JP2015505710A - 白内障手術の術中光学コヒーレンス断層画像化 - Google Patents

白内障手術の術中光学コヒーレンス断層画像化 Download PDF

Info

Publication number
JP2015505710A
JP2015505710A JP2014549214A JP2014549214A JP2015505710A JP 2015505710 A JP2015505710 A JP 2015505710A JP 2014549214 A JP2014549214 A JP 2014549214A JP 2014549214 A JP2014549214 A JP 2014549214A JP 2015505710 A JP2015505710 A JP 2015505710A
Authority
JP
Japan
Prior art keywords
image
oct
imaging system
cataract surgery
scan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014549214A
Other languages
English (en)
Other versions
JP6054986B2 (ja
JP2015505710A5 (ja
Inventor
ゴールドシュレジャー イルヤ
ゴールドシュレジャー イルヤ
ホーランド ガイ
ホーランド ガイ
ジュハーズ アダム
ジュハーズ アダム
エム.カーツ ロナルド
エム.カーツ ロナルド
バーディン コスタディン
バーディン コスタディン
Original Assignee
アルコン レンゼックス, インコーポレーテッド
アルコン レンゼックス, インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルコン レンゼックス, インコーポレーテッド, アルコン レンゼックス, インコーポレーテッド filed Critical アルコン レンゼックス, インコーポレーテッド
Publication of JP2015505710A publication Critical patent/JP2015505710A/ja
Publication of JP2015505710A5 publication Critical patent/JP2015505710A5/ja
Application granted granted Critical
Publication of JP6054986B2 publication Critical patent/JP6054986B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/373Surgical systems with images on a monitor during operation using light, e.g. by using optical scanners
    • A61B2090/3735Optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00851Optical coherence topography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/0087Lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00878Planning
    • A61F2009/00882Planning based on topography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • A61F2009/00889Capsulotomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00897Scanning mechanisms or algorithms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/0084Laser features or special beam parameters therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Vascular Medicine (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Eye Examination Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Laser Surgery Devices (AREA)

Abstract

白内障手術システムは、第1の1組のレーザパルスを生成するレーザ源と、前記第1の1組のレーザパルスを眼内の白内障標的領域へ誘導する誘導光学素子と、レーザコントローラであって、標的走査パターンの電子表示を生成することと、前記誘導光学素子を制御して、前記第1の1組のレーザパルスを前記標的走査パターンの一部に従って走査して、第1の光破壊領域を前記白内障標的領域内に生成することとを行う、レーザコントローラと、前記第1の光破壊領域の一部の画像を生成するスペクトル領域光学コヒーレンス断層(SD−OCT)画像化システムとを含む。レーザコントローラは、前記SD−OCT画像化システムによって生成された画像に関連して変更された走査パターンの電子表示を生成し、前記誘導光学素子を制御して、第2の1組のレーザパルスを前記変更された走査パターンに従って走査することができる。

Description

関連出願への相互参照
本出願は、35U.S.C.§119下における米国特許出願シリアル番号第13/329,529号(出願日:2011年12月19日)に対する優先権を主張する。同文献の内容全体を参考のため援用する。
本特許文書は、白内障手術時における光学コヒーレンス断層画像化システムの適用に関する。より詳細には、本特許文書は、白内障手術の術中スペクトル領域光学コヒーレンス断層画像化に関する。
白内障手術において、革命が発生している。白内障手術の多数の局面の精度および速度は、ここ数年間において飛躍的に向上している。フェムト秒レーザパルスを用いたパルス手術レーザシステムは、切断機能の制御を極めて高精度に行うことができる。高度な光学システムにより、レーザパルスの配置および標的化の制御は、かつてないほど向上している。また、画像化システムにより、外科医による白内障手術の計画および実行を支援するための高品質画像が得られる。しかし、それでも、特に画像化分野において、白内障手術システムの向上の余地がある。
実質的な向上が可能でありかつ求められている領域は、白内障外科医のための実用的な画像化情報をより広く提供することである。今日のシステムのうち最も高度なシステムを挙げると、光学コヒーレンス断層(OCT)画像化システムがある。白内障手術の前、これらのシステムは、角膜、前房および水晶体を含む眼の前部の詳細な曲線または断面基準画像を生成および表示することができる。外科医は、光破壊または光処理が施されるべき多様な切断部および領域の特徴点または終点を入力するためにマークを表示された基準画像上に配置することにより、手術を計画することができる。レーザコントローラのインタラクティブインターフェースは、これらのマークを感知し、これらのマークを電子制御信号へ変換して、手術レーザビームを誘導して、対応する切断部を形成する。
本発明を定義すると、手術レーザシステムを用いた白内障手術は、以下のステップを含み得る。(1)第1に、光破壊パターンに従って手術レーザビームを走査することにより、水晶体を水晶体嚢内において光破壊させることができる。白内障の硬度、破壊パターン、破壊レベルおよび所望の手術結果に応じて、このプロセスをチョップ、フラグメンテーションまたは溶解と呼ぶ場合がある。(2)第2に、円形嚢切開、前嚢切開または連続する曲線嚢切開により、嚢蓋(capsular lid)または嚢キャップ(capsular cap)を水晶体嚢または前嚢層中に切開することができる。嚢蓋または嚢キャップは、この蓋またはキャップを除去したとき、水晶体嚢中に穴が開口されるように形成され、この穴を通じて、外科医は、光破壊した水晶体を水晶体嚢から摘出または吸引することができる。(3)アクセス用切開部を、眼の強膜、縁または周辺角膜領域に隣接して形成することができる。このアクセス用切開部を通じて、手術デバイス(例えば、鉗子または超音波チップ)を眼中に挿入することができる。(4)次に、挿入された手術デバイスのうちの1つにより嚢蓋または嚢キャップを除去して、上記した嚢開口部を形成することができる。(5)往々にして、手術レーザでは、水晶体を完全に破壊できない場合がある。そのような場合、超音波チップを水晶体嚢に挿入して、超音波およびチョッピングを付加することにより、水晶体破壊を完了させることができる。(6)その後、水晶体のフラグメントを嚢開口部を通じて除去または吸引することができる。(7)最後に、眼内レンズ(IOL)を挿入して、眼内の視覚を回復させることができる。ステップ(1)および(2)の順序は、手術によっては逆転する場合がある。
さらなる切断(例えば、角膜輪部減張切開または角膜の弧状切開)ならびに多様なさらなるアクセス用切断部を形成することにより、白内障手術を補完することができる。
しかし、今日の画像化システムの場合、手術レーザビームによる光破壊が計画切断部から開始した後は、白内障外科医のための実用的な情報またはフィードバックを提供するさらなる画像は生成されない。その主な原因として、現在の手術システムの場合、白内障手術は比較的短時間で行われる得る(例えば、嚢切開において10〜20秒または水晶体光破壊において30〜40秒)。既存の画像化システムの場合、短時間の手術時間では、光破壊領域を充分な分解能で画像化することはできない。また、実用的なフィードバックの提供のための光破壊領域の画像の分析または進行中の手術の積極的変更を行える可能性も低い。このような機能を可能にするためには、より速い画像化性能およびさらなるまたは異なる電子および画像化システムが必要である。
短い手術時間において罹患領域の画像化および分析を行うことは困難であるものの、このような画像化または分析に基づいたフィードバックがあれば、手術精度の向上および予期せぬ手術合併症の管理の双方の点において、極めて望ましい。例えば、嚢切開において、円形切断線の一部において水晶体嚢全体を切断できない場合がある。その場合、円形蓋またはキャップが、これらの「タグ」において嚢の残り部分に付着したままとなる。その後外科医が鉗子で円形蓋を除去しようとした場合、水晶体嚢がタグにおいて破れる場合があり、その結果、ギザギザの縁部または実質的な破断に繋がる。外科医がそのときに嚢切開が不完全であることを示す画像を得ることができていれば、外科医は、部分的に外れていない蓋部の除去を開始することではなく、嚢切開円をレーザで再度走査してタグを切断することを選択することができた。
他の場合、水晶体の光破壊が行われる際、走査手術レーザが後嚢層に近づき過ぎた結果、後嚢層を穿刺する場合がある。このような穿刺が発生した場合、複雑な硝子体茎切除手術を緊急に行う必要が発生し得、その結果、白内障手術全体の危険性が実質的に増す。また、外科医が画像化フィードバックをタイムリーに得ることができていれば、当該外科医は、後嚢層から離隔方向において手術レーザビームを誘導できるように走査パターンを変更することができ、その結果、硝子体茎切除術を回避できていた。
さらに他の場合において、手術レーザシステムが誤較正される場合がある。すなわち、レーザコントローラがレーザパルスの位置の計算を誤ることが、多数の理由に起因して発生し得る場合がある(例えば、光学収差、レーザの製作公差問題、水晶体の屈折特性の特徴付けの誤り、動作前の誤診断、眼の移動または形状変化、およびコンポーネントの熱クリープ)。一例において、外科医が手術切断部を形成するために例えば後嚢層から100ミクロンの位置において基準画像上にマークを配置したのに、誤較正に起因して誘導光学素子が手術レーザパルスを後嚢層から50ミクロンしか離れていない位置に方向付ける場合があり得、その結果、リスクが増し、白内障手術の精度および安全が低下する。上記したように、手術の進捗画像を外科医が得ていれば、当該外科医は、後嚢層からわずか50ミクロンのところで光破壊を危険に行う前に、誤較正を発見することができる。
さらに別の例において、前房および後房間の圧力差または光学ビーム経路に沿って水晶体後方に配置された硝子体液に起因して水晶体全体が光軸に沿って移動した結果、誤較正が発生し得る。圧力変化は、基準画像の取得後において多数の理由に起因して発生し得る(例えば、患者インターフェースから発生する圧力)。また、眼は動的なシステムであるため、患者インターフェースが眼へドックされた後に一定期間(例えば、数秒または数十秒)にわたって内圧が外圧と釣り合う際、前房および後房中の内圧が経時的に変化し得る。
さらに別の例において、調節に起因して水晶体曲率が変化した場合、誤較正が発生し得る。調節は、手術前および手術時において患者に起因して発生する。そのため、外科医は典型的には、薬剤を投与して調節を阻止するまたは抑制する(実際は、瞳孔を広げる)。しかし、これらの薬剤は、患者によって効果が異なり、また、時間軸によっても効果が異なる。同様に、上記したような最後の2つの例において、手術時において外科医が最新画像をタイムリーに得ることができていれば、当該外科医は、誤較正を認識し、予防策または修正策をとることができていた。
上記および他の多数の可能な手術合併症の一般的特徴として、標的組織の光破壊が開始した後でしか検出することができない点がある。しかし、上述したように、10秒、20秒、40秒または60秒の手術時間よりも短い画像化時間で画像形成を行うことは、特に実用的な画像化情報の提供のために高分解能画像が必要な場合、今日の画像化システムにとって大きな挑戦であり得る。また、既存のシステムにとって、フィードバックまたは修正策の提案を表示するかまたは手術光破壊レーザビームの走査を動的に変更するために画像分析も行うことは、極めて困難である。
本特許文書において、高度な画像化システムを用いた白内障手術システムの実施形態が記載される。これらの高度な画像化システムは、手術レーザビームによって光破壊した領域の画像化を行い、また、いくつかの実行様態において、典型的な手術時間よりも短い画像化時間でこの光破壊領域の分析を行うように、構成される。よって、これらの実施形態により、白内障手術を外科医または手術システムそのものによってリアルタイムで修正することが可能になり、その結果、今日の白内障手術の有効性および安全性の定性的向上が約束される。
詳細には、実施形態において、白内障手術システムは、第1の1組のレーザパルスを生成するように構成されたレーザ源と、レーザ源へ接続された誘導光学素子であって、誘導光学素子は、第1の1組のレーザパルスを眼内の白内障標的領域へ誘導するように構成される、誘導光学素子と、レーザコントローラであって、標的走査パターンの電子表示を生成することと、誘導光学素子を制御して、標的走査パターンの一部に従って第1の1組のレーザパルスを走査して、第1の光破壊領域を白内障標的領域内に生成することとを行うように構成されたレーザコントローラと、第1の光破壊領域の一部の画像を生成するように構成されたスペクトル領域光学コヒーレンス断層(SD−OCT)画像化システムとを含む。レーザコントローラは、SD−OCT画像化システムによって生成された画像に関連して変更された走査パターンの電子表示を生成することと、誘導光学素子を制御して、変更された走査パターンに従って第2の1組のレーザパルスを走査して第2の光破壊領域を生成することとを行うように構成される。いくつかの実施形態において、画像化システムは、掃引光源光学コヒーレンス断層(SS−OCT)画像化システムであり得る。
いくつかの実施形態において、白内障手術システムは、手術レーザシステムと、レーザコントローラと、スペクトル領域光学コヒーレンス断層(SD−OCT)画像化システムとを含み得る。この手術レーザシステムは、手術レーザビームを生成することと、生成された手術レーザビームを白内障標的領域内に誘導することとを行うように構成される。レーザコントローラは、手術レーザビームを白内障標的領域内において走査して光破壊領域を生成するように、構成される。スペクトル領域光学コヒーレンス断層(SD−OCT)画像化システムは、手術レーザビームの走査開始後に、手術時間においてシステムオペレータのために光破壊領域の画像を生成することを行うように、構成される。レーザコントローラは、生成された画像に応答したシステムオペレータからの停止制御信号に応答して、手術レーザビームの走査を停止または一時停止させるように、構成される。
いくつかの実施形態において、眼科手術方法は、眼の水晶体のために標的走査パターンの電子表示をレーザコントローラによって生成することと、眼の水晶体内において標的走査パターンに従ってレーザビームを手術レーザシステムによって生成および走査することと、水晶体内に切開部を生成することと、レーザビームの走査開始後に眼の一部および切開部の画像をスペクトル領域光学コヒーレンス断層画像化システムによって生成することと、変更された走査パターンの電子表示を生成された画像に関連してレーザコントローラによって生成することと、眼の水晶体内において変更された走査パターンに従ってレーザビームを手術レーザシステムによって生成および走査して、変更された切開部を生成することととを含み得る。
いくつかの実施形態において、白内障手術の方法は、眼の水晶体内におけるレーザビームの走査をレーザコントローラによって制御することと、水晶体の一部の画像をスペクトル領域光学コヒーレンス断層画像化システムによって少なくとも5フレーム/秒の速度で生成することと、生成された画像の分析に応じて、レーザビームの走査をレーザコントローラにより変更することとを含み得る。
白内障レーザ手術システムの実施形態を示す。 水晶体標的領域内における、画像化支援による光破壊を示す。 白内障レーザ手術システムの実施形態を示す。 白内障レーザ手術システムの実施形態を示す。 第1の光破壊領域および変更された第2の光破壊領域の形成を示す。 第1の光破壊領域および変更された第2の光破壊領域の形成を示す。 第1の光破壊領域および変更された第2の光破壊領域の形成を示す。 手術副産物の検出後の走査パターンの変更を示す。 手術副産物の検出後の走査パターンの変更を示す。 手術副産物の検出後の走査パターンの変更を示す。 手術副産物の検出後の走査パターンの変更を示す。 手術副産物の検出後の走査パターンの変更を示す。 手術副産物の検出後の走査パターンの変更を示す。 手術副産物の検出後の走査パターンの変更を示す。 水晶体嚢の拡張後の嚢切開走査パターンの変更を示す。 水晶体嚢の拡張後の嚢切開走査パターンの変更を示す。 不十分な嚢切開の再走査を示す。 不十分な嚢切開の再走査を示す。 不十分な嚢切開の再走査を示す。 不十分な嚢切開の再走査を示す。 スペクトル領域光学コヒーレンス断層画像化システムの実施形態を示す。 専用入力/出力ボードを用いたスペクトル領域光学コヒーレンス断層画像化システムの実施形態を示す。 専用入力/出力ボードを示す。 掃引光源光学コヒーレンス断層画像化システムの実施形態を示す。 画像化支援による白内障手術方法を示す。 画像化支援による白内障手術方法を示す。
本特許文書における実行様態および実施形態において記載される白内障手術システムは、画像化フィードバックをタイムリーに生成する。この画像化フィードバックにより、外科医が支援されるかまたはフィードバックに基づいて手術が調節され、あるいは、このような調節がシステムそのものによって決定および実行される。
図1Aに示す白内障手術システム100は、レーザ源110を含む。レーザ源110は、第1の1組のレーザパルスのレーザビームを生成する。これらのレーザパルスの持続時間またはパルス長さは、1〜1,000フェムト秒または1〜1,000ピコ秒の範囲である。レーザビームのエネルギーおよび出力は、選択された標的領域内における良好に制御された光破壊を(他の眼科組織(例えば、光受容網膜)の損傷を招くことなく)効率的に達成できるように、選択され得る。白内障手術システム100は、誘導光学素子120も含み得る。誘導光学素子120は、第1の1組のレーザパルスを角膜3および前房4を通じて眼1の水晶体5へ誘導するように、レーザ源110へ接続される。水晶体5は、嚢層または水晶体嚢6によって被覆される。誘導光学素子120は、対物素子122およびドッキングユニットまたは患者インターフェース(PI)124を通じてレーザビームを白内障標的領域内に誘導するように、構成され得る。ドッキングユニットまたは患者インターフェース(PI)124を眼1上にドックして、真空吸引の付加により眼を白内障手術システム100に固定することができる。いくつかの実施形態において、対物素子122と、眼1との間は直接接続または固定接続されていない場合がある。これらの実施形態において、眼トラッカーを用いて、画像化プロセスを例えば眼のあり得る動きと相関付けることもできる。
白内障標的領域は、眼1の前部内に配置され得る。眼1は、角膜3、前房4、水晶体5および眼1の水晶体嚢6を含む。白内障標的領域は、嚢切開の実行時において、例えば、水晶体5の前嚢層または水晶体嚢内の円、円筒または傾斜円筒であり得る。白内障標的領域は、高い体積分率の水晶体5であってもよく、これにより、水晶体5または少なくともその核の光破壊、チョップまたは溶解が達成される。白内障標的領域は、角膜3内に設けられ得る(例えば、白内障手術デバイスの挿入用ポートを生成するためのアクセス用切開部)。より包括的な白内障手術(例えば、屈折白内障手術)において、さらなる角膜縁弛緩用の切断部または切開(LRI)または弧状切開を形成してもよい。
嚢切開の直径は、3〜6mmの範囲であり得、2〜4mm範囲のz深さにおいて保存された水晶体嚢内に挿入されるべき眼内レンズ(すなわちIOL)の設計によって決定される。z深さは、白内障手術システム100の光軸に沿って、角膜3とPI124との接触面をz深さに対するゼロ基準レベルとして用いて測定される。水晶体光破壊の標的領域は、2〜4mmのz深さ〜7〜10mmのz深さにわたって延び得、直径は4〜8mmであり得る。最後に、角膜LRI、弓状およびアクセス切断部を0〜2mmのz深さにおいて6〜14mmの大直径において形成することにより、視野への直接的影響を最小化または実質的に回避することができる。これらの数値範囲は、白内障手術の危険性が、単なる角膜手術(例えば、LASIK)または網膜手術よりも実質的に高いことを示す。角膜/LASIK手術および網膜手術のいずれも、ずっと狭いz深さ範囲において行われ、手術体積も、白内障手術の場合よりもずっと少量である。角膜手術は典型的には、0.1〜0.5mmのz深さ範囲に限定されることが多い。なぜならば、角膜の厚さが1mmを超えることは稀であり、また、前房を無傷で保持するために、光破壊は典型的には角膜全体を切断しないことが多いからである。角膜切断部の典型的な直径は、2〜3mm範囲であり得る。網膜手術は眼1の後部において深いz深さにおいて行われるが、切断部が形成されるz深さの範囲は典型的には、対象網膜層の全体的厚さである2mm未満である。
これとは対照的に、白内障手術の場合、上記した白内障標的領域のうちほとんどまたは全てにおいて、角膜3および水晶体5双方における光破壊を伴うことが多い。そのため、白内障手術の場合、z深さ範囲における切断部は4mm以上、場合によっては6mm以上になり得る。これらの白内障z深さ範囲は、上記した角膜または網膜手術のz深さ範囲よりも実質的に大きい。さらに、白内障関連切断部の直径は、角膜切断部の直径を実質的に超える。そのため、白内障用切断部を形成する場合、LASIKシステムの設計のための角膜切断部の形成または網膜手術システムの設計のための網膜切断部の形成の場合よりも、画像化システムを含む白内障手術システムの設計の場合のほうが実質的に困難性が高まる。
白内障手術システム100は、レーザコントローラ130も含み得る。レーザコントローラ130は、標的走査パターンの電子表示を生成することと、誘導光学素子120を制御して、第1の1組のレーザパルスを標的走査パターンの一部に従って走査して、第1の光破壊領域を白内障標的領域内に生成することとを行う。
上述したように、白内障標的領域は、前嚢層の近隣にあり得、標的走査パターンは、円形嚢切開、前嚢切開または曲線嚢切開のための水晶体5の前嚢層内の円または円筒上の1組の標的点であり得る。
あるいは、白内障標的領域は、水晶体5の一部であり得、標的走査パターンは、ラジアルチョップ面、円筒、螺旋パターンまたはメッシュパターン上の1組の標的点であり得、水晶体5そのものの光破壊を誘発させる。標的走査パターンの点は、例えばそのラジアルまたは(x、y、z)座標によって規定され得る。これらの座標は、レーザコントローラ130の対応するメモリ内に保存された実行ファイルに基づいて、プロセッサ内において電子的に表現され得る。
白内障手術システムは、スペクトル領域光学コヒーレンス断層(SD−OCT)画像化システム200も含み得る。スペクトル領域光学コヒーレンス断層(SD−OCT)画像化システム200は、手術レーザビームの走査によって生成された第1の光破壊領域の一部の画像を生成する。SD−OCT画像化システム200は、眼1中へ誘導されるべき誘導光学素子120中へ画像化ビームを連結することと、誘導光学素子120から返送された画像化ビームを受信することとを行うように、構成される。SD−OCT画像化システム200は、以下に詳述するように、手術時において第1の光破壊領域の画像(単数または複数)を生成することと、外科医またはレーザコントローラ130のためにタイムリーなまたは実用的なフィードバックを提供することとを行うように、構成され得る。
図1Bは、白内障手術システム100の動作を示す。この例において、レーザコントローラ130は、後嚢層の近隣の円弧である白内障標的領域中の標的走査パターン302の電子表示生成することができる。誘導光学素子120は、レーザ源110によって生成された手術レーザビーム304の第1の1組のレーザパルスを標的走査パターン302の点を通じて集束および走査することができ、これにより、第1の光破壊領域306が生成される。この例において、第1の光破壊領域306は、標的走査パターン302の点に形成された1組の気泡またはキャビテーション気泡からなり得る。光破壊の開始後、SD−OCT画像化システム200は、画像化ビーム308を白内障標的領域を通じて走査して、第1の光破壊領域306の画像を生成することができる。いくつかの実行様態において、画像化ビーム308および手術レーザビーム304は、同じ共有された誘導光学素子120によって走査または誘導され得る。他の実行様態において、光学経路のうち一部のみが共有され得、画像化ビーム308は、さらなる共有されていない画像化誘導光学素子によって部分的に走査され得る。これらの設計全ては、誘導光学素子120の実施形態である。
手術が計画通りに進捗していること(例えば、光破壊による気泡306が標的走査パターン302に従って形成されかつ意図しない結果が発生していないこと)がSD−OCT画像化システム200によって生成された画像によって示された場合、レーザコントローラ130は、手術レーザビーム304を元々の標的走査パターン302に沿って走査することを継続することができる。しかし、計画された手術からの逸脱がある旨をこの画像が示す場合、レーザコントローラ130は、後続の図に示すように、変更された走査パターンの電子表示を生成することにより、応答し、誘導光学素子120を制御して、この変更された走査パターンに従って第2の1組のレーザパルスを走査して、第2の光破壊領域を生成し得る。
いくつかの実施形態において、SD−OCT画像化システム200と、レーザコントローラ130との間は直接的に接続されていない場合がある。これらの実施形態において、SD−OCT画像化システム200は、第1の光破壊領域306の画像を表示し得、システムオペレータ(例えば、外科医)は、変更された走査パラメータを入力して、変更された走査パターンの電子表示をレーザコントローラ130に生成させ得る。
図1Aに示すように、いくつかの実施形態において、SD−OCT画像化システム200は、OCT画像プロセッサ201を含み得る。OCT画像プロセッサ201は、光破壊の開始後に、生成された画像を分析し得る。いくつかの実施形態において、OCT画像プロセッサ201は、分析結果を外科医のために表示して、手術時においてタイムリーかつ実用的なフィードバックを提供し、これにより、外科医は、変更された走査パターンをレーザコントローラ130に入力することができる。図1Bの例において、OCT画像プロセッサ201は、後嚢層から第1の光破壊領域306への距離を測定するように構成され得、この距離が事前設定された安全マージンを下回った場合、警告信号を外科医のために表示する。
いくつかの実施形態において、SD−OCT画像化システム200は、図1Aのようにレーザコントローラ130へ接続され得、あるいは、OCT画像プロセッサ201は、図1Cのように自立型ユニットであり得、SD−OCT画像化システム200およびレーザコントローラ130へ直接接続される。これらの実施形態において、OCT画像プロセッサ201は、第1の光破壊領域306の画像に関連して制御信号を生成し得、この生成された制御信号をレーザコントローラ130へ付加して、変更された走査パターンの電子表示をレーザコントローラ130に生成させる。OCT画像プロセッサ201は、図1AのようにSD−OCT画像化システム200へ全体的または部分的に一体化され得る。
図1Dに示すように、いくつかの実施形態において、OCT画像プロセッサ201は、レーザコントローラ130と重複またはさらには一体化してもよい。図1A、図1Cおよび図1Dの実施形態は、OCT画像の処理および変更された走査パターンの生成のためのソフトウェア関連機能は、多目的プロセッサによって部分的または全体的に実行することができることを示す。多目的プロセッサは、SD−OCT画像化システム200またはレーザコントローラ130中に収容してもよいし、あるいは、双方と一体化されたブロック中に収容してもよいし、あるいは、双方から分離された自立型ブロックであってもよい。
上述したように、白内障手術において、z深さ範囲は4mmを超え得、あるいはいくつかの実施形態においては6mmを超え得るほど著しく大きいため、角膜または網膜システムにおいて用いられるものよりも実質的により複雑なSD−OCT画像化システム200が必要となり得る。そのため、いくつかの実施形態において、SD−OCT画像化システム200は、4mmよりも大きな画像化またはz深さ範囲Lmax(例えば、4〜20mmの範囲)を持つように、構成され得る。他の実施形態において、画像化またはz深さ範囲Lmaxは、6mmを超え得る(例えば、6〜10mmの範囲)。
Lmaxすなわち、SD−OCT画像化システム200の画像化またはz深さ範囲は、以下に詳述するように、画像化レーザビーム308の波長λ、波長分解能δλ、ナイキスト周波数Nf、焦点長さfおよびSD−OCT−画像化システム200の瞳孔dに依存し得る。そのため、SD−OCT画像化システム200の実施形態は、画像化またはz深さ範囲が4mmを超えるかまたはいくつかの実施形態において6mmを超えるように、パラメータλ、δλ、Nf、fおよびdと共に設計することができる。
2mmを超える画像化範囲を必要とするいくつかの既存のシステムにおいて画像化深さ範囲を1〜2mmから4mm以上へ拡張するためには、ほとんど実現不可能な光学素子よりもより高度な光学素子が必要となる点からも、システムの画像化深さ範囲を1〜2mmから4mm以上へ拡張することが困難であることが理解される。そのため、これらのシステムにおいては、画像化範囲が2mm未満である従来の画像化システムを用い、いくつかの画像を隣接するz深さにおいて約2mmの間隔を空けて取得し、(隣接する深さの画像を複雑な画像認識/処理回路を用いて統合することにより)単一の画像をより広い範囲で生成することにより、この従来のシステムの画像化範囲を拡張する。このようなシステムは、電子的に複雑であり得、画像統合を行った場合、性能が大幅に低下する。画像化性能の実質的な速度低下および複雑な電子機器の必要性を回避するために、SD−OCT画像化システム200の実行様態は、2つ以上の画像の統合の必要無く、4mmまたは6mmを超える画像化深さ範囲を達成する。
明確さのため、2種類の画像化走査(すなわち、A走査およびB走査)を区別することが一般的である点に留意されたい。A走査とは、z軸が誘導光学素子120の光軸とアライメントされた基準フレーム内の単一の横(x、y)座標に対応するz深さの範囲内の標的の画像を指す。A走査は、画像化システムの画像化ビームを標的の単一の(x、y)点へ方向付け、異なるz深さに対応する画像化情報を収集することにより、得ることができる。
いくつかの画像化システムは実際は、z画像化深さ範囲を走査し、異なるz深さについての画像データを連続して記録することにより、A走査を生成する。しかし、以下に述べるように、SD−OCT画像化システムは、異なるz深さについての画像データを同時に収集する(すなわち、z方向を走査しない)が、その画像も、A走査と呼ぶ。
B走査とは、1組のA走査を指し、画像化ビームが横線に沿ってまたは横走査パターンにおいて走査された際に画像化ビームとして収集される、1組または1つの線の(x、y)点に対応する。通常の(x、y)分解能の典型的なB走査は、500〜2,000回のA走査を含み得る。高(x、y)分解能のB走査は、1,000〜3,000回のA走査を含み得る。特に高い(x、y)分解能B走査は、2,000〜5,000回または2,000〜16,000回のA走査を含み得る。典型的には、B走査は、標的の断面、円形または円筒画像と統合されたこれらのA走査を含み得る。そのため、B走査は、個々のA走査の場合よりも実質的により詳細なおよびよって実質的により実用的なフィードバック画像化情報を外科医のために提供することができる。そのため、白内障手術システム100の実施形態において、第1の光破壊領域および第2の光破壊領域の画像は、500〜2,000回、1,000〜3,000回、2,000〜5,000回または2,000〜16,000回のA走査を含み得るB走査を指し得る。
OCT画像化システムは、2つのクラス(すなわち、時間領域またはTD−OCT画像化システム、およびスペクトル領域またはSD−OCT画像化システム)に分類され得る。TD−OCT画像化システムは、画像化光線を帯域幅と共に用いる。この帯域幅は、短いパルス長さの規定と、異なるz深さからの画像化情報の連続的収集(実際には、z軸に沿った走査)とに適している。これとは対照的に、SD−OCT画像化システムにおいては、異なる波長スペクトル成分により異なるz深さを示す画像化情報を並列して同時に取得および搬送する帯域幅を有する画像化光線が用いられる。その結果、SD−OCT画像化システムは、異なるz深さからの画像化情報を同時に並列に収集することができる。z深さの画像化情報を並列して感知することにより、SD−OCT画像化システムの性能がTD−OCT画像化システムと比較して10〜1,000倍だけ加速される。このようなより高性能のSD−OCT画像化システムは、以下に述べるように、いくつかの実施形態において用いることができる。
画像化時間の点において、このような高性能により、手術時間よりも短い画像化時間内において光破壊が発生した後、SD−OCT画像化システム200実施形態において、B走査画像を生成することが可能になる。画像化時間は、1秒未満であり得る(例えば、0.1ミリ秒〜1秒の範囲内)。いくつかの実施形態において、画像化時間は、0.1秒未満であり得る(例えば、1ミリ秒〜0.1秒の範囲内)。これらの短い画像化時間により、SD−OCT画像化システム200によって生成された画像に基づいて、白内障手術の進捗についてのタイムリーおよびよって有用なフィードバックを外科医のために提供することができ、これにより、外科医がこのフィードバックに基づいて手術を変更することが可能になる。この変更は、変更された標的走査パターンの入力を含み得る。
次のレベルの有用性は、白内障手術時においてフィードバック画像を1回だけではなく繰り返し提供することができるSD−OCT画像化システム200のいくつかの実施形態によって提供される。このようなシステムは、第1の光破壊領域306の発展、位置および成長についての貴重なタイムリーなフィードバックを提供することができ、これにより、白内障手術システム100の精度、性能および安全性の定性的向上が可能になる。
SD−OCT画像化システム200のいくつかの実施形態は、さらなる定性的向上を提供することができる。これらの実施形態においては、白内障手術時において数個の更新画像を提供できるだけではなく、手術進捗について実質的なライブ画像を提供することができる。本質的にライブのフィードバックにより、極めて貴重なタイムリーかつ実用的な情報を外科医に送達することにより、外科医は、手術進捗の監視、手術精度の向上、望ましくない結果の早期検出およびそのような結果へのリアルタイムでの対応を行うことが可能になる。
一般的に用いられるライブビデオ画像リフレッシュレートは、約24フレーム/秒である。よって、20〜25フレーム/秒以上のリフレッシュレートまたはフレームレートで画像を提供することが可能な画像化システムにより、外科医にとって本質的にライブのようにみえる画像を提供することができる。一方、フレームレートまたはリフレッシュレートが20〜25フレーム/秒を大幅に下回るシステムの場合、ライブビデオ画像化とは認識されず、ぎくしゃくしかつコマ落ちする画像として認識されるため、外科医にとって白内障手術において気が散る原因にさえなり得る。
この文脈において、TD−OCT画像化システムは、z深さ画像化情報を連続して取得するため、わずか1または数フレーム/秒のリフレッシュレートで低分解能のB走査を生成し得る。より高分解能の画像を提供することが期待されているTD−OCT画像化システムの場合、画像の走査および更新をさらに1フレーム/秒を大きく下回るレートで行わざるを得ない場合がある。このようにライブよりも際だって低速のフィードバック画像は、外科医からみてぎくしゃくした画像にみえ、また、気が散る原因にさえなり得る。さらに、このような低速の走査速度およびその結果発生する低速のリフレッシュレートに起因して、いくつかのTD−OCT画像化システムにおいて、アーチファクトが表示され得る(例えば、実際には平滑な層の画像において、表示がとびとびに不連続になり得る)。
これとは対照的に、SD−OCTシステムの場合、全てのz深さからの(x、y)点における画像データを同時かつ並列に収集する。これらの画像は、未だにA走査と呼ばれる場合があるが、連続的なz走査は用いられない。このように、異なる深さからの画像データを並列かつ同時に収集するため、SD−OCTシステム200の実施形態において、上述したように、A走査をTD−OCT画像化システムの場合よりも10〜1,000倍高速に取得することができる。詳細には、品質SD−OCT画像化システム200は、10,000〜100,000回のA走査/秒を取得することができ、あるいは、同等に10〜100kHzのA走査取得レートを持つことができる。高品質のSQ−OCT画像化システム200のA走査取得レートは、30〜300kHzであり得る。詳細には、高品質のSD−OCT画像化システム200のA走査取得レートは100kHz〜1、000kHzであり得、TD−OCT画像化システムの場合に達成することが可能なA走査取得レートを大きく上回る。
明確なことに、A走査取得レートまたはA走査の回数/秒は、A走査の回数/B走査に、画像数/秒を乗じたもの、すなわち画像リフレッシュレートにほぼ等しい。例えば、A走査取得レートが10,000〜100,000回のA走査/秒(または10〜100kHz)の品質である場合、通常の(x、y)分解能の500〜2,000回のA走査/B走査の画像は、20〜200フレーム/秒のリフレッシュレート範囲を含む5〜200フレーム/秒の範囲の画像リフレッシュレートにおいて取得される。別の例において、高品質のA走査取得レートである30〜300kHzにおいて、1,000〜3,000回のA走査/B走査の高(x、y)分解能の画像は、25〜300フレーム/秒の範囲を含む10〜300フレーム/秒の範囲内の画像リフレッシュレートにおいて取得され得る。最後に、特に高品質のA走査取得範囲である100〜1,000kHzにおいて、25〜500フレーム/秒の範囲の画像リフレッシュレートにおいて、特に高(x、y)分解能の2,000〜5,000のA走査/B走査の画像を生成することができる。
これらの例から分かるように、A走査取得レート品質およびA走査/B走査分解能比の多様な組み合わせを用いたSD−OCT画像化システム200の実施形態により、20フレーム/秒閾ライブビデオレートを明確に上回る画像リフレッシュレートが得られ、よって、TD−OCT画像化システムに比して定性的な利点が得られる。
SD−OCT画像化システム200の実施形態は、典型的には特に高分解能および通常のA走査取得レート品質で動作させられる場合、ライブビデオレートよりも低い画像リフレッシュレートで動作させることができる点に留意されたい。このような実施形態は、SD−OCT画像化システム200のオペレータが医療的な理由のために特に高分解能の設定を必要とし、SD−OCT画像化システム200のライブビデオレート能力無しですませようとする場合に用いることができる。
画像データの全体的量は、他の方法で取得することも可能である。SD−OCT画像化システム200の特定の設計パラメータ(例えば、そのセンサーアレイの全体長さ)により、分解点のz方向距離であるz分解能が制御される。このz分解能は、例えば、データ点間の5ミクロンのz方向距離であり得る。すなわち、典型的なLmax=5mmのzの深さ範囲において1,000個のz深さ点が得られる。通常の(x、y)分解能の実施形態において、B走査が((x、y)面において約5ミクロンだけ間隔を空けて配置されることの多い)500〜2,000回のA走査を含む場合、この実施形態において、画像分解能が0.5〜2百万画素/1画像で画像が生成され得る。他の実施形態において、20〜200、25〜300または25〜500フレーム/秒以上のライブビデオレートで画像を提供しつつ、1〜3百万、2〜5百万またはさらには2百万〜1千万画像点/フレームの画像分解能で画像を取得することができる。
このように高(x、y)、zおよび画像分解能が極めて高いため、SD−OCT画像化システム200の実施形態において、複雑であり、鋭利でありかつ豊富な詳細を含む画像を取得および表示することができる。例えば、B走査は、(x、y)面内のいくつかの円、放射線、螺旋、および2次元(2D)横または横走査グリッドに沿った水晶体5の走査を含み得る。これらの詳細画像により、SD−OCT画像化システム200は、モデルの利用ならびにジオメトリおよび形状についての前提を行う代わりに、水晶体5の実際の形状をマップアウトすることができる。
ここで、OCT画像の表示には時間もかかる点に留意されたい。そのため、画像表示のリフレッシュレートは、SD−OCT画像化システム200の表示ユニットの電子性能の速度によって限定され、OCT画像取得ユニットのレートを下回り得る。この文脈において、上記したリフレッシュレートは、((電子およびデータ転送制限要素に応じて低下する可能性のある)表示ユニットの表示レートによってではなく)SD−OCT画像化システム200による画像取得速度を特徴付ける。
SD−OCTおよびTD−OCT画像化システムの画像化速度が20〜25フレーム/秒のライブビデオレートの対向しあう側部上にあると仮定した場合、SD−OCT画像化システム200を含む白内障手術システムの実施形態において、運動アーチファクトの無い、タイムリーかつ円滑なライブフィードバック情報を外科医のために提供することができる。一方、典型的なTD−OCT画像化システムを用いた実施形態においては、このような円滑なライブフィードバックを外科医のために提供することは不可能であり、また、運動アーチファクトが表示される傾向にある。
SD−OCT画像化システム200の実施形態の長期性能に影響を及ぼす最後の要素として、SD−OCT画像化システムの場合、可動部分が含まれないため、信頼性および保守性が極めて満足できる点がある。これとは対照的に、TD−OCTシステムの場合、TD−OCT装置の基準アーム内の基準ミラーの動きに関連して高速移動する部分が含まれる。明らかなことに、このようなTD−OCTシステム内の可動部分に起因して、誤動作およびミスアライメントの可能性が増加し、その結果全体的性能が低下し得、現場修理の必要回数が増加し、また、長期性能低下の可能性も高まる。
要約すると、SD−OCT画像化システムは、特に白内障用途の場合において少なくとも以下の理由に起因して、TD−OCTシステムと定性的に異なる:(1)SD−OCT画像化システムは、ライブ画像化またはフィードバック画像を高精度白内障手術プロセスに有用な20〜200、20〜300または20〜500フレーム//秒のリフレッシュレートで提供するように構成される一方、TD−OCTシステムはそうではない。(2)SD−OCT画像化システムは、500〜2,000、1,000〜3,000または2,000〜5,000A走査/B走査以上のライブビデオレートでの高(x、y)分解能で画像提供が可能である一方、TD−OCT画像化システムはそうではない。(3)SD−OCT画像化システムは、10〜100kHz、30〜300kHzまたは100〜1,000kHzの品質A走査取得レートで動作可能である一方、TD−OCTシステムはそうではなくてもよい。(4)SD−OCT画像化システムの場合、豊富な詳細を含む画像を高画像分解能で例えば0.5〜2、1〜3または2〜5百万画像点などのライブビデオレートで提供することに適している一方、TD−OCTシステムはそうではない。(5)SD−OCT画像化システムの場合、豊富な詳細を含む画像の提供が可能であるため、水晶体5の画像全体を水晶体5のモデルの使用無しに形成することが可能である一方、TD−OCTシステムはそうではない。(6)SD−OCT画像化システムは典型的には、運動アーチファクトを表示しない一方、TD−OCTシステムは運動アーチファクトを表示する可能性が高い。(7)最後に、SD−OCT画像化システムの場合、現場修理およびメンテナンスは頻繁でなくてよい(例えば、6ヶ月毎または9ヶ月毎のみ)一方、TD−OCT画像化システムの場合、可動部分の現場修理およびメンテナンスをもっと頻繁に必要になることが多い。
一般的には白内障標的領域(および詳細には第1の光破壊領域306)の1つ以上のフィードバック画像またはフィードバックビデオを提供できるというSD−OCT画像化システム200の利点として、外科医がこのフィードバックに応じて手術を変更することができる点がある。手術変更は、提供されたフィードバック画像またはビデオに応じて変更された走査パターンを生成することにより、行われる。変更された走査パターンは、レーザコントローラ130がシステムオペレータから受信された初期入力に従って元々の標的走査パターン302の電子表示を生成した後、異なる様態で生成され得る。
いくつかの実施形態において、レーザコントローラ130は、システムオペレータから同様に受信された変更入力に従って、変更された標的走査パターンの電子表示を生成し得る。このような実施形態において、変更入力は、第1の光破壊領域306の部分の画像の分析に応じて、システムオペレータによって生成され得る。例えば、外科医は、第1の光破壊領域306の画像を調査し、手術レーザビームを過度に分散させる原因となる望ましくない気泡の形成を発見し、手術レーザビーム304を操作して気泡を除去する、変更された走査パターンを生成させる。
他の実施形態において、SD−OCT画像化システム200は、較正マークを表示し得る。これらの較正マークは、外科医またはシステムオペレータが第1の光破壊領域306の標的走査パターン302に相対する位置を較正する作業を支援する。このような較正マークは、画像の特徴点(例えば、角膜3または水晶体5の頂点)と関連付けられ得る。
さらに他の実施形態において、SD−OCT画像化システム200は、OCT画像プロセッサ201を含み得る。OCT画像プロセッサ201は、第1の光破壊領域306の画像を分析し、システムオペレータのためのフィードバックを表示することができる。例えば、OCT画像プロセッサ201が誤較正(すなわち、標的走査パターン302が必要としたであろう場所から離れた場所に第1の光破壊領域306が形成されたこと)を感知した場合、OCT画像プロセッサ201は、誤較正フィードバック信号を外科医へ送ることができる。その後、外科医は、手術の停止を決定し、システムの再較正を行うかまたは誤較正距離を補償するために変更された走査パターンを入力することができる。
さらに他の実施形態において、SD−OCT画像化システム200は、第1の1組の手術レーザパルスの生成前に基準画像をとり、第1の1組のレーザパルスによる第1の光破壊領域306の生成後にフィードバック画像をとることができる。OCT画像プロセッサ201は、これら2つの画像間の差を決定し、これらの差を表示することができる。決定および表示された差により、外科医またはOCT画像プロセッサ201は、白内障手術の進捗を監視し、標的走査パターン302と比較した場合の相違(例えば、意図しない手術副産物(例えば、気泡)の発生)をタイムリーに追跡することができ、また、画像および表示された差に基づいて、変更された走査パターンを発生させることができる。
最後に、いくつかの実施形態において、OCT画像プロセッサ201は、より高度かつ積極的な役割を果たすことができる。例えば、OCT画像プロセッサ201は、第1の光破壊領域306の画像を積極的に分析し、制御信号を生成して、必ずしも外科医からの変更入力を待機せずに、レーザコントローラ130に変更された走査パターンの電子表示を生成させることができる。例えば、OCT画像プロセッサ201が危険性が差し迫っている状況を発見した場合(例えば、第1の光破壊領域の形成が後嚢層に近すぎる場合)、OCT画像プロセッサ201は、外科医との遅くかつ時間のかかる対話の結果を待つことなく、白内障手術を停止することができる。
上記の5個の実施形態は、多様な様態で組み合わせることができる。例えば、画像から危険性が差し迫っている状況が決定された場合、OCT画像プロセッサ201は、外科医のためのフィードバック信号の表示と、手術停止のためのレーザコントローラ130のための制御信号の準備との双方を行うことができる。その後、OCT画像プロセッサ201は、所定の時間にわたって外科医からの変更入力を待機し得る。このような変更入力が所定時間内に無い場合、OCT画像プロセッサ201は、差し迫っている危険な状況を回避するために自身で行動を進めることができ、制御信号をレーザコントローラ130へ送って、外科医からの入力をさらに待機することなく手術を停止させることができる。
図2A〜図2Bは、水晶体5の後領域内に標的走査パターン302を計画したレーザコントローラ130の特定の例を示す。白内障手術システム100は、標的走査パターン302に従って手術レーザビーム304を付加して、第1の光破壊領域306を生成し得る。しかし、画像化レーザビーム308による第1の光破壊領域306の後続画像化の結果、第1の光破壊領域306が意図される標的走査パターン302から逸脱310だけ誤留置されて形成されていることが判明する場合がある。逸脱310は、標的走査パターン302に相対する第1の光破壊領域306の位置、方向または形状の逸脱であり得る。このような誤留置または誤較正は、以下のような多様な理由に起因して発生し得る:例えば、外科医による誤入力、誘導光学素子120の製造プロセスにおける精度低下、コンポーネントの熱膨張、初回画像化後の患者の動き、患者インターフェース124の圧力に起因する眼の変形、または、動作前の診断プロセス時における眼1の屈折特性の特徴付けの誤り。
図2Bにおいて、いくつかの実施形態において、SD−OCT画像化システム200が分析無しに標的走査パターン302のフィードバック画像および第1の光破壊領域306の画像を表示することができる様子が図示されている。このフィードバック画像から、外科医は、逸脱310を視覚的に決定し、補償のための変更入力を入力して、レーザコントローラ130に走査パターン312を変更させる。他の実施形態において、SD−OCT画像化システム200は、外科医の分析を支援するための較正マークを表示し得る。
他の実施形態において、OCT画像プロセッサ201は、逸脱310を決定し得る。その後、いくつかの実施形態において、OCT画像プロセッサ201は、決定された逸脱310ならびに外科医のためのフィードバックおよび推奨事項を表示し得る(例えば、走査パターンのシフトの大きさおよび方向についての提案、または外科医に対する警告サイン)。これらの実施形態において、外科医は、変更入力をレーザコントローラ130に入力して、逸脱310を低減して低減逸脱310rとする目的のために、変更された走査パターン312を生成させることができる。さらに他の実施形態において、OCT画像プロセッサ201は、レーザコントローラ130へ直接信号を送って、変更された走査パターン312の電子表示を生成させて、決定された逸脱310を低減して低減逸脱310rとする。これらの動作は全て、外科医からの変更入力を待たずに行われる。
図2Bは、変更された走査パターン312の生成において、上記実施形態のうちいずれかにおいて誘導光学素子120の誤較正を考慮に入れることができることを示す。変更された走査パターン312は、およそ誘導光学素子120の誤較正の分だけ標的走査パターン302からシフトする場合があり、そのため、誘導光学素子120の誤較正に起因して手術レーザビーム304によって形成された第2の光破壊領域314が変更された走査パターン312から誤留置された場合、第2の光破壊領域314は、元々意図されていた標的走査パターン302に近接して形成され、その結果、逸脱310が低減されて低減逸脱310rとなる。
図2Cに示す関連実施形態において、OCT画像プロセッサ201は、第1の光破壊領域306が意図せずに危険領域316内に進入する状態で形成されたかまたは延在してしまっていないかを決定することができる。第1の光破壊領域306が危険領域316内に形成された場合、後嚢層の完全性が脅かされ、破壊する可能性があり、その結果、嚢6が穿刺され、複雑な硝子体茎切除術手術が必要となり得る。その場合、白内障手術の危険性が実質的に高まる。
このような完全性の破壊を阻止するために、多様な実施形態において、OCT画像プロセッサ201は、フィードバック画像(単数または複数)またはSD−OCT画像化システム200の本質的にライブの画像化を分析して、危険領域316内において第1の光破壊領域306が後嚢層に近接しすぎてまたは本質的にライブの画像化内に形成されていないかを監視することができる。OCT画像プロセッサ201は、第1の光破壊領域306がこの危険領域316内に形成されていることを感知した場合、OCT画像プロセッサ201は、外科医のための警告フィードバックを表示するかまたはレーザコントローラ130のための制御信号を生成して、変更された走査パターン312を生成させることができる。上記の実施形態全てにおいて、レーザコントローラ130は、変更された走査パターン312を生成し、手術レーザビーム304に相応に指令して、危険領域316の外部において第2の光破壊領域314を形成させることができる。
いくつかの実施形態において、OCT画像プロセッサ201およびレーザコントローラ130は、部分的または全体的に一体化され得る。例えば、単一の一体型プロセッサは、OCT画像プロセッサ201の画像処理機能およびレーザコントローラ130の走査パターン生成機能双方を行うことができる。
図3A〜図3Eに示す実施形態において、標的走査パターン302はチョップパターンである。場合によっては、白内障外科医は、水晶体を2個、4個または6個の部分にチョップして、嚢切開を通じた除去または吸引を促進することを選択し得る。
図3A〜図3Bは、白内障手術の設計フェーズにおいて、外科医から対応する入力を受信すると、レーザコントローラ130は、標的走査パターン302を生成し得る。標的走査パターン302は、例えば、2つのチョップ面上において(x、z)面および(y、z)面内に形成された点からなる。理想的な白内障手術においては、第1の1組のレーザパルスがこの標的走査パターン302へ付加されると、生成された第1の光破壊領域306は、4つのチョップ面を含み、これにより、水晶体がこれらのチョップ面に沿ってチョップされて4つのセグメントとなる。
図3C〜図3Dにおいて、非理想的な場合において、手術レーザビーム304の第1の1組のレーザパルスが標的走査パターン302の点へ方向付けられて第1の光破壊領域306の形成が開始すると、意図しない手術副産物320も発生し得る。この手術副産物320の原因として、新規形成された光破壊気泡群が合体して単一の大型の気泡となり、この大型気泡が後続レーザパルスを意図しない方向(例えば、網膜へ向かって)分散または再方向付けし得、その結果、損傷および光毒症に繋がり得る。そのため、光破壊プロセスの精度が低下し得、また、後続レーザパルスが気泡320中へ方向付けられた場合、光破壊プロセスの危険性が増し得る。
このような意図しない発展を、OCT画像プロセッサ201によって阻止することができる。OCT画像プロセッサ201は、SD−OCT画像化システム200の画像の分析により、気泡または別の手術副産物320の形成を認識することができる。SD−OCT画像は本質的にライブの速度で生成することが可能であるため、OCT画像プロセッサ201は、この認識をタイムリーかつ実用的なフィードバックとして外科医またはレーザコントローラ130のためにリレーすることができ、その結果、以下に述べるように変更応答を促すことができる。
図3C〜図3Dに示すように、フィードバックは、OCT画像プロセッサ201が、画像を分析し、チョップパターンの推奨回転レベルを決定し、推奨されるチョップパターンの回転を外科医に表示して、対応する変更入力を入力させる形態をとり得る。他の実施形態において、OCT画像プロセッサ201は、制御信号を直接レーザコントローラ130へ付加して、回転されたチョップパターンの電子表示を変更された走査パターン312として生成して、回転されたチョップパターンが312が気泡320と重複しないようにする。回転されたチョップパターン312は、水晶体5のz深さ範囲全体を通じて延び得、その場合、実際に手術がやり直される。あるいは、回転されたチョップパターン312は、部分的チョップパターンであってもよく、その場合、元々の標的走査パターン302が中止されたz深さから切断が継続される。
図3Eに示すように、OCT画像プロセッサ201は、手術レーザビーム304を変更されたまたは回転された走査パターン312の点へと方向付けて、合体気泡320と重複しない、第2のまたは回転されたまたは変更された光破壊領域314を形成することを推奨し得る。よって、この実施形態において、手術レーザビーム304が意図しない方向に分散する事態が回避され、その結果、白内障手術の危険性が低下する。
図4Aは、OCT画像プロセッサ201が手術副産物320の発生を感知したのに応答して、変更されたかまたは重複していない走査パターン312を形成する別の実施形態を示す。ここで、変更されたまたは重複していない走査パターン312は、回転されたチョップ面を含まない。その代わりに、変更されていない標的走査パターン302に従って手術レーザビーム304が走査されているが、手術副産物気泡320中へ方向付けられるレーザパルスをレーザコントローラ130により無力化することによって、重複が回避される。走査が手術副産物気泡320を通過した後、レーザコントローラ130は、レーザパルスの無力化をキャンセルして、標的走査パターン302の全ての点に衝突させることができる。
図4Bに示すさらに別の実施形態において、手術レーザビーム304の走査を元々の標的走査パターン302に沿って継続すると、手術副産物気泡320と重複した第1の光破壊領域306が発生するとOCT画像プロセッサ201が(SD−OCT画像化システム200のフィードバック画像またはライブレート画像ストリームの分析により)認識した場合、OCT画像プロセッサ201は、手術レーザビーム304の走査をすぐに停止させることができる。いくつかの実施形態において、この停止後、OCT画像プロセッサ201またはレーザコントローラ130は、システムオペレータのためにプロンプトを表示して、変更入力または修正策を要求することができる。
いくつかの手術シナリオにおいて、複数の気泡320−iがほぼ同時に発生し得る。そのため、白内障手術システム100のいくつかの実施形態を、複数の気泡の同時発生を回避する、変更された走査パターン312を生成するように構成することができる。
図4C〜図4Dに示すいくつかの実施形態において、OCT画像プロセッサ201を、第1の光破壊領域306と異なる画像の一部を分析することと、この分析に基づいたフィードバックを生成することとを行うように構成することができる。この特定の例において、第1の光破壊領域306が形成されると、矢印に示すように、水晶体5およびよって水晶体嚢6が拡張し得る。SD−OCT画像化システム200は、この拡張した前嚢層322を画像化することができる。OCT画像プロセッサ201は、この画像を分析し、この拡張した前嚢層322の位置シフトを決定することができる。
前嚢層の位置を把握することは、白内障手術において重要である。なぜならば、いくつかの実施形態において、嚢切開標的走査パターン324は、前嚢層を横断して配置されるからである。嚢拡張の前にとられた画像に従って嚢切開標的走査パターン324が配置された場合、手術レーザビーム304は、嚢切開を不正確な位置に生成しようとする。
図4Dに示すように、このような不正確な生成を回避するために、OCT画像プロセッサ201は、拡張した前嚢層322の位置シフトを決定し、このシフトをシステムオペレータのために表示して変更入力をレーザコントローラ130に入力させるか、または、このシフトを直接レーザコントローラ130へ信号送信する。いずれの場合も、レーザコントローラに変更された嚢切開走査パターン326を生成させる。この変更された嚢切開走査パターン326は、拡張嚢内において嚢切開を適切に発生させる。
図5A〜図5Dにおいて、レーザ支援型の嚢切開または切開の形成に関連する別の実施形態が示される。この実施形態において、OCT画像プロセッサ201は、反復されるフィードバック画像またはライブストリーミング画像を分析し、未切断部分または「タグ」330を第1の光破壊領域306内において特定し得る。未切断部分または「タグ」330においては、光破壊効率が限定されるため、前嚢状膜が完全に切断できていない結果、未切断部分または「タグ」330が残っている可能性がある。このようなタグ330が残っている場合、嚢蓋または嚢キャップが外科医によって除去された際に嚢または嚢膜の破断の危険性が増す。このような望ましくないかまたは危険性の高い結果を回避するため、OCT画像プロセッサ201は、さらなる変更された走査パターン312に沿った走査を行うことによりタグ330を除去する方法についての外科医への推奨事項を表示するか、または、制御信号をレーザコントローラ130へ直接付加して、変更された走査パターン312の電子表示を生成して、少なくともタグ330を再走査して、再走査されたタグ領域332を第2の光破壊領域314として生成する。この再走査により、第1の光破壊領域306および第2の光破壊領域314は、完成した光破壊領域334(この場合、完成した嚢切開334)を形成することができ、その結果、外科医は、最小の破断危険性で嚢蓋または嚢キャップを除去することができる。
図6に示すいくつかの実施形態において、SD−OCT画像化システム200は、スペクトロメータベースのOCT(SB−OCT)画像化システム200を含み得る。SB−OCT画像化システム200は、広帯域光またはレーザビームを生成する広帯域光源210を含む。広帯域ビームは、平均波長λ0および比較的広帯域幅Wsourceを持ち得る。いくつかの典型的な例において、λ0は800〜1100nm範囲内にあり、Wsourceは10〜150nm範囲内にある。
広帯域ビームは、ビーム誘導システム211へ接続され得る。ビーム誘導システム211は、第1のビームスプリッター212を含み得る。第1のビームスプリッター212は、広帯域ビームを分割して、画像ビーム222および基準ビーム224とし得る。画像ビーム222は、第2のビームスプリッター214によって誘導光学素子120の主要光学経路内へと誘導され得、この主要光学経路内から、対物素子122および恐らくは患者インターフェース124を通じて眼1へ到達する。ビーム誘導システム211は、眼1から第1のビームスプリッター212へ送られる返送画像ビーム222rも含み得る。画像ビーム222および返送画像ビーム222rは、画像化レーザビーム308として上記に総称している。
加えて、ビーム誘導システム211は、基準ビーム224を基準ミラー216へ誘導し、返送基準ビーム224rを基準ミラー216から誘導し、返送画像ビーム222rおよび返送基準ビーム224rを組み合わせて、第1のビームスプリッター212において結合ビーム226とすることができる。結合ビーム226は、眼1からの画像化情報を返送画像ビーム222rおよび返送基準ビーム224rの干渉によって搬送する。いくつかの実施形態において、基準ミラー216の代わりにまたは基準ミラー216と共に他の種類の遅延素子が用いられ得る。さらに別のビームスプリッターを用いて、返送画像ビーム222rおよび返送基準ビーム224rを結合することができる。いくつかの実施形態において、ビーム誘導システム211は、マッハツェンダー干渉計を含み得る。このようなシステムは、好ましいノイズ低減特性を持ち得る。
TD−OCT画像化システムは、マイケルソンモーリー干渉計と本質的に同様に別個に各(x、y)点について対応する距離範囲において基準ミラー216を移動させることにより、画像化データをz画像化範囲中の異なるz深さから連続して取得する。これとは対照的に、SD−OCT画像化システムにおいては、広帯域画像化光の異なるスペクトル成分を用いて、異なるz深さから画像化データを並列に取得する。SD−OCT画像化システムは、多数のマイケルソンモーリー(MM)干渉計が異なる波長において並列動作しているものとみなすことができる。異なる波長において動作するMMシステムの場合、眼1の画像化を異なるz深さにおいて行うため、SD−OCTシステム200の結合ビーム226は、画像化データまたは情報を全て眼1のz深さから同時に搬送するため、いかなる機械システムコンポーネント(例えば、基準ミラー216)の動きまたは走査は不要である。上述したように、このように、SD−OCTシステムにおいては機械的走査は不要であるため、TD−OCT画像化システムと比較して、画像化速度が少なくとも10倍またはより典型的には100〜1,000倍高速化される。
SD−OCT画像化システム200は、OCTカメラ230も含み得る。OCTカメラ230は、結合ビーム226を受信するように構成される。全てのz深さについて画像情報を回復させるには、結合ビーム226をスペクトル分解装置231(例えば、プリズムまたはグレーチング)によってスペクトル成分に分解することができる。波長λの周囲のδλ帯域幅を有する各スペクトル成分と、搬送される干渉情報とを、センサーアレイ232の個々のセンサーによって並列に感知することができる。これらのセンサーは、相互に距離d’だけ空けて離間される。その後、センサーによって個々に感知される干渉情報を用いて、z深さ範囲全体の画像を高速フーリエ変換器(FFT)システム233によって再構築することができ、これにより、感知されたスペクトル成分からフーリエ変換が生成される。実際、異なる波長成分によって搬送される干渉データまたは情報を変換して、画像化されたz深さ範囲の同時または本質的に瞬間的な「z走査」を得ることができる。このような干渉データから「z走査」データへの変換は、画像生成器234によって実行され得る。画像生成器234は、感知されたスペクトル成分からのフーリエ変換から、OCT画像を生成および出力する。
OCTカメラ230のいくつかの実施形態において、CCD(電荷結合デバイス)画素がセンサーアレイ232のセンサーとして用いられ得る。他の実施形態において、CMOSセンサーの利用により、読み出し速度の向上が達成され得る。このような実施形態において、CMOSセンサーは、並列に読み出され得る。さらに、CMOS実施形態において、画像化の前に選択されたかまたは(画像化に起因してコンテンツが変化したかに基づいて)リアルタイムで選択された対象センサーまたは画素のみを読み出すことが可能である。これらの局面双方により、CMOS画素は、OCTカメラ230の性能のスピード向上において極めて有利である。
標準的な光学分析を用いて、SD−OCTシステム200の重要画像化および性能パラメータは、以下のようなアーキテクチャパラメータおよび設計パラメータによって特徴付けられ得る。スペクトル分解装置231は、結合ビーム226の異なる波長成分を若干異なる方向に方向付けるため、個々のセンサーまたは画素の小型化またはパッキング密度が高くなるほど(d’が小さくなるほど)、OCTカメラ230により分解されるδλ波長/スペクトル範囲も狭くなる。画素密度に加えてδλを決定するその他の数量は、波長の全体的範囲である(すなわち、OCTカメラ230の帯域幅Wcamera)。単純な配置構成において、δλは、帯域幅Wcameraに比例し、センサーアレイ232の行内の画素数に反比例する。
重要な画像化z深さ範囲またはz画像化範囲として、Lmaxは、δλに密接に関連する。すなわち、δλの波長範囲が狭いほど、z方向における画像化範囲が広くなる。なぜならば、これら2つの量は、逆フーリエ変換によって接続されるからである。詳細には、理論的最大画像化範囲は、以下によって得られる。
Figure 2015505710
ここで、値λ0は、広帯域光源210の平均または中心波長を示し、Nfは、OCTカメラ230のナイキスト周波数を示す。実際には、さらなる要素に起因して、有効画像化範囲がこの理論的最大範囲を下回る場合がある(例えば、信号/ノイズ比)。そのため、有効画像化範囲は典型的には、この理論的値Lmaxよりも小さくなる。
画像化範囲をさらに制限し得る1つの要素として、レイリー範囲Rがある。Rは、Δxを用いて表すことができる。Δxは、横x方向における分解能または「横分解能」であり、光源210の開口数NAおよび波長λ0によって決定される。詳細には、Δxは、以下のように表すことができる。
Figure 2015505710
式中、fは焦点距離であり、dは対物素子122の瞳孔であり、その比によってNAが決定される。Δxを用いて、上記したレイリー範囲Rを以下のように表すことができる。
Figure 2015505710
レイリー範囲Rは、焦点深さと、ビーム幅が焦点深さにおけるビーム幅の
Figure 2015505710
倍である深さとの間のz方向距離として定義されることが多い。よって、Rは、z範囲を特徴付ける。このz範囲内において、幾何光学および波動光学によって制限されるような高分解能画像化が可能となるくらいの充分に狭いビームが得られる。この文脈において、Lmaxは、光源210およびセンサーアレイ232の分解能によって制限されるようなz画像化範囲を特徴付けるものとしてみなすことができる。例えばガウスビームの場合において最適と思われるシステム設計原理により、これら2つのz範囲が相互にアライメントされる。例えば、いくつかの実行様態において、Lmaxは、本質的に1〜6Rに等しくなるように、選択され得る。

Lmax=1、…6R (4)
同じ設計原理を、広範に用いられている「焦点深度」の概念を通じて述べることができる。「焦点深度」は、レイリー範囲の2倍として規定されることが多い。
Eq.(1)〜(4)に示すように、z画像化範囲は、LmaxおよびRに依存し、LmaxおよびRは、システム設計パラメータ(例えば、λ0、δλ、Wcamera、Wsource、f、d’、Nf、およびd)に依存する。よって、白内障手術のための画像化システムについて、上記のシステム設計パラメータは、SD−OCT画像化システム200のz深さ画像化範囲が4mmまたは6mmを超えて例えば4〜20mmまたは6〜10mmの範囲内に入るように選択されるべきであり、これにより、白内障手術システム100が高分解能および充分に高速の画像化により白内障手術を支援することが可能となる。この設計要求は極めて高い要求であり、白内障画像化システムが角膜または網膜画像化システムと異なる点である。
図7に示す実施形態により、大きなz深さ画像化範囲だけでなく、高速画像化時間が得られ、これにより、SD−OCT画像化システム200からフィードバック画像をタイムリーかつ実用的に得ることができる(例えば、本質的にライブビデオレートで動作することができる)。上述したように、SD−OCT画像化システム200を備えた白内障手術システム100は、その制御システム(例えば、OCT画像プロセッサ201およびレーザコントローラ130)を本質的にリアルタイムで動作させることができ、よって、手術時において手術走査パターンを受信されたフィードバック画像化情報に従って調節または変更する選択肢が得られる。
以下に詳述するように、図7の実施形態は、事前計算された走査パターンを用いて、OCT画像化ビーム308/222を特に高速で走査するようにも構成される。いくつかの実施形態において、SD−OCT画像化システム200のこれらの高速画像化リフレッシュレートは、専用入力/出力ボード260を設けることにより、達成することができる。
専用入力/出力ボード260の1つの機能として、画像化専用の回路およびプロセッサを持たないいくつかの既存のOCT画像化システムの問題に対処することがある。これらのシステムにおいて、画像化を担当するプロセッサは、1つよりも多くの機能を(交互的様態、並列様態または重複様態で)マルチタスクで行うように強制またはプロンプトされ得る。これらの機能を行うために、画像化プロセッサは、例えば画像化ビーム222/308を走査するタスクから別のタスクへ切り換えて戻ることにより、「割り込み」を行うことができる。しかし、このような割り込みを走査するタスクは短いが、問題の原因になり得る。なぜならば、割り込みに起因して走査が停止または一時停止している間、レーザビームが同じ位置に残り得るからである。このように走査を一時停止した場合、(x、y)走査のタイミングが妨害され得、その結果、画像化位置の座標においてエラーおよびノイズが発生する。出力された走査データのこのタイミングエラーは、50、100マイクロ秒以上の遅延になり得、ジッターと呼ばれる現象となる。
加えて、典型的には他のいくつかの入力/出力エージェントが、同じシステムバス上において通信することが多い。このシステムバス上において、画像化プロセッサが画像化ビームの走査を駆動するが、全てにおいて、バスのサイクル時間のうちほんの一部しか必要ではない。このようにチャンネルが共用されるため、残念なことに、低データ転送レートしかサポートすることができない。さらに、これらの競合する要求を管理するために、システムバスのサイクルのうち一部は典型的には、制御信号によって占有されることが多い。そのため、専用リンクを通じて単一タスクモードで走査ユニットへ走査データを出力するように画像化プロセッサを切り換えることによりOCT画像化システムが走査の一時停止を回避するように設計されている場合でも、画像化プロセッサは、この出力ステップにおいて他の機能を行うこと(例えば、次の走査パターンを計算すること)ができない。これらの制約全てに起因して、このような既存の画像化システムの性能が大幅に低下する。
SD−OCT画像化システム200の実行様態は、以下の高効率の設計を用いることにより、これらの問題を解消することができる。画像ビーム222の走査は、画像化プロセッサ250および専用入力/出力ボード260によって制御され得る。画像化プロセッサ250は、走査データ(例えば、標的走査パターン302および変更された走査パターン312)を計算することができる。これらの走査データは、例えば、OCT画像ビーム222を白内障標的領域内に方向付けるべき位置である一連の(x、y)座標を含み得る。画像化プロセッサ250は、走査データを計算し、また、コンピュータコードまたは命令セットを保存する記憶媒体に関連する他の機能を行うことができ、これにより、画像化プロセッサ250のこれらの機能が促進される。
専用入力/出力ボード260は、ローカルまたは専用メモリコントローラ262(直接メモリアクセス(DMA)エンジン262とも呼ばれる)を含み得る。DMAエンジン/メモリコントローラ262は、計算された走査データの画像化プロセッサ250からデータバッファ264への間接的または直接的転送を管理することができる。ローカルメモリコントローラ262へ接続されたデータバッファ264は、走査データを保存し、走査データを出力デジタル/アナログ変換器(出力DAC)266へ高速で出力するように、動作することができる。出力DAC266は、走査データを受信することと、選択された出力走査データをアナログ走査信号へ変換することと、および走査信号を(例えば走査データバーストモードにおいて)OCTビームスキャナ268へ出力することとを行うように、データバッファ264へ接続され得る。
画像ビーム222は、別個の専用画像化光学素子を通じてまたは手術ビームの誘導光学素子120を部分的に通じて、OCTビームスキャナ268によって走査され得る。これらの実行様態のいずれかにおいて、画像ビーム222は、対物素子122および対応するドッキングユニットまたは患者インターフェース(PI)124を通じて眼中へ接続され得る。他の実施形態において、画像ビーム222は、ドッキングユニット124を眼1へドックさせること無く、空気を通じて眼1中へと誘導され得る。
出力DAC266による走査データの出力は、画像化同期装置242によってOCTカメラ230の動作と同期され得、これにより、OCTカメラ230は、OCT画像を走査動作と同期してとることができる。このように同期してとられたOCT画像は、OCT画像プロセッサ201へ出力され得る。OCT画像プロセッサ201は、上記に述べた多数の画像処理タスクのうちいずれか1つを行うことができる。最後に、生成および処理された画像は、OCT画像表示270によって表示され得る。いくつかの実施形態において、画像化プロセッサ250およびOCT画像プロセッサ201は、部分的または全体的に一体化され得る。
図8は、専用入力/出力ボード260の実行様態をより詳細に示す。画像化プロセッサ250は、バス252(例えば、PCIバス252)へ接続され得る。システムは、プロセッサメモリ254も含み得る。画像化プロセッサ250は、走査パターンを計算した後、計算された走査パターンを共有PCIバス252を通じてプロセッサメモリ254へ出力することができる。画像化プロセッサ250が走査パターンを生成した後でありかつ実際の走査動作の開始前において、専用DMAエンジン262は、走査データをプロセッサメモリ254からデータバッファ264へと転送することができる。データバッファ264は、先入れ先出し(FIFO)メモリ264であり得る。FIFOデータバッファ264は、走査パターンまたは走査データを保存し、専用DMAエンジン262によってプロンプトされた際、保存された走査データを出力DAC266へと出力し得る。出力DAC266は、走査データをアナログ走査信号へ変換し、これらの信号をOCTビームスキャナ268のxガルボビームスキャナ268xおよびyガルボビームスキャナ268yへと出力し得る。xガルボビームスキャナ268xおよびyガルボビームスキャナ268yは、xガルボミラーおよびyガルボミラー(またはリダイレクタ要素)を制御して、走査データとしてコードされた標的走査パターン302および変更された走査パターン312に従ってOCT画像ビーム222/308を走査させる。いくつかの実行様態において、一体型(x、y)ガルボ−コントローラ268xyが設けられ得る。一体型(x、y)ガルボ−コントローラ268xyは、x軸およびy軸双方の周囲を回転することが可能な単一のガルボミラーを制御する。出力DAC266はまた、画像化同期装置242を駆動して、走査動作によるOCT画像の取得を同期させることができる。
いくつかの実行様態において、画像化プロセッサ250は、共有PCIバス252の代わりの専用メモリバスまたはローカルバスを通じて走査データを専用入力/出力ボード260へ出力することができる。他の実行様態において、画像化プロセッサ250と、DMAエンジン262とが直接接続され得る。
この設計は、少なくとも以下の理由によって効率的である:(1)走査データまたは走査パターンが画像化プロセッサ250によって事前計算されているため、時間のかかるリアルタイムの走査データ計算が不要である。(2)走査データをリアルタイムで出力するタスクが画像化プロセッサ250へ課されていない。なぜならば、事前計算された走査データが専用データバッファ264中に保存されているからである。この設計により、画像化プロセッサ250のマルチタスクに起因する介入、一時停止およびジッターを50マイクロ秒、40マイクロ秒またはさらには20マイクロ秒未満に低下させることができる。(3)走査データの転送が他のエージェントによって共有されたバス252によって妨害されることがなく、また、典型的には低速の転送レートの共有PCIバス252によって速度低下させられることもない。(4)データバッファ264は、走査タスクのために専用に用いられるため、走査データの出力を高速転送モード(例えば、バーストモード)で行うことが可能になり、よって走査速度がさらに高くなる。
加えて、専用入力/出力ボード260は、走査データの出力を本質的に自立的に駆動するため、画像化プロセッサ250は、走査データ出力と平行して他の機能(例えば、変更された走査パターン312の生成)を行わなくてよい。
いくつかの実行様態において、出力DAC266による出力速度は高速に設定することができるため、SD−OCT画像化システム200の動作速度は、(走査電子機器の速度ではなく)OCTカメラ230の統合時間によって制限され得る。これらの実行様態のうちいくつかにおいて、出力DAC266は、以下の範囲のうち1つの範囲内の速度で走査信号を出力することができる:1Hz〜1MHz、100Hz〜1MHz、または1kHz〜100kHz。
図9に示すように、いくつかの白内障手術レーザシステム100は、別の種類の画像化システム(すなわち、掃引光源−OCT(SS−OCT)画像化システム280)を含み得る。SS−OCT画像化システム280は、波長スイープ光源282を含み得る。波長スイープ光源282は、コヒーレント画像ビームをSD−OCT光源210の場合よりも狭い帯域幅Wsourceで出射することができる。高度変調技術により、SS−OCT光源282は、出射された画像ビーム222の波長を変化させ、波長λを帯域幅Wsourceにおいて時間において「スイープ」する。SS−OCT画像化システム280は、SD−OCT画像化システム200の場合と同様のビーム誘導システム211を用い得る。詳細には、第1のビームスプリッター212は、ここでも、異なる波長と関連付けられた画像化情報を搬送する結合ビーム226を生成することができる。
スペクトロメータベースの画像化システムからの差として、SS−OCT画像化システム280は、異なる波長またはスペクトル成分を時間において分離する。一方、SD−OCTシステム200は、これらを空間において分離する。これらの異なる波長成分は、異なるz深さに対応する画像データを搬送し、波長λがSS−OCT光源282によってスイープされる際に時間系列中に分離される。よって、SS−OCTシステム280のOCTカメラ230も異なる。
いくつかの実行様態において、単一の検出器284からなり得る。単一の検出器284は、短い時間間隔で結合ビーム226を検出および分解することができる。いくつかの実施形態において、検出器284は、アバランシェフォトダイオードまたは光電子増倍管であり得る。検出器284は、異なる波長またはスペクトル成分に対応する検出された信号を1組のデータビナー286へ転送またはダンプすることができる。SS−OCT画像化システム280のいくつかの実施形態は、SB−OCT画像化システムに類似する。なぜなら、両者とも、スペクトル分解を介して画像生成を行うからである。SB−OCTシステムの場合と同様に、SS−OCT画像のスペクトル成分を組み立てて、OCT画像とすることができる。高速フーリエ変換器288は、データビナー286のコンテンツに対してフーリエ変換を行って、画像生成器234によるOCT画像の生成を支援することができる。FFTユニット288は、SD−OCT画像化システム200内のFFTユニット233に類似し得る。
上記の記載によれば、SS−OCT画像化システム280は、TD−OCT画像化システムと同様の特徴を有する。なぜならば、1つのフェーズにおいて、画像化データの取得が並列的にではなく連続的に行われるからである。しかし、TD−OCTシステムの場合と対照的に、異なるz深さの画像化データが結合ビーム226の異なるスペクトル成分と共に取得されるため、FFTユニット288によってフーリエ変換を行う必要が出てくる。この点において、SS−OCT画像化システム280は、異なるスペクトル成分と共に明白に機能するSD−OCT画像化システム200に関連する。SS−OCTシステムは、以下の1つの点においてSD−OCTシステムに類似する:すなわち、機械的部分(例えば、基準ミラー216)を移動させることなく、波長スイープ光源282の画像ビームの波長をスイープする。最後に、波長スイープ光源282の波長スイープは、TD−OCTシステムの走査速度を大きく上回る速度で行うことが可能である。なぜならば、スイープにおいて可動部分が用いられないため、SS−OCTシステム280は、SD−OCTシステムの画像化速度にはかなわないものの、TD−OCTシステムよりもずっと高速で画像化を行うことができるからである。よって、SS−OCT画像化システム280の実行様態は、ライブリフレッシュレートで受容可能な分解能で画像生成を行うことができ、これにより、極めて有用な機能性を持ちかつ実用的なフィードバックが白内障手術システム100のために提供される。
図10は、白内障手術システム100を作動させるための眼科手術方法500を示す。方法500は、眼1の水晶体5のための標的走査パターン302の電子表示をレーザコントローラ130によって生成すること(510)と、標的走査パターン302に従って眼の水晶体5内において手術レーザビーム304を白内障手術レーザシステム100によって生成および走査することにより、水晶体中に切開部306を生成すること(520)と、レーザビームの走査開始後に眼の一部および切開部306の画像をスペクトル領域光学コヒーレンス断層画像化システム200によって生成すること(530)と、生成された画像に関連して変更された走査パターン312の電子表示をレーザコントローラ130によって生成すること(540)と、変更された走査パターン312に従って、眼の水晶体5内において手術レーザビーム304を白内障手術レーザシステム100によって生成および走査することにより、変更された切開部314を生成すること(550)とを含み得る。
いくつかの実行様態において、変更された走査パターン540の電子表示を生成することは、眼の部分の生成された画像に応じて、システムオペレータから変更入力を受信することを含み得る。
他の実行様態において、変更された走査パターン540の電子表示を生成することは、生成された画像をOCT画像プロセッサ201によって分析することと、標的走査パターン302に相対する切開部306の逸脱を決定することと、レーザコントローラ130に変更された走査パターン312を生成させるための制御信号をOCT画像プロセッサ201によって生成することとを含み得る。
図11は、白内障手術600の関連方法を示す。方法600は、眼1の水晶体5内におけるレーザコントローラ130による手術レーザビーム304の走査を制御すること(610)と、水晶体の一部の画像5を少なくとも5フレーム/秒の速度でスペクトル領域光学コヒーレンス断層画像化システム200によって生成すること(620)と、生成された画像の分析に応じて、手術レーザビーム304の走査をレーザコントローラ130によって変更すること(630)とを含み得る。
本明細書中、多数の特定の例が述べられているが、これらの特定の例は、本発明の範囲または特許請求の範囲を限定するものとして解釈されるべきではなく、特定の実施形態に特有の特徴の記載として解釈されるべきである。本明細書中において別個の実施形態の文脈において述べられた特定の特徴を組み合わせて、単一の実施形態において実行することも可能である。逆にいえば、単一の実施形態の文脈中に述べられた多様な特徴を複数の実施形態の文脈において別個にまたは任意の適切なさらなる組み合わせで実行することも可能である。さらに、特徴について、特定の組み合わせで機能するものとして上述され得、さらには当初の請求項にそのように記載され得るが、場合によっては、請求項に記載の組み合わせの1つ以上の特徴を当該組み合わせから除去することができ、請求項に記載の組み合わせをさらなる組み合わせまたはさらなる組み合わせの変更例に用いることが可能である。

Claims (22)

  1. 白内障手術システムであって、
    第1の1組のレーザパルスを生成するように構成されたレーザ源と、
    前記レーザ源へ接続された誘導光学素子であって、前記第1の1組のレーザパルスを眼内の白内障標的領域へ誘導するように構成された誘導光学素子と、
    レーザコントローラであって、
    標的走査パターンの電子表示を生成することと、
    前記誘導光学素子を制御して、前記第1の1組のレーザパルスを前記標的走査パターンの一部に従って走査して、前記白内障標的領域内に第1の光破壊領域を生成することと、
    を行うように構成されたレーザコントローラと、
    スペクトル領域光学コヒーレンス断層(SD−OCT)画像化システムであって、前記第1の光破壊領域の一部を含む画像を生成するように構成される、スペクトル領域光学コヒーレンス断層(SD−OCT)画像化システムと
    を含み、
    前記レーザコントローラは、
    前記SD−OCT画像化システムによって生成された画像に関連して変更された走査パターンの電子表示を生成することと、
    前記誘導光学素子を制御して、第2の1組のレーザパルスを前記変更された走査パターンに従って走査して、第2の光破壊領域を生成することと
    を行うように構成される、
    白内障手術システム。
  2. 前記白内障標的領域は、前嚢層を含み、
    前記標的走査パターンは、円形嚢切開、前嚢切開および曲線嚢切開のうち少なくとも1つを形成するための円筒上の1組の標的点を含む、
    請求項1に記載の白内障手術システム。
  3. 前記白内障標的領域は、前記水晶体の一部を含み、
    前記標的走査パターンは、前記水晶体のチョップ、光破壊および溶解のうち少なくとも1つを発生させるために、ラジアルチョップ面、円筒、螺旋パターンおよびメッシュパターンのうち少なくとも1つの上に1組の標的点を含む、
    請求項1に記載の白内障手術システム。
  4. 前記SD−OCT画像化システムは、4mmを超えるz画像化範囲を持つように構成される、
    請求項1に記載の白内障手術システム。
  5. 前記SD−OCT画像化システムは、6mmを超えるz画像化範囲を持つように構成される、
    請求項1に記載の白内障手術システム。
  6. 前記SD−OCT画像化システムは、2つ以上の画像を4mm未満の画像化範囲と一体化することにより、前記第1の光破壊領域の部分の画像を生成しない、
    請求項1に記載の白内障手術システム。
  7. 前記SD−OCT画像化システムは、前記画像を1秒未満の画像化時間で生成するように構成される、
    請求項1に記載の白内障手術システム。
  8. 前記SD−OCT画像化システムは、前記画像を0.1秒未満の画像化時間で生成するように構成される、
    請求項1に記載の白内障手術システム。
  9. 前記SD−OCT画像化システムは、反復される画像を20〜200フレーム/秒の範囲内のフレームレートで生成するように構成される、
    請求項1に記載の白内障手術システム。
  10. 前記SD−OCT画像化システムは、反復される画像を25〜500フレーム/秒の範囲内のフレームレートで生成するように構成される、
    請求項1に記載の白内障手術システム。
  11. 前記SD−OCT画像化システムは、反復される画像を500〜2,000A走査/B走査の範囲内の(x、y)分解能で生成するように構成される、
    請求項1に記載の白内障手術システム。
  12. 前記SD−OCT画像化システムは、反復される画像を2,000〜5,000A走査/B走査の範囲内の(x、y)分解能で生成するように構成される、
    請求項1に記載の白内障手術システム。
  13. 前記SD−OCT画像化システムは、反復される画像を0.5〜2百万画像点/画像の範囲内の画像分解能で生成するように構成される、
    請求項1に記載の白内障手術システム。
  14. 前記SD−OCT画像化システムは、反復される画像を2〜5百万画像点/画像の範囲内の画像分解能で生成するように構成される、
    請求項1に記載の白内障手術システム。
  15. 前記SD−OCT画像化システムは、少なくとも1000のz深さからの画像点を含むA走査からB走査を生成するように構成される、
    請求項1に記載の白内障手術システム。
  16. 前記SD−OCT画像化システムは、反復される画像を1〜10フレーム/秒の範囲内のリフレッシュレートおよび2〜5百万画像点の範囲内の高画像分解能で生成するように構成される、
    請求項1に記載の白内障手術システム。
  17. 前記レーザコントローラは、前記システムオペレータが前記第1の光破壊領域の部分の画像を分析したのに応じて、前記システムオペレータから受信された変更入力に従って前記変更された標的走査パターンの電子表示を生成するように構成される、
    請求項1に記載の白内障手術システム。
  18. 前記SD−OCT画像化システムは、前記第1の光破壊領域の前記標的走査パターンに相対する位置の前記システムオペレータによる較正を支援するための較正マークを表示するように構成される、
    請求項1に記載の白内障手術レーザシステム。
  19. 前記SD−OCT画像化システムは、スペクトロメータベースのOCT画像化システムを含み、
    広帯域ビームを生成する広帯域光源と、
    ビーム誘導システムであって、
    前記広帯域ビームを分割して画像ビームおよび基準ビームとすることと、
    前記画像ビームを前記眼へ誘導し、前記眼からの返送画像ビームを誘導することと、
    前記基準ビームを基準ミラーへ誘導し、前記基準ミラーからの返送基準ビームを誘導することと、
    前記返送画像ビームおよび前記返送基準ビームを結合して、結合ビームを得ることと
    を行う、ビーム誘導システムと、
    前記結合ビームを受信するように構成されたOCTカメラであって、
    前記結合ビームを分解してスペクトル成分を得るスペクトル分解装置、
    前記スペクトル成分を感知するセンサーアレイ、
    前記感知されたスペクトル成分からフーリエ変換を生成する高速フーリエ変換器システム、および
    前記フーリエ変換されたスペクトル成分から画像を生成する画像生成器
    を含む、OCTカメラと、
    を含む、
    請求項1に記載の白内障手術システム。
  20. 前記SD−OCT画像化システムは、
    標的走査パターン制御信号を出力するように構成された専用入力/出力ボードを含み、
    前記専用入力/出力ボードは、
    専用メモリコントローラ、
    データバッファ、および
    出力デジタル/アナログ変換器、
    を含み、
    前記SD−OCT画像化システムによる画像化は、前記出力デジタル/アナログ変換器による前記標的走査パターン制御信号の出力と同期される、
    請求項19に記載の白内障手術システム。
  21. 白内障手術システムであって、
    第1の1組のレーザパルスを生成するように構成されたレーザ源と、
    前記レーザ源へ接続された誘導光学素子であって、前記第1の1組のレーザパルスを眼の水晶体へ誘導するように構成される、誘導光学素子と、
    レーザコントローラであって、
    標的走査パターンの電子表示を生成すること、
    前記誘導光学素子を制御して、前記第1の1組のレーザパルスを前記標的走査パターンに従って走査して、第1の光破壊領域を生成することと
    を行うように構成される、レーザコントローラと、
    前記第1の光破壊領域の一部の画像を生成するように構成された掃引光源光学コヒーレンス断層(SS−OCT)画像化システムと
    を含み、
    前記レーザコントローラは、
    前記SS−OCT画像化システムによって生成された画像に関連して、変更された走査パターンの電子表示を生成することと、
    前記誘導光学素子を制御して、第2の1組のレーザパルスを前記変更された走査パターンに従って走査して第2の光破壊領域を生成することと
    を行うように構成される、
    白内障手術システム。
  22. 前記掃引光源−OCT画像化システムは、
    スイープ波長ビームを生成する波長スイープ光源と、
    ビーム誘導システムであって、
    前記スイープ波長ビームを分割して画像ビームおよび基準ビームを得ることと、
    前記画像ビームを前記眼へ誘導し、前記眼からの返送画像ビームを誘導することと、
    前記基準ビームを基準ミラーへ誘導し、前記基準ミラーからの返送基準ビームを誘導することと、
    前記返送画像ビームおよび前記返送基準ビームを結合して、結合ビームを得ることと
    を行うように構成される、ビーム誘導システムと、
    前記結合ビームを受信するように構成されたOCTカメラであって、
    前記結合ビームを検出する検出器、
    前記結合ビームを時間系列データとして検出するデータビナー、
    前記検出された時間系列データをフーリエ変換する高速フーリエ変換システム、および
    前記フーリエ変換から画像を生成する画像生成器
    を含む、OCTカメラと、
    を含む、
    請求項21に記載の白内障手術システム。
JP2014549214A 2011-12-19 2012-12-19 白内障手術の術中光学コヒーレンス断層画像化 Active JP6054986B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/329,529 US9066784B2 (en) 2011-12-19 2011-12-19 Intra-surgical optical coherence tomographic imaging of cataract procedures
US13/329,529 2011-12-19
PCT/US2012/070434 WO2013096347A1 (en) 2011-12-19 2012-12-19 Intra-surgical optical coherence tomographic imaging of cataract procedures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016231470A Division JP6741563B2 (ja) 2011-12-19 2016-11-29 白内障手術システム

Publications (3)

Publication Number Publication Date
JP2015505710A true JP2015505710A (ja) 2015-02-26
JP2015505710A5 JP2015505710A5 (ja) 2016-01-28
JP6054986B2 JP6054986B2 (ja) 2016-12-27

Family

ID=47472141

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014549214A Active JP6054986B2 (ja) 2011-12-19 2012-12-19 白内障手術の術中光学コヒーレンス断層画像化
JP2016231470A Active JP6741563B2 (ja) 2011-12-19 2016-11-29 白内障手術システム
JP2018192537A Pending JP2019000726A (ja) 2011-12-19 2018-10-11 白内障手術システム

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2016231470A Active JP6741563B2 (ja) 2011-12-19 2016-11-29 白内障手術システム
JP2018192537A Pending JP2019000726A (ja) 2011-12-19 2018-10-11 白内障手術システム

Country Status (14)

Country Link
US (3) US9066784B2 (ja)
EP (2) EP2997940B1 (ja)
JP (3) JP6054986B2 (ja)
KR (2) KR101928052B1 (ja)
CN (2) CN104093383B (ja)
AU (2) AU2012359258B2 (ja)
BR (1) BR112014015116A2 (ja)
CA (1) CA2857338C (ja)
ES (2) ES2706825T3 (ja)
IN (1) IN2014CN04502A (ja)
MX (1) MX343883B (ja)
RU (2) RU2627605C2 (ja)
TW (2) TWI561208B (ja)
WO (1) WO2013096347A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038997A (ja) * 2011-12-19 2017-02-23 アルコン レンゼックス, インコーポレーテッド 白内障手術の術中光学コヒーレンス断層画像化
WO2017135035A1 (ja) * 2016-02-03 2017-08-10 株式会社ニデック 眼科用レーザ屈折矯正装置、眼科用フォトチューニング設定装置、眼科用フォトチューニングシステム、眼鏡用フォトチューニング設定装置、及びこれらに用いられるプログラム、眼科用レーザ手術装置
JP2018513733A (ja) * 2015-04-01 2018-05-31 アルファノヴ サントレ テクノロジック オプティック エ ラゼール 眼科手術装置
JP2018515187A (ja) * 2015-05-19 2018-06-14 ノバルティス アーゲー Oct画像の修正

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917676A (zh) 2010-04-30 2013-02-06 塞罗斯医学有限责任公司 使用组合的方式治疗眼组织的方法和装置
US11771596B2 (en) 2010-05-10 2023-10-03 Ramot At Tel-Aviv University Ltd. System and method for treating an eye
EP3797743A3 (en) 2010-05-10 2021-07-21 Ramot at Tel Aviv University, Ltd. System and method for treating an eye
TWI554244B (zh) * 2011-12-19 2016-10-21 愛爾康眼科手術激光股份有限公司 用於雷射白內障程序之手術內光學同調斷層掃描成像的影像處理器
US9023016B2 (en) * 2011-12-19 2015-05-05 Alcon Lensx, Inc. Image processor for intra-surgical optical coherence tomographic imaging of laser cataract procedures
US9849032B2 (en) 2013-03-13 2017-12-26 Optimedica Corporation Laser eye surgery system
CN105338932B (zh) 2013-03-13 2017-07-04 光学医疗公司 用于激光手术系统的自由浮动式患者接口
EP3300706B1 (en) 2013-03-15 2019-04-24 AMO Development, LLC Varying a numerical aperture of a laser during lens fragmentation in cataract surgery
CA2902173A1 (en) 2013-03-15 2014-09-25 Aleyegn Inc. Scleral translocation elasto-modulation methods and apparatus
WO2014194317A1 (en) 2013-05-31 2014-12-04 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
JP6492411B2 (ja) * 2014-03-31 2019-04-03 株式会社ニデック 眼科用レーザ手術装置
US10441465B2 (en) * 2014-03-26 2019-10-15 Optimedica Corporation Registration of LOI fiducials with camera
US10441463B2 (en) 2014-03-26 2019-10-15 Optimedica Corporation Confocal laser eye surgery system and improved confocal bypass assembly
US10123696B2 (en) 2014-03-26 2018-11-13 Optimedica Corporation Confocal laser eye surgery system
WO2016168759A1 (en) * 2015-04-16 2016-10-20 Lensar, Llc Laser methods and systems for addressing conditions of the lens
US10485705B2 (en) 2015-07-01 2019-11-26 Optimedica Corporation Sub-nanosecond laser cataract surgery system
US11083625B2 (en) 2015-07-01 2021-08-10 Amo Development, Llc Sub-nanosecond laser surgery system utilizing multiple pulsed laser beams
JP6632267B2 (ja) * 2015-09-04 2020-01-22 キヤノン株式会社 眼科装置、表示制御方法およびプログラム
CA3001237A1 (en) * 2015-10-06 2017-04-13 Satish Herekar Ultrasound directed cavitational methods and systems for ocular treatments
US10307051B2 (en) * 2015-10-15 2019-06-04 Sony Corporation Image processing device, method of image processing, and surgical microscope
WO2017100463A1 (en) * 2015-12-08 2017-06-15 Youhealth Biotech, Limited Lens regeneration using endogenous stem/progenitor cells
EP3439596B1 (en) 2016-04-05 2022-10-19 AMO Development, LLC Patient interface device for laser eye surgery having light guiding structure for illuminating the eye
CN110191670B (zh) 2017-01-19 2021-12-10 诺华股份有限公司 用于光学相干断层成像术扫描的方法和设备
AU2018211566B2 (en) * 2017-01-24 2022-04-07 Alcon Inc. Dynamic mode switching for multi-mode ophthalmic optical coherence tomography
CN115736812A (zh) * 2017-01-28 2023-03-07 赛莱特私人有限公司 具有改进记录的光学相干计量及断层成像
US11439461B2 (en) 2017-02-20 2022-09-13 Duke University Automated surgical robot
US20180360655A1 (en) 2017-06-16 2018-12-20 Michael S. Berlin Methods and systems for oct guided glaucoma surgery
US20190117459A1 (en) 2017-06-16 2019-04-25 Michael S. Berlin Methods and Systems for OCT Guided Glaucoma Surgery
CA3073009A1 (en) * 2017-10-17 2019-04-25 Alcon Inc. Customized ophthalmic surgical profiles
WO2019145763A2 (en) * 2018-01-26 2019-08-01 Duke University System for performing laser therapy and method therefor
WO2020008323A1 (en) 2018-07-02 2020-01-09 Belkin Laser Ltd. Direct selective laser trabeculoplasty
WO2020056579A1 (en) * 2018-09-18 2020-03-26 Gauss Lasers Tech (Shanghai) Co., Ltd. Systems and methods for medical treatment using series of pulsed lasers
US11000413B2 (en) 2019-02-15 2021-05-11 Amo Development, Llc Ophthalmic laser surgical system and method implementing simultaneous laser treatment and OCT measurement
US11911106B2 (en) 2019-07-05 2024-02-27 Korea Photonics Technology Institute Device and method for reducing eye opacity
KR102284086B1 (ko) * 2019-07-05 2021-07-30 한국광기술원 안구의 혼탁도 감쇄를 위한 광 변조 장치 및 방법
US20220031512A1 (en) * 2020-07-31 2022-02-03 Alcon Inc. Systems and methods for eye cataract removal
AU2021369792A1 (en) * 2020-10-26 2023-06-15 Belkin Vision Ltd. Avoiding blood vessels during direct selective laser trabeculoplasty
KR102636219B1 (ko) * 2020-11-06 2024-02-14 주식회사 휴비츠 주사 레이저 검안경
JP2023549663A (ja) * 2020-11-12 2023-11-29 アルコン インコーポレイティド 光干渉断層撮影画像における眼の前眼部の自動セグメント化
CN112587303B (zh) * 2021-03-04 2021-06-18 季华实验室 一种基于双模式图像调整激光眼科手术系统
CN112587304B (zh) * 2021-03-04 2021-06-18 季华实验室 基于双模式图像的飞秒激光引导系统和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101250A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 光断層画像化方法
JP2008541018A (ja) * 2005-04-28 2008-11-20 ザ ジェネラル ホスピタル コーポレイション 光干渉測定法により解剖学的構造に関連する情報を評価するためのシステム、方法及びソフトウエア装置
JP2009505073A (ja) * 2005-08-09 2009-02-05 ザ ジェネラル ホスピタル コーポレイション 光コヒーレンストモグラフィにおいて偏光に基づく直行復調を実行する装置、方法及び記憶媒体
JP2010508120A (ja) * 2006-11-10 2010-03-18 オプティメディカ・コーポレイション 眼科用光医学における線量測定を求めるためのシステム及び方法
WO2010075571A2 (en) * 2008-12-23 2010-07-01 Lensx Lasers, Inc. Photodisruptive laser treatment of the crystalline lens
JP2010538770A (ja) * 2007-09-18 2010-12-16 アルコン レンゼックス, インコーポレーテッド 統合された白内障手術のための方法及び装置
JP2011516187A (ja) * 2008-04-11 2011-05-26 ウェイブライト ゲーエムベーハー 屈折眼科手術のシステム
US20110196350A1 (en) * 2010-02-08 2011-08-11 Optimedica Corporation System and method for plasma-mediated modification of tissue
US20110202044A1 (en) * 2010-02-18 2011-08-18 Ilya Goldshleger Optical Coherence Tomographic System for Ophthalmic Surgery

Family Cites Families (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU728869A1 (ru) 1976-07-12 1980-04-25 Физический Институт Им. П.Н.Лебедева Ан Ссср Лазерна офтальмологическа установка
JPS5926298B2 (ja) 1977-02-18 1984-06-26 東京光学機械株式会社 水晶体断面撮影装置
JPS5926300B2 (ja) 1977-02-21 1984-06-26 東京光学機械株式会社 眼球水晶体断面撮影装置
JPS5663330A (en) 1979-10-25 1981-05-29 Canon Kk Inspecting machine for eye
DE3045139A1 (de) 1980-11-29 1982-07-01 Fa. Carl Zeiss, 7920 Heidenheim Vorrichtung zur subjektiven und objektiven refraktionsbestimmung
FR2524298A1 (fr) 1982-04-01 1983-10-07 Essilor Int Appareil de chirurgie ophtalmologique a laser
US4520816A (en) 1983-01-12 1985-06-04 Schachar Ronald A Method and apparatus for delivering laser energy for ophthalmic use
US4638801A (en) 1983-07-06 1987-01-27 Lasers For Medicine Laser ophthalmic surgical system
US4538608A (en) 1984-03-23 1985-09-03 Esperance Jr Francis A L Method and apparatus for removing cataractous lens tissue by laser radiation
US4764005A (en) 1985-09-17 1988-08-16 Eye Research Institute Of Retina Foundation Double scanning optical apparatus
US5112328A (en) 1988-01-25 1992-05-12 Refractive Laser Research & Development Program, Ltd. Method and apparatus for laser surgery
US4901718A (en) 1988-02-02 1990-02-20 Intelligent Surgical Lasers 3-Dimensional laser beam guidance system
US4881808A (en) 1988-02-10 1989-11-21 Intelligent Surgical Lasers Imaging system for surgical lasers
US4907586A (en) 1988-03-31 1990-03-13 Intelligent Surgical Lasers Method for reshaping the eye
US5098426A (en) 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US6099522A (en) 1989-02-06 2000-08-08 Visx Inc. Automated laser workstation for high precision surgical and industrial interventions
IL89874A0 (en) 1989-04-06 1989-12-15 Nissim Nejat Danon Apparatus for computerized laser surgery
US5054907A (en) 1989-12-22 1991-10-08 Phoenix Laser Systems, Inc. Ophthalmic diagnostic apparatus and method
US5048946A (en) 1990-05-15 1991-09-17 Phoenix Laser Systems, Inc. Spectral division of reflected light in complex optical diagnostic and therapeutic systems
US5779696A (en) 1990-07-23 1998-07-14 Sunrise Technologies International, Inc. Method and apparatus for performing corneal reshaping to correct ocular refractive errors
AU651374B2 (en) 1990-08-22 1994-07-21 Visx Incorporated System for scanning a surgical laser beam
US5139022A (en) 1990-10-26 1992-08-18 Philip Lempert Method and apparatus for imaging and analysis of ocular tissue
US5162641A (en) 1991-02-19 1992-11-10 Phoenix Laser Systems, Inc. System and method for detecting, correcting and measuring depth movement of target tissue in a laser surgical system
EP0581871B2 (en) 1991-04-29 2009-08-12 Massachusetts Institute Of Technology Apparatus for optical imaging and measurement
US5255025A (en) 1991-10-15 1993-10-19 Volk Donald A Measurement apparatus for indirect ophthalmoscopy
US5246435A (en) 1992-02-25 1993-09-21 Intelligent Surgical Lasers Method for removing cataractous material
US5439462A (en) 1992-02-25 1995-08-08 Intelligent Surgical Lasers Apparatus for removing cataractous material
US5549632A (en) 1992-10-26 1996-08-27 Novatec Laser Systems, Inc. Method and apparatus for ophthalmic surgery
US5336215A (en) 1993-01-22 1994-08-09 Intelligent Surgical Lasers Eye stabilizing mechanism for use in ophthalmic laser surgery
US5954711A (en) 1993-12-28 1999-09-21 Nidek Co., Ltd. Laser treatment apparatus
US5656186A (en) 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
US5861955A (en) 1994-04-25 1999-01-19 Medjet Inc. Topographical cornea mapping for corneal vision correction
US5493109A (en) 1994-08-18 1996-02-20 Carl Zeiss, Inc. Optical coherence tomography assisted ophthalmologic surgical microscope
EP0697611B9 (en) 1994-08-18 2003-01-22 Carl Zeiss Optical coherence tomography assisted surgical apparatus
US5738676A (en) 1995-01-03 1998-04-14 Hammer; Daniel X. Laser surgical probe for use in intraocular surgery
US6454761B1 (en) 1995-01-30 2002-09-24 Philip D. Freedman Laser surgery device and method
JP3792257B2 (ja) 1996-04-29 2006-07-05 ノーザン・デジタル・インコーポレーテッド 画像誘導手術システム
US5795295A (en) 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
US6437867B2 (en) 1996-12-04 2002-08-20 The Research Foundation Of The City University Of New York Performing selected optical measurements with optical coherence domain reflectometry
US5777719A (en) 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
US5994690A (en) 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
DE19718139A1 (de) 1997-04-30 1998-11-05 Aesculap Meditec Gmbh Verfahren und Anordnung zur Phacoemulsifikation
JP3313309B2 (ja) 1997-08-21 2002-08-12 株式会社トプコン 眼科装置
ATE223676T1 (de) 1998-03-09 2002-09-15 Schwind Eye Tech Solutions Gmb Verfahren und vorrichtung zur untersuchung eines augenabschnittes
DE19814057B4 (de) 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Anordnung zur optischen Kohärenztomographie und Kohärenztopographie
WO1999055216A2 (en) 1998-04-27 1999-11-04 Ming Lai Optical tracking device
US6137585A (en) 1998-05-15 2000-10-24 Laser Diagnostic Technologies, Inc. Method and apparatus for recording three-dimensional distribution of light backscattering potential in transparent and semi-transparent structures
DE69938250T2 (de) 1998-09-11 2009-03-12 Joseph A. Pepper Pike Izatt Interferometer für optische kohärenzdomainreflektometrie und optische kohärenztomografie mittels nichtreziproken optischen elementen
US6623476B2 (en) 1998-10-15 2003-09-23 Intralase Corp. Device and method for reducing corneal induced aberrations during ophthalmic laser surgery
US6254595B1 (en) 1998-10-15 2001-07-03 Intralase Corporation Corneal aplanation device
US6497701B2 (en) 1999-04-30 2002-12-24 Visx, Incorporated Method and system for ablating surfaces with partially overlapping craters having consistent curvature
DE19930408A1 (de) 1999-07-02 2001-01-04 Zeiss Carl Fa OCT-gestütztes Chirurgiesystem
US6817998B2 (en) 1999-07-23 2004-11-16 Lahaye Leon C. Method and apparatus for monitoring laser surgery
US6314311B1 (en) 1999-07-28 2001-11-06 Picker International, Inc. Movable mirror laser registration system
US6932807B1 (en) 1999-09-01 2005-08-23 Nidek Co., Ltd. Laser treatment apparatus
US6687010B1 (en) 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
ATE398433T1 (de) 1999-09-10 2008-07-15 Haag Ag Streit Vorrichtung zur fotoablation der kornea mit einem laserstrahl
US6317616B1 (en) 1999-09-15 2001-11-13 Neil David Glossop Method and system to facilitate image guided surgery
US6337925B1 (en) 2000-05-08 2002-01-08 Adobe Systems Incorporated Method for determining a border in a complex scene with applications to image masking
DE10024079A1 (de) 2000-05-17 2001-11-22 Asclepion Meditec Ag Verfahren und Vorrichtung zur Kontrolle der Energie und/oder Position eines gepulsten und gescannten Laserstrahles
EP2210575B1 (en) 2000-06-01 2017-01-04 The General Hospital Corporation Selective photocoagulation
US6652459B2 (en) 2000-06-28 2003-11-25 Peter Alfred Payne Ophthalmic uses of lasers
US7025459B2 (en) 2000-07-14 2006-04-11 Visual Pathways, Inc. Ocular fundus auto imager
US6451009B1 (en) 2000-09-12 2002-09-17 The Regents Of The University Of California OCDR guided laser ablation device
US20020082466A1 (en) 2000-12-22 2002-06-27 Jeongho Han Laser surgical system with light source and video scope
DE10100857B4 (de) 2001-01-11 2006-05-18 Carl Zeiss Jena Gmbh Laserspaltlampe mit Laserstrahlungsquelle
US6899707B2 (en) 2001-01-29 2005-05-31 Intralase Corp. Applanation lens and method for ophthalmic surgical applications
US6775007B2 (en) 2001-01-29 2004-08-10 Joseph A. Izatt Frequency-encoded parallel OCT and associated systems and methods
US6863667B2 (en) 2001-01-29 2005-03-08 Intralase Corp. Ocular fixation and stabilization device for ophthalmic surgical applications
US20080071254A1 (en) 2001-01-29 2008-03-20 Advanced Medical Optics, Inc. Ophthalmic interface apparatus and system and method of interfacing a surgical laser with an eye
US6579282B2 (en) 2001-04-25 2003-06-17 20/10 Perfect Vision Optische Geraete Gmbh Device and method for creating a corneal reference for an eyetracker
JP2002345758A (ja) 2001-05-25 2002-12-03 Canon Inc 眼科撮影装置
AU2002337666A1 (en) 2001-08-03 2003-02-17 Joseph A. Izatt Aspects of basic oct engine technologies for high speed optical coherence tomography and light source and other improvements in oct
US7027233B2 (en) 2001-10-12 2006-04-11 Intralase Corp. Closed-loop focal positioning system and method
US6751033B2 (en) 2001-10-12 2004-06-15 Intralase Corp. Closed-loop focal positioning system and method
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
US7006231B2 (en) 2001-10-18 2006-02-28 Scimed Life Systems, Inc. Diffraction grating based interferometric systems and methods
KR100679147B1 (ko) 2001-11-15 2007-02-27 가부시키가이샤 탑콘 검안장치 및 검안차트
DE60336534D1 (de) 2002-01-11 2011-05-12 Gen Hospital Corp Vorrichtung zur OCT Bildaufnahme mit axialem Linienfokus für verbesserte Auflösung und Tiefenschärfe
US7072045B2 (en) 2002-01-16 2006-07-04 The Regents Of The University Of California High resolution optical coherence tomography with an improved depth range using an axicon lens
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
CN1623085A (zh) 2002-01-24 2005-06-01 通用医疗公司 使用光谱带并行检测的低相干干涉测量法(lci)和光学相干层析成像(oct)信号的测距和降噪的装置和方法
WO2003068103A2 (en) 2002-02-11 2003-08-21 Visx, Inc. Closed loop system and method for ablating lenses with aberrations
US20030171809A1 (en) 2002-03-05 2003-09-11 Phillips Andrew F. Axial-displacement accommodating intraocular lens
US7006232B2 (en) 2002-04-05 2006-02-28 Case Western Reserve University Phase-referenced doppler optical coherence tomography
US7113818B2 (en) 2002-04-08 2006-09-26 Oti Ophthalmic Technologies Inc. Apparatus for high resolution imaging of moving organs
US6741359B2 (en) 2002-05-22 2004-05-25 Carl Zeiss Meditec, Inc. Optical coherence tomography optical scanner
US6730074B2 (en) 2002-05-24 2004-05-04 20/10 Perfect Vision Optische Geraete Gmbh Cornea contact system for laser surgery
WO2003105678A2 (en) 2002-06-12 2003-12-24 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy
US7133137B2 (en) 2002-06-27 2006-11-07 Visx, Incorporated Integrated scanning and ocular tomography system and method
CA2390072C (en) 2002-06-28 2018-02-27 Adrian Gh Podoleanu Optical mapping apparatus with adjustable depth resolution and multiple functionality
WO2004006751A2 (en) 2002-07-12 2004-01-22 Volker Westphal Method and device for quantitative image correction for optical coherence tomography
JP2006503432A (ja) 2002-10-17 2006-01-26 ルメニス・インコーポレーテッド 2つ以上の波長のレーザ・ビームを供給するシステム、方法および装置
DE10252837B4 (de) 2002-11-13 2005-03-24 Carl Zeiss Untersuchungssystem und Untersuchungsverfahren
US6887232B2 (en) 2002-11-13 2005-05-03 20/10 Perfect Vision Optische Geraete Gmbh Closed loop control for intrastromal wavefront-guided ablation
DE10300091A1 (de) 2003-01-04 2004-07-29 Lubatschowski, Holger, Dr. Mikrotom
WO2004068218A2 (en) 2003-01-24 2004-08-12 University Of Washington Optical beam scanning system for compact image display or image acquisition
DE10304221A1 (de) 2003-01-30 2004-08-12 Carl Zeiss Vorrichtung zum Behandeln von Körpergewebe
US7846152B2 (en) 2004-03-24 2010-12-07 Amo Manufacturing Usa, Llc. Calibrating laser beam position and shape using an image capture device
WO2004088241A2 (en) 2003-03-26 2004-10-14 Southwest Sciences Incorporated Method and apparatus for imaging internal structures of transparent and translucent materials
US7742804B2 (en) 2003-03-27 2010-06-22 Ivan Faul Means of tracking movement of bodies during medical treatment
US7347548B2 (en) 2003-05-01 2008-03-25 The Cleveland Clinic Foundation Method and apparatus for measuring a retinal sublayer characteristic
US6927860B2 (en) 2003-05-19 2005-08-09 Oti Ophthalmic Technologies Inc. Optical mapping apparatus with optimized OCT configuration
US7035025B2 (en) 2003-05-28 2006-04-25 Agilent Technologies, Inc. Compact precision beam manipulators
US7311723B2 (en) 2003-07-11 2007-12-25 University Of Washington Scanning laser device and methods of use
DE10360570B4 (de) 2003-12-22 2006-01-12 Carl Zeiss Optisches Meßsystem und optisches Meßverfahren
US7252661B2 (en) 2003-12-23 2007-08-07 Alcon Refractivehorizons, Inc. Method and system for patient optical fixation
US7145661B2 (en) 2003-12-31 2006-12-05 Carl Zeiss Meditec, Inc. Efficient optical coherence tomography (OCT) system and method for rapid imaging in three dimensions
JP4391259B2 (ja) 2004-02-03 2009-12-24 株式会社ニデック 眼科装置
WO2005077256A1 (en) 2004-02-06 2005-08-25 Optovue, Inc. Optical apparatus and methods for performing eye examinations
JP2007522456A (ja) 2004-02-10 2007-08-09 オプトビュー,インコーポレーテッド 高効率低コヒーレンス干渉法
GB2411066B (en) 2004-02-14 2009-04-29 Oti Ophthalmic Technologies Compact high resolution imaging apparatus
US7402159B2 (en) 2004-03-01 2008-07-22 20/10 Perfect Vision Optische Geraete Gmbh System and method for positioning a patient for laser surgery
KR101000926B1 (ko) 2004-03-11 2010-12-13 삼성전자주식회사 영상의 불연속성을 제거하기 위한 필터 및 필터링 방법
JP4522724B2 (ja) 2004-03-16 2010-08-11 株式会社トプコン 光画像計測装置
US7126693B2 (en) 2004-03-29 2006-10-24 Carl Zeiss Meditec, Inc. Simple high efficiency optical coherence domain reflectometer design
JP4409332B2 (ja) 2004-03-30 2010-02-03 株式会社トプコン 光画像計測装置
US7813644B2 (en) 2004-05-10 2010-10-12 Raytheon Company Optical device with a steerable light path
US7184148B2 (en) 2004-05-14 2007-02-27 Medeikon Corporation Low coherence interferometry utilizing phase
US7452080B2 (en) 2004-06-10 2008-11-18 Optimedica Corporation Scanning ophthalmic fixation method and apparatus
US7352444B1 (en) 2004-06-24 2008-04-01 Cypress Semiconductor Corp. Method for arranging and rotating a semiconductor wafer within a photolithography tool prior to exposing the wafer
US20050284774A1 (en) 2004-06-24 2005-12-29 Mordaunt David H Ophthalmic lens assembly utilizing replaceable contact element
WO2006005038A2 (en) 2004-06-28 2006-01-12 Optimedica Corporation Method and device for optical ophthalmic therapy
DE102004035269A1 (de) 2004-07-21 2006-02-16 Rowiak Gmbh Laryngoskop mit OCT
JP4409384B2 (ja) 2004-08-03 2010-02-03 株式会社トプコン 光画像計測装置及び光画像計測方法
US7061693B2 (en) * 2004-08-16 2006-06-13 Xceed Imaging Ltd. Optical method and system for extended depth of focus
US7433046B2 (en) 2004-09-03 2008-10-07 Carl Ziess Meditec, Inc. Patterned spinning disk based optical phase shifter for spectral domain optical coherence tomography
EP2302364A3 (en) 2004-09-10 2011-04-06 The General Hospital Corporation System and method for optical coherence imaging
JP4633423B2 (ja) 2004-09-15 2011-02-16 株式会社トプコン 光画像計測装置
US7347553B2 (en) 2004-09-24 2008-03-25 Canon Kabushiki Kaisha Ophthalmic image sensing apparatus
JP4566685B2 (ja) 2004-10-13 2010-10-20 株式会社トプコン 光画像計測装置及び光画像計測方法
JP4494160B2 (ja) 2004-10-14 2010-06-30 株式会社トプコン 光画像計測装置
US7445336B2 (en) 2004-10-21 2008-11-04 Nidek Co., Ltd. Fundus camera
US7252662B2 (en) 2004-11-02 2007-08-07 Lenticular Research Group Llc Apparatus and processes for preventing or delaying one or more symptoms of presbyopia
US7388672B2 (en) 2004-11-19 2008-06-17 Carl Ziess Meditec, Inc. High efficiency balanced detection interferometer
US8221399B2 (en) 2004-12-01 2012-07-17 Nidek Co., Ltd. Ophthalmic apparatus
JP4537192B2 (ja) 2004-12-21 2010-09-01 キヤノン株式会社 眼科装置
US8394084B2 (en) 2005-01-10 2013-03-12 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US7336366B2 (en) 2005-01-20 2008-02-26 Duke University Methods and systems for reducing complex conjugate ambiguity in interferometric data
US7633627B2 (en) 2005-01-20 2009-12-15 Duke University Methods, systems and computer program products for characterizing structures based on interferometric phase data
US7342659B2 (en) 2005-01-21 2008-03-11 Carl Zeiss Meditec, Inc. Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
US7330270B2 (en) 2005-01-21 2008-02-12 Carl Zeiss Meditec, Inc. Method to suppress artifacts in frequency-domain optical coherence tomography
US7365856B2 (en) 2005-01-21 2008-04-29 Carl Zeiss Meditec, Inc. Method of motion correction in optical coherence tomography imaging
EP2417903A1 (en) 2005-01-21 2012-02-15 Massachusetts Institute of Technology Methods and apparatus for optical coherence tomography scanning
JP4504417B2 (ja) 2005-01-31 2010-07-14 オリンパス株式会社 画像処理装置、顕微鏡システム、及び領域特定プログラム
US7390089B2 (en) 2005-02-25 2008-06-24 20/10 Perfect Vision Optische Geraete Gmbh Device and method for aligning an eye with a surgical laser
JP4837300B2 (ja) 2005-03-24 2011-12-14 株式会社トプコン 光画像計測装置
EP1876987A4 (en) 2005-04-26 2009-11-18 Biolase Tech Inc METHODS OF TREATING EYE DISEASES
US7207983B2 (en) 2005-04-29 2007-04-24 University Of Florida Research Foundation, Inc. System and method for real-time feedback of ablation rate during laser refractive surgery
JP4956540B2 (ja) 2005-07-28 2012-06-20 バイオプティジェン,インコーポレイテッド 低減された実効線幅を有する光コヒーレンス撮像システム及びそれを使用する方法
GB2429522A (en) 2005-08-26 2007-02-28 Univ Kent Canterbury Optical mapping apparatus
US10488606B2 (en) 2005-09-19 2019-11-26 Topcon Medical Laser Systems, Inc. Optical switch and method for treatment of tissue
US20070129775A1 (en) 2005-09-19 2007-06-07 Mordaunt David H System and method for generating treatment patterns
US7400410B2 (en) 2005-10-05 2008-07-15 Carl Zeiss Meditec, Inc. Optical coherence tomography for eye-length measurement
US10524656B2 (en) 2005-10-28 2020-01-07 Topcon Medical Laser Systems Inc. Photomedical treatment system and method with a virtual aiming device
US20070121069A1 (en) 2005-11-16 2007-05-31 Andersen Dan E Multiple spot photomedical treatment using a laser indirect ophthalmoscope
US7593559B2 (en) 2005-11-18 2009-09-22 Duke University Method and system of coregistrating optical coherence tomography (OCT) with other clinical tests
JP4837982B2 (ja) 2005-11-30 2011-12-14 株式会社ニデック 眼科装置
US9681985B2 (en) 2005-12-01 2017-06-20 Topcon Medical Laser Systems, Inc. System and method for minimally traumatic ophthalmic photomedicine
US20070149956A1 (en) * 2005-12-22 2007-06-28 Alcon Refractivehorizons, Inc. External Device for Controlling a Laser During Laser Ablation Surgery on the Cornea and Associated Methods
US7599591B2 (en) 2006-01-12 2009-10-06 Optimedica Corporation Optical delivery systems and methods of providing adjustable beam diameter, spot size and/or spot shape
ES2599317T3 (es) 2006-01-19 2017-02-01 Optovue, Inc. Tomador de imágenes de tomografía de coherencia óptica de dominio de Fourier
US9545338B2 (en) 2006-01-20 2017-01-17 Lensar, Llc. System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US9889043B2 (en) 2006-01-20 2018-02-13 Lensar, Inc. System and apparatus for delivering a laser beam to the lens of an eye
US8262646B2 (en) 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
EP1981454B1 (en) 2006-01-20 2020-05-06 LENSAR, Inc. Apparatus for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US10842675B2 (en) 2006-01-20 2020-11-24 Lensar, Inc. System and method for treating the structure of the human lens with a laser
US20070173791A1 (en) 2006-01-20 2007-07-26 Intralase Corp. System for ophthalmic laser surgery
US20070219541A1 (en) 2006-03-14 2007-09-20 Intralase Corp. System and method for ophthalmic laser surgery on a cornea
US7768652B2 (en) 2006-03-16 2010-08-03 Carl Zeiss Meditec, Inc. Methods for mapping tissue with optical coherence tomography data
JP4864516B2 (ja) 2006-04-07 2012-02-01 株式会社トプコン 眼科装置
PT2371272T (pt) 2006-04-11 2017-03-08 Cognoptix Inc Imagiologia ocular
US8771261B2 (en) 2006-04-28 2014-07-08 Topcon Medical Laser Systems, Inc. Dynamic optical surgical system utilizing a fixed relationship between target tissue visualization and beam delivery
EP2345363A1 (en) 2006-05-01 2011-07-20 Physical Sciences, Inc. Hybrid spectral domain optical coherence tomography line scanning laser ophthalmoscope
US20070282313A1 (en) 2006-06-01 2007-12-06 University Of Southern California Method and apparatus to guide laser corneal surgery with optical measurement
US7488930B2 (en) 2006-06-02 2009-02-10 Medeikon Corporation Multi-channel low coherence interferometer
US20070291277A1 (en) * 2006-06-20 2007-12-20 Everett Matthew J Spectral domain optical coherence tomography system
US7452077B2 (en) 2006-08-29 2008-11-18 Carl Zeiss Meditec, Inc. Image adjustment derived from optical imaging measurement data
US8223143B2 (en) 2006-10-27 2012-07-17 Carl Zeiss Meditec, Inc. User interface for efficiently displaying relevant OCT imaging data
US8088124B2 (en) * 2007-01-19 2012-01-03 Technolas Perfect Vision Gmbh System and method for precise beam positioning in ocular surgery
WO2008090599A1 (ja) * 2007-01-22 2008-07-31 School Juridical Person Kitasato Institute オプティカル・コヒーレンス・トモグラフィー装置
WO2008101359A1 (en) 2007-02-23 2008-08-28 Mimo Ag Ophthalmologic apparatus for imaging an eye by optical coherence tomography
US8568393B2 (en) 2007-03-13 2013-10-29 Topcon Medical Laser Systems, Inc. Computer guided patterned laser trabeculoplasty
EP3308756B1 (en) 2007-03-13 2020-02-19 Optimedica Corporation Apparatus for creating incisions to improve intraocular lens placement
JP4896794B2 (ja) 2007-03-30 2012-03-14 株式会社トプコン 光画像計測装置、それを制御するプログラム及び光画像計測方法
US7575322B2 (en) 2007-05-11 2009-08-18 Amo Development Llc. Auto-alignment and auto-focus system and method
WO2009033111A2 (en) 2007-09-06 2009-03-12 Lensx Lasers, Inc. Precise targeting of surgical photodisruption
WO2009039315A2 (en) * 2007-09-18 2009-03-26 Lensx Lasers, Inc. Methods and apparatus for laser treatment of the crystalline lens
US20100324543A1 (en) 2007-09-18 2010-12-23 Kurtz Ronald M Method And Apparatus For Integrating Cataract Surgery With Glaucoma Or Astigmatism Surgery
US8409182B2 (en) 2007-09-28 2013-04-02 Eos Holdings, Llc Laser-assisted thermal separation of tissue
JP4933413B2 (ja) 2007-12-11 2012-05-16 株式会社トーメーコーポレーション 前眼部光干渉断層撮影装置及び前眼部光干渉断層撮影方法
US8230866B2 (en) 2007-12-13 2012-07-31 Carl Zeiss Meditec Ag Systems and methods for treating glaucoma and systems and methods for imaging a portion of an eye
EP3272395B1 (en) 2007-12-23 2019-07-17 Carl Zeiss Meditec, Inc. Devices for detecting, controlling, and predicting radiation delivery
US7878651B2 (en) 2007-12-26 2011-02-01 Carl Zeiss Meditec, Inc. Refractive prescription using optical coherence tomography
PT2926780T (pt) * 2008-01-09 2018-11-07 Alcon Lensx Inc Fragmentação de tecido por laser fotodisruptivo
US8783866B2 (en) 2008-04-24 2014-07-22 Bioptigen, Inc. Optical coherence tomography (OCT) imaging systems having adaptable lens systems and related methods and computer program products
US7898712B2 (en) 2008-06-27 2011-03-01 Lockheed Martin Corporation Risley integrated steering module
JP5255524B2 (ja) 2008-07-04 2013-08-07 株式会社ニデック 光断層像撮影装置、光断層像処理装置。
US20100022996A1 (en) 2008-07-25 2010-01-28 Frey Rudolph W Method and system for creating a bubble shield for laser lens procedures
US8500723B2 (en) 2008-07-25 2013-08-06 Lensar, Inc. Liquid filled index matching device for ophthalmic laser procedures
US8480659B2 (en) 2008-07-25 2013-07-09 Lensar, Inc. Method and system for removal and replacement of lens material from the lens of an eye
WO2010017356A2 (en) * 2008-08-08 2010-02-11 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Establishing compatibility between two-and three dimensional optical coherence tomography scans
WO2010028663A1 (de) * 2008-09-09 2010-03-18 Wavelight Ag Lasereinrichtung für die ophthalmologische chirurgie
US8240853B2 (en) 2009-05-01 2012-08-14 Bioptigen, Inc. Systems for imaging structures of a subject and related methods
WO2010129544A1 (en) * 2009-05-04 2010-11-11 Duke University Methods and computer program products for quantitative three-dimensional image correction and clinical parameter computation in optical coherence tomography
JP2013500086A (ja) 2009-07-24 2013-01-07 レンサー, インク. Ladarを利用した手順を眼の水晶体に実施するシステムおよび方法
US9492322B2 (en) * 2009-11-16 2016-11-15 Alcon Lensx, Inc. Imaging surgical target tissue by nonlinear scanning
US8403481B2 (en) 2010-01-20 2013-03-26 Duke University Methods, systems and computer program products for distributed scanning for motion artifact reduction in optical coherence tomography
US8845624B2 (en) 2010-06-25 2014-09-30 Alcon LexSx, Inc. Adaptive patient interface
US9066784B2 (en) * 2011-12-19 2015-06-30 Alcon Lensx, Inc. Intra-surgical optical coherence tomographic imaging of cataract procedures
US9023016B2 (en) * 2011-12-19 2015-05-05 Alcon Lensx, Inc. Image processor for intra-surgical optical coherence tomographic imaging of laser cataract procedures

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541018A (ja) * 2005-04-28 2008-11-20 ザ ジェネラル ホスピタル コーポレイション 光干渉測定法により解剖学的構造に関連する情報を評価するためのシステム、方法及びソフトウエア装置
JP2009505073A (ja) * 2005-08-09 2009-02-05 ザ ジェネラル ホスピタル コーポレイション 光コヒーレンストモグラフィにおいて偏光に基づく直行復調を実行する装置、方法及び記憶媒体
JP2007101250A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 光断層画像化方法
JP2010508120A (ja) * 2006-11-10 2010-03-18 オプティメディカ・コーポレイション 眼科用光医学における線量測定を求めるためのシステム及び方法
JP2010538770A (ja) * 2007-09-18 2010-12-16 アルコン レンゼックス, インコーポレーテッド 統合された白内障手術のための方法及び装置
JP2011516187A (ja) * 2008-04-11 2011-05-26 ウェイブライト ゲーエムベーハー 屈折眼科手術のシステム
WO2010075571A2 (en) * 2008-12-23 2010-07-01 Lensx Lasers, Inc. Photodisruptive laser treatment of the crystalline lens
US20110196350A1 (en) * 2010-02-08 2011-08-11 Optimedica Corporation System and method for plasma-mediated modification of tissue
US20110202044A1 (en) * 2010-02-18 2011-08-18 Ilya Goldshleger Optical Coherence Tomographic System for Ophthalmic Surgery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038997A (ja) * 2011-12-19 2017-02-23 アルコン レンゼックス, インコーポレーテッド 白内障手術の術中光学コヒーレンス断層画像化
JP2019000726A (ja) * 2011-12-19 2019-01-10 アルコン レンゼックス, インコーポレーテッド 白内障手術システム
JP2018513733A (ja) * 2015-04-01 2018-05-31 アルファノヴ サントレ テクノロジック オプティック エ ラゼール 眼科手術装置
JP2018515187A (ja) * 2015-05-19 2018-06-14 ノバルティス アーゲー Oct画像の修正
WO2017135035A1 (ja) * 2016-02-03 2017-08-10 株式会社ニデック 眼科用レーザ屈折矯正装置、眼科用フォトチューニング設定装置、眼科用フォトチューニングシステム、眼鏡用フォトチューニング設定装置、及びこれらに用いられるプログラム、眼科用レーザ手術装置

Also Published As

Publication number Publication date
JP6054986B2 (ja) 2016-12-27
BR112014015116A2 (pt) 2017-06-13
CN104093383B (zh) 2016-10-05
EP2779971A1 (en) 2014-09-24
AU2012359258A1 (en) 2014-07-10
CN104093383A (zh) 2014-10-08
EP2997940B1 (en) 2018-10-31
TWI531353B (zh) 2016-05-01
TW201330821A (zh) 2013-08-01
EP2997940A2 (en) 2016-03-23
KR102003542B1 (ko) 2019-07-24
WO2013096347A1 (en) 2013-06-27
RU2017124850A (ru) 2019-01-30
US20160367399A1 (en) 2016-12-22
US20150250651A1 (en) 2015-09-10
US9066784B2 (en) 2015-06-30
US9456926B2 (en) 2016-10-04
MX343883B (es) 2016-11-28
CA2857338A1 (en) 2013-06-27
RU2627605C2 (ru) 2017-08-09
KR101928052B1 (ko) 2018-12-11
EP2997940A3 (en) 2016-04-06
JP6741563B2 (ja) 2020-08-19
AU2016250425B2 (en) 2017-08-10
TW201618731A (zh) 2016-06-01
ES2586803T3 (es) 2016-10-19
MX2014007355A (es) 2014-08-27
AU2012359258B2 (en) 2016-11-24
CN106214324A (zh) 2016-12-14
CN106214324B (zh) 2019-07-26
AU2016250425A1 (en) 2016-11-17
CA2857338C (en) 2019-01-15
KR20180135081A (ko) 2018-12-19
RU2014129807A (ru) 2016-02-10
KR20140108233A (ko) 2014-09-05
ES2706825T3 (es) 2019-04-01
TWI561208B (en) 2016-12-11
IN2014CN04502A (ja) 2015-09-11
JP2019000726A (ja) 2019-01-10
US20130158530A1 (en) 2013-06-20
US9724237B2 (en) 2017-08-08
EP2779971B1 (en) 2016-06-22
JP2017038997A (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6054986B2 (ja) 白内障手術の術中光学コヒーレンス断層画像化
JP6054987B2 (ja) レーザ白内障手術の術中光学コヒーレンス断層画像化のための画像プロセッサ
US9820887B2 (en) Image processor for intra-surgical optical coherence tomographic imaging of laser cataract procedures

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161201

R150 Certificate of patent or registration of utility model

Ref document number: 6054986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250