増強された抗体は、標的を結合させるために使用することができる。ヤギ抗マウス二次抗体は、一次抗体を結合するために使用することができ、標識化ロバ抗ヤギ抗体は、それ自体が標的に結合されている一次抗体に既に結合されている二次抗体を結合するために、三次抗体として使用することができる。ある実施形態では、一次抗体は、免疫染色法において使用する唯一の抗体であってもよい。
信号発生基
本発明で開示されている方法に適した信号発生基の種類は、実施される分析の特性、使用するエネルギー源及び検出器の種類、利用する電子移動試薬の種類、結合剤の種類、標的の種類を始めとする、様々な要因に依存し得る。
適切な信号発生基は、検出可能な信号を提供することができる分子又は化合物を包含し得る。信号発生基は、エネルギー源又は電流との相互作用の後に、特徴的な信号を提供することができる。エネルギー源は、電磁放射線源及び蛍光励起光源を包含していてもよい。電磁放射線源は、可視光、赤外線、及び紫外線を始めとする、あらゆる波長の電磁エネルギーを提供することができる。電磁放射線は、直接光源の形態であってもよく、又はドナーフルオロフォアなどの発光性化合物によって放出されてもよい。蛍光励起源は、起源に蛍光を発生させることができるものであってもよく、又は光子放出を生じるものでもよい(即ち、電磁放射線、有向電場、温度、物理的接触、若しくは機械的破壊)。適切な信号発生基は、光学測定(例えば、蛍光)、電気伝導度、又は放射活性を始めとする、様々な方法によって検出することができる信号を提供し得る。適切な信号発生基は、例えば、発光、エネルギー受容、蛍光、放射活性、又は消光であってもよい。
適切な信号発生基は、それが結合する成分、例えば、結合剤と立体的及び化学的に適合し得る。さらに、適切な信号発生基は、結合剤の標的への結合に干渉することがなく、結合剤の結合特異性に影響を及ぼすものでもない。適切な信号発生基は、有機の特性であっても、無機の特性であってもよい。ある実施形態では、信号発生基は、化学的特性、ペプチド特性、又は核酸特性のものであってもよい。
適切な信号発生基は、直接的に検出することができる。直接的に検出できる部分は、例えば、別の低い波長の光による励起の後に特定波長の光を放出し、且つ/又は特定波長の光を吸収する、蛍光標識などの信号を放出するその能力によって直接的に検出することができるものであってもよい。
本発明で開示されている方法に適した信号発生基は、電子移動試薬を適用する際の操作に従うことができる。ある実施形態では、信号発生基は退色されることもあり、例えば、光反応の過程で信号発生基が修飾される結果、それが形成する信号は、減少又は破壊され得る。化学的修飾は、信号発生基の完全な崩壊、又は信号発生基の信号形成成分の修飾を包含していてもよい。ある実施形態では、信号発生基は荷電されている。
信号形成成分の修飾は、信号形成特性の修飾を生じ得る任意の化学修飾(例えば、付加、置換、又は除去)を包含していてもよい。例えば、コンジュゲートされた信号発生基を非コンジュゲート化すると、信号発生基の発色特性が破壊される可能性がある。同様に、蛍光信号発生基上の蛍光阻害性官能基を置換すると、その蛍光特性の修飾が生じる可能性がある。ある実施形態では、特定の化学剤による不活性化に対して実質的に耐性のある1以上の信号発生基を、提供する方法における対照プローブとして使用することができる。
ある実施形態では、信号発生基は、発光性分子、放射性同位元素(例えば、P32又はH314C、125I及び131I)、光学密度又は電子密度マーカー、ラマン活性タグ、電子スピン共鳴分子(例えば、ニトロキシル基)、電荷移動分子(即ち、電荷変換分子)、半導体ナノ結晶、半導体ナノ粒子、コロイド金ナノ結晶、ミクロビーズ、磁気ビーズ、常磁性粒子から選択することができる。
ある実施形態では、信号発生基は光信号発生基であってもよく、例えば、発光性分子を包含していてもよい。発光性分子は、特定波長の光での照射に応答して発光することができる。発光性分子は、発光(励起時の材料による電磁放射線の非発熱放出)、リン光(放射線の吸収の結果としての遅延型発光)、化学発光(化学反応による発光)、蛍光、又は偏光蛍光を介して光を吸収及び放出することができる。光信号発生基の限定されない例としては、蛍光信号発生基、例えば、フルオロフォア、ラマン活性タグ又は発色団が挙げられる。
ある実施形態では、信号発生基は、本質的に、フルオロフォアを包含し得る。ある実施形態では、信号発生基は、本質的に、例えば、免疫組織化学分析において、抗体に結合されるフルオロフォアを包含し得る。一次抗体にコンジュゲートされ得る適切なフルオロフォアとしては、限定するものではないが、フルオレセイン、ローダミン、テキサスレッド、VECTORRed、ELF(酵素標識化蛍光)、Cy2、Cy3、Cy3.5、Cy5、Cy7、FluorX、Calcein、Calcein−AM、CRYPTOFLUOR、Orange(42kDa)、Tangerine(35kDa)、Gold(31kDa)、Red(42kDa)、Crimson(40kDa)、BHMP、BHDMAP、Br−Oregon、Lucifer Yellow、Alexa色素ファミリー、N−[6−(7−ニトロベンズ−2−オキサ−1,3−ジアゾール−4−イル)アミノ]カプロイル](NBD)、BODIPY、ボロンジピロメテンジフルオリド、1,3−ジクロロ−7−ヒドロキシ−9,9−ジメチル−2(9H)−アクリジノン(DDAO)、ジメチルアクリジノン(DAO)、Oregon Green、MITOTRACKERRed、フィコエリスリン、フィコビリプロテインBPE(240kDa)、RPE(240kDa)、CPC(264kDa)、APC(104kDa)、Spectrum Blue、Spectrum Aqua、Spectrum Green、Spectrum Gold、Spectrum Orange、SpectrumRed、Infra−Red(IR)色素、サイクリックGDP−リボース(cGDPR)、Calcofluor White、Lissamine、Umbelliferone、Tyrosine又はTryptophanが挙げられる。ある実施形態では、フルオロフォアは、シアニン、ローダミン、クマリン又はピレリウム(pyrelium)色素であってもよい。ある実施形態では、信号発生基は、本質的に、シアニン色素を包含し得る。別の実施形態では、信号発生基は、本質的に、1以上のCy2色素、Cy3色素、Cy5色素、又はCy7色素を包含し得る。代替の実施形態では、信号発生基は、BODIPY、ローダミン、1,3−ジクロロ−7−ヒドロキシ−9,9−ジメチル−2(9H)−アクリジノン(DDAO)又は7−ヒドロキシ−9,9−ジメチル−2(9H)−アクリジノン(DAO)であってもよい。
ある実施形態では、信号発生基は、FRET対の一部であってもよい。FRET対は、近くに互いに位置している場合、FRETを受けて検出可能な信号を形成又は消失させることが可能な2つのフルオロフォアを含む。ドナーの一部の例としては、Alexa488、Alexa546、BODIPY493、Oyster556、Fluor(FAM)、Cy3、又はTTR(Tamra)を挙げることができる。アクセプターの一部の例としては、Cy5、Alexa594、Alexa647、又はOyster656を挙げることができる。
上記のとおり、1以上の上記分子を信号発生基として使用することができる。ある実施形態では、1以上の信号発生基は信号破壊に適しており、信号発生基は、光活性化型化学退色によって退色され得る分子を本質的にに包含し得る。ある実施形態では、信号発生基は、電子移動試薬及び照射をさらに伴う光反応において化学的に修飾され得るフルオロフォアを包含し得る。ある実施形態では、信号発生基は、電子移動試薬の添加及び照射をさらに伴う光反応において修飾され得る、シアニン、BODIPY、ローダミン、又はアクリジノン(例えば、DDAO及びDAO)を本質的に包含し得る。ある実施形態では、信号発生基には、光活性化型化学退色によって退色され得る1以上のCy2色素、Cy3色素、Cy5色素、又はCy7色素を包含し得る。
酵素と酵素基質
ある実施形態では、プローブは、酵素に結合される結合剤を含んでいてもよい。ある実施形態では、適切な酵素は、基質の化学反応を触媒し、試料中に存在する受容体(例えば、フェノール基)に結合し得る反応生成物を形成する。受容体は、外因性(即ち、試料又は固体支持体に外在的に付着する受容体)であってもよいし、又は内因性(試料又は固体支持体に内在的に存在する受容体)であってもよい。単一の酵素が基質の化学反応を触媒し、標的付近の複数の信号発生基に共有結合させることができる場合、信号増幅が生じ得る。
ある実施形態では、適切な酵素はまた、光反応の過程で不活性化されることが可能であってもよい。適切な酵素の例としては、ペルオキシダーゼ、オキシダーゼ、ホスファターゼ、エステラーゼ、及びグリコシダーゼが挙げられる。適切な酵素の具体例としては、西洋ワサビペルオキシダーゼ、アルカリホスファターゼ、β−D−ガラクトシダーゼ、リパーゼ、及びグルコースオキシダーゼが挙げられる。ある実施形態では、酵素は、西洋ワサビペルオキシダーゼ、シトクロムCペルオキシダーゼ、グルタチオンペルオキシダーゼ、ミクロペルオキシダーゼ、ミエロペルオキシダーゼ、ラクトペルオキシダーゼ、及びダイズペルオキシダーゼから選択されるペルオキシダーゼである。
ある実施形態では、酵素は、光反応の過程で不活性化されるものではないが、光反応が完了する前又は後に行う個別の不活性化段階で不活性化される。不活性化段階は、酵素を含む試料への酵素不活性剤の適用を包含し得る。
ある実施形態では、結合剤と酵素を、単一の実体、例えば、標的へ結合することが可能であって、しかも基質の化学反応を触媒することも可能なタンパク質分子で具体化することができる。別の実施形態では、結合剤と酵素は、別々の実体で具体化することができ、共有結合形成によるか、又はリガンド−受容体コンジュゲート対(例えば、ビオチン−ストレプトアビジン)を使用することにより結合させることができる。
酵素基質は、利用する酵素と試料での結合に利用可能な標的に応じて選択することができる。例えば、HRPが酵素として含まれる実施形態ではは、基質は置換フェノール(例えば、チラミン)を含み得る。HRPのチラミンに対する反応によって、生体試料の表面タンパク質に存在する電子が豊富な部分(例えば、チロシン又はトリプトファン)又はフェノール基などの内因性受容体に結合することができる、活性化フェノール性基質が生じ得る。3−メチル−2−ベンゾチアゾリノン塩酸塩(MBTH)をHRP酵素と一緒に基質として利用することができる代替の実施形態ではは、p−ジメチルアミノベンズアルデヒド(DMAB)などの外因性受容体は、基質と反応させる前に、固体支持体又は生体試料に付着させることができる。
ある実施形態では、酵素基質は、酵素との反応後に脱リン酸化することができる。脱リン酸化反応生成物は、試料又は固体支持体中の内因性又は外因性の受容体(例えば、抗体)と結合させることができる。例えば、酵素はアルカリホスファターゼ(AP)を包含していてもよく、基質はNADP、置換ホスフェート(例えば、ニトロフェニルホスフェート)、又はリン酸化ビオチンを包含していてもよい。従って、受容体は、NAD結合タンパク質、脱リン酸化反応生成物に対する抗体(例えば、抗ニトロフェノール)、アビジン、又はストレプトアビジンを包含し得る。ある実施形態では、基質は酵素の作用時に不溶性生成物を生成するが、この不溶性生成物は、生成される場所の近傍に沈着し得る。このような基質の限定されない例としては、HRPに対するジアミノベンジジン(DAB)及びAPに対するELFを挙げることができる。
ある実施形態では、酵素はβ−ガラクトシダーゼを包含し、基質はフルオレセイン又はクマリンのβ−ガラクトピラノシル−グリコシドを包含し得る。受容体は、脱グリコシル化部分に対する抗体(例えば、抗フルオレセイン又は抗クマリン)を包含し得る。ある実施形態では、HRP/APなどの複数の酵素の組合せを酵素として使用することができる。基質は、リン酸化置換フェノール、例えばチロシンホスフェートを包含し得るが、これはHRPと反応させる前に、APにより脱リン酸化し、フェノール基又は電子が豊富な部分をベースとする受容体と結合させることが可能な反応生成物を生成することができる。
酵素基質の反応生成物は、検出可能な信号を提供することがさらに可能となり得る。ある実施形態では、本発明で開示されている方法で利用される酵素基質は、非発色性又は非化学発光性の基質を包含し得る。即ち、酵素と酵素基質の反応は、それ自体で検出可能な信号を形成しなくてもよい。本明細書に開示されている方法で利用される酵素基質は、外在性信号発生基(例えば、フルオロフォア)を標識として包含し得る。信号発生基と酵素基質は、直接的に(例えば、蛍光標識を有する酵素基質)又は間接的に(例えば、リガンド−受容体コンジュゲート対を介して)結合させることができる。ある実施形態では、基質は、保護化官能基(例えば、スルフヒドリル基)を包含し得る。活性化基質を受容体に結合した後、官能基は、脱保護することができ、チオール反応基(例えば、マレインイミド又はヨードアセチル)を有する信号発生基を使用して、信号発生基へのコンジュゲーションを行うことができる。
ある実施形態では、プローブは、西洋ワサビペルオキシダーゼを包含していてもよく、基質は、置換フェノール類(例えば、チラミン)から選択される。ある実施形態では、西洋ワサビペルオキシダーゼは、活性化フェノール性基質を、試料中に存在するフェノール基に共有結合させる。ある実施形態では、プローブは、HRPに結合される結合剤を包含し、基質は、フルオロフォアに結合したチラミンを包含し得る。
電子移動試薬及び光反応
電子移動試薬は、光励起を受けることが可能な分子との光反応に関与することができる、1以上の化学物質を包含し得る。光励起を受けることが可能な分子は、信号発生基であってもよい。電子移動試薬は、固体、溶液、ゲル又は懸濁液の形態の試料と接触させることができる。
ある実施形態では、電子移動試薬はホウ酸塩を含んでいてもよい。ある実施形態では、ホウ酸塩は次の構造式で表される。
式中、
1、R2及びR3は各々独立にアルキル、アルケニル、アルキニル、アリール又はヘテロアリールであって、アルキル、アルケニル、アルキニル、アリール又はヘテロアリールは、(C1〜C4)アルキル、(C1〜C4)アルコキシ、(C1〜C4)アルキルアミノ、アミノ、ヒドロキシル、シアノ、ハロゲン、又はニトロからなる群から選択される1以上の置換基で適宜置換されていてもよく、
4は、アルキル、アルケニル又はアルキニルであって、アルキル、アルケニル又はアルキニルは、(C1〜C4)アルキル、(C1〜C4)アルコキシ、(C1〜C4)アルキルアミノ、アミノ、ヒドロキシル、シアノ、ハロゲン、又はニトロからなる群から選択される1以上の置換基で適宜置換されていてもよく、
+は、無機カチオン及び有機カチオンからなる群から選択される。
ある実施形態では、M+は無機カチオン、例えば、Li+、Na+、又はK+の群から選択される。別の実施形態では、M+は有機カチオンの群から選択される。有機カチオンの限定されない例としては、NR4 +を挙げることができ、式中、各Rは独立に水素、置換又は非置換のアルキル基(例えば、ヒドロキシアルキル基、アミノアルキル基、若しくはアンモニウムアルキル基)、又は置換若しくは非置換のアリール基(例えば、フェニル、ナフチル及びアントラシル、イミダゾリル、チエニル、フラニル、ピリジル、ピリミジル、ピラニル、ピラゾリル、ピロイル、ピラジニル、チアゾール、オキサゾリル、及びテトラゾール)である。
ある実施形態では、R1、R2及びR3は各々アリールである。ある実施形態では、アリールはフェニルである。ある実施形態では、フェニルは非置換フェニルである。
ある実施形態では、R4は、適宜置換されていてもよいアルキルである。ある実施形態では、R4は非置換ブチルである。
ある実施形態では、R1、R2及びR3は各々適宜置換されていてもよいアリールであり、R4は適宜置換されていてもよいアルキルである。別の実施形態では、R1、R2及びR3は各々非置換フェニルであり、R4は非置換ブチルであり、ホウ酸塩はトリフェニルブチルボレート塩である。
ある実施形態では、M+は無機カチオンである。ある実施形態では、無機カチオンはLi+、Na+又はK+である。一実施形態では、M+はLi+である。
他の適切な電子移動試薬としては、スルフィナート、エノラート、カルボキシレート(例えば、アスコルビン酸)、有機金属及びアミン(例えば、トリエタノールアミン、及びN−フェニルグリシン)を挙げることができる。これら及び他の電子移動試薬は既に記載されている(例えば、Macromolecules 1974, 7, 179-187; Photogr. Sci. Eng. 1979, 23, 150-154; Topics in Current Chemistry, Mattay, J., Ed.; Springer-Verlag: Berlin, 1990, Vol. 156, pp 199-225;及びPure Appl. Chem. 1984, 56, 1191-1202を参照されたい)。
光活性化型化学退色に使用される電子移動試薬は、電子移動試薬と信号発生基の間の光反応がエネルギー的に有利であるように選択される。ある実施形態では、電子移動試薬及び光励起信号発生基は電子ドナー/アクセプター対を形成し、この場合、電子移動試薬から信号発生基への電子移動はエネルギー的に有利である。電子移動は、信号発生基の化学修飾をさらにもたらし、信号発生基の退色を生じさせ得る。電子ドナー/アクセプター対を形成することができる電子移動試薬及び信号発生基の例としては、電子移動試薬としてのトリフェニルホウ酸ブチルなどのトリアリールホウ酸アルキル、及び信号発生基としてのシアニン色素(例えば、Cy3及びCy5)、BODIPY、ローダミン又はアクリドン色素が挙げられる。
前述の1以上の電子移動試薬は、光励起及び/又は後続の電子移動試薬との光反応に対する信号発生基、酵素、結合剤、標的又は生体試料の感受性に応じて、本発明で開示されている方法において使用することができる。ある実施形態では、照射と電子移動試薬と光励起信号発生基の間の後続の光反応による信号発生基の光励起は、本質的に、結合剤、標的及び生体試料の完全性に影響を及ぼさない。ある実施形態では、照射と後続の光反応による信号発生基の光励起は、結合剤と標的の間の結合特異性に影響を及ぼさない。
2以上(5以下)の信号発生基を同時に利用し得るある実施形態では、光反応は、1以上の信号発生基を選択的に修飾することができる。この選択性は、特定波長の照射による信号発生基の選択的光励起から導くことができる。照射波長は1以上の信号発生基が光励起されるように選択するが、一方、試料中に存在し得る、残っている1以上の信号発生基は影響されず維持され得る。ある実施形態では、520〜580nmの範囲の波長に限定される照射は、Cy3色素の選択的光励起に使用することができる。別の実施形態では、620〜680nmの範囲の波長に限定される照射は、Cy5色素の選択的光励起に使用することができる。代替の実施形態では、選択的光励起はレーザーを使用することにより行うことができる。
さらに光反応を受ける光励起信号発生基の性質は、上記のような、電子移動試薬の選択、並びに、温度、溶媒及びpHなどの反応条件に依存し得る。
ある実施形態では、光活性化型化学退色は4〜50℃の温度で、さらに好ましくは20〜30℃温度で実施される。
ある実施形態では、光活性化型化学退色は、溶液中で行なわれる。ある実施形態では、溶液は緩衝液である。別の実施形態では、緩衝液はリン酸緩衝生理食塩水(PBS)の緩衝溶液である。ある実施形態では、溶液はpH5〜9で緩衝化されている。好ましい実施形態では、溶液のpHは6〜8である。
生体試料の連続的分析、プローブとの接触及び結合
生体試料は、プローブと接触させ、プローブを生体試料中の標的へ結合させることができる。ある実施形態では、標的は、プローブとの結合において容易に行なわれにくい場合があり、生体試料をさらに処理し、標的とプローブ中の結合剤との間の結合を、例えば、抗原復帰、酵素消化、エピトープ回復、又はブロッキングなどを介して、促進させることができる。
ある実施形態では、プローブは溶液の形態の生体試料と接触させることができる。ある実施形態では、プローブは、標識(信号発生基又は酵素)に結合した結合剤を包含し得る。結合剤と標識(信号発生基又は酵素)は、単一の分子において具体化され、プローブ溶液は単一の段階で適用され得る。或いは、結合剤と標識(信号発生基又は酵素)は、個別の実体であってもよく、プローブ溶液は単一の段階又は複数の段階で適用することができる。すべての実施形態では、対照プローブは、試料中の1以上の標的にさらと結合させることができる。
結合剤、標的、及びこれら両方の間の結合性の特性に応じて、十分な時間、接触させることができる。ある実施形態では、過剰なプローブ分子(従って、結合剤分子)を利用して、生体試料中の標的がすべて確実と結合させることができる。この結合作用に十分な時間を提供した後、試料を洗浄溶液(例えば、適切な緩衝溶液)と接触させ、結合していないすべてのプローブを洗い流すことができる。使用するプローブの濃度及び種類に応じて、生体試料は、同一の又は異なる洗浄溶液を各段階で使用する、いくつかの洗浄段階に供することができる。
ある実施形態では、生体試料は、第1の結合段階において、1より多いプローブと接触させることができる。複数のプローブは、生体試料中の異なる標的へ結合させることができる。例えば、生体試料は、標的1と標的2の2つの標的を含んでいてもよく、この場合、2組のプローブ:プローブ1(標的1への結合が可能な結合剤1を有する)とプローブ2(標的2への結合が可能な結合剤2を有する)を使用することができる。複数のプローブはまた、標的−結合プローブの複数の多数の組を含んでいてもよい。複数のプローブは、生体試料と同時に(例えば、単一の混合物として)、又は連続的に(例えば、プローブ1を生体試料と接触させ、次いで洗浄段階ですべての非結合プローブ1を除去し、次いでプローブ2を生体試料と接触させる等)接触させることができる。
標的に同時と結合させることができるプローブの数は、利用する検出の種類、即ち、達成可能なスペクトル分解に依存し得る。例えば、蛍光ベースの信号発生基においては、5つ以下の異なるプローブ(5つ以下のスペクトル分解可能な蛍光信号を提供するもの)を開示する方法に従って利用することができる。複数の蛍光信号発生基に関連する、スペクトル分解可能とは、信号発生基の蛍光放出バンドが十分に区別される、即ち、個別の信号発生基が付けられている結合剤が、標準の光検出システムを使用して個別の信号発生基により生じる蛍光信号に基づいて識別され得るように、十分な非重複性であることを示している。ある実施形態では、すべてのプローブは同時と結合させることができるが、1サイクル当たり1〜5のプローブの組に連続的に検出され得る。
ある実施形態では、生体試料は、第1の結合段階で5又は5未満のプローブと本質的に接触させることができる。酵素ベースのプローブを利用する実施形態では、標的に同時と結合させることができるプローブの数は、異なる酵素及び利用可能なそれらの対応する基質の数にも依存し得る。
ある実施形態では、生体試料は、全細胞、組織試料を含んでいてもよいか、又は生体試料は、マイクロアレイ、ゲル、若しくは膜へ付着させていてもよい。いくつかの実施形態では、生体試料は、組織試料を包含し得る。組織試料は、限定するものではないが、外科的切除、吸引、又は生検を始めとする、様々な方法により得ることができる。組織は、新鮮であっても、凍結されていてもよい。ある実施形態では、組織試料はパラフィンに固定し包埋していてもよい。組織試料は、固定するか、又は別の慣用の方法によって保存することができる。固定剤の選択は、組織を組織学的に染色するか、又は別の分析する目的によって決定することができる。固定の長さは、組織試料のサイズと、使用する固定剤に依存し得る。例えば、中性緩衝化ホルマリン、ブアン定液又はパラホルムアルデヒドを使用して組織試料を固定又は保存することができる。
ある実施形態では、組織試料は、まず固定し、次いで順次増加するアルコールで脱水し、組織試料が切断され得るようにパラフィン又は別の切片化媒体に浸透させて包埋することができる。代替の実施形態では、組織試料は切断し、その後固定することができる。ある実施形態では、組織試料はパラフィンに包埋して処理することができる。使用できるパラフィンの例としては、限定するものではないが、Paraplast、Broloid、及びTissuemayが挙げられる。組織試料が包埋されたら、試料をミクロトームにより、約3ミクロン〜約5ミクロンの範囲の厚さを有し得る切片へ切片化することができる。切片にしたら、切片は、接着剤を使用してスライドに付けることができる。スライド接着剤の例としては、限定するものではないが、シラン、ゼラチン、ポリ−L−リジンを挙げることができる。実施形態では、包埋材料としてパラフィンを使用する場合、組織切片は、脱パラフィン化し、水中に再水和させることができる。組織切片は、例えば、有機薬剤(例えば、キシレン、又は段階的に順次減少するアルコール)を使用することによって、脱パラフィン化することができる。
ある実施形態では、上記で論じた試料調製方法とは別に、免疫組織化学の前、間、又は後に、組織切片にさらなる処理を施すことができる。例えば、ある実施形態では、組織切片は、エピトープ回復法、例えば、組織試料のクエン酸緩衝液又はトリス緩衝液又は両液の連続使用の加熱に供することができる。ある実施形態では、組織切片はブロッキング段階に適宜供し、あらゆる非特異的結合を最低限にすることができる。
ある実施形態では、生体試料又は生体試料の一部、又は生体試料中に存在する標的は、表面、例えば、DNAマイクロアレイ若しくはタンパク質マイクロアレイ、又は固体支持体(例えば、ゲル、ブロット、ガラススライド、ビーズ、若しくはELISAプレート)の表面に付着させることができる。ある実施形態では、生体試料中に存在する標的は、固体支持体の表面に付着させることができる。生体試料中の標的は、物理的結合形成により、共有結合形成により、又はその両方により、固体支持体に付着させることができる。
ある実施形態では、生体試料中の標的は、本発明で開示されている方法を使用して、膜に付着させ、連続的にプローブすることができる。ある実施形態では、生体試料中の標的は、試料と膜を接触させる前に処理することができる。例えば、組織試料中のタンパク質標的をプローブするための方法を用いる実施形態は、組織ホモジェネート又は抽出物の生体試料からの標的タンパク質を抽出する段階を包含し得る。まず、固体組織又は全細胞を、ブレンダー(容量の多い試料向け)を使用して、ホモゲナイザー(少量向け)を使用して、又は超音波処理によって、機械的に破砕することができる。様々な細胞画分及びオルガネラは、濾過及び遠心分離の技術を使用して分離することができる。また界面活性剤、塩、及び緩衝液を利用して、細胞の溶解を促進し、タンパク質を可溶化することができる。同様に、核酸をプローブする方法を用いる実施形態は、例えば、制限エンドヌクレアーゼ(DNA向け)を使用して、DNA断片又はRNA断片を調製する段階を包含し得る。
ある実施形態では、生体試料から抽出される標的は、ゲル電気泳動によってさらに分離することができる。標的は、等電点(pI)、分子量、電荷、又はこれら因子の組合せによって分離することができる。分離の特性は、試料の処理とゲルの特性に依存し得る。適切なゲルは、ポリアクリルアミドゲル、SDS−ポリアクリルアミドゲル、又はアガロースゲルから選択することができる。
適切な膜は、膜が非特異的標的結合特性を有するように選択することができる。ある実施形態では、適切な膜は、フッ化ポリビニリデン膜、ニトロセルロース膜、又はナイロン膜から選択することができる。ある実施形態では、適切な膜は、その膜が複数のプロービングに実質的に安定であるように選択することができる。タンパク質プローブを使用する標的のプロービングを用いる実施形態ではは、ブロッキング溶液を使用して膜をブロックし、タンパク質プローブの膜への非特異的結合を防止することができる。DNA断片のプロービングを用いる実施形態ではは、DNAゲルを希HCl溶液又はアルカリ溶液で処理し、ゲルから膜へのDNAのより効率的な移動を促進することができる。
ある実施形態では、膜を約60℃〜約100℃の範囲の温度に供して、標的を膜へ、例えば、DNA標的をニトロセルロース膜へ共有結合させることができる。ある実施形態では、膜を紫外線放射へ曝露し、標的を膜へ、例えば、DNA標的をナイロン膜へ共有結合させることができる。ある実施形態では、生体試料中の標的は、膜にブロットする前に電気泳動による分離を行わず、例えば、ドットブロット技術において、膜上で直接プローブすることができる。 組織試料又は膜の調製後、プローブ溶液(例えば、標識化抗体溶液)は、十分な時間、結合剤の標的(例えば、抗原)への結合に適した条件下で、組織切片又は膜と接触させることができる。先に記載したように、2つの検出方法:直接法又は間接法を使用することができる。直接的な検出においては、信号発生基標識化一次抗体(例えば、フルオロフォア標識化一次抗体又は酵素標識化一次抗体)は、組織試料又は膜中の抗原とインキュベートとすることができ、それは、さらなる抗体と相互作用させることなく可視化することができる。間接的な検出においては、非コンジュゲート化一次抗体を抗原とインキュベートし、次いで標識化二次抗体を一次抗体と結合させることができる。いくつかの二次抗体は一次抗体上の異なるエピトープと反応することができるので、信号の増幅が起こり得る。ある実施形態では、2以上(5以下)の一次抗体(異なる種由来であって、標識化又は非標識化のもの)を組織試料と接触させることができる。次いで、非標識化抗体は、対応する標識化二次抗体と接触させることができる。代替の実施形態では、一次抗体と特異的結合リガンド−受容体対(例えば、ビオチン−ストレプトアビジン)を使用することができる。一次抗体をこの対の一方のメンバー(例えば、ビオチン)に付け、別のメンバー(例えば、ストレプトアビジン)を信号発生基又は酵素で標識化することができる。二次抗体、アビジン、ストレプトアビジン、又はビオチンは、各々独立して、信号発生基又は酵素で標識化することができる。

一次抗体又は二次抗体を酵素標識へコンジュゲートすることができる実施形態ではは、蛍光信号発生基結合基質を加えて、抗原を可視化させることができる。ある実施形態では、基質と蛍光信号発生基は単一の分子において具体化され、単一の段階で適用され得る。別の実施形態ではは、基質と蛍光信号発生基は個別の実体であってもよく、単一の段階又は複数の段階で適用することができる。
結合剤に結合されている酵素は基質と反応し基質の化学反応を触媒して、蛍光信号発生基結合基質を生体試料と共有結合させることができる。ある実施形態では、酵素は西洋ワサビペルオキシダーゼを包含していてもよく、基質はチラミンを包含していてもよい。西洋ワサビペルオキシダーゼ(HRP)とチラミン基質との反応は、チラミン基質が試料中に存在するフェノール基へ共有結合させる。酵素−基質コンジュゲートを利用する実施形態ではは、1つの酵素が複数の基質分子を触媒することができるので、信号が増幅され得る。ある実施形態では、本発明で開示されている方法を利用し、間接検出方法を使用して(例えば、一次−二次抗体を使用して)、HRP−チラミド信号増幅方法を使用して、又は両方法の組合せ(例えば、間接的なHRP−チラミド信号増幅方法)を使用して少量の標的を検出することができる。本発明で開示されている方法への信号増幅技術の組み込みと、それに対応した、組み込まれる信号増幅技術の種類は、特定の標的に要求される感度及びプロトコールに関与する段階の数に依存し得る。
プローブ由来の信号の観測、又は複数のプローブの第1の組由来の信号の観測
信号発生基由来の信号は、検出システムを使用して検出することができる。使用する検出システムの特性は、使用する信号発生基の特性に依存し得る。検出システムとしては、電荷結合素子(CCD)検出システム、蛍光検出システム、電気系検出システム、写真フィルム検出システム、化学発光検出システム、酵素検出システム、光学的検出システム、近接場検出システム、又は全内部反射(TIR)検出システムを挙げることができる。
1以上の上記技術を使用して、信号発生基(結合剤と結合しているか、又は酵素基質と結合しているもの)由来の信号の1以上の特徴を観測することができる。ある実施形態では、信号強度、信号波長、信号位置、信号頻度、又は信号シフトは上記技術の1以上を使用して決定することができる。ある実施形態では、信号の1以上の上記特徴を観測、測定、及び記録することができる。
ある実施形態では、観測される信号は蛍光信号であり、生体試料中の標的に結合されているプローブは、フルオロフォアである信号発生基を含んでいてもよい。ある実施形態では、蛍光信号は、蛍光検出システムを使用して、蛍光波長又は蛍光性強度を決定することにより測定することができる。ある実施形態では、信号はin situで観測することができる。即ち、信号は、生体試料中の標的に結合剤を介して結合(associate)している信号発生基から直接観測することができる。ある実施形態では、信号発生基由来の信号は、生体試料の内部で分析することができ、個別のアレイ系検出システムの必要性を回避することができる。
ある実施形態では、信号の観測は、生体試料の画像を取り込むことを包含し得る。ある実施形態では、本発明で開示されている方法に従って、撮像デバイスに接続した顕微鏡を検出システムとして使用することができる。ある実施形態では、信号発生基(例えば、フルオロフォア)を励起し、得られた信号(例えば、蛍光信号)をデジタル信号の形態(例えば、デジタル化画像)で観測し記録することができる。同じ手順は、適正な蛍光フィルターを使用して試料中に結合されている様々な信号発生基(存在した場合)に対して繰り返すことができる。
ある実施形態では、複数の異なる種類の信号は、同一試料において観測することができる。例えば、1つの標的は蛍光プローブで検出し、同一試料中の第2の標的は発色性プローブで検出することができる。
電子移動試薬の適用、及び光反応を開始し信号を修飾するための照射
信号を修飾させるためには、電子移動試薬を試料に適用し、次いで試料に照射し光反応を開始させることができる。ある実施形態では、信号修飾は、1以上の信号の特徴の変化、例えば、信号強度の低下、信号ピークのシフト、又は共鳴周波数の変化を包含し得る。ある実施形態では、光反応は、蛍光信号発生基と酵素(利用した場合)を実質的に不活性化する、すなわち退色することによって信号を修飾することができる。
ある実施形態では、電子移動試薬は溶液の形態であってもよい。一実施形態では、電子移動試薬は緩衝化水溶液の形態で存在する。ある実施形態では、電子移動試薬はホウ酸塩であってもよい。別の実施形態では、電子移動試薬は、0.001mM〜1000mMの濃度で存在するトリフェニルブチルボレートのリチウム塩であってもよい。好ましい実施形態では、トリフェニルブチルボレートの濃度は20mM〜100mMである。ある実施形態では、電子移動試薬、例えばホウ酸塩の濃度は、信号発生基、例えば蛍光色素の濃度の1〜60当量を示し得る。
電子移動試薬と接触させた試料の照射は、所定の時間で実施することができる。照射時間は、電子移動試薬と光励起信号発生基の間の光反応の所望する時間に依存し得る。ある実施形態では、照射段階は、約20秒〜約60分、好ましくは約20秒〜約15分、さらに好ましくは約20秒〜約5分間で実施することができる。ある実施形態では、照射段階は、残った信号が信号発生基から観測されなくなるまで実施することができる。ある実施形態では、照射段階は室温で実施することができる。
ある実施形態では、光反応は4〜50℃の温度で、さらに好ましくは20〜30℃の温度で実施される。
ある実施形態では、光反応は溶液で実施される。ある実施形態では、溶液は緩衝液である。別の実施形態では、緩衝液はリン酸緩衝生理食塩水(PBS)で緩衝された溶液である。ある実施形態では、溶液はpH5〜9で緩衝化される。好ましい実施形態では、溶液のpHは6〜8である。
ある実施形態では、光反応(例えば照射波長)の条件は、結合剤、標的、生体試料、及び結合剤と標的の間の結合が光反応によって影響を受けないように選択することができる。ある実施形態では、光反応は、信号発生基及び酵素(使用する場合)並びに電子移動試薬だけに影響を及ぼすことができ、しかも、標的/結合剤の結合又は結合剤の完全性には影響を及ぼすことはない。従って、例としては、結合剤は、一次抗体又は一次抗体/二次抗体の組合せを包含し得る。本発明で開示されている方法による光反応は、信号発生基にのみ影響を及ぼすことができ、しかも、一次抗体又は一次抗体/二次抗体の組合せには本質的に影響を及ぼすことはない。ある実施形態では、結合剤(例えば、一次抗体又は一次抗体/二次抗体の組合せ)は、電子移動試薬と試料を接触させ、次いで照射を行って光反応を開始した後に、生体試料中の標的と結合させることができる。
ある実施形態では、信号の特徴は、光反応の後に観測して、信号修飾の有効性を決定することができる。例えば、色は光反応の前に観測することができるが、光反応後に色は存在しない可能性がある。別の例において、蛍光信号発生基由来の蛍光強度は、光反応の前と光反応の後で観測することができる。ある実施形態では、所定量までの信号強度の低下は、信号修飾、光活性化型化学退色、又は退色と呼ばれることがある。ある実施形態では、信号修飾、又は光活性化型化学退色は、約50パーセントを超える範囲の量まで信号強度の低下が示され得る。ある実施形態では、信号修飾、又は光活性化型化学退色は、約60パーセントを超える範囲の量まで信号強度の低下が示され得る。ある実施形態では、信号修飾、又は光活性化型化学退色は、約80パーセントを超える範囲の量まで信号強度の低下が示され得る。ある実施形態では、信号修飾、又は光活性化型化学退色は、約90パーセントを超える範囲の量まで信号強度の低下が示され得る。ある実施形態では、信号修飾、又は光活性化型化学退色は、約95パーセントを超える範囲の量まで信号強度の低下が示され得る。ある実施形態では、信号修飾、又は光活性化型化学退色は、約100パーセントの範囲の量まで信号強度の低下、又は完全な退色が示され得る。
試料と後続のプローブとの接触、及び後続の標的への結合
生体試料又は試料は、第1のプローブに関して上記に記載した1以上の方法を使用して、後続のプローブと接触させることができる。後続のプローブは、前の段階で結合させた標的とは異なる標的に結合することができる。複数のプローブを前のプローブ接触段階で生体試料と接触させることができる実施形態では、後続のプローブは、先のプローブの組により結合される標的とは異なる標的に結合することができる。ある実施形態では、生体試料は、後続のプローブ接触段階において複数のプローブと接触させることができる。ある実施形態では、プローブの複数の多数の組が第1の段階の生体試料に適用される場合、後続の組のプローブ由来の後続の組の信号が形成され得る。第2の組の信号の形成は、信号発生基を含む個別の成分を第2の組のプローブと結合させることを含んでいてもよい。例えば、第2の組のプローブはビオチンタグを含んでいてもよく、また、信号発生基を含む成分は、ビオチンタグを結合することができるストレプトアビジンをさらに含んでいてもよい。或いは、第2の組の信号の形成は、例えば、フルオロフォア消光剤対の間の距離を変化させることによって、信号形成成分をマスキングしないことを含んでいてもよい。ある実施形態では、第2の組の信号の形成は、第2の組のプローブに結合した配列に相補的な標識化プローブのハイブリダイゼーションによるものであってもよい。
酵素に結合されている結合剤をプローブとして使用することができる実施形態では、結合段階は、蛍光信号発生基に結合されている酵素基質と酵素との反応を伴う反応段階をさらに包含し得る。
ある実施形態では、異なる結合段階で使用される信号発生基(例えば、蛍光信号発生基)は同一であってもよい。即ち、同一の検出チャネルにおいて検出可能であってもよい。異なる結合段階において同一信号発生基を利用する方法は、限られた数の検出チャネルが利用可能である場合、複数の標的の検出を可能にする。ある実施形態では、ある組のプローブ(2〜4のプローブ)が第1の結合段階において利用され得る場合、後続のプローブは、前の結合段階と同一の信号発生基を含んでいてもよい。例えば、第1の結合段階は、Cy3、Cy5、及びCy7がコンジュゲートされている異なる結合剤を含んでいてもよい。ある実施形態では、後続の結合段階もまた同一色素の組、即ち、Cy3、Cy5、及びCy7を含んでいてもよい。
ある実施形態では、異なる結合段階で使用される信号発生基(例えば、蛍光信号発生基)は異なっていてもよい。即ち、異なる検出チャネルにおいて独立して検出可能であってもよい。例えば、ある実施形態では、第1のプローブは、緑色の領域に蛍光放出波長を有するCy3色素を含んでいてもよく、後続のプローブは、近赤外領域に蛍光放出波長を有するCy7色素を含んでいてもよい。
結合剤が結合した酵素をプローブとして利用する実施形態では、異なる結合段階及び反応段階に利用する酵素と基質は同一であってもよい。先の酵素は、試料を後続の酵素に結合する前の光反応の過程で、又は個別の不活性段階で不活性化し、先の酵素と後続の基質との交差反応を防止することができる。例えば、第1の結合段階及び反応段階は、HRPに結合されている結合剤及び第1のフルオロフォアに結合されているチラミンを含んでいてもよい。光誘起型化学退色段階は、フルオロフォアを実質的に不活性化する段階と、HRPを実質的に不活性化する段階が関与し得る。ある実施形態では、光誘起型化学退色段階と不活性化段階は同時に起こり得る。ある実施形態では、光誘起型化学退色段階と不活性化段階は連続的に起こり得る。光誘起型化学退色段階と不活性化段階の後、試料は、HRPに結合されている後続の結合剤と接触させることができ、これは第2のフルオロフォアに結合しているチラミンとさらに反応させることができる。同様に、後続の結合段階と反応段階は、多回反復のHRP−チラミンを酵素基質コンジュゲートとして使用して作用させることができ、各々の結合段階と反応段階に光誘起型化学退色段階と不活性化段階が続く。第1のフルオロフォアと後続のフルオロフォアは、検出に利用可能な検出チャネルの数に応じ、同一であっても異なっていてもよい。
ある実施形態では、第1の結合段階には、ある組のプローブ(例えば、2〜5のプローブ)を含んでいてもよく、各プローブは異なる標的へ結合することが可能な結合剤と、異なる基質の化学反応を触媒することが可能な各酵素を含んでいてもよい。例えば、一実施形態では、第1のプローブの組は、HRPに結合されている結合剤1と、APに結合されている結合剤2を含み得る。反応段階は、Cy3へ結合されているチラミン及びCy7に結合されているNADPと試料とを接触させることを包含し得る。酵素のその対応する基質との反応及び信号の観測に続き、シアニン色素は光誘起型化学退色により不活性化され、酵素は光反応の過程で、又は適切な不活性化剤の添加により不活性され得る。後続のプロービング段階は、結合剤−酵素及び基質−フルオロフォア対の同一の組、又は結合剤−酵素及び基質−フルオロフォア対の異なる組を包含し得る。複数のプローブと基質−信号発生基は、生体試料と同時に(例えば、単一の混合物として)接触させるか、連続的に接触させることができる(例えば、プローブ1は生体試料と接触させ、次いで洗浄段階を行いすべての非結合プローブ1を除去し、その後プローブ2を生体試料と接触させるなど)。
後続プローブ由来の後続信号の観測
上記に記載の1以上の検出方法を使用して、後続の信号発生基(後続のプローブに存在する)由来の後続(例えば、第2、第3等)の信号の1以上の特徴を観測することができる。ある実施形態では、信号強度、信号波長、信号位置、信号頻度、又は信号シフトは、上記技術の1以上を使用して決定することができる。第1の信号と同様に、得られる後続の信号(例えば、蛍光信号)は、デジタル信号の形態(例えば、デジタル化画像)で記録することができる。ある実施形態では、後続の信号の観測は、生体試料の光学像を取り込むことも包含し得る。
接触段階、結合段階、及び観測段階の反復
ある実施形態では、試料を後続(例えば、第2、第3等)のプローブと接触させた後、光反応における信号発生基の退色と、後続のプローブ投与/既に結合されているプローブ由来の信号形成は、複数回繰り返すことができる。ある実施形態では、第2のプローブ由来の第2の信号を検出した後、生体試料は、電子移動試薬と接触させ、照射し、第2プローブ由来の信号を修飾することができる。さらに、第3のプローブは、この生体試料と接触させることができ、この場合、第3のプローブは、第1及び第2のプローブとは異なる標的と結合させることができる。同様に、第3のプローブ由来の信号を検出し、次いで電子移動試薬を適用し照射を行いその信号を修飾することができる。この結合段階、観測段階、及び退色段階は、さらなる標的に結合可能なn番目のプローブを使用して反復的に複数回繰り返し、様々なプローブ及び/又は信号発生基を使用して、様々な標的に関する情報を利用者に提供することができる。酵素に結合されている結合剤をプローブとして利用することができる実施形態ではは、結合段階は、蛍光信号発生基に結合されている酵素基質と酵素との反応を伴う反応段階をさらに包含し得る。
ある実施形態では、この退色段階、結合段階、反応段階(適用可能な場合)、及び観測段階は1回以上繰り返すことができる。ある実施形態では、この退色段階、結合段階、反応段階(適用可能な場合)、及び観測段階は、5回以上、15回以上、30回以上、60回以上、100回以上、又は150回以上繰り返すことができる。ある実施形態では、一連の段階は、25〜30回繰り返すことができる。ある実施形態では、一連の段階は、2〜10回繰り返すことができる。
ある実施形態では、一連のプローブは、生体試料と連続的な方法で接触させ、生体試料の多重化分析を得ることができる。一部の実施形態では、一連のプローブの組(1つの組に、5以下のプローブを含む)を生体試料と連続的な方法で接触させ、生体試料の多重化分析を得ることができる。多重化分析は、一般に、同一検出機構を使用する生体試料中の複数の標的分析を意味する。
ある実施形態では、生体試料を第1の段階でプローブの複数の多数の組と接触させる場合、退色、後続の組のプローブ由来の信号の形成、及び信号の観測を含む一連の段階は、5回以上、15以上、30回以上、60回以上、100回以上、又は150回以上繰り返すことができる。ある実施形態では、一連の段階は25〜30回繰り返すことができる。別の実施形態では、一連の段階は2〜10回繰り返すことができる。
ある実施形態では、生体試料の成分は、退色段階、結合段階、反応段階(適用可能な場合)、及び信号観測段階のサイクルを繰り返した後、有意な修飾はない。ある実施形態では、生体試料の成分は、退色段階中、有意な修飾はない。ある実施形態では、退色段階中に有意に修飾されていない生物試料の成分が標的である。ある実施形態では、標的の80%以上は、退色段階の過程で、有意に修飾されない。ある実施形態では、標的の95%以上は、退色段階の過程で、有意に修飾されない。
試料と1以上の形態染色剤との接触
ある実施形態では、生体試料は細胞又は組織を包含していてもよく、試料は、第1のプローブ又は後続のプローブとの接触段階の前、間、又は後に、形態染色剤と接触させることができる。形態染色剤は、細胞型又は疾患状態の同定を容易にするために、異なる細胞成分を染色することができる色素を包含し得る。ある実施形態では、形態染色剤は、プローブ中の信号発生基から容易に識別することができ、即ち、染色剤は、プローブ由来の信号と重複する可能性のある信号を放出しなくてもよい。例えば、蛍光形態染色剤においては、形態染色剤由来の信号は、プローブで使用されるフルオロフォアと同一波長において自己蛍光を発することができない。
形態染色剤は、上記段階のいずれか一つの前、間、又は後に、生体試料と接触させることができる。ある実施形態では、形態染色剤は、第1のプローブとの接触段階と同時に生体試料と接触させることができる。ある実施形態では、形態染色剤は試料を電子移動試薬と接触させる前に生体試料と接触させ、第1のプローブを標的と結合させた後に照射することができる。ある実施形態では、形態染色剤は、試料を電子移動試薬と接触させ、照射して信号を修飾した後に、生体試料と接触させることができる。ある実施形態では、形態染色剤は、第2のプローブの接触段階と同時に生体試料と接触させることができる。ある実施形態では、生体試料は、第2のプローブを標的と結合させた後に、形態染色剤と接触させることができる。ある実施形態では、形態染色剤が信号発生基由来の蛍光信号に対するバックグラウンドノイズを生じる可能性がある場合、形態染色剤は、プロービング段階、退色段階、及び再プロービング段階の後で、生体試料と接触させることができる。例えば、H&Eなどの形態染色剤は、本発明で開示されている方法の後、連続的に撮像し記録することができる。
ある実施形態では、発色団、フルオロフォア、又は酵素/酵素基質を形態染色剤として使用することができる。形態染色剤として使用することができる発色団(及びその標的細胞、細胞内成分、又は細胞成分)の適切な例としては、限定するものではないが、ヘマトキシリン(核酸)、オレンジG(赤血球、膵臓、及び下垂体細胞)、ライトグリーンSF(コラーゲン)、ロマノフスキーギムザ(細胞形態全般)、メイグリュンワルド(血液細胞)、ブルー対比染色剤(Trevigen)、エチルグリーン(CAS)(アミロイド)、フォイルゲン−ナフトールイエローS(DNA)、ギムザ(様々な細胞成分を分別的に染色)、メチルグリーン(アミロイド)、ピロニン(核酸)、ナフトールイエロー(赤血球細胞)、ニュートラルレッド(核)、パパニコラウ染色剤(ヘマトキシリン、オレンジG、及びビスマルクブラウン混合物の混合物(細胞形態全般))、レッド対比染色剤B(Trevigen)、レッド対比染色剤C(Trevigen)、シリウスレッド(アミロイド)、フォイルゲン試薬(パラローズアニリン)(DNA)、ガロシアニンクロム明礬(DNA)、ガロシアニンクロムビョウバン及びナフトールイエローS(DNA)、メチルグリーン−ピロニンY(DNA)、チオニン−フォイルゲン試薬(DNA)、アクリジンオレンジ(DNA)、メチレンブルー(RNA及びDNA)、トルイジンブルー(RNA及びDNA)、アルシアンブルー(炭水化物)、ルテニウムレッド(炭水化物)、スーダンブラック(脂質)、スーダンIV(脂質)、オイルレッド−O(脂質)、ワンギーソントリクローム染色剤(酸性フクシン及びピクリン酸混合物)(筋肉細胞)、マッソントリクローム染色剤(ヘマトキシリン、酸性フクシン、及びライトグリーン混合物)(コラーゲン、細胞質、核小体を分別的に染色)、アルデヒドフクシン(エラスチン線維)、又はワイゲルト染色剤(細網線維及びコラーゲン線維を分別)が挙げられる。
適切な蛍光形態染色剤(及びその標的細胞、細胞内成分、又は適用可能な場合に細胞成分)の例としては、限定するものではないが、4’,6−ジアミジノ−2−フェニルインドール(DAPI)(核酸)、ヘキスト33258及びヘキスト33342(2つのビスベンズイミド)(核酸)、ヨウ化プロピジウム(核酸)、スペクトルオレンジ(核酸)、スペクトルグリーン(核酸)、キナクリン(核酸)、フルオレセイン−ファロイジン(アクチン線維)、クロモマイシンA3(核酸)、アクリフラビン−フォイルゲン反応液(核酸)、オーラミンO−フォイルゲン反応液(核酸)、臭化エチジウム(核酸)、ニッスル染色剤(ニューロン)、POPO、BOBO、YOYO及びTOTOなどのような高親和性DNAフルオロフォア、並びに、ヒストンなどのDNA結合タンパク質に融合されている緑色蛍光タンパク質、ACMA、キナクリン、及びアクリジンオレンジが挙げられる。
適切な酵素(及びその主要な細胞部位又は活性)の例としては、限定するものではないが、ATPases(筋肉線維)、コハク酸デヒドロゲナーゼ(ミトコンドリア)、シトクロムcオキシダーゼ(ミトコンドリア)、ホスホリラーゼ(ミトコンドリア)、ホスホフルクトキナーゼ(ミトコンドリア)、アセチルコリンエステラーゼ(神経細胞)、ラクターゼ(小腸)、酸性ホスファターゼ(リソソーム)、ロイシンアミノペプチダーゼ(肝細胞)、デヒドロゲナーゼ(ミトコンドリア)、ミオアデニル酸デアミナーゼ(筋肉細胞)、NADHジアホラーゼ(赤血球)、及びスクラーゼ(小腸)が挙げられる。
ある実施形態では、形態染色剤は、光活性化型化学退色に対して安定である。即ち、形態染色剤の信号形成特性は、形態染色剤と電子移動試薬との接触と後続の照射を含む光反応によって実質的に影響を受けない場合がある。ある実施形態では、生体試料をプローブと形態染色剤で同時に染色することができる場合、プローブ由来の信号の退色は、形態染色剤由来の信号を修飾しなくてよい。ある実施形態では、形態染色剤は、分子情報(反復的なプロービング段階を介して得られるもの)と形態情報(形態染色を介して得られるもの)を同時に記録するための対照として使用することができる。ある実施形態では、形態染色剤は、試料への照射時に電子移動試薬により修飾されない。
試料と1以上の対照プローブとの接触
ある実施形態では、対照プローブは、生体試料中の1以上の標的と結合させることができる。ある実施形態では、対照プローブは、第1のプローブの接触段階と同時に標的と結合させることができる。ある実施形態では、対照プローブは、第1のプローブと同時に生体試料に適用することができる。ある実施形態では、対照プローブは、連続的に、即ち、第1のプローブの適用の前又は後に、しかし電子移動試薬の適用と後続の照射の前に、生体試料へ適用することができる。
対照プローブは、光活性化型化学退色に対して安定である信号発生基を包含していてもよいか、又は信号発生基の信号形成特性は、電子移動試薬と接触させ後続の照射を行った場合に、実質的には影響を受けない。信号発生基は、電子移動試薬と照射への暴露中に安定である放射性同位元素、又は電子移動試薬と照射への暴露時に化学的に修飾されないフルオロフォアを包含し得る。適切な放射性同位元素としては、P32又は3H、14C、125I又は131Iが挙げられる。適切なフルオロフォアとしては、DAPIを挙げることができる。
ある実施形態では、適切な信号発生基は結合剤と結合させ、対照プローブを形成させることができる。例えば、放射活性標識を抗体へ結合させ、対照プローブを形成させることができ、この抗体は、生体試料中に存在する1以上の標的抗原に結合することができる。別の実施形態では、適切な信号発生基は、試料中の1以上の標的に結合することができ、また、電子移動試薬の存在時と照射中に安定である検出可能な信号を提供することもできる。例えば、適切な対照プローブは、DAPIであってもよく、これは、試料中の核酸に結合することが可能であり、しかも光活性化型化学退色に対して実質的に安定である、すなわち、電子移動試薬の添加と後続の照射の後に実質的に修飾されない、蛍光信号を提供することも可能である。
ある実施形態では、対照プローブは本発明で開示されている方法に利用し、反復の染色段階に対する標的の安定性の指標を提供することができる。例えば、対照プローブは、試料中の公知の標的と結合させ、対照由来の信号を検出し定量することができる。次いで、対照信号は反復染色段階中にモニタリングし、電子移動試薬及び後続の照射に対する標的又は結合剤の安定性に関する指標を提供することができる。ある実施形態では、対照信号の定量的測定(例えば、信号強度)をモニタリングし、反復プロービング段階の後に、試料中に存在する標的の量を定量することができる。
ある実施形態では、対照プローブを利用し、対象の試料の定量的情報、例えば、試料中の標的の濃度、又は試料中の標的の分子量を得ることができる。例えば、対照の標的(公知の濃度又は公知の分子量を有するもの)を、ブロッティング技術において、対象の試料と同時に装填することができる。対照プローブを対照の標的と結合させ、対照信号を検出することができる。次いで、対照信号は、下記に記載の方法を使用して、対象の試料から観測される信号と相関させることができる。
ある実施形態では、対照プローブを本発明で開示されている方法に利用し、複数の分子情報(反復的なプロービング段階を介して得られるもの)と形態情報(例えば、DAPIを使用して得られるもの)の同時記録を提供することができる。ある実施形態では、本発明で開示されている方法は、複数の蛍光画像と、例えば、H&Eを使用して得られる明視野形態画像の同時記録を包含し得る。ある実施形態では、反復プロービング段階で利用されるプローブは、H&E画像で記録するために使用することができる、いかなる共通のコンパートメント情報も有さなくてよい。DAPI核染色などの対照プローブを利用し、明視野画像でヘマトキシリンにより染色される核を、蛍光画像と一緒に同時記録することができる。蛍光画像と明視野画像は、2つのカテゴリー:強度ベースの技術と特徴ベースの技術に分類することができる画像記録アルゴリズムを使用して、同時記録することができる。
第1の信号と後続の信号との相関
ある実施形態では、第1の信号、後続の信号、又は第1の信号及び後続の信号を分析して、生体試料に関する情報を得ることができる。例えば、ある実施形態では、第1の信号の存在又は非存在は、生体試料中の第1の標的(第1の結合剤に結合可能)の存在又は非存在を示し得る。同様に、第2の信号の存在又は非存在は、第2の標的(生体試料中の第2の結合剤に結合可能)の存在又は非存在を示し得る。複数のプローブを使用して多数の標的を分析することができる実施形態では、特定の信号の存在又は非存在は、生体試料中の対応する標的の存在又は非存在を示し得る。
ある実施形態では、観測段階は、試料中の1以上の標的の定量的測定を包含し得る。ある実施形態では、信号の強度値(例えば、蛍光強度)を測定することができ、生体試料中の標的の量に相関させることができる。標的の量と信号強度の間の相関性は、較正基準を使用して決定することができる。ある実施形態では、第1及び第2の信号の強度値を測定し、各々の標的量に相関させることができる。ある実施形態では、2つの信号強度を比較することによって、第1の標的と第2の標的の(相互に対する又は対照に対する)相対量を確定することができる。同様に、複数のプローブを使用して複数の標的を分析することができる場合、異なる標的の生体試料中の相対量は、異なる信号強度を測定することによって決定することができる。ある実施形態では、1以上の対照試料は、上記に記載のように使用することができる。試料中の信号の(対象の生体試料の対照に対する)存在又は非存在を観測することによって、生体試料に関する情報を得ることができる。例えば、疾患の組織試料を正常な組織試料に対して比較することにより、疾患の組織試料中に存在する標的に関する情報を得ることができる。同様に、試料間(即ち、対象の試料と1以上の対照)の信号強度を比較することによって、試料中の標的の発現に関する情報を得ることができる。
ある実施形態では、観測段階は、試料中の2以上の標的を共局在化することを含む。試料中の標的を共局在化するための方法は、表題が"System and Methods for Analyzing Images of Tissue Samples"である米国特許出願第11/686,649号(2007年3月15日出願)、表題が"System and Method for Co-Registering Multi-Channel Images of a Tissue Micro Array"である米国特許出願第11/500028号(2006年8月7日出願)、表題が"System and Methods for Scoring Images of a Tissue Micro Array"である米国特許出願第11/606582号(2006年11月30日出願)、及び表題が"Automated Segmentation of Image Structures"である米国特許出願第11/680063号(2007年2月28日出願)、米国特許第8036462号(2011年10月11日取得)に開示されており、それらはいずれも参照により本明細書に組み入れるものとする。
ある実施形態では、生体試料中の信号の位置を観測することができる。ある実施形態では、生体信号中の信号の局在化は、形態染色を使用して観測することができる。ある実施形態では、2以上の信号の相対位置を観測することができる。信号の位置は、生体試料中の標的の位置に相関させることができ、生体試料中の異なる標的の局在化に関する情報を得ることができる。ある実施形態では、信号の強度値と信号の位置を相関させ、生体試料中の異なる標的の局在化に関する情報を得ることができる。例えば、特定の標的は、核と比べると細胞質でより多く発現され得る。またその逆もある。ある実施形態では、標的の相対的な局在化に関する情報は、2以上の信号の位置及び強度値を比較することによって得ることができる。
ブロッティング技術を利用する実施形態では、観測段階は、ブロット上の信号の位置を観測することを包含し得る。次いで、ブロットの信号の位置は、ゲルに試料と一緒に装填した較正基準と相関させ、異なるバンドの標的の分子量に関する情報を得ることができる。ある実施形態では、ブロット上の信号の位置は、例えば2D−PAGEにおいて、標的の分子量及び標的の等電点に相関させることができる。ある実施形態では、アクチン又はチューブリンなどの構造タンパク質は、ウェスタンブロットで対照プローブを使用してプローブし、試料中の標的の量を定量することができる。
ある実施形態では、1以上の観測段階又は相関段階は、コンピュータ支援手段を使用して実施することができる。信号発生基由来の信号(複数可)をデジタル画像(複数可)の形式で保存することができる実施形態ではは、画像(複数可)のコンピュータ支援解析を実施することができる。ある実施形態では、画像(例えば、プローブ(複数可)由来の信号及び形態染色)は、コンピュータ支援の重ね合わせを使用して重ね合わせ、生体試料の完全な情報、例えば、位相及び相関性情報を得ることができる。
ある実施形態では、上記方法の1以上は自動化することができ、自動化システムを使用して実施することができる。ある実施形態では、すべての段階は、自動化システムを使用して実施することができる。
本発明で開示されている方法は、生物学及び医学における分析、診断、及び治療用途において適用を見出すことができる。ある実施形態では、本発明で開示されている方法は、組織化学、特に、免疫組織化学において適用を見出すことができる。患者由来の細胞又は組織試料の分析は、本明細書に記載の方法に従って、診断的に(例えば、特定の疾患を有する患者、特定の毒素に曝された患者、又は特定の療法又は臓器移植に十分応答している患者を同定するために)、また予後的に(例えば、特定の疾患を発症する可能性のある患者、特定の療法に十分応答する可能性のある患者、又は特定の臓器移植の受容の可能性のある患者を同定するために)利用することができる。本発明で開示されている方法は、同一生体試料から得た複数(例えば、潜在的に無限である数)の標的(例えば、疾患マーカー)の分析を正確かつ信頼性高く促進することができる。
実施例
以下の実施例は単に本発明による方法及び実施形態を例示するためのものであり、そのように特許請求の範囲に限定を課すものと解釈すべきではない。
実施例1.シアニン色素の光活性化型化学退色:用量反応
PBS中のCy3の溶液に、2〜60当量のトリフェニルブチルボレートリチウム塩を加え、溶液を4分間、又は10分間照射した。550nmでの吸光度を、光活性化型化学退色をモニターするために測定し、図1に示したように、結果をプロットした。四角形付きの実線は、Cy3色素をトリフェニルブチルボレートの異なる濃度の存在下で4分間照射した後のA550吸光度を示す。ダイヤモンド形付きの実線は、Cy3色素をトリフェニルブチルボレートの異なる濃度の存在下で10分間照射した後のA550吸光度を示す。これらの結果から、Cy3退色の範囲はホウ酸塩の濃度が上昇するにつれて増加することが明らかである。
実施例2.光反応と熱酸化によるCy3退色の比較
Cy3の退色に関して3つの方法を比較した。光活性化型化学退色反応については、Cy3をトリフェニルブチルボレートリチウム塩と混合し、20秒間照射した。熱酸化反応については、Cy3を塩基性過酸化水素と混合し、20秒間インキュベートした。対照の反応については、Cy3を20秒間、水とインキュベートした。3つのすべての反応のCy3溶液の色は、各インキュベーション及び/又は反応の前と後で比較した。対照反応では、その濃いピンク色は変化しない。熱酸化反応の色は、20秒間の熱酸化後に、濃いピンク色から薄いピンク色に変化する。光活性化型化学退色反応では、20秒間の照射の後に、濃いピンク色から無色に変わる。
実施例3.組織におけるCy3及びCy5の光活性化型化学退色
組織マイクロアレイ(TMA, Pantomics Catalog No. MTU541C)は、Cy3コンジュゲート化サイトケラチン及びCy5コンジュゲート化パンカドヘリンで染色した。Cy3及びCy5の光活性化型化学退色は、染色したTMAをトリフェニルブチルボレーチリチウム塩とインキュベートし、2分間照射することにより行った。画像は、退色の前と後にオリンパス顕微鏡で得た。退色前と退色後のCy3コンジュゲート化サイトケラチンで染色した試料の画像を図2に示す。退色前と退色後のCy5コンジュゲート化パンカドヘリンで染色した試料の画像を図3に示す。このデータから、光活性化型化学退色によって、染色組織でのCy3及びCy5信号が効果的に破壊されることが明らかである。
実施例4.BODIPYの光活性化型化学退色
BODIPYの光活性化型化学退色反応は、トリフェニルブチルボレートリチウム塩の100mM溶液を含まない又はむ、メタノール/水中において実施した。両試料の照射は、100Wのハロゲンランプを使用して2分間実施した。BODIPYとトリフェニルブチルボレート塩を含む反応バイアルの鮮やかな黄色は、照射後、黄色がかった淡色となる。照射前(一点鎖線)と照射後(実線)の反応の蛍光スペクトルを図4に示す。蛍光スペクトルは、光活性化型化学退色によるBODIPYの完全な蛍光消光を示している。トリフェニルブチルボレート塩を含まないBODIPYを含む反応バイアルの鮮やかな黄色は、照射後、その鮮やかな黄色を維持する。
実施例5.ローダミンの光活性化型化学退色
ローダミンの光活性化型化学退色反応は、トリフェニルブチルボレートリチウム塩の100mM溶液を含まない又は含む、メタノール/水中において実施した。両試料の照射は、100Wのハロゲンランプを使用して2分間実施した。ローダミン及びトリフェニルブチルボレートリチウム塩を含む反応バイアルの明るい赤色は、照射後に消失する。照射前(一点鎖線)と照射後(実線)の反応の蛍光スペクトルを図5に示す。蛍光スペクトルは、光活性化型化学退色によるローダミンの完全な蛍光消光を示している。トリフェニルブチルボレート塩を含まないローダミンを含む反応バイアルの明るい赤色は、照射後、その明るい赤色を維持する。
実施例6.1,3−ジクロロ−7−ヒドロキシ−9,9−ジメチル−2(9H)−アクリジノン(DDAO)の光活性化型化学退色
アクリドンの光活性化型化学退色反応は、トリフェニルブチルボラートリチウム塩の100mM溶液を含まない又は含む、メタノール/水中において実施した。両試料の照射は100Wのハロゲンランプを使用して2分間実施した。反応の茶色の色は、照射後に黄色になる。図6に、照射前(一点鎖線)、1分間の照射後(実線)及び2分間の照射後(均等破線)の反応の蛍光スペクトルを示す。蛍光スペクトルはまた、照射に使用した一定時間内のDDAOの不完全な蛍光消光も示している。トリフェニルブチルボレート塩を含まないDDAOを含む反応バイアルの茶色は、照射後、その茶色を維持する。
本発明の特定の実施形態を示し記載してきたが、本発明の教示から逸脱することなく変更及び修正がなされ得ることは当業者には明らかであろう。前述の説明及び添付図面に記載された事項は単なる例示として提供されており、限定するものとして提供されるものではない。本発明の実際の範囲は、従来技術に基づいて適正な観点から見た場合の以下の特許請求の範囲に規定するものとする。

Claims (25)

  1. 生体試料中の複数の標的をプロービングする方法であって、
    (a)1以上のプローブを、複数の標的を含む生体試料中に存在する1以上の標的と結合させる段階と、
    (b)段階(a)で結合した1以上のプローブ由来の信号を検出する段階と、
    (c)段階(a)の結合プローブを含む試料を電子移動試薬と接触させる段階と、
    (d)段階(c)の試料を照射する段階と、
    (e)1以上のプローブを段階(d)の試料中に存在する1以上の標的と結合させる段階と、
    (f)段階(e)で結合したプローブ由来の信号を検出する段階と
    を含む方法。
  2. 段階(a)のプローブが光信号発生基を含んでおり、段階(b)で観測される信号が光信号である、請求項1記載の方法。
  3. 段階(a)のプローブが蛍光信号発生基を含んでおり、段階(b)で観測される信号が蛍光信号である、請求項2記載の方法。
  4. 段階(d)の試料の照射がpH5〜9の緩衝液の存在下で実施される、請求項1記載の方法。
  5. 段階(c)及び(d)が4〜50℃の温度で実施される、請求項1記載の方法。
  6. 段階(d)の試料の照射が、350nm〜1.3μMの波長の光に試料を露光することにより実施される、請求項1記載の方法。
  7. 段階(d)の試料の照射が、400〜700nmの波長の光に試料を露光することにより実施される、請求項6記載の方法。
  8. 電子移動試薬が次の構造式で表されるホウ酸塩である、請求項1記載の方法。
    式中、R1、R2及びR3は各々独立にアルキル、アルケニル、アルキニル、アリール又はヘテロアリールであって、アルキル、アルケニル、アルキニル、アリール又はヘテロアリールは、(C1〜C4)アルキル、(C1〜C4)アルコキシ、(C1〜C4)アルキルアミノ、アミノ、ヒドロキシル、シアノ、ハロゲン、又はニトロからなる群から選択される1以上の置換基で適宜置換されていてもよく、
    4は、アルキル、アルケニル又はアルキニルであって、アルキル、アルケニル又はアルキニルは、(C1〜C4)アルキル、(C1〜C4)アルコキシ、(C1〜C4)アルキルアミノ、アミノ、ヒドロキシル、シアノ、ハロゲン、又はニトロからなる群から選択される1以上の置換基で適宜置換されていてもよく、
    +は、有機カチオン及び無機カチオンからなる群から選択される。
  9. 各R1、R2及びR3が適宜置換されていてもよいアリールであり、R4が適宜置換されていてもよいアルキルである、請求項8記載の方法。
  10. 各R1、R2及びR3が非置換フェニルであり、R4が非置換ブチルであり、ホウ酸塩がトリフェニルブチルボレート塩である、請求項9記載の方法。
  11. +が、Li+、Na+又はK+からなる群から選択される無機カチオンである、請求項8記載の方法。
  12. 蛍光信号発生基がシアニン色素を含む、請求項3記載の方法。
  13. シアニン色素がCy3又はCy5である、請求項12記載の方法。
  14. 段階(c)〜(f)が1回以上繰り返される、請求項1記載の方法。
  15. 段階(c)及び(d)が約20秒〜約15分間実施される、請求項1記載の方法。
  16. 観測段階(b)、段階(f)、又は段階(b)及び(f)で観測される信号の1以上の強度値を測定することをさらに含む、請求項1記載の方法。
  17. 強度値と試料中に存在する標的の量とを相関させることをさらに含む、請求項16記載の方法。
  18. 段階(a)のプローブ及び段階(e)のプローブが各々信号発生基を含んでおり、段階(a)の信号発生基が段階(e)の信号発生基とは異なる、請求項1記載の方法。
  19. 生体試料中の複数の標的をプロービングする方法であって、
    (a)複数のプローブを生体試料中に存在する複数の標的と結合させる段階であって、複数のプローブが第1の組のプローブと第2の組のプローブを含んでいる段階と、
    (b)段階(a)で結合した第1の組のプローブ由来の第1の組の信号を検出する段階と、
    (c)段階(a)の結合プローブを含む試料を電子移動試薬と接触させる段階と、
    (d)段階(c)の試料を照射する段階と、
    (e)段階(a)で結合した第2の組のプローブ由来の第2の組の信号を発生させる段階と、
    (f)第2の組の信号を検出する段階と
    を含む方法。
  20. 段階(d)の試料の照射が、光活性化型化学退色によって信号発生基を実質的に不活性化する光反応を開始する、請求項1記載の方法。
  21. 信号発生基が不可逆的に修飾される、請求項1記載の方法。
  22. 検出可能な信号が段階(d)の後に観測されない、請求項1記載の方法。
  23. ハイスループット多重化生体試料分析方法であって、
    信号のサイクルプロセスを含み、各サイクルにおいて、染色及びイメージング後、電子移動試薬を適用し生体試料の照射を行う方法。
  24. プローブとは異なる生体試料の成分を有意に修飾することなく、信号を速やかにサイクルさせる、請求項23記載の方法。
  25. 光標識生物学的標的を示す一連の2以上の画像であって、当該画像が生体試料中の複数の標的をプロービングするプロセスで得られるものであり、上記プロセスが、
    (a)複数の標的を含む生体試料中に存在する1以上の標的に1以上の光プローブを結合させ、
    (b)段階(a)で結合した光プローブ由来の信号を検出する段階と、
    (c)段階(a)の結合光プローブを含む試料を電子移動試薬と接触させる段階と、
    (d)段階(c)の試料を照射し、
    (e)1以上の光プローブを、段階(d)の試料中に存在する1以上の標的と結合させ、
    (f)段階(e)で結合した光プローブ由来の信号を検出する段階と
    を含んでいる、画像。
JP2014549074A 2011-12-23 2012-12-03 色素の光活性化型化学退色 Active JP6148682B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/336,409 2011-12-23
US13/336,409 US8568991B2 (en) 2011-12-23 2011-12-23 Photoactivated chemical bleaching of dyes
PCT/US2012/067527 WO2013095896A1 (en) 2011-12-23 2012-12-03 Photoactivated chemical bleaching of dyes

Publications (3)

Publication Number Publication Date
JP2015506469A true JP2015506469A (ja) 2015-03-02
JP2015506469A5 JP2015506469A5 (ja) 2016-01-28
JP6148682B2 JP6148682B2 (ja) 2017-06-14

Family

ID=48655136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014549074A Active JP6148682B2 (ja) 2011-12-23 2012-12-03 色素の光活性化型化学退色

Country Status (11)

Country Link
US (2) US8568991B2 (ja)
EP (1) EP2794908B1 (ja)
JP (1) JP6148682B2 (ja)
KR (1) KR102046194B1 (ja)
CN (1) CN104114713B (ja)
AU (1) AU2012355736B2 (ja)
BR (1) BR112014015603B1 (ja)
CA (1) CA2860097C (ja)
RU (1) RU2623880C2 (ja)
SG (1) SG11201403460SA (ja)
WO (1) WO2013095896A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508213A (ja) * 2012-12-11 2016-03-17 クラリエント ダイアグノスティック サービシーズ, インコーポレイテッド 色素の光活性化型ケミカルブリーチング
JP2019511913A (ja) * 2016-02-22 2019-05-09 ミルテニー バイオテック ゲゼルシャフト ミット ベシュレンクテル ハフツングMiltenyi Biotec GmbH 生体試料のための自動化された分析ツール

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013240137B2 (en) 2012-03-30 2017-04-20 Leica Microsystems Cms Gmbh Methods for generating an image of a biological sample
WO2014099222A1 (en) * 2012-12-17 2014-06-26 Clarient Diagnostic Services, Inc. Chemical bleaching of dyes using radical photoinitiators
US9322051B2 (en) 2013-10-07 2016-04-26 General Electric Company Probing of biological samples
WO2015123430A2 (en) * 2014-02-12 2015-08-20 The Trustees Of Columbia University In The City Of New York Single molecule electronic multiplex snp assay and pcr analysis
US9708349B2 (en) 2015-02-13 2017-07-18 General Electric Company Borates for photoactivated chemical bleaching
US10101322B2 (en) 2015-02-13 2018-10-16 General Electric Company Photoactivated chemical bleaching of dyes using borates
EP3256857B1 (en) * 2015-02-13 2019-07-24 General Electric Company Photoactivated chemical bleaching of dyes using borates
CN105044059B (zh) * 2015-07-13 2017-08-29 深圳市瀚海基因生物科技有限公司 一种可用于减缓单分子荧光漂白现象的除氧试剂及其应用方法
US10371610B2 (en) 2016-02-23 2019-08-06 Noul Co., Ltd. Contact-type patch, staining method using the same, and manufacturing method thereof
KR20170099737A (ko) 2016-02-23 2017-09-01 노을 주식회사 접촉식 염색 패치 및 이를 이용하는 염색 방법
JP2020513796A (ja) * 2016-11-16 2020-05-21 ユニバーシティ オブ ワシントンUniversity of Washington サイクリック蛍光イメージングのためのシステムおよび方法
CZ309221B6 (cs) * 2018-09-27 2022-06-01 Mendelova Univerzita V Brně Způsob identifikace přírodních vzorků, zejména kapalných
AU2022388928A1 (en) 2021-11-16 2024-05-16 Sotio Biotech Inc. Treatment of myxoid/round cell liposarcoma patients
US20230140613A1 (en) * 2022-03-30 2023-05-04 Hasan Bagheri Colorimetric system for detection of covid-19 using exhaled breath metabolites

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536279A (ja) * 2000-12-05 2004-12-02 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア ボロン酸付加物を用いたグルコースの光学測定
US20080118944A1 (en) * 2006-11-16 2008-05-22 General Electric Company Sequential analysis of biological samples

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR78065B (ja) 1982-02-19 1984-09-26 Unilever Nv
DK39592D0 (da) 1992-03-25 1992-03-25 Safefood Micro Systsm As Method of detecting microorganisms
US6451551B1 (en) 1994-03-11 2002-09-17 Biogenex Laboratories Releasing embedding media from tissue specimens
ATE278801T1 (de) 1995-11-22 2004-10-15 Medtronic Minimed Inc Detektion von biologischen molekülen unter verwendung von chemischer amplifikation und optischem sensor
US6573043B1 (en) 1998-10-07 2003-06-03 Genentech, Inc. Tissue analysis and kits therefor
CA2392534A1 (en) 1999-11-30 2001-06-07 Oncosis Method and apparatus for selectively targeting specific cells within a cell population
DE10014685B4 (de) 2000-03-24 2004-07-01 Schubert, Walter, Dr. Verfahren zur Identifizierung von zellspezifischen Zielstrukturen
WO2001075450A2 (en) 2000-04-04 2001-10-11 The Regents Of The University Of California Fluorescent lifetime assays for non-invasive quantification of analytes
US7470420B2 (en) * 2000-12-05 2008-12-30 The Regents Of The University Of California Optical determination of glucose utilizing boronic acid adducts
DE10117430A1 (de) 2001-04-06 2002-10-10 Nicole Marme Hochempfindlicher und hochspezifischer Enzymnachweis mit einer Nachweisgrenze bis in den femtomolaren Bereich
US7045361B2 (en) 2001-09-12 2006-05-16 Medtronic Minimed, Inc. Analyte sensing via acridine-based boronate biosensors
US8062897B2 (en) 2003-07-21 2011-11-22 Aureon Laboratories, Inc. Diagnostic histopathology using multiplex gene expression FISH
RU2305270C2 (ru) 2005-05-18 2007-08-27 Андрей Алексеевич Климов Способ флуоресцентной наноскопии (варианты)
CN101484806A (zh) 2006-05-17 2009-07-15 协乐民公司 一种对组织进行自动分析的方法
WO2008006006A1 (en) 2006-07-03 2008-01-10 Beth Israel Deaconess Medical Center, Inc. Histology methods
US8060348B2 (en) 2006-08-07 2011-11-15 General Electric Company Systems for analyzing tissue samples
US20080032321A1 (en) 2006-08-07 2008-02-07 General Electric Company System and methods for analyzing images of tissue samples
US8131476B2 (en) 2006-08-07 2012-03-06 General Electric Company System and method for co-registering multi-channel images of a tissue micro array
US20080124310A1 (en) 2006-11-01 2008-05-29 Marshall John G Bead based receptor biology
US7741045B2 (en) 2006-11-16 2010-06-22 General Electric Company Sequential analysis of biological samples
US9201063B2 (en) 2006-11-16 2015-12-01 General Electric Company Sequential analysis of biological samples
WO2008133945A1 (en) 2007-04-25 2008-11-06 The Trustees Of The University Of Pennsylvania Low level fluorescence detection at the light microscopic level
US7714303B2 (en) 2007-05-10 2010-05-11 Pacific Biosciences Of California, Inc. Methods and systems for analyzing fluorescent materials with reduced authofluorescence
US20090263612A1 (en) 2008-04-18 2009-10-22 Nbc Universal, Inc. System and Method for Photobleaching of Optical Media
US9677125B2 (en) 2009-10-21 2017-06-13 General Electric Company Detection of plurality of targets in biological samples
JP5832537B2 (ja) 2010-08-05 2015-12-16 ケンブリッジ・リサーチ・アンド・インストルメンテーション・インコーポレーテッド 試料の強調視覚評価
US20140024024A1 (en) 2012-07-17 2014-01-23 General Electric Company Methods of detecting dna, rna and protein in biological samples

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536279A (ja) * 2000-12-05 2004-12-02 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア ボロン酸付加物を用いたグルコースの光学測定
US20080118944A1 (en) * 2006-11-16 2008-05-22 General Electric Company Sequential analysis of biological samples
JP2010510492A (ja) * 2006-11-16 2010-04-02 ゼネラル・エレクトリック・カンパニイ 生体試料の連続分析

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508213A (ja) * 2012-12-11 2016-03-17 クラリエント ダイアグノスティック サービシーズ, インコーポレイテッド 色素の光活性化型ケミカルブリーチング
JP2019511913A (ja) * 2016-02-22 2019-05-09 ミルテニー バイオテック ゲゼルシャフト ミット ベシュレンクテル ハフツングMiltenyi Biotec GmbH 生体試料のための自動化された分析ツール

Also Published As

Publication number Publication date
BR112014015603A8 (pt) 2017-07-04
CN104114713B (zh) 2018-04-03
EP2794908A1 (en) 2014-10-29
US9250245B2 (en) 2016-02-02
NZ626334A (en) 2016-04-29
US8568991B2 (en) 2013-10-29
JP6148682B2 (ja) 2017-06-14
CA2860097A1 (en) 2013-06-27
US20130165330A1 (en) 2013-06-27
RU2623880C2 (ru) 2017-06-29
BR112014015603B1 (pt) 2020-04-28
CN104114713A (zh) 2014-10-22
SG11201403460SA (en) 2014-07-30
EP2794908A4 (en) 2015-05-06
AU2012355736A2 (en) 2014-09-18
AU2012355736A1 (en) 2014-07-17
RU2014124974A (ru) 2016-02-20
EP2794908B1 (en) 2017-08-02
WO2013095896A1 (en) 2013-06-27
AU2012355736B2 (en) 2017-12-14
US20130345089A1 (en) 2013-12-26
CA2860097C (en) 2020-07-07
BR112014015603A2 (pt) 2017-06-13
KR20140103350A (ko) 2014-08-26
KR102046194B1 (ko) 2019-11-18

Similar Documents

Publication Publication Date Title
JP6148682B2 (ja) 色素の光活性化型化学退色
JP6499960B2 (ja) 生体試料中のdna、rna及びタンパク質を検出する方法
JP5149303B2 (ja) 生体試料の連続分析
JP6335187B2 (ja) 色素の光活性化型ケミカルブリーチング
JP5123314B2 (ja) 生体試料の連続分析
JP5335686B2 (ja) 生体試料の連続分析
US10101322B2 (en) Photoactivated chemical bleaching of dyes using borates
US10677802B2 (en) Chemical bleaching of dyes using radical photoinitiators
US9708349B2 (en) Borates for photoactivated chemical bleaching
EP3256857B1 (en) Photoactivated chemical bleaching of dyes using borates
NZ626334B2 (en) Photoactivated chemical bleaching of dyes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170519

R150 Certificate of patent or registration of utility model

Ref document number: 6148682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250