JP2015232272A - エンジンの廃熱利用装置 - Google Patents

エンジンの廃熱利用装置 Download PDF

Info

Publication number
JP2015232272A
JP2015232272A JP2012285565A JP2012285565A JP2015232272A JP 2015232272 A JP2015232272 A JP 2015232272A JP 2012285565 A JP2012285565 A JP 2012285565A JP 2012285565 A JP2012285565 A JP 2012285565A JP 2015232272 A JP2015232272 A JP 2015232272A
Authority
JP
Japan
Prior art keywords
engine
clutch
rankine cycle
radiator
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012285565A
Other languages
English (en)
Inventor
永井 宏幸
Hiroyuki Nagai
宏幸 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Nissan Motor Co Ltd
Original Assignee
Renault SAS
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS, Nissan Motor Co Ltd filed Critical Renault SAS
Priority to JP2012285565A priority Critical patent/JP2015232272A/ja
Priority to PCT/JP2013/083842 priority patent/WO2014103820A1/ja
Publication of JP2015232272A publication Critical patent/JP2015232272A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】ランキンサイクルの非運転域でエンジンと膨張機とが常時接続状態となるクラッチ固着が生じたときにもエンジンのオーバーヒートを抑制し得る廃熱利用装置を提供する。【解決手段】ラジエータ(11)と、ランキンサイクル(31)と、膨張機(37)とエンジンとの間の回転力の伝導を断接するクラッチ(35)とを備え、空気流れの上流側から凝縮器(38)、ラジエータ(11)の順に配置すると共に、ランキンサイクルの非運転域でクラッチ固着が生じたときにクラッチ固着が生じないときよりエンジンの運転領域を制限する運転領域制限手段(71)を設ける。【選択図】図1

Description

この発明はエンジンの廃熱利用装置、特にエンジンと膨張機とが常時接続状態となるクラッチ固着が生じたときの制御方法に関する。
ランキンサイクルの膨張機とエンジンとの間に電磁式のクラッチを備えるものがある(特許文献1参照)。
特開2010−101283号公報
ところで、ランキンサイクルの非運転域でエンジンと膨張機とが常時接続状態となるクラッチ固着が生じたときには何らかの対策を講ずる必要がある。しかしながら、上記特許得文献1の技術には、ランキンサイクルの非運転域でエンジンと膨張機とが常時接続状態となるクラッチ固着が生じたときの対策について一切記載がない。
そこで本発明は、ランキンサイクルの非運転域でエンジンと膨張機とが常時接続状態となるクラッチ固着が生じたときにもエンジンのオーバーヒートを抑制し得る廃熱利用装置を提供することを目的とする。
本発明のエンジンの廃熱利用装置は、エンジンの冷却水を冷却するラジエータと、前記エンジンの廃熱を冷媒に回収する熱交換器、この熱交換器出口の冷媒を用いて動力を発生させる膨張機、この膨張機を出た冷媒を凝縮させる凝縮器、この凝縮器からの冷媒を前記熱交換器に供給する冷媒ポンプを含むランキンサイクルと、前記膨張機と前記エンジンとの間の回転力の伝導を断接するクラッチとを備えている。この場合に、本発明のエンジンの廃熱利用装置では、空気流れの上流側から前記凝縮器、前記ラジエータの順に配置すると共に、前記ランキンサイクルの非運転域で前記エンジンと前記膨張機とが常時接続状態となるクラッチ固着が生じたときに前記クラッチ固着が生じないときより前記エンジンの運転領域を制限する運転領域制限手段、前記ランキンサイクルの非運転域で前記クラッチ固着が生じたときに前記クラッチ固着が生じないときより前記エンジンの最高出力を制限するエンジン最高出力制限手段、前記ランキンサイクルの非運転域で前記クラッチ固着が生じたときに前記クラッチ固着が生じないときより前記エンジンの搭載される車両の最高車速を制限する最高車速制限手段のいずれかを設ける。
ランキンサイクルの非作動域でクラッチ固着が生じていないときのラジエータ放熱量よりもランキンサイクルの非運転域でクラッチに固着が生じたときのラジエータ及び凝縮器の全体の放熱量が少なくなることを本発明者が初めて見いだした。このため、ランキンサイクルの非運転域でクラッチに固着が生じたときには、両者の差の放熱量の分だけエンジン冷却水温度が上昇し、運転点によってはエンジンにオーバーヒートが発生する恐れがある。本発明では、ランキンサイクルの非運転域でクラッチに固着が生じたときにクラッチ固着が生じないときよりエンジンの運転領域を制限するか、エンジンの最高出力を制限するか、エンジンの搭載される車両の最高車速を制限するので、ランキンサイクルの非運転域でクラッチに固着が生じたときにもオーバーヒートを抑制することができる。
本発明の第1実施形態のランキンサイクルのシステム全体を表した概略構成図である。 ポンプ及び膨張機を一体化した膨張機ポンプの概略断面図である。 冷媒ポンプの概略断面図である。 膨張機の概略断面図である。 冷媒系バルブの機能を示す概略図である。 ハイブリッド車両の概略構成図である。 エンジンの概略斜視図である。 排気管の配置を車両の下方から見た概略図である。 ランキンサイクル運転域の特性図である。 ランキンサイクル運転域の特性図である。 膨張機トルクによりエンジン出力軸の回転をアシストしている途中でハイブリッド車両1の加速が行われたときの様子を示したタイミングチャートである。 ランキンサイクルの運転停止からの再起動の様子を示したタイミングチャートである。 ランキンサイクル非運転域かつ膨張機クラッチ非固着時のラジエータの放熱量と、ランキンサイクル非運転域かつ膨張機クラッチ固着時のラジエータの放熱量と凝縮器の放熱量との合計の放熱量との関係を示した図である。 車両前面の凝縮器及びラジエータを車両の側方から見た概略断面図である。 車両前面からの距離に対して空気温度がどうなるかを示した特性図である。 ラジエータ性能NG領域とラジエータ性能OK領域の境界の更新を説明するためのエンジンの運転領域図である。 ラジエータ性能NG領域とラジエータ性能OK領域の境界の更新を説明するためのフローチャートである。 ラジエータ性能NG領域とラジエータ性能OK領域の境界の更新を説明するためのフローチャートである。 凝縮器の放熱量の特性図である。 ラジエータと凝縮器の合計の放熱能力の特性図である。 外気温補正係数の特性図である。 エアコン負荷補正量の特性図である。 ラジエータ性能NG領域とラジエータ性能OK領域の境界の更新を説明するための領域マップの特性図である。 外気温が相違する場合のラジエータ性能NG領域とラジエータ性能OK領域の境界を説明するための領域マップの特性図である。 供給燃料量の制限を説明するためのフローチャートである。 ラジエータ性能NG領域とラジエータ性能OK境域の境界が更新されている領域マップの特性図である。 第2実施形態のエアコン動作の制限を説明するためのフローチャートである。 第3実施形態のエンジン最高出力の制限を説明するためのフローチャートである。 第3実施形態のエンジン最高出力の特性図である。 第4実施形態の最高車速の制限を説明するためのフローチャートである。 第4実施形態の基本最高車速の特性図である。 第4実施形態の外気温補正係数の特性図である。 第5実施形態のランキンサイクルのシステム全体を表した概略構成図である。 第6実施形態のランキンサイクルのシステム全体を表した概略構成図である。
以下、添付図面を参照しながら本発明の実施形態について説明する。
(第1実施形態)
図1は本発明の第1実施形態のランキンサイクルのシステム全体を表した概略構成図を示している。図1のランキンサイクル31は、冷凍サイクル51と冷媒および凝縮器38を共有する構成になっており、ランキンサイクル31と冷凍サイクル51を統合したサイクルのことを、これ以降統合サイクル30と表現する。図4は統合サイクル30が搭載されるハイブリッド車両1の概略構成図である。尚、統合サイクル30は、ランキンサイクル31と冷凍サイクル51の冷媒が循環する回路(通路)及びその途中に設けられたポンプ、膨張機、凝縮器等の構成要素に加え、冷却水や排気の回路(通路)等を含めたシステム全体を指すものとする。
ハイブリッド車両1では、エンジン2、モータジェネレータ81、自動変速機82が直列に連結され、自動変速機82の出力はプロペラシャフト83、ディファレンシャルギヤ84を介して駆動輪85に伝達される。エンジン2とモータジェネレータ81の間には第1駆動軸クラッチ86を設けている。また、自動変速機82の摩擦締結要素の一つが第2駆動軸クラッチ87として構成されている。第1駆動軸クラッチ86と第2駆動軸クラッチ87は、エンジンコントローラ71に接続されており、ハイブリッド車両の運転条件に応じてその断接(接続状態)が制御される。ハイブリッド車両1では、図7Bに示すように、車速がエンジン2の効率が悪いEV走行領域にあるときには、エンジン2を停止し第1駆動軸クラッチ86を遮断し第2駆動軸クラッチ87を接続してモータジェネレータ81による駆動力のみでハイブリッド車両1の走行を行わせる。一方、車速がEV走行領域を外れてランキンサイクル運転域に移行したときには、エンジン2を運転してランキンサイクル31(後述する)を運転する。エンジン2は排気通路3を備え、排気通路3は、排気マニホールド4と、排気マニホールド4の集合部に接続される排気管5とから構成される。排気管5は途中でバイパス排気管6と分岐しており、バイパス排気管6にバイパスされる区間の排気管5には、排気と冷却水との間で熱交換を行なうための廃熱回収器22を備える。廃熱回収器22とバイパス排気管6は、図6に示すように、これらを一体化した廃熱回収ユニット23として、床下触媒88とその下流のサブマフラー89との間に配置される。
図1に基づき、まず、エンジン冷却水回路について説明する。エンジン2を出た80〜90℃程度の冷却水は、ラジエータ11を通る冷却水通路13と、ラジエータ11をバイパスするバイパス冷却水通路14とに別れて流れる。その後、2つの流れは、両通路13、14を流れる冷却水流量の配分を決めるサーモスタットバルブ15で再び合流し、さらに冷却水ポンプ16を経てエンジン2に戻る。冷却水ポンプ16はエンジン2によって駆動され、その回転速度はエンジン回転速度と同調している。サーモスタットバルブ15は、冷却水温度が高い場合に冷却水通路13側のバルブ開度を大きくしてラジエータ11を通過する冷却水量を相対的に増やし、冷却水温度が低い場合に冷却水通路13側のバルブ開度を小さくしてラジエータ11を通過する冷却水量を相対的に減らす。エンジン2の暖機前など特に冷却水温度が低い場合には、完全にラジエータ11をバイパスさせて冷却水の全量がバイパス冷却水通路14側を流れる。一方、バイパス冷却水通路14側のバルブ開度は全閉になることはなく、ラジエータ11を流れる冷却水流量が多くなったときに、バイパス冷却水通路14を流れる冷却水の流量は、冷却水の全量がバイパス冷却水通路14側を流れる場合と比べて低下するが、流れが完全に停止することがないようにサーモスタットバルブ15が構成されている。ラジエータ11をバイパスするバイパス冷却水通路14は、冷却水通路13から分岐して後述の熱交換器36に直接接続する第1バイパス冷却水通路24と、冷却水通路13から分岐して廃熱回収器22を経た後に熱交換器36に接続する第2バイパス冷却水通路25とからなる。
バイパス冷却水通路14には、ランキンサイクル31の冷媒と熱交換を行なう熱交換器36を備える。この熱交換器36は加熱器と過熱器とを統合したものである。すなわち、熱交換器36には2つの冷却水通路36a、36bがほぼ一列に、また、冷媒と冷却水が熱交換可能なようにランキンサイクル31の冷媒が流れる冷媒通路36cは冷却水通路36a、36bと隣接して設けられている。さらに熱交換器36の全体を俯瞰して見たときにランキンサイクル31の冷媒と冷却水が互いに流れ方向が逆向きとなるように各通路36a、36b、36cが構成されている。
詳細には、ランキンサイクル31の冷媒にとって上流(図1の左)側に位置する一方の冷却水通路36aは、第1バイパス冷却水通路24に介装されている。この冷却水通路36a及びこの冷却水通路36aに隣接する冷媒通路部分からなる熱交換器左側部分は、エンジン2から出た冷却水を冷却水通路36aに直接導入することで、冷媒通路36cを流れるランキンサイクル31の冷媒を加熱するための加熱器である。
ランキンサイクル31の冷媒にとって下流(図1の右)側に位置する他方の冷却水通路36bには、第2バイパス冷却水通路25を介して廃熱回収器22を経た冷却水が導入される。冷却水通路36b及びこの冷却水通路36bに隣接する冷媒通路部分からなる熱交換器右側部分(ランキンサイクル31の冷媒にとって下流側)は、エンジン2の出口の冷却水を排気によってさらに加熱した冷却水を冷却水通路36bに導入することで、冷媒通路36cを流れる冷媒を過熱する過熱器である。
廃熱回収器22の冷却水通路22aは排気管5に隣接して設けている。廃熱回収器22の冷却水通路22aにエンジン2の出口の冷却水を導入することで、冷却水を高温の排気によって例えば110〜115℃程度まで加熱することができる。廃熱回収器22の全体を俯瞰して見たときに、排気と冷却水とが互いに流れる向きが逆向きとなるように冷却水通路22aが構成されている。
廃熱回収器22を設けた第2バイパス冷却水通路25には制御弁26が介装されている。エンジン2の内部にある冷却水の温度を指すエンジン水温が、例えばエンジンの効率悪化やノックを発生させないための許容温度(例えば100℃)を超えないように、エンジン2の出口の冷却水温度センサ74の検出温度が所定値以上になると、この制御弁26の開度を減少させるようにしている。エンジン水温が許容温度に近づくと、廃熱回収器22を通過する冷却水量を減少させるので、エンジン水温が許容温度を超えてしまうことを確実に防ぐことができる。
一方、第2バイパス冷却水通路25の流量が減少したことによって、廃熱回収器22により上昇する冷却水温度が上がりすぎて冷却水が蒸発(沸騰)してしまったのでは、熱交換器36での効率が落ちるだけでなく、冷却水通路内の冷却水の流れが悪くなって温度が過剰に上昇してしまう恐れがある。これを避けるため、廃熱回収器22をバイパスするバイパス排気管6と、排気回収器22の排気通過量とバイパス排気管6の排気通過量とをコントロールするサーモスタットバルブ7をバイパス排気管6の分岐部に設けている。すなわち、サーモスタットバルブ7は、そのバルブ開度が廃熱回収器22を出た冷却水温度が所定の温度(例えば沸騰温度120℃)を超えないように、廃熱回収器22を出た冷却水温度に基づいて調節される。
熱交換器36とサーモスタットバルブ7と廃熱回収器22とは、廃熱回収ユニット23として一体化されていて、車幅方向略中央の床下において排気管途中に配設されている。サーモスタットバルブ7は、バイメタル等を用いた比較的簡易な感温弁でも良いし、温度センサ出力が入力されるコントローラによって制御される制御弁であっても良い。サーモスタットバルブ7による排気から冷却水への熱交換量の調節は比較的大きな遅れを伴うため、サーモスタットバルブ7を単独で調節したのではエンジン水温が許容温度を超えないようにするのが難しい。しかしながら、第2バイパス冷却水通路25の制御弁26をエンジン水温(出口温度)に基づき制御するようにしてあるので、熱回収量を速やかに低減し、エンジン水温が許容温度を超えるのを確実に防ぐことができる。また、エンジン水温が許容温度までに余裕がある状態であれば、廃熱回収器22を出る冷却水温度がエンジン水温の許容温度を越えるほどの高温(例えば110〜115℃)になるまで熱交換を行って、廃熱回収量を増加させることができる。冷却水通路36bを出た冷却水は、第2バイパス冷却水通路25を介して第1バイパス冷却水通路24に合流されている。
バイパス冷却水通路14からサーモスタットバルブ15に向かう冷却水の温度が、例えば熱交換器36でランキンサイクル31の冷媒と熱交換することによって十分低下していれば、サーモスタットバルブ15の冷却水通路13側のバルブ開度が小さくされて、ラジエータ11を通過する冷却水量は相対的に減らされる。逆にバイパス冷却水通路14からサーモスタットバルブ15に向かう冷却水の温度が、ランキンサイクル31が運転されていないことなどによって高くなると、サーモスタットバルブ15の冷却水通路13側のバルブ開度が大きくされて、ラジエータ11を通過する冷却水量は相対的に増やされる。このようなサーモスタットバルブ15の動作に基づいて、エンジン2の冷却水温度が適当に保たれ、熱がランキンサイクル31へ適当に供給(回収)されるように構成されている。
次に、ランキンサイクル31について述べる。ここでは、ランキンサイクル31は、単純なランキンサイクルでなく、冷凍サイクル51と統合した統合サイクル30の一部として構成されている。以下では、基本となるランキンサイクル31を先に説明し、その後に冷凍サイクル51に言及する。
ランキンサイクル31は、エンジン2の冷却水を介してエンジン2の廃熱を冷媒に回収し、回収した廃熱を動力として回生するシステムである。ランキンサイクル31は、冷媒ポンプ32、過熱器としての熱交換器36、膨張機37及び凝縮器(コンデンサ)38を備え、各構成要素は冷媒(R134a等)が循環する冷媒通路41〜44により接続されている。
冷媒ポンプ32の軸は同一の軸上で膨張機37の出力軸と連結配置され、膨張機37の発生する出力(動力)によって冷媒ポンプ32を駆動すると共に、発生動力をエンジン2の出力軸(クランク軸)に供給する構成である(図2A参照)。すなわち、冷媒ポンプ32軸及び膨張機37の出力軸は、エンジン2の出力軸と平行に配置され、冷媒ポンプ32軸の先端に設けたポンププーリ33と、クランクプーリ2aとの間にベルト34を掛け回している(図1参照)。なお、本実施形態の冷媒ポンプ32としてはギヤ式のポンプを、膨張機37としてはスクロール式の膨張機を採用している(図2B、図2C参照)。
また、ポンププーリ33と冷媒ポンプ32との間に電磁式のクラッチ(このクラッチを以下「膨張機クラッチ」という。)35を設けて、冷媒ポンプ32及び膨張機37とを、エンジン2と断接可能にしている(図2A参照)。このため、膨張機37の発生する出力が冷媒ポンプ32の駆動力及び回転体が有するフリクションを上回る場合(予測膨張機トルクが正の場合)に膨張機クラッチ35を接続することで、膨張機37の発生する出力によってエンジン出力軸の回転をアシスト(補助)することができる。このように廃熱回収によって得たエネルギを用いてエンジン出力軸の回転をアシストすることで、燃費を向上できる。また、冷媒を循環させる冷媒ポンプ32を駆動するためのエネルギも、回収した廃熱で賄うことができる。
冷媒ポンプ32からの冷媒は冷媒通路41を介して熱交換器36に供給される。熱交換器36は、エンジン2の冷却水と冷媒との間で熱交換を行わせ、冷媒を気化し過熱する熱交換器である。
熱交換器36からの冷媒は冷媒通路42を介して膨張機37に供給される。膨張機37は、気化し過熱された冷媒を膨張させることにより熱を回転エネルギに変換する蒸気タービンである。膨張機37で回収された動力は冷媒ポンプ32を駆動し、ベルト伝動機構を介してエンジン2に伝達され、エンジン2の回転をアシストする。
膨張機37からの冷媒は冷媒通路43を介して凝縮器38に供給される。凝縮器38は、外気と冷媒との間で熱交換を行わせ、冷媒を冷却し液化する熱交換器である。このため、凝縮器38をラジエータ11と並列に配置し、ラジエータファン12によって冷却するようにしている。
凝縮器38により液化された冷媒は、冷媒通路44を介して冷媒ポンプ32に戻される。冷媒ポンプ32に戻された冷媒は、冷媒ポンプ32により再び熱交換器36に送られ、ランキンサイクル31の各構成要素を循環する。
次に、冷凍サイクル51について述べる。冷凍サイクル51は、ランキンサイクル31を循環する冷媒を共用するため、ランキンサイクル31と統合され、冷凍サイクル51の構成そのものは簡素になっている。すなわち、冷凍サイクル51は、コンプレッサ(圧縮機)52、凝縮器38、エバポレータ(蒸発器)55を備える。
コンプレッサ52は冷凍サイクル51の冷媒を高温高圧に圧縮する流体機械で、エンジン2によって駆動される。すなわち、図4にも示したようにコンプレッサ52の駆動軸にはコンプレッサプーリ53が固定され、このコンプレッサプーリ53とクランクプーリ2aとにベルト34を掛け回している。エンジン2の駆動力がこのベルト34を介してコンプレッサプーリ53に伝達され、コンプレッサ52が駆動される。また、コンプレッサプーリ53とコンプレッサ52との間に電磁式のクラッチ(このクラッチを以下「コンプレッサクラッチ」という。)54を設けて、コンプレッサ52とコンプレッサプーリ53とを断接可能にしている。
図1に戻り、コンプレッサ52からの冷媒は冷媒通路56を介して冷媒通路43に合流した後、凝縮器38に供給される。凝縮器38は外気との熱交換によって冷媒を凝縮し液化する熱交換器である。凝縮器38からの液状の冷媒は、冷媒通路44から分岐する冷媒通路57を介してエバポレータ(蒸発器)55に供給される。エバポレータ55は、図示しないヒータコアと同様にエアコンユニットのケース内に配設されている。エバポレータ55は、凝縮器38からの液状冷媒を蒸発させ、そのときの蒸発潜熱によってブロアファンからの空調空気を冷却する熱交換器である。
エバポレータ55によって蒸発した冷媒は冷媒通路58を介してコンプレッサ52に戻される。なお、エバポレータ55によって冷却された空調空気とヒータコアによって加熱された空調空気は、エアミックスドアの開度に応じて混合比率が変更され、乗員の設定する温度に調節される。
ランキンサイクル31と冷凍サイクル51とからなる統合サイクル30には、サイクル内を流れる冷媒を制御するため、回路途中に各種の弁が適宜設けられている。例えば、ランキンサイクル31を循環する冷媒を制御するため、冷凍サイクル分岐点45と冷媒ポンプ32とを連絡する冷媒通路44にポンプ上流弁61、熱交換器36と膨張機37とを連絡する冷媒通路42に膨張機上流弁62を備える。また、冷媒ポンプ32と熱交換器36とを連絡する冷媒通路41には、熱交換器36から冷媒ポンプ32への冷媒の逆流を防止するため逆止弁63を備えている。膨張機37と冷凍サイクル合流点46とを連絡する冷媒通路43にも、冷凍サイクル合流点46から膨張機37への冷媒の逆流を防止するため逆止弁64を備えている。また、膨張機上流弁62上流から膨張機37をバイパスして逆止弁64上流に合流する膨張機バイパス通路65を設け、この膨張機バイパス通路65にバイパス弁66を設けている。さらに、バイパス弁66をバイパスする通路67に圧力調整弁68を設けている。冷凍サイクル51側についても、冷凍サイクル分岐点45とエバポレータ55とを接続する冷媒通路57にエアコン回路弁69を設けている。
上記4つの弁61、62、66、69はいずれも電磁式の開閉弁である。圧力センサ72により検出される膨張機上流圧力の信号、圧力センサ73により検出される凝縮器38の出口の冷媒圧力Pdの信号、膨張機37の回転速度信号等がエンジンコントローラ71に入力されている。エンジンコントローラ71では、所定の運転条件に応じ、これらの各入力信号に基づいて、冷凍サイクル51のコンプレッサ52や、ラジエータファン12の制御を行なうとともに、上記4つの電磁式開閉弁61、62、66、69の開閉を制御する。
例えば、圧力センサ72により検出される膨張機上流側圧力及び膨張機回転速度に基づいて膨張機トルク(回生動力)を予測し、この予測膨張機トルクが正のとき(エンジン出力軸の回転をアシストすることができるとき)に膨張機クラッチ35を締結し、予測膨張機トルクがゼロないし負のときに膨張機クラッチ35を解放する。センサ検出圧力と膨張機回転速度とに基づくことで、排気温度から膨張機トルク(回生動力)を予測する場合とくらべ、高い精度で膨張機トルクを予測することができ、膨張機トルクの発生状況に応じて膨張機クラッチ35の締結・解放を適切に行うことができる(詳細は特開2010−190185号公報参照)。
上記4つの開閉弁61、62、66、69及び2つの逆止弁63、64は、冷媒系バルブである。これらの冷媒系バルブの機能を改めて図3に示す。
図3において、ポンプ上流弁61は、冷凍サイクル51の回路に比べてランキンサイクル31の回路に冷媒が偏り易くなる所定の条件で閉じることで、ランキンサイクル31への冷媒(潤滑成分を含む)の偏りを防止するためのもので、後述するように、膨張機37下流の逆止弁64と協働してランキンサイクル31の回路を閉塞させる。膨張機上流弁62は、熱交換器36からの冷媒圧力が相対的に低い場合に冷媒通路42を遮断し熱交換器36からの冷媒が高圧になるまで保持することができるようにするものである。これによって、膨張機トルクが十分得られない場合でも冷媒の加熱を促し、例えばランキンサイクル31が再起動する(回生が実際に行なえるようになる)までの時間を短縮させることができる。バイパス弁66は、ランキンサイクル31の始動時等にランキンサイクル31側に存在する冷媒量が十分でないときなどに、膨張機37をバイパスさせた上で冷媒ポンプ32の作動が行えるように開弁し、ランキンサイクル31の起動時間を短縮するためのものである。膨張機37をバイパスさせた上で冷媒ポンプ32を作動させることで、凝縮器38の出口あるいは冷媒ポンプ32の入口の冷媒温度が、その部位の圧力を考慮した沸点から所定温度差(サブクール度SC)以上に低下した状態が実現されれば、ランキンサイクル31には十分な液体冷媒が供給できる状態が整ったことになる。
熱交換器36上流の逆止弁63は、バイパス弁66、圧力調整弁68、膨張機上流弁62と協働して膨張機37に供給される冷媒を高圧に保持するためのものである。ランキンサイクル31の回生効率が低い条件ではランキンサイクル31の運転を停止し、熱交換器36の前後区間に亘って回路を閉塞することで、停止中の冷媒圧力を上昇させておき、高圧冷媒を利用してランキンサイクル31が速やかに再起動できるようにする。圧力調整弁68は膨張機37に供給される冷媒の圧力が高くなり過ぎた場合に開いて、高くなり過ぎた冷媒を逃すリリーフ弁の役割を有している。
膨張機37下流の逆止弁64は、上述のポンプ上流弁61と協働してランキンサイクル31への冷媒の偏りを防止するためのものである。ハイブリッド車両1の運転開始直後、エンジン2が暖まっていないとランキンサイクル31が冷凍サイクル51より低温となり、冷媒がランキンサイクル31側に偏ることがある。ランキンサイクル31側に偏る確率はそれほど高くないものの、例えば夏場の車両運転開始直後には、車内を早く冷やしたい状況にあって冷房能力が最も要求されることから、冷媒の僅かな偏在も解消して冷凍サイクル51の冷媒を確保したいという要求がある。そこで、ランキンサイクル31側への冷媒の偏在を防止するため逆止弁64を設けたものである。
コンプレッサ52は 、駆動停止時に冷媒が自由通過できる構造ではなく、エアコン回路弁69と協働して冷凍サイクル51への冷媒の偏りを防止することができる。これについて説明する。冷凍サイクル51の運転が停止したとき、定常運転中の比較的高い温度のランキンサイクル31側から冷凍サイクル51側へと冷媒が移動して、ランキンサイクル31を循環する冷媒が不足することがある。冷凍サイクル51の中で、冷房停止直後はエバポレータ55の温度が低くなっていて、比較的容積が大きく温度が低くなっているエバポレータ55に冷媒が溜まり易い。この場合に、コンプレッサ52の駆動停止によって凝縮器38からエバポレータ55への冷媒の動きを遮断するとともに、エアコン回路弁69を閉じることで、冷凍サイクル51への冷媒の偏りを防止するのである。
次に、図5はエンジン2全体のパッケージを示すエンジン2の概略斜視図である。図5において特徴的なのは、熱交換器36が排気マニホールド4の鉛直上方に配置されていることである。排気マニホールド4の鉛直上方のスペースに熱交換器36を配置することによって、ランキンサイクル31のエンジン2への搭載性を向上させている。また、エンジン2にはテンションプーリ8が設けられている。
次に、ランキンサイクル31の基本的な運転方法を図7A及び図7Bを参照して説明する。
まず、図7A及び図7Bはランキンサイクル31の運転領域図である。図7Aには横軸を外気温、縦軸をエンジン水温(冷却水温度)としたときのランキンサイクル31の運転域を、図7Bには横軸をエンジン回転速度、縦軸をエンジントルク(エンジン負荷)としたときのランキンサイクル31の運転域を示している。
図7A及び図7Bのいずれにおいても所定の条件を満たしたときにランキンサイクル31を運転するもので、これら両方の条件が満たされた場合にランキンサイクル31を運転する。図7Aにおいては、エンジン2の暖機を優先する低水温側の領域と、コンプレッサ52の負荷が増大する高外気温側の領域でランキンサイクル31の運転を停止している。排気温度が低く回収効率が悪い暖機時は、むしろランキンサイクル31を運転しないことで冷却水温度を速やかに上昇させる。高い冷房能力が要求される高外気温時はランキンサイクル31を止めて、冷凍サイクル51に十分な冷媒と凝縮器38の冷却能力を提供する。図7Bにおいては、ハイブリッド車両であるので、EV走行領域と、膨張機37のフリクションが増大する高回転速度側の領域でランキンサイクル31の運転を停止している。膨張機37は全ての回転速度でフリクションが少ない高効率な構造とすることが難しいことから、図7Bの場合では、運転頻度の高いエンジン回転速度域でフリクションが小さく高効率となるように、膨張機37が構成(膨張機37各部のディメンジョン等が設定)さている。
図8は膨張機トルクによりエンジン出力軸の回転をアシストしている途中でハイブリッド車両1の加速が行われたときの様子をモデルで示したタイミングチャートである。なお、図8の右側には、このときに膨張機37の運転状態が推移する様子を膨張機トルクマップ上に表している。膨張機トルクマップの等高線で区切られた範囲のうち、膨張機回転速度が低く膨張機上流圧力が高い部分(左上)が膨張機トルクが最も大きく、膨張機回転速度が高く膨張機上流圧力が低くなるほど(右下に進むほど)膨張機トルクが小さくなる傾向になっている。特に斜線部の範囲は、冷媒ポンプを駆動する前提では膨張機トルクがマイナスになって、エンジンに対しては負荷となってしまう領域を表している。
運転者がアクセルペダルを踏込むt1までは、定速走行が継続されて膨張機37が正のトルクを発生させており、膨張機トルクによるエンジン出力軸の回転アシストが行われている。
t1以降、膨張機37の回転速度、すなわち冷媒ポンプ32の回転速度がエンジン回転速度に比例して上昇するが、排気温度或いは冷却水温度の上昇は、エンジン回転速度の上昇に対して遅れを有する。そのため、冷媒ポンプ32の回転速度の上昇によって増大した冷媒量に対して回収可能な熱量の割合が低下する。
従って、膨張機回転速度が上昇するにつれ、膨張機上流の冷媒圧力が低下し、膨張機トルクは低下する。
この膨張機トルクの低下により、膨張機トルクが十分得られなくなると(例えばゼロ付近になるt2のタイミングで)、膨張機上流弁62を開状態から閉状態へと切換えて、回生効率の悪化(膨張機トルクの過度の低下に伴って膨張機37が逆にエンジン2に引き摺られる現象)が回避される。
膨張機上流弁62を開状態から閉状態へと切換えた後、t3のタイミングで膨張機クラッチ35が接続(締結)から切断(解放)へと切換えられる。この膨張機クラッチ35の切断時期を、膨張機上流弁62を開状態から閉状態へと切換えた時期より幾分遅らせることによって、膨張機上流の冷媒圧力を十分低下させ、膨張機クラッチ35を切り離した際の膨張機37が、過回転になるのを防止できる。また、冷媒ポンプ32によって多めの冷媒を熱交換器36内に供給し、ランキンサイクル31が停止中も冷媒を効果的に加熱することで、ランキンサイクル31の運転再開がスムースに行なえるようにしている。
t3以降、エンジン2の放熱量の上昇により膨張機上流圧力が再び上昇し、t4のタイミングで、膨張機上流弁62が閉状態から開状態へと切換えられ、膨張機37への冷媒の供給が再開される。また、t4で膨張機クラッチ35が再び接続される。この膨張機クラッチ35の再接続により、膨張機トルクによるエンジン出力軸の回転アシストが再開される。
図9は、膨張機上流弁62が閉じられ膨張機クラッチ35を切断した状態の、ランキンサイクルの運転停止から、図8(t4の制御)と異なる態様でランキンサイクル31の再起動を行なう様子をモデルで示したタイミングチャートである。
t11のタイミングで運転者がアクセルペダルを踏込むとアクセル開度が増大する。t11では、ランキンサイクル31の運転は停止されている。このため、膨張機トルクはゼロを維持している。
t11からのエンジン回転速度の上昇に伴ってエンジン2の放熱量が増大し、この放熱量の増大によって熱交換器36に流入する冷却水温度が高くなり、熱交換器36内の冷媒の温度が上昇する。膨張機上流弁62は閉じているので、この熱交換器36による冷媒温度の上昇によって、膨張機上流弁62の上流の冷媒圧力、つまり膨張機上流圧力が上昇していく(t11〜t12)。
この運転状態の変化によってランキンサイクル非運転域からランキンサイクル運転域へと切換わる。膨張機上流弁62がなく、ランキンサイクル運転域に移行したときに、即座に膨張機クラッチ35を切断状態から接続状態へと切換えて膨張機37をエンジン出力軸と連結したのでは、膨張機37がエンジン2の負荷となる上にトルクショックが生じてしまう。
一方、図9では、ランキンサイクル運転域へと切換わったとき、即座に膨張機上流弁62を閉状態から開状態へと切換えることはしない。すなわち、ランキンサイクル運転域に移行した後も膨張機上流弁62の閉状態を続ける。
やがて、膨張機上流圧力と膨張機下流圧力との差圧が大きくなって所定圧以上となるt12のタイミングで膨張機37を運転(駆動)できると判断し、膨張弁上流弁62を閉状態から開状態に切換える。この膨張弁上流弁62の開状態への切換によって膨張機37に所定圧の冷媒が供給され、膨張機回転速度がゼロから速やかに上昇する。
この膨張機回転速度の上昇で膨張機回転速度がエンジン回転速度に到達するt13のタイミングで、膨張機クラッチ35を切断状態より接続状態へと切換える。膨張機37が十分に回転速度を増す前に膨張機クラッチ35を接続したのでは、膨張機37がエンジン負荷となるし、トルクショックも生じ得る。これに対して、エンジン出力軸との回転速度差がなくなるt13で膨張機クラッチ35を遅れて接続することで、膨張機37がエンジン負荷となることも、膨張機クラッチ35を締結することに伴うトルクショックも防止できる。
さて、膨張機クラッチ25に固着が生じることがある。このときエンジン2と膨張機37とが常時接続状態となる。ここで膨張機クラッチ25に固着が生じる原因を述べると、膨張機クラッチとしての電磁式のクラッチでは、ソレノイドコイルへの通電で電磁力を発生させ、この電磁力で2つの部材を圧着させてクラッチを接続状態とする。また、ソレノイドコイルへの通電を停止し電磁力を消失させることで電磁式のクラッチを切断するものとする。このとき、電磁式のクラッチに滑り入力のような大きな入力が入ることによって、2つの部材が張り付いたり、焼き付いたりしてクラッチに固着が生じることがまれにある。また、経時劣化によってもクラッチに固着が生じ得る。また、ソレノイドへの通電、非通電はリレーにより行っているので、リレーの故障によってもクラッチ固着の状態が生じ得る。
エンジン2と膨張機37とが常時接続状態となるクラッチ固着が生じたときには、次の点が問題となる。すなわち、図1に示すシステムでは、クラッチ固着が生じたときにエンジン2により冷媒ポンプ32が常時駆動される。これによって、ランキンサイクル31の非運転域でありながら、ランキンサイクル31が実質的に運転状態となり、凝縮器38の放熱が生じる。図1に示すシステムでは、凝縮器38がラジエータ11の前面に設けられているため、凝縮器38の放熱によってラジエータ11の放熱が阻害されるのである。
これについて図10を参照して説明する。図10の左側には、運転点がランキンサイクル31の非運転域にあって膨張機クラッチ25に固着が生じていないときのラジエータ11の放熱量を示している。図10の右側にはランキンサイクル31の非運転域に同じ運転点があって膨張機クラッチ25に固着が生じたときのラジエータ11及び凝縮器38の放熱量の合計を示している。以下、膨張機クラッチ25に固着が生じていないときを単に「クラッチ非固着時」と、膨張機クラッチ25に固着が生じているときを単に「クラッチ固着時」ともいう。また、図面ではランキンサイクル非運転域を「ランキン非運転域」で略記する。
図10によれば、ランキンサイクル非運転域に同じ運転点がありながら、図10右側に示すクラッチ固着時には、ラジエータ及び凝縮器の合計の放熱量が、図10左側に示すクラッチ非固着時のラジエータの放熱量より低下している。これは本発明者が初めて見いだした事項である。一見すると、クラッチ固着時でもランキンサイクル31経由での外気への放熱がある、つまり凝縮器38の放熱があるので、凝縮器38の放熱量とラジエータ11の放熱量の合計は、クラッチ非固着時のラジエータ11の放熱量と一致しそうである。しかしながら、事実はそうはなっていない。これは、ランキンサイクル31を循環する冷媒の流量が限られており、凝縮器38の放熱量に限界があること、また凝縮器38の放熱の影響を受けてラジエータ11の放熱の効率が悪くなるためであると本発明者は考えている。
これをさらに図11、図12を用いて述べる。図11は車両1の前面の凝縮器38及びラジエータ11を車両の側方から見た概略断面図を示し、ラジエータ11の前面(詳しくは前面の近傍)に凝縮器38が設けられている。車両1の走行時には走行風(空気)が車両前面より凝縮器38、ラジエータ11の順に通過し車両後方へと流れる(矢印参照)。凝縮器38を流れる冷媒、ラジエータ11を流れる冷却水が外気より高い場合に、凝縮器38、ラジエータ11が放熱し、これによって凝縮器38、ラジエータ11を通過する空気の温度が上昇する。
次に、図12は、図11に示したように凝縮器38及びラジエータ11を近接配置したときに、車両前面からの距離に対してこれらを通過する空気の温度がどのように変化するのかを示した特性図である。図12において、横軸の車両前面からの距離が所定値aから所定値bまでの間に凝縮器38が、所定値cから所定値dまでの間にラジエータ11が存在するとする。
まず、ランキンサイクル非運転域かつクラッチ非固着時の空気温度の変化を下方に実線で示している。すなわち、ランキンサイクル非運転域かつクラッチ非固着時には、凝縮器38の放熱がないので、車両前面からの距離が所定値cとなるまで空気の温度は外気温度T1のままである。その後、ラジエータ11を通過するときに空気が熱をもらって上昇するので、空気の温度は車両前面からの距離が所定値cから所定値dまでの間で直線的に上昇して所定温度T4となる。ラジエータ11を通過した後には空気の温度はそれ以上に上昇することはないので、所定値dからは所定温度T4保持する。
一方、ランキンサイクル非運転域かつクラッチ固着時の空気温度の変化を下方に破線で重ねて示している。すなわち、ランキンサイクル非運転域かつクラッチ固着時にはランキンサイクル31は運転されないはずなのに、クラッチ固着によってランキンサイクル31が運転されてしまうため、凝縮器38が放熱する。このときには、空気が凝縮器38から熱をもらうため、車両前面からの距離が所定値aから所定値bまでの間で空気の温度が外気温度T1から上昇して所定温度T2に至る。凝縮器38を通過した後、ラジエータ11に入る手前まで空気の温度は上昇しない。その後、ラジエータ11を通過するときに空気が熱をもらって上昇するので、空気の温度は車両前面からの距離が所定値cより所定値dまでの間で直線的に上昇して所定温度T3となる。
ところが、このときにはラジエータを通過するときの温度上昇の程度がランキンサイクル非運転域かつクラッチ非固着時より小さいために、上記の温度T4より低い所定温度T3にまでしか到達しない。ラジエータ11を通過した後には空気の温度はそれ以上に上昇することはないので、所定値dからは所定温度T3を維持する。このように、ランキンサイクル非運転域においてクラッチ固着時のラジエータ11を通過するときの温度上昇の程度がクラッチ非固着時より小さくなり、ラジエータ11を出た空気温度は、クラッチ固着時のほうがクラッチ非固着時より低くなる。
図12で示したように、クラッチ固着時にラジエータ11を通過するときの温度上昇の程度がクラッチ非固着時より小さくなることが、ラジエータ11の放熱の効率が悪くなることを表している。これについてさらに説明する。ラジエータ11の空気側放熱量Qは次式で与えられる。
Q∝α・F・η・(Tw−Ta) …(1)
ただし、α:空気側熱伝達率[kJ/m2・K]
F:ラジエータの前面面積[m2
η:フィン効率[無名数]
Tw:ラジエータ入口冷却水温度[K]
Ta:ラジエータ前面空気温度[K]
ランキンサイクル非運転域かつクラッチ固着時に凝縮器38が放熱すると、ラジエータ11前面の空気温度Taが上がるので、ラジエータ入口冷却水温度Tw(図12参照)とラジエータ前面空気温度Taの差が小さくなる。すると、上記(1)式によりラジエータの空気側放熱量Qが、凝縮器38が放熱しない場合より下がる。このことは、図12において所定値cより所定値dまでの間の温度上昇の傾きがランキンサイクル非運転域かつクラッチ非固着時より小さくなることを意味するのである。このように凝縮器38の放熱の影響を受けてラジエータ入口冷却水温度Twとラジエータ前面空気温度Taの差が小さくなると、ラジエータ11の放熱の効率が悪くなることが分かる。
こうしてランキンサイクル非運転域かつクラッチ固着時にランキンサイクル非運転域かつクラッチ非固着時よりラジエータ11の放熱の効率が悪くなると、運転点によっては、その分エンジン2を循環する冷却水温度が上がってしまい、エンジン2にオーバーヒートが生じる恐れがある。
そこで本発明の第1実施形態では、ランキンサイクル非運転域かつクラッチ固着時にランキンサイクル非運転域かつクラッチ非固着時よりエンジンの運転領域を制限する。これを図13を参照して説明すると、図13は横軸をエンジン回転速度、縦軸をエンジントルクとするエンジンの運転領域図である。図13においてほぼ並行に多数引かれている右下がりの細線は、エンジン等放熱量線(あるいは等エンジン出力線)で、右上にゆくほどエンジン放熱量が多くなる(エンジン出力高くなる)ことを表す。
ランキンサイクル非運転域かつクラッチ非固着時に、図13において上方に記載した下に凸の実線を境界にしてこれより上方にハッチングで示した領域ではオーバーヒートが生じるためエンジンを運転することができない。つまり、上方に記載した下に凸の実線を境界にしてこれより下方の領域がランキンサイクル非運転域かつクラッチ非固着時のエンジンの実際の運転領域となる。このように境界が存在するのは、ラジーエータ11の放熱能力に制限があるためで、下に凸の実線の位置はラジエータの放熱能力により定まっている。以下、図13において下に凸の実線より上方にハッチングで示した領域を「ラジエータ性能NG領域」、下に凸の実線より下方の領域を「ラジエータ性能OK領域」という。
さて、ランキンサイクル非運転域においてクラッチ固着時にはクラッチ非固着時よりもラジエータ11の放熱の効率が悪くなり冷却水温度が上昇する分だけラジエータ性能NG領域が図13において例えば図示の一点鎖線の位置まで実質的に拡大する。言い換えるとラジエータ性能OK領域が実質的に狭まる。これによって、ランキンサイクル非運転域において運転点が実線と一点鎖線に挟まれた領域にあるとき、クラッチ非固着時にはラジエータ性能OK領域にあったものが、クラッチ固着時にはラジエータ性能NG領域にあることとなり、オーバーヒートが生じ得る。従って、本実施形態では、ランキンサイクル非運転域においてクラッチ固着時に凝縮器38の放熱によりラジエータ11の放熱が阻害される放熱性能分をエンジン出力に換算し、その換算エンジン出力より得られるエンジントルク分を所定値Aとして算出する。そして、所定値Aの分だけラジエータ性能NG領域とラジエータ性能OK領域の境界を図13において下方に、例えば図示の一点鎖線の位置まで動かしてラジエータ性能NG領域を拡大し、ラジエータ性能OK領域(エンジンの運転領域)を狭める。
このように、ラジエータ性能NG領域とラジエータ性能OK領域の境界を変更してラジエータ性能NG領域を拡大し、ラジエータ性能OK領域を狭めるとき、実際の運転がどうなるかを次に説明する。
図13に重ねてB、C、Dのロード・ロード線を3本引く。ここで、Bは車速40km/h一定で車両を運転したきのロード・ロード線、Cは60km/h一定で車両を運転したきのロード・ロード線、Dは80km/h一定で車両を運転したきのロード・ロード線であるとする。たとえば、Bのロード・ロード線で車両を走行する場合に、ランキンサイクル非運転域かつクラッチ非固着時には、下に凸の実線とBのロード・ロード線の交点であるE点がラジエータ性能OK領域(エンジンの運転領域)の限界となる。言い換えると、E点のエンジン回転速度Gが最高エンジン回転速度に、E点のエンジントルクが最大エンジントルクIになるわけである。
一方、同じBのロード・ロード線で車両を走行する場合に、ランキンサイクル非運転域かつクラッチ固着時になると、2つの領域の境界が実線から一点鎖線へと移る。このときは下に凸の一点鎖線とBのロード・ロード線の交点であるF点がラジエータ性能OK領域(エンジンの運転領域)の限界となる。言い換えると、F点のエンジン回転速度Hが最高エンジン回転速度に、F点のエンジントルクJが最大のエンジントルクとなる。ランキンサイクル非運転域かつクラッチ非固着時より最高回転速度がGよりHへと低下し、最大エンジントルクがIよりJへと減少するのである。これによって、一点鎖線をエンジンの運転領域の限界として運転することで、ランキンサイクル非運転域かつクラッチ固着時においても、エンジン2のオーバーヒートを抑制することができる。C、Dのロード・ロード線で車両を走行する場合も同様である。
エンジンコントローラ71で行われるこの制御を図14A、図14B、図21のフローチャートを参照して説明する。
図14A、図14Bのフローはランキンサイクル非運転域かつクラッチ固着時にラジエータ性能NG領域が拡大しラジエータ性能OK領域が狭まるように2つの領域の境界を更新するためのもので、一定時間毎(例えば10ms毎)に実行する。
ステップ1ではランキンサイクル非運転域であるか否かをみる。上記図7A、図7Bでランキンサイクル31の運転域について説明したが、ランキンサイクル31の運転域を除いた残りの運転域がランキンサイクル非運転域である。ランキンサイクル非運転域であることを条件としているのは、ランキンサイクル非運転域でオーバーヒートが生じ得ることを問題とするためである。ランキンサイクル運転域であるときにはそのまま今回の処理を終了する。
ランキンサイクル非運転域であるときにはステップ1よりステップ2に進み、クラッチ固着時であるか否かをみる。上記のように膨張機クラッチ35としての電磁式のクラッチでは、ソレノイドコイルへの通電で電磁力を発生させ、この電磁力で2つの部材を圧着させてクラッチを接続状態とする。また、ソレノイドコイルへの通電を停止し電磁力を消失させることで電磁式のクラッチを切断するものとする。このとき、膨張機クラッチ35に固着が生じたか否かは、冷媒ポンプ軸32a(図2A参照)の回転速度を検出するポンプ軸回転速度センサ75(図1参照)に基づけばよい。すなわち、ランキンサイクル非運転域ではソレノイドコイルへの通電を停止することで、膨張機クラッチ35を切断している。従って、ランキンサイクル非運転域でも冷媒ポンプ軸32aが回転していれば、膨張機クラッチ35に固着が生じていることとなる。そこで、ランキンサイクル非運転域でポンプ軸回転速度センサ75により検出される回転速度がゼロでなければ、膨張機クラッチ35に固着が生じていると判定できる。この判定結果、つまり膨張機クラッチ35に固着が生じているか否かの情報(データ)はメモリに記憶しておく。そして、ステップ2でこの情報を見て膨張機クラッチ35に固着が生じていなればそのまま今回の処理を終了する。
膨張機クラッチ35に固着が生じているときにはステップ2よりステップ3以降に進む。ステップ3〜16は、ラジエータ性能NG領域を拡大し、ラジエータ性能OK領域(エンジンの運転領域)を狭くする部分である。
ステップ3では、ランキンサイクル非運転域かつクラッチ固着時の凝縮器38の放熱量Pcond[kW]を算出する。この凝縮器38の放熱量Pcondは、ランキンサイクル非運転域かつクラッチ固着時の冷媒流量、冷媒の圧力・温度、車速に依存するので、これらのパラメータに基づいて算出すればよい。例えば、ランキンサイクル非運転域かつクラッチ固着時の冷媒流量、冷媒の圧力・温度が一定の条件では、図15に示したように車速VSPが高くなるほど凝縮器38の放熱量Pcondが大きくなる。車速は車速センサ79(図1参照)により検出する。
ステップ4では、凝縮器38の放熱量Pcondから図16を内容とするテーブルを検索することにより、ランキンサイクル非運転域かつクラッチ固着時のラジエータ11及び凝縮器38の合計の放熱能力Ptotl[kW]を算出する。図16に示したように合計の放熱能力Ptotlは凝縮器38の放熱量Pcondが大きくなるほど小さくなる値である。図16の特性は、図10で前述したように、ランキンサイクル非運転域でクラッチ固着によって凝縮器38の放熱があるときにラジエータ11の放熱が阻害されるために、ラジエータ11及び凝縮器38の合計の放熱能力が低下することを表すものである。そして、図16の特性は、凝縮器38の放熱量が多くなるほどラジエータ11の放熱が阻害される比率が大きくなることをも表している。
ステップ5では、実際のエンジン出力Peng[kW]をラジエータ11の放熱量Prad[kW]で除算した値をエンジン出力への換算係数K[無名数]として、つまり次式によりKを算出する。
K=Peng/Prad …(2)
ここで、(2)式右辺の実際のエンジン出力Peng、ラジエータ11の放熱量Pradとも、ランキンサイクル非運転域かつクラッチ固着時の値である。(2)式右辺の実際のエンジン出力Pengは、エアフローメータ76(図1参照)により検出される吸入空気量Qaに比例させて求めることができる。(2)式右辺のラジエータ11の放熱量Pradは、ランキンサイクル非運転域かつクラッチ固着時の冷却水流量、冷却水の圧力・温度、車速に依存するので、これらのパラメータに基づいて算出すればよい。
ステップ6では、この換算係数Kを合計の放熱能力Ptotlに乗算した値をランキンサイクル非運転域かつクラッチ固着時の基本放熱量低下換算エンジン出力ΔPeng0[kW]として、つまり次式によりΔPeng0を算出する。
ΔPeng0=Ptotl×K …(3)
ランキンサイクル非運転域かつクラッチ固着時に実際のエンジン出力Pengがラジエータ11の放熱量Pradより大きい場合に(2)式より係数Kが1.0より大きな値となり、(3)式よりΔPeng0が増大側に補正される。これは、ランキンサイクル非運転域かつクラッチ固着時にPengがPradより大きい場合にラジエータ11の放熱が不足してエンジンにオーバーヒートが生じ勝ちとなるので、ΔPeng0を増大側に補正することによってオーバーヒートを抑制するためである。
一方、ランキンサイクル非運転域かつクラッチ固着時に実際のエンジン出力Pengがラジエータの放熱量Pradより小さい場合に(2)式より係数Kが1.0より小さな値となり、(3)式よりΔPeng0が減少側に補正される。この理由は次の通りである。すなわち、ランキンサイクル非運転域かつクラッチ固着時に実際のエンジン出力Pengがラジエータの放熱量Pradより小さい場合にはラジエータ11の放熱に余裕がある。この場合にはΔPeng0を減少側に補正することによって、ラジエータ性能OK領域(エンジンの運転領域)をむやみに狭くしないようにするのである。このように、Kはランキンサイクル非運転域かつクラッチ固着時において、実際のエンジン出力Pengとラジエータ11の放熱量Pradとの関係を放熱量低下換算エンジン出力への換算係数としたものである。
ステップ7では、外気温センサ77(図1参照)により検出される外気温Tairから図17を内容とするテーブルを検索することにより、外気温補正係数Kair1[無名数]を算出する。ステップ8では、この外気温補正係数Kair1を上記のΔPeng0に乗算した値をランキンサイクル非運転域かつクラッチ固着時の目標放熱量低下換算エンジン出力ΔPeng[kW]として、つまり次式によりΔPengを算出する。
ΔPeng=ΔPeng0×Kair1 …(4)
図17に示したように外気温補正係数Kair1は、適合時の外気温Tair0のときに1.0となり、実際の外気温Tairが適合時の外気温Tair0より高い場合に1.0より大きな値となる。実際の外気温が適合時の外気温より高い場合に、ΔPeng0を増大側に補正するのは、実際の外気温が適合時の外気温より高い場合のほうが実際の外気温が適合時の外気温である場合よりオーバーヒートが生じやすくなるためである。
また、図17に示したように実際の外気温Tairが適合時の外気温Tair0より低い場合に外気温補正係数Kair1は1.0より小さな値となる。これは、実際の外気温が適合時の外気温より低い場合のほうが実際の外気温が適合時の外気温である場合よりオーバーヒートが生じにくくなるので、その分ΔPeng0を減少側に補正することができるためである。
ステップ9では、この目標放熱量低下換算エンジン出力ΔPengをそのときのエンジン回転速度Neで除算した値を基本トルクマージンMarg0[N・m]として、つまり次式によりMarg0を算出する。
Marg0=C1×ΔPeng/Ne …(5)
ただし、C1:適合係数、
ここで、(5)式の基本トルクマージンとは、ラジエータ性能NG領域とラジエータ性能OK領域の境界をエンジントルクの減少側に移動させる量のことである。図13においてラジエータ性能NG領域とラジエータ性能OK領域の境界をエンジントルクの減少側に所定値Aだけ拡大したが、基本トルクマージンMarg0はこの所定値Aを算出するものである。
次に、図14Bのステップ10に進んでエアコン負荷があるか否かをみる。図4で前述したように、エアコン用のコンプレッサ52はエンジン駆動としているので、「エアコン負荷がある」とは、図4においてコンプレッサクラッチ54を接続し、コンプレッサ52をエンジン2により駆動していることをいう。ここで、コンプレッサクラッチ54としての電磁式のクラッチについて、ON信号を与えたときにクラッチを接続し、OFF信号を与えたときにクラッチを切断するタイプであるとする。このとき、エアコン負荷があるか否かは、コンプレッサクラッチ54への信号をみればわかる。すなわち、コンプレッサクラッチ54への信号がON信号であるときには、エアコン負荷があると判断し、ステップ11〜13に進む。
ステップ11〜13はエアコン負荷があるときに基本トルクマージンMarg0を増大側に補正する部分である。
ステップ11ではエアコン負荷Lairconを算出する。エアコン負荷Lairconの具体例としては、設定温度や乗員数がある。実際の設定温度が適合時の設定温度の場合や実際の乗員数が適合時の乗員数と一致する場合にエアコン負荷Lairconはゼロとする。実際の設定温度が適合時の設定温度より低いほどあるいは実際の乗員数が適合時の乗員数より多いほどエアコン負荷Lairconは正の値で大きくなる値で設定しておく。
ステップ12ではエアコン負荷Lairconから図18を内容とするテーブルを検索することによりエアコン負荷補正量Haircon[N・m]を算出する。ステップ13ではこのエアコン負荷補正量Hairconを基本トルクマージンMarg0に加算した値を目標トルクマージンMarg[N・m]として、つまり次式により目標トルクマージンMargを算出する。
Marg=Marg+Haircon …(6)
図18に示したようにエアコン負荷補正量Hairconはエアコン負荷Lairconが正の値で大きくなるほど大きくなる値であり、エアコン負荷Lairconが正の値で大きくなるほど目標トルクマージンMargが大きくなる。これによって、エアコン負荷がある場合のほうがエアコン負荷がない場合よりラジエータ性能NG領域とラジエータ性能OK領域の境界がエンジントルクの減少側に更新される。つまり、ラジエータ性能NG領域が拡大され、ラジエータ性能OK領域が狭くされる。これはエアコン負荷がある場合のほうがエアコン負荷がない場合よりエンジンへの負担が大きくなり、冷却水温度が上昇してエンジンにオーバーヒートが生じやすくなるので、その分ラジエータ性能NG領域を拡大し、ラジエータ性能OK領域を狭くするためである。
一方、ステップ10でコンプレッサクラッチ54への信号がOFF信号であるときには、エアコン負荷がないと判断しステップ14に進み、基本トルクマージンMarg0をそのまま目標トルクマージンMargとする。
ステップ15、16はこのようにして算出した目標トルクマージンMargを用いて、ラジエータ性能NG領域が拡大し、ラジエータ性能OK領域が狭くなるようにラジエータ性能NG領域とラジエータ性能OK領域の境界を更新する部分である。まず、ステップ15ではエンジンの運転領域マップを読み出す。例えば、読み出した領域マップの内容を図19に示す。図19に示したようにランキンサイクル非運転域かつクラッチ非固着時にラジエータ性能NG領域とラジエータ性能OK領域の境界が実線であったとすると、この境界を含んだ領域マップを車両の工場出荷当初に記憶させておく。ここでは車両の工場出荷当初に記憶させている領域マップであったとする。
ステップ16では、目標トルクマージンMargを用いてラジエータ性能NG領域とラジエータ性能OK領域の境界をエンジントルクの減少側に更新し、更新後の領域マップを記憶する。例えば更新後のラジエータ性能NG領域とラジエータ性能OK領域の境界が図19に示したように一点鎖線となったとすると、更新後の境界を含む領域マップを改めてエンジンの運転領域マップとしてメモリに記憶する。
なお、図14A、図14Bのフローはラジエータ性能NG領域とラジエータ性能OK領域の境界を一定周期(10ms)で常時更新するものであるが、更新する周期をもっと長くすることもできる。
さて、図19に示した工場出荷当初の領域マップは実際の外気温が適合時の外気温と一致する場合のものであった。次に、実際の外気温が適合時の外気温と相違する場合、特に実際の外気温が適合時の外気温より高い場合にラジエータ性能NG領域とラジエータ性能OK領域の境界がどのように変化するのかを具体的に示すと、図20のようになる。すなわち、適合時の外気温がたとえば20℃であるとしたとき、ランキンサイクル非運転域かつクラッチ非固着時にラジエータ性能NG領域とラジエータ性能OK領域の境界が実線の位置にあったとする。つまり、実線を境界とする領域マップが工場出荷当初の領域マップである。実際の外気温が20℃の状態においてランキンサイクル非運転域でもクラッチ固着時にはオーバーヒートを抑制するためラジエータ性能NG領域とラジエータ性能OK領域の境界が一点鎖線の位置へと移る。この点は図19で説明した。ところが、ランキンサイクル非運転域かつクラッチ固着時でも、実際の外気温が適合時の外気温(20℃)を外れて25℃、30℃、40℃と高温になるほど、ラジエータ性能NG領域とラジエータ性能OK領域の境界はエンジントルクの減少側に移動してゆく。つまり、適合時の外気温温より実際の外気温が高くなるほどラジエータ性能NG領域が拡大し、ラジエータ性能OK領域が狭くなるのである。これは実際の外気温が適合時の外気温より高いほどラジエータ11が放熱しにくくなり、適合時の外気温のときよりオーバーヒートが生じ易くなるので、その分ラジエータ性能NG領域を拡大し、ラジエータ性能OK領域が狭くする必要があるためである。
次に、ラジエータ性能NG領域が拡大しラジエータ性能OK領域が狭くなった場合に、拡大したラジエータ性能NG領域でエンジンを運転させず、狭くなったラジエータOK領域でエンジンを運転する方法を説明する。エンジン2の仕様が決まれば、エンジン2の運転領域の境界は、最大の供給燃料量、最大のスロットル弁開度、最高エンジン回転速度などで定まる。従って、拡大したラジエータ性能NG領域でエンジンを運転させず狭まったラジエータOK領域で運転させるには、運転点が拡大したラジエータ性能NG領域に属するときに狭まったラジエータOK領域の境界に運転点が戻るように、供給燃料量を減少してやればよい。供給燃料量に代えて、スロットル弁開度、エンジン回転速度などでもかわまないが、以下では、供給燃料量を減少させることによって、拡大したラジエータ性能NG領域でエンジンを運転させず狭まったラジエータOK領域で運転させる方法を説明する。
図21のフローは、供給燃料量を制限するための、具体的にはエンジントルクとエンジン回転速度から定まる運転点がラジエータ性能NG領域に属するときに供給燃料量を減少させるためのもので、一定時間毎(例えば10ms毎)に実行する。以下ではエンジン2がガソリンエンジンであるとする。
ステップ21、22ではランキンサイクル非運転域であるか否か、クラッチ固着時であるか否かをみる。ランキンサイクル非運転域でないときやランキンサイクル運転域であってもクラッチ固着時でないときにはそのまま今回の処理を終了する。
ランキンサイクル非運転域かつクラッチ固着時にはステップ23に進み、基本供給燃料量Qf0を算出する。ガソリンエンジンでは、吸気ポートや燃焼室に臨んで燃料噴射弁を設けており、この燃料噴射弁を所定のタイミングで開くことにより所定圧の燃料を供給する。ここで燃料圧が一定圧であるとすると、燃料噴射弁を開いている期間(噴射パルス幅)が供給燃料量に比例する。このため、ガソリンエンジンでは、エアフローメータ76(図1参照)により検出される吸入空気量Qaと、クランク角センサ78(図1参照)により検出されるエンジン回転速度Neに基づいて基本噴射パルス幅Tp[ms]を算出している。この基本噴射パルス幅Tpを基本供給燃料量Qf0として用いる。
ステップ24では、エアフローメータ76(図1参照)により検出される吸入空気量Qaに換算係数C2を乗算した値をランキンサイクル非運転域かつクラッチ固着時の実際のエンジン出力Peng[kW]として、つまり次式よりPengを算出する。
Peng=C2×Qa …(7)
ステップ25ではこの実際のエンジン出力Peng[kW]をそのときのエンジン回転速度Neで除算した値をランキンサイクル非運転域かつクラッチ固着時の実際のエンジントルクTorq[N・m]として、つまり次式によりTorqを算出する。
Torq=C1×Peng/Ne …(8)
ただし、C1:適合係数、
ステップ26ではランキンサイクル非運転域かつクラッチ固着時の実際のエンジントルクTorqと実際のエンジン運転回転速度Neから定まる運転点が領域マップ上で、ラジエータ性能NG領域に属しているか否かをみる。
ここでの領域マップは、図14A、図14Bのフローによりラジエータ性能NG領域とラジエータ性能OK境域の境界が更新されている領域マップである。例えば、ここでの領域マップの内容が図22に示した特性であったとする。図22において仮にランキンサイクル非運転域かつクラッチ固着時に実際のエンジントルクが所定値Torq1、実際のエンジン回転速度が所定値Ne1であり、Torq1、Ne1で定まる運転点が、拡大したラジエータ性能NG領域内のL点にあったとする。運転点が、拡大したラジエータ性能NG領域内にあるままでエンジン2の運転を継続したのでは、オーバーヒートが生じることが考えられる。このときには、運転点をL点よりラジエータ性能OK領域とラジエータ性能OK領域の境界である一点鎖線の位置へと移動させる必要がある。
ここで、L点より境界(一点鎖線の位置)へと移動させるには、例えばM点に向けてエンジントルクを減少させたり、N点に向けてエンジントルク及びエンジン回転速度を減少させればよい。図21のフローでは供給燃料量を減少させるので、図22においてM点に向けてエンジントルクを減少させることとなる。
ステップ26で、図22のように運転点がラジエータ性能NG領域に属するL点にあるときには、運転点をL点よりM点に向かわせるためステップ26よりステップ27〜29に進む。
ステップ27〜29は運転点がラジエータ性能NG領域に属するときに供給燃料量を減少させることによって運転点をラジエータ性能OK領域の境界に戻す部分である。まず、ステップ27ではエンジン回転速度Ne1から図22を内容とする領域マップを検索することにより、そのときのエンジン回転速度Ne1での最大トルクTmaxを算出する。
ここで、そのときのエンジン回転速度(Ne1)での最大トルクTmaxとは、次の値のことである。すなわち、図22の領域マップおいて所定値Ne1からラジエータ性能NG領域とラジエータ性能OK領域との境界(一点鎖線の位置)に向けて垂線を引き、垂線が境界と交わった点より左方向に引き出し線を引く。この引き出し線が縦軸と交わる点のエンジントルクがそのときのエンジン回転速度(Ne1)での最大トルクTmaxである。
ステップ28では、L点の実際のエンジントルクTorq1とL点のエンジン回転速度Ne1に対する最大トルクTmaxとの差分に基づいて、つまり次式により供給燃料減少量Hgen1を算出する。
Hgen1=C3×(Torq−Tmax) …(9)
ただし、C3:エンジントルクへの換算係数、
ステップ29では基本供給燃料量Qf0からこの供給燃料減少量Hgen1を差し引いた値を目標供給燃料量mQfとして、つまり次式によりmQfを算出する。
mQf=Qf0−Hgen1 …(10)
(10)式により供給燃料を減少させるのは、これによってエンジンの発生するトルクを減らし、図22の領域マップにおいて運転点をL点よりM点へとエンジントルクの減少側に移動させるためである。
なお、ガソリンエンジンでは、(9)式の供給燃料減少量Hgen1を上記基本噴射パルス幅Tpと同じ単位の[ms]で算出する。この[ms]で算出する供給燃料減少量をHgen1’とすれば、上記基本噴射パルス幅TpよりHgen1’を差し引いた値を補正基本噴射パルス幅HTpとし、公知の次式により燃料噴射パルス幅Ti[ms]を算出する。
Ti=HTp×Tfbya×(α+αm−1)×2+Ts …(11)
ただし、HTp:補正基本噴射パルス幅、
Tfbya:目標当量比[無名数]、
α:空燃比フィードバック補正係数[無名数]、
αm:空燃比学習値[無名数]、
Ts:無効パルス幅[ms]、
この燃料料噴射パルス幅Tiを目標供給燃料量mQfとして用いる。
一方、ステップ26で運転点がラジエータ性能NG領域になければ供給燃料量を制限する必要がないので、ステップ30に進み、基本供給燃料量Qf0をそのまま目標供給燃料量mQfとする。
ガソリンエンジンでは、ステップ30で上記基本噴射パルス幅Tpを用いて次式により燃料噴射パルス幅Ti[ms]を算出する。
Ti=Tp×Tfbya×(α+αm−1)×2+Ts …(12)
ただし、HTp:補正基本噴射パルス幅、
Tfbya:目標当量比[無名数]、
α:空燃比フィードバック補正係数[無名数]、
αm:空燃比学習値[無名数]、
Ts:無効パルス幅[ms]、
図示しないフローでは、このようにして算出した目標供給燃料量mQfを燃料供給装置に出力する。ガソリンエンジンでは、算出した燃料噴射パルス幅Tiが、燃料供給装置としての燃料噴射弁から噴射供給されるように、燃料噴射弁を所定のタイミングで開く。
ここで、本実施形態の作用効果を説明する。
ランキンサイクル非運転域かつクラッチ非固着時(ランキンサイクルの非作動域でクラッチ固着が生じていないとき)のラジエータ放熱量よりもランキンサイクル非運転域かつクラッチ非固着時(ランキンサイクルの非運転域でクラッチに固着が生じたとき)のラジエータ11及び凝縮器38の全体の放熱量が少なくなることを本発明者が初めて見いだした。このため、ランキンサイクル非運転域かつクラッチ固着時には、ランキンサイクル非運転域かつクラッチ非固着時との差の放熱量の分だけエンジン冷却水温度が上昇し、運転点によってはエンジン2にオーバーヒートが発生する恐れがある。
一方、本実施形態では、エンジンの冷却水を冷却するラジエータ11と、エンジンの廃熱を冷媒に回収する熱交換器36、この熱交換器36出口の冷媒を用いて動力を発生させる膨張機37、この膨張機37を出た冷媒を凝縮させる凝縮器38、この凝縮器38からの冷媒を熱交換器36に供給する冷媒ポンプ32を含むランキンサイクル31と、膨張機38とエンジン2との間の回転力の伝導を断接するクラッチ35とを備え、空気流れの上流側から凝縮器38、ラジエータ11の順に配置すると共に、ランキンサイクル非運転域かつクラッチ固着時(ランキンサイクルの非運転域でエンジンと膨張機とが常時接続状態となるクラッチ固着が生じたとき)にランキンサイクル非運転域かつクラッチ非固着時(クラッチ固着が生じないとき)よりラジエータ性能OK領域(エンジンの運転領域)を制限するエンジンコントローラ71(運転領域制限手段)を設けている(図14Aのステップ1〜9、図14Bのステップ10、14、15、16、図19参照)。これによって、ランキンサイクル非運転域でクラッチ固着時にもオーバーヒートを抑制することができる。
凝縮器38の放熱によりラジエータ11の放熱が阻害される放熱性能分を超えてエンジンの出力を減少させたのでは、運転者の望むエンジン出力が得られず、運転に違和感が生じ得る。一方、本実施形態によれば、エンジンコントローラ71(運転領域制限手段)は、基本放熱量低下分換算エンジン出力ΔPeng0の分(凝縮器38の放熱によりラジエータ11の放熱が阻害される放熱性能分をエンジン出力に換算した分)だけラジエータ性能OK領域(エンジンの運転領域)を狭くするので(図14Aのステップ3〜9、図14Bのステップ10、14、15、16、図19参照)、エンジンの運転領域を最低限度で制限しつつオーバーヒートを抑制することができる。
外気温Tairが適合時の外気温Tair0より高いほどラジエータ11の放熱が厳しくなる。これに対応し、本実施形態によれば、エンジンコントローラ71(運転領域制限手段)は外気温度Tairが高いほどラジエータ性能OK領域(エンジンの運転領域)を狭くするので(図14Aのステップ7、8、9、図14Bのステップ10、14、15、16、図19、図20参照)、外気温Tairが適合時の外気温Tair0より高くなってもオーバーヒートを抑制することができる。
エアコン負荷があると、ランキンサイクル31とは別に熱負荷がラジエータ11にかかるので、ラジエータ11の放熱が厳しくなる。これに対応し、本実施形態によれば、エンジンコントローラ71(運転領域制限手段)はエンジン2にエアコン負荷が作用する場合にエンジン2にエアコン負荷が作用しない場合よりもラジエータ性能OK領域(エンジンの運転領域)を狭くするので(図14Bのステップ10、11、12、13、15、16参照)、エアコン負荷が作用する場合においてもオーバーヒートを抑制することができる。
(第2実施形態)
図23のフローは第2実施形態のエアコン動作を制限するためのもので、一定時間毎(例えば10ms毎)に実行する。第2実施形態は、第1実施形態を前提として図23のフローを追加するものである。
ステップ41、42ではランキンサイクル非運転域であるか否か、クラッチ固着時であるか否かをみる。ランキンサイクル非運転域でないときやランキンサイクル運転域であってもクラッチ固着時でないときにはそのまま今回の処理を終了する。
ランキンサイクル非運転域かつクラッチ固着時にはステップ43に進み、エアコンが動作中であるか否かをみる。これは、エアコンスイッチ(図示しない)やコンプレッサクラッチ54の状態から知り得る。エアコンスイッチがOFFとなっていれば、エアコンが非動作中であると判断し、そのまま今回の処理を終了する。
一方、エアコンスイッチがONとなっていれば、エアコンが動作中であると判断し、ステップ43よりステップ44に進み、車室内の吹き出し温度を所定値高くする。
ここでは、エンジンコントローラ71からのONデューティ信号によってコンプレッサクラッチ54(図4参照)を制御しているとする。一定時間当たりのクラッチ54の接続割合がONデューティである。ONデューティを増すと、一定時間当たりのクラッチ54の接続割合が相対的に増してコンプレッサ52がよく働く。この逆にONデューティを減らすと、一定時間当たりのクラッチ54の接続割合が相対的に減ってコンプレッサ52の働きが悪くなる。吹き出し温度とONデューティの関係では、吹き出し温度が低いほどONデューティが大きく設定されている。これは、吹き出し温度が相対的に低い場合に、吹き出し温度が相対的に高い場合よりONデューティを大きくして、一定時間当たりのクラッチ54の接続割合を増やし、コンプレッサ52をよく働かせるためである。その一方で、コンプレッサ52をよく働かせるほどエンジン2への負荷が大きくなり、冷却水温度が上昇する。
上記のようにエアコンが動作中であっても、吹き出し温度を所定値高くすれば、一定時間当たりのクラッチ54の接続割合が相対的に減少するので、その減少分だけエンジン2への負荷が減り、オーバーヒートが生じる機会をさらに減じることができる。
このように、オーバーヒートが生じる機会を減じるためにはエンジン負荷を減らせばよいので、エアコンが動作中に、車室内に冷気を送り込むブロアの風量を所定値少なくするようにしてもかまわない。ここで、ブロアを駆動するモータの電源はバッテリであり、バッテリはエンジン駆動のオルタネータで得た電力を蓄えるものである。ブロアの風量を増やすほどバッテリのSOC(State of Charge)が早期に減り、これを補うためオルタネータがエンジン2によって駆動される。つまり、ブロアの風量が相対的に大きい場合のほうがブロアの流量が相対的に小さい場合よりエンジンへの負荷が大きいのである。上記のようにエアコンが動作中に、ブロアの風量を所定値少なくすることで、その減少分だけエンジン2への負荷が減り、オーバーヒートが生じる機会をさらに減じることができる。
第2実施形態によれば、エンジン2によりエアコンを動作させている場合に、車室内の吹き出し温度を所定値高くしたりブロアの風量を所定値少なくすることによってエアコンの動作を制限するので、エアコンの動作を制限する分だけオーバーヒートが生じる機会を減らすことができる。
(第3実施形態)
図24のフローチャートは第3実施形態で、第1実施形態の図14A、図14B、図21と置き換わるものである。図24のフローも一定時間毎(例えば10ms毎)に実行する。第1実施形態の図14A、図14B、図21と同一部分には同一の符号を付している。
第1実施形態では、ランキンサイクル非運転域かつクラッチ固着時にエンジンの運転領域を制限した。一方、第3実施形態は、ランキンサイクル非運転域かつクラッチ固着時にエンジンの最高出力を制限するものである。すなわち、ランキンサイクル非運転域かつクラッチ固着時のエンジン最高出力Pmaxを算出し、エンジン出力がこのエンジン最高出力Pmaxを超えているとき、エンジン出力をエンジン最高出力Pmaまで減少させる。
第1実施形態と相違する部分を主に説明すると、ステップ6ではランキンサイクル非運転域かつクラッチ固着時の基本放熱量低下分換算エンジン出力ΔPeng0を算出する。ステップ51では、この基本放熱量低下分換算エンジン出力ΔPeng0から図25を内容とするテーブルを検索することにより、ランキンサイクル非運転域かつクラッチ固着時のエンジン最高出力Pmax[kW]を算出する。
図25に示したようにエンジン最高出力Pmax0はΔPeng0が大きくなるほど小さくなる値である。これはΔPeng0が大きいほどオーバーヒートが生じ易くなるので、これに合わせてエンジン最高出力を減少させる必要があるためである。
さらに説明すると、ランキンサイクル非運転域かつクラッチ非固着時にΔPeng0はゼロである。つまり、図25においてΔPeng0がゼロのときのエンジン最高出力が、ランキンサイクル非運転域かつクラッチ非固着時のエンジン最高出力となる。図25では所定値Qがランキンサイクル非運転域かつクラッチ非固着時(つまり通常運転時)のエンジン最高出力である。
一方、ランキンサイクル非運転域かつクラッチ固着時に、ある運転点でΔPeng0として所定値Rが正の値で算出されたとすると、その運転点のエンジン最高出力としてはオーバーヒート回避のため、所定値Qより所定値Rだけ減少させた値とする必要がある。運転点(つまりΔPeng0)を相違させてエンジン最高出力Pmaxを求めてゆけば、Pmaxの特性は図25に示したように右下がりとなる。このように、図25の特性は、凝縮器38の放熱によりラジエータ11の放熱が阻害される放熱性能分をエンジン出力に換算した分(ΔPeng0)だけエンジンの最高出力を減少させるものである。
ステップ52ではランキンサイクル非運転域かつクラッチ固着時の実際のエンジン出力Pengとエンジン最高出力Pmaxを比較する。実際のエンジン出力Pengがランキンサイクル非運転域かつクラッチ固着時のエンジン最高出力Pmaxを超えているときには、オーバーヒートが生じる可能性がある。このときには、実際のエンジ出力Pengをランキンサイクル非運転域かつクラッチ固着時のエンジン最高出力Pmaxまで減少させる(Pmaxに制限する)ため、ステップ53、54に進む。
ステップ53では実際のエンジン出力Pengとエンジン最高出力Pmaxとの差分に基づいて、供給燃料減少量Hgen2を、つまり次式により供給燃料減少量Hgen2を算出する。
Hgen2=C4×(Peng−Pmax) …(13)
ただし、C4:供給燃料量への換算係数、
ステップ54では基本供給燃料量Qf0からこの供給燃料減少量Hgen2を差し引いた値を目標供給燃料量mQfとして、つまり次式によりmQfを算出する。
mQf=Qf0−Hgen2 …(14)
(14)式により供給燃料を減少させるのは、これによってエンジンの出力をエンジン最高出力Pmaxまで減少させるためである。
一方、ステップ52で実際のエンジン出力Pengがエンジン最高出力Pmax超えていなければ、ステップ30に進み、基本供給燃料量Qf0をそのまま目標供給燃料量mQfとする。
図示しないフローでは、このようにして算出した目標供給燃料量mQfを燃料供給装置に出力する。
第3実施形態によれば、ランキンサイクル非運転域かつクラッチ固着時(ランキンサイクルの非運転域でクラッチに固着が生じたとき)にランキンサイクル非運転域かつクラッチ非固着時(クラッチ固着が生じないとき)よりエンジンの最高出力Pmaxを制限するエンジンコントローラ71(エンジン最高出力制限手段)を設けているので(図24のステップ21、2、23、24、3〜6、51、52、53、54参照)、ランキンサイクルの非運転域でクラッチに固着が生じたときにもオーバーヒートを抑制することができる。また、第3実施形態によれば、エンジンの最高出力Pmaxを制限するので、実際のエンジン出力Pengがエンジン最高出力Pmaxに到達しない限り運転フィーリングに変化はない。これによって、エンジンの出力が必要以上に減少することを回避できる。
第3実施形態によれば、エンジンコントローラ71(エンジン最高出力制限手段)はΔPeng0(凝縮器の放熱によりラジエータの放熱が阻害される放熱性能分をエンジン出力に換算した分)だけエンジンの最高出力Pmaxを減少させるので(図25参照)、エンジン最高出力Pmaxを最低限度で制限しつつオーバーヒートを抑制することができる。
第1実施形態では、エンジンにエアコン負荷が作用する場合にエンジンにエアコン負荷が作用しない場合よりもエンジンの運転領域を狭くした。これと同様に、第3実施形態でも、エンジンにエアコン負荷が作用する場合にエンジンにエアコン負荷が作用しない場合よりもエンジンの最高出力を減少させることが考えられる。エアコン負荷があると、ランキンサイクルとは別に熱負荷がラジエータにかかるので、ラジエータからの放熱が厳しくなる。これに対応し、第3実施形態においてもエンジンにエアコン負荷が作用する場合にエンジンにエアコン負荷が作用しない場合よりもエンジンの最高出力を減少させることで、エアコン負荷が作用する場合においてもオーバーヒートを抑制することができる。
なお、第1実施形態では、図14Aのステップ7、8に示したように外気温補正を行っている。一方、エンジン最高出力Pmaxには外気温の影響が含まれている。よって、エンジン最高出力Pmaxについては、第1実施形態のように外気温補正を行うことは必要ない。
(第4実施形態)
図26のフローチャートは第4実施形態で、第3実施形態の図24と置き換わるものである。図26のフローも一定時間毎(例えば10ms毎)に実行する。第3実施形態の図24と同一部分には同一の符号を付している。
第3実施形態では、ランキンサイクル非運転域かつクラッチ固着時にエンジン最高出力を制限した。一方、第4実施形態は、ランキンサイクル非運転域かつクラッチ固着時に最高車速を制限するものである。すなわち、ランキンサイクル非運転域かつクラッチ固着時の最高車速Vmaxを算出し、車速VSPがこの最高車速Vmaxを超えているとき、車速VSPを最高車速Vmaxまで低下させる。
第3実施形態と相違する部分を主に説明すると、ステップ6ではランキンサイクル非運転域かつクラッチ固着時の基本放熱量低下分換算エンジン出力ΔPeng0を算出する。ステップ61では、この基本放熱量低下分換算エンジン出力ΔPeng0から図27を内容とするテーブルを検索することにより、ランキンサイクル非運転域かつクラッチ固着時の基本最高車速Vmax0[km/h]を算出する。
図27に示したように基本最高車速Vmax0はΔPeng0が大きくなるほど小さくなる値である。これはΔPeng0が大きいほどオーバーヒートが生じ易くなるので、これに合わせて最高車速を減少させる必要があるためである。
さらに説明すると、ランキンサイクル非運転域かつクラッチ非固着時にΔPeng0はゼロである。つまり、図27においてΔPeng0がゼロのときの最高車速がランキンサイクル非運転域かつクラッチ非固着時の最高車速となる。図27では所定値Sがランキンサイクル非運転域かつクラッチ非固着時(つまり通常運転時)の最高車速である。
一方、ランキンサイクル非運転域かつクラッチ固着時に、ある運転点でΔPeng0として所定値Tが正の値で算出されたとすると、その運転点の最高車速としてはオーバーヒート回避のため、所定値TにC6(C6は車速への換算係数)を乗じた分だけ所定値Sより低下した値とする必要がある。運転点(つまりΔPeng0)を相違させて最高車速Vmaxを求めてゆけば、Vmaxの特性は図27に示したように右下がりとなる。このように、図27の特性は、凝縮器38の放熱によりラジエータ11の放熱が阻害される放熱性能分をエンジン出力に換算した分(ΔPeng0)をさらに車速に換算した分だけ最高車速を低下させるものである。
ステップ62では、外気温センサ77により検出される外気温Tairから図28を内容とするテーブルを検索することにより、外気温補正係数Kair2[無名数]を算出する。ステップ63では、この外気温補正係数Kair2を基本最高車速Vmax0に乗算した値をランキンサイクル非運転域かつクラッチ固着時の最高車速Vmax[km/h]として、つまり次式によりVmaxを算出する。
Vmax=Vmax0×Kair2 …(15)
図28に示したように外気温補正係数Kair2は、適合時の外気温Tair0のときに1.0となる。実際の外気温Tairが適合時の外気温Tair0より高い場合に外気温補正係数Kair2は1.0より小さくなる。このとき、Vmax0は(15)式により低くなる側に補正される。これは、実際の外気温が適合時の外気温より高い場合のほうが、実際の外気温が適合時の外気温と一致している場合よりオーバーヒートが生じ易くなるので、Vmaxを低くすることによって、オーバーヒートを抑制するためである。
一方、実際の外気温Tairが適合時の外気温Tair0より低い場合に1.0より大きくなる値である。このとき、Vmax0は(15)式により高くなる側に補正される。これは、実際の外気温が適合時の外気温より低い場合のほうが、実際の外気温が適合時の外気温と一致している場合よりオーバーヒートが生じにくくなるので、Vmaxを高くしてもオーバーヒートが生じ易くなることがないためである。
ステップ64ではランキンサイクル非運転域かつクラッチ固着時の実際の車速VSP[km/h]とランキンサイクル非運転域かつクラッチ固着時の最高車速Vmaxを比較する。ここで、ランキンサイクル非運転域かつクラッチ固着時の実際の車速VSPは、車速センサ79(図1参照)により検出する。実際の車速VSPがランキンサイクル非運転域かつクラッチ固着時の最高車速Vmaxを超えているときには、エンジン2にオーバーヒートが生じる可能性がある。このときには、実際の車速VSPをランキンサイクル非運転域かつクラッチ固着時の最高車速Vmaxまで低下させる(Vmaxに制限する)ため、ステップ65、66に進む。
ステップ65では実際の車速VSPと最高車速Vmaxとの差分に基づいて、供給燃料減少量Hgen3を、つまり次式により供給燃料減少量Hgen3を算出する。
Hgen3=C5×(VSP−Vmax) …(16)
ただし、C5:供給燃料量への換算係数、
ステップ66では基本供給燃料量Qf0からこの供給燃料減少量Hgen3を差し引いた値を目標供給燃料量mQfとして、つまり次式によりmQfを算出する。
mQf=Qf0−Hgen3 …(17)
(17)式により供給燃料を減少させるのは、これによってエンジンの発生する出力を減らし、車速VSPを最高車速Vmaxまで低下させるためである。
一方、ステップ64で実際の車速VSPが最高車速Vmax超えていなければ、ステップ30に進み、基本供給燃料量Qf0をそのまま目標供給燃料量mQfとする。
図示しないフローでは、このようにして算出した目標供給燃料量mQfを燃料供給装置に出力する。
第4実施形態によれば、ランキンサイクル非運転域かつクラッチ固着時(ランキンサイクルの非運転域でクラッチ固着が生じたとき)にランキンサイクル非運転域かつクラッチ非固着時(クラッチ固着が生じないとき)よりエンジンの搭載される車両の最高車速Vmaxを制限するエンジンコントローラ71(最高車速制限手段)を設けているので(図26のステップ21、2、23、3〜6、61〜65参照)、ランキンサイクルの非運転域でクラッチに固着が生じたときにもオーバーヒートを抑制することができる。また、第4実施形態によれば、最高車速Vmaxを制限するので、実際の車速VSPが最高車速Vmaxに到達しない限り運転フィーリングに変化はない。これによって、車速が必要以上に低下することを回避できる。
第4実施形態によれば、エンジンコントローラ71(最高車速制限手段)はΔPeng0(凝縮器の放熱によりラジエータの放熱が阻害される放熱性能分をエンジン出力に換算した分)だけ最高車速Vmaxを低下させるので(図27参照)、最高車速Vmaxを最低限度で制限しつつオーバーヒートを抑制することができる。
外気温Tairが適合時の外気温Tair0より高いほどラジエータの放熱が厳しくなる。これに対応し、第4実施形態によれば、エンジンコントローラ71(最高車速制限手段)は外気温Tairが高いほど最高車速Vmaxを低くするので(図26のステップ62、63、図28参照)、外気温Tairが適合時の外気温Tair0より高くなってもオーバーヒートを抑制することができる。
第1実施形態では、エンジンにエアコン負荷が作用する場合にエンジンにエアコン負荷が作用しない場合よりもエンジンの運転領域を狭くした。これと同様に、第4実施形態でも、エンジンにエアコン負荷が作用する場合にエンジンにエアコン負荷が作用しない場合よりも最高車速を低下させることが考えられる。エアコン負荷があると、ランキンサイクルとは別に熱負荷がラジエータにかかるので、ラジエータからの放熱が厳しくなる。これに対応し、第4実施形態においてもエンジンにエアコン負荷が作用する場合にエンジンにエアコン負荷が作用しない場合よりも最高車速を低下させることで、エアコン負荷が作用する場合においてもオーバーヒートを抑制することができる。
(第5実施形態)
図29は第5実施形態のランキンサイクルのシステム全体を表した概略構成図で、第1実施形態の図1と置き換わるものである。第1実施形態の図1と同一部分には同一の符号を付している。
第1実施形態のシステムは、図1に示したように熱交換器36にエンジン出口の冷却水だけでなく、廃熱回収器22で昇温させた冷却水をも導いてランキンサイクル31の冷媒の温度を上昇させるものであった。また、ランキンサイクル31と冷凍サイクル51と統合し、各サイクルで凝縮器38を共用するものであった。一方、第5実施形態のシステムは、図29に示したようにエンジン出口の冷却水だけを導いてランキンサイクル31の冷媒の温度を上昇させる熱交換器91を設けている。また、ランキンサイクル31と冷凍サイクル51とを統合せず、冷凍サイクル51にも専用の凝縮器92を備えている。
このように構成した第5実施形態のシステムにおいても、第1実施形態で生じた問題が生じる。すなわち、ランキンサイクル非運転域かつクラッチ固着時に凝縮器38の放熱によりラジエータ11の放熱が阻害される。これによって、ランキンサイクル非運転域かつクラッチ非固着時との差の放熱量の分だけエンジン冷却水温度が上昇し、エンジン2にオーバーヒートが発生する恐れがある。つまり、第1実施形態と同じ問題が生じる。
従って、図29に示した第5実施形態のシステムに対しても、第1実施形態の図14A、図14B、図21のフローをそのまま適用することができ、第1実施形態と同様の作用効果を奏する。また、図29に示した第5実施形態のシステムに、第2実施形態の図23のフロー、第3実施形態の図24のフロー、第4実施形態の図26のフローをそのまま適用することができ、第2、第3、第4の各実施形態と同様の作用効果を奏する。
(第6実施形態)
図30は第5実施形態のランキンサイクルのシステム全体を表した概略構成図で、第1実施形態の図1と置き換わるものである。第1実施形態の図1、第5実施形態の図29と同一部分には同一の符号を付している。
図1、図29のシステムではランキンサイクル31の凝縮器38が空冷式であった。一方、第6実施形態のシステムは、ランキンサイクル21に用いる空冷凝縮器38を水冷に変更し、水冷凝縮器101(液冷凝縮器)を含む冷却水回路102を、上記のエンジン冷却水回路とは独立に構成するものである。この冷却水回路102を上記のエンジン冷却水回路と区別するため、「第2冷却水回路」という。
具体的に説明すると、第2冷却水回路102は、水冷凝縮器101、サブラジエータ103(第2凝縮器)、冷却水ポンプ104を備え、各構成要素を冷却水が循環する冷却水通路106、107により接続する。
サブラジエータ103はラジエータ11と並列に配置し、ラジエータファン12によってサブラジエータ103内の冷却水を冷却する。サブラジエータ103により冷却された冷却水を、冷却水ポンプ104によって水冷凝縮器101に供給する。冷却水ポンプ104は、サブラジエータ103と水冷凝縮器101を接続する冷却水通路106に介装する。冷却水ポンプ104は、エンジンコントローラ71からの指令を受けるモータ105によって駆動する。
上記の水冷凝縮器101は、膨張機37からの冷媒と冷却水との間で熱交換を行わせ、ランキンサイクル31の冷媒を冷却し液化する熱交換器である。水冷凝縮器101により温度上昇した冷却水は、水冷凝縮器101とサブラジエータ103を接続する冷却水通路107を介してサブラジエータ103に戻し、サブラジエータ103で冷却する。サブラジエータ103で冷却した冷却水を冷却水ポンプ104によって吐出し、冷却水通路106、107を再び循環させる。なお、第6実施形態のシステムでも、第5実施形態のシステムに示した冷凍サイクル51を備えているのであるが、図30には省略して示していない。
このように構成した第6実施形態のシステムにおいても、第1実施形態で生じた問題が生じる。すなわち、ランキンサイクル非運転域かつクラッチ固着時に水冷凝縮器101で冷媒が放熱し、この冷媒の放熱を受けて水冷凝縮器101を流れる冷却水の温度が上昇する。この温度上昇した冷却水はサブラジエータ103に流れ、ここで大気に放熱する。サブラジエータ101はラジエータ11の前面に設けられているため、ランキンサイクル非運転域かつクラッチ固着時にサブラジエータ103の放熱によりラジエータ11の放熱が阻害される。このように、第6実施形態のシステムにおいても、ランキンサイクル非運転域かつクラッチ非固着時との差の放熱量の分だけエンジン冷却水温度が上昇し、エンジン2にオーバーヒートが発生する恐れがある。つまり、第1実施形態と同じ問題が生じる。
従って、図30に示した第6実施形態のシステムに対しても、第1実施形態の図14A、図14B、図21のフローをそのまま適用することができ、第1実施形態と同様の作用効果を奏する。また、図30に示した第6実施形態のシステムに、第2実施形態の図23のフロー、第3実施形態の図24のフロー、第4実施形態の図26のフローを適用することができ、第2、第3、第4の各実施形態と同様の作用効果を奏する。
第6実施態のシステムでは第2冷却水回路102を流れる液体が冷却水である場合で説明したが、これに限られるものでない。冷却水と同等の冷却用の液体であればよい。
実施形態では、冷媒ポンプ32の軸が同一の軸上で膨張機37の出力軸と連結配置されている場合で説明したが、冷媒ポンプと膨張機とが連結されることなく別体で配置されている場合にも本発明の適用がある。
実施形態では、ハイブリッド車両の場合で説明したが、これに限られるものでない。エンジン2のみを搭載した車両にも本発明の適用がある。エンジン2は、ガソリンエンジン、ディーゼルエンジンのいずれでもかまわない。
1 ハイブリッド車両
2 エンジン
31 ランキンサイクル
32 冷媒ポンプ
35 膨張機クラッチ
36 熱交換器
37 膨張機
38 凝縮器
51 冷凍サイクル
52 コンプレッサ
54 コンプレッサクラッチ
71 エンジンコントローラ(運転領域制限手段、エンジン最高出力制限手段、最高車速制限手段)
91 熱交換器
92 凝縮器
101 水冷凝縮器(液冷凝縮器)
103 サブラジエータ(第2熱交換器)

Claims (6)

  1. エンジンの冷却水を冷却するラジエータと、
    前記エンジンの廃熱を冷媒に回収する熱交換器、この熱交換器出口の冷媒を用いて動力を発生させる膨張機、この膨張機を出た冷媒を凝縮させる凝縮器、この凝縮器からの冷媒を前記熱交換器に供給する冷媒ポンプを含むランキンサイクルと、
    前記膨張機と前記エンジンとの間の回転力の伝導を断接するクラッチと
    を備え、
    空気流れの上流側から前記凝縮器、前記ラジエータの順に配置すると共に、
    前記ランキンサイクルの非運転域で前記エンジンと前記膨張機とが常時接続状態となるクラッチ固着が生じたときに前記クラッチ固着が生じないときより前記エンジンの運転領域を制限する運転領域制限手段、前記ランキンサイクルの非運転域で前記クラッチ固着が生じたときに前記クラッチ固着が生じないときより前記エンジンの最高出力を制限するエンジン最高出力制限手段、前記ランキンサイクルの非運転域で前記クラッチ固着が生じたときに前記クラッチ固着が生じないときより前記エンジンの搭載される車両の最高車速を制限する最高車速制限手段のいずれかを設けることを特徴とするエンジンの廃熱利用装置。
  2. 前記運転領域制限手段は前記凝縮器の放熱により前記ラジエータの放熱が阻害される放熱性能分をエンジン出力に換算した分だけ前記エンジンの運転領域を狭くするか、
    前記エンジン最高出力制限手段は前記凝縮器の放熱により前記ラジエータの放熱が阻害される放熱性能分をエンジン出力に換算した分だけ前記エンジンの最高出力を減少させるか、
    前記最高車速制限手段は前記凝縮器の放熱により前記ラジエータの放熱が阻害される放熱性能分をエンジン出力に換算した分だけ前記最高車速を低下させる
    ことを特徴とする請求項1に記載のエンジンの廃熱利用装置。
  3. 前記運転領域制限手段は外気温が高いほど前記エンジンの運転領域を狭くするか、
    前記最高車速制限手段は外気温が高いほど前記最高車速を低下させる
    ことを特徴とする請求項1または2に記載のエンジンの廃熱利用装置。
  4. 前記運転領域制限手段は前記エンジンにエアコン負荷が作用する場合に前記エンジンにエアコン負荷が作用しない場合よりも前記エンジンの運転領域を狭くするか、
    前記エンジン最高出力制限手段は前記エンジンにエアコン負荷が作用する場合に前記エンジンにエアコン負荷が作用しない場合よりも前記エンジンの最高出力を減少させるか、
    前記最高車速制限手段は前記エンジンにエアコン負荷が作用する場合に前記エンジンにエアコン負荷が作用しない場合よりも前記最高車速を低下させる
    ことを特徴とする請求項1から3までのいずれか一つに記載のエンジンの廃熱利用装置。
  5. 前記エンジンによりエアコンを動作させている場合に前記エアコンの動作を制限することを特徴とする請求項1から3までのいずれか一つに記載のエンジンの廃熱利用装置。
  6. 前記凝縮器は前記膨張機を出た冷媒を冷却液との熱交換によって凝縮させる液冷凝縮器であり、
    前記液冷凝縮器と、前記冷却液を冷却する第2熱交換機と、前記第2熱交換機を出た冷却液を吐出するポンプとを冷却液が循環する冷却液通路で接続することを特徴とする請求項1に記載のエンジンの廃熱利用装置。
JP2012285565A 2012-12-27 2012-12-27 エンジンの廃熱利用装置 Pending JP2015232272A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012285565A JP2015232272A (ja) 2012-12-27 2012-12-27 エンジンの廃熱利用装置
PCT/JP2013/083842 WO2014103820A1 (ja) 2012-12-27 2013-12-18 エンジンの廃熱利用装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012285565A JP2015232272A (ja) 2012-12-27 2012-12-27 エンジンの廃熱利用装置

Publications (1)

Publication Number Publication Date
JP2015232272A true JP2015232272A (ja) 2015-12-24

Family

ID=51020907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012285565A Pending JP2015232272A (ja) 2012-12-27 2012-12-27 エンジンの廃熱利用装置

Country Status (2)

Country Link
JP (1) JP2015232272A (ja)
WO (1) WO2014103820A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194476A (ja) * 2018-05-04 2019-11-07 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles ランキンサイクルの閉ループを含む2つのサーモスタットを備えたエンジン冷却システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024769A1 (fr) * 2014-08-08 2016-02-12 Valeo Systemes Thermiques Circuit thermodynamique, notamment pour vehicule automobile
DE102016209276A1 (de) * 2016-05-30 2017-11-30 Robert Bosch Gmbh Abwärmerückgewinnungssystem mit einem Arbeitsfluidkreislauf

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7036315B2 (en) * 2003-12-19 2006-05-02 United Technologies Corporation Apparatus and method for detecting low charge of working fluid in a waste heat recovery system
JP2011214480A (ja) * 2010-03-31 2011-10-27 Sanden Corp 内燃機関の廃熱利用装置
JP5201227B2 (ja) * 2011-02-17 2013-06-05 トヨタ自動車株式会社 ランキンサイクルシステムの異常検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194476A (ja) * 2018-05-04 2019-11-07 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles ランキンサイクルの閉ループを含む2つのサーモスタットを備えたエンジン冷却システム

Also Published As

Publication number Publication date
WO2014103820A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5716837B2 (ja) エンジン廃熱利用装置
JP5804879B2 (ja) 廃熱利用装置
US7310961B2 (en) Heat exchange apparatus and hybrid vehicle including heat exchange apparatus
KR101046550B1 (ko) 하이브리드 시스템 제어 장치 및 하이브리드 시스템 제어 방법
JP5761358B2 (ja) ランキンサイクル
JP5740273B2 (ja) ランキンサイクル
JP6344020B2 (ja) 車両
JP5707500B2 (ja) エンジン廃熱利用装置
JPWO2013046885A1 (ja) ランキンサイクル
JP2013076373A (ja) ランキンサイクルシステム
JP5857899B2 (ja) 車載内燃機関の冷却システム
JP5894756B2 (ja) ランキンサイクルシステム
JP2013076374A (ja) ランキンサイクル及びランキンサイクルに用いる熱交換器
WO2017135307A1 (ja) 車両の空調装置
JP2015232272A (ja) エンジンの廃熱利用装置
US10913327B2 (en) Air conditioner for vehicle
JP6387245B2 (ja) エンジンの廃熱利用装置
JP2014238007A (ja) ランキンサイクルシステム
WO2013046925A1 (ja) エンジンの廃熱利用装置
JP2013076372A (ja) 廃熱利用装置
JP7243863B2 (ja) 車両用冷却装置
US10150349B2 (en) Vehicle traveling control method and vehicle traveling control device
JP2013076514A (ja) エンジンの廃熱利用装置
JP7040352B2 (ja) 車両駆動システムの冷却装置
JP2013024070A (ja) 内燃機関の排気再循環装置