JP2015229724A - Broad band luminescent material - Google Patents

Broad band luminescent material Download PDF

Info

Publication number
JP2015229724A
JP2015229724A JP2014116371A JP2014116371A JP2015229724A JP 2015229724 A JP2015229724 A JP 2015229724A JP 2014116371 A JP2014116371 A JP 2014116371A JP 2014116371 A JP2014116371 A JP 2014116371A JP 2015229724 A JP2015229724 A JP 2015229724A
Authority
JP
Japan
Prior art keywords
mol
group
fluoride
raw material
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014116371A
Other languages
Japanese (ja)
Inventor
英之 岡本
Hideyuki Okamoto
英之 岡本
康平 関
Kohei Seki
康平 関
健 春日
Takeshi Kasuga
健 春日
伸 近江
Shin Omi
伸 近江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2014116371A priority Critical patent/JP2015229724A/en
Publication of JP2015229724A publication Critical patent/JP2015229724A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a luminescent material usable for a white light source exhibiting high color rendering property.SOLUTION: There is provided a broad band luminescent material containing ytterbium ion as a bivalent rare earth ion as a luminescent center in a fluorinated glass containing AlFof 20 to 45 mol%, alkali earth fluorinated product of 20 to 63 mol% and fluorine of at least one kind element selected from Y, La, Gd and Lu of 3 to 25 mol%, the fluorinated glass contains 1 to 15 mol% of a halogenated compound consisting of at least one kind selected from a group consisting of Al, Ba, Sr, Ca and Mg and at least one kind selected from a group consisting of Cl, Br and I and 0.1 to 20 mol% of at least one kind of oxide selected from a group consisting of Al, Ba, Sr, Ca, Mg and Y is contained.

Description

本発明は、広帯域で発光可能な広帯域発光材料に関するものである。   The present invention relates to a broadband light emitting material capable of emitting light in a wide band.

近年、照明光源である白熱球は白色LEDに置き換わりつつあり、省電力かつ高演色性な白色LEDが求められている。現在、白色LEDの多くは、YAG−Ce黄色蛍光体と青色GaN系LEDを組み合わせた疑似白色によって構成されている。   In recent years, incandescent bulbs, which are illumination light sources, are being replaced by white LEDs, and there is a demand for power-saving and high color rendering white LEDs. Currently, most of the white LEDs are composed of pseudo white that combines a YAG-Ce yellow phosphor and a blue GaN-based LED.

この従来の青色LEDとYAG−Ceの組み合わせでは、シアン色(〜500nm)、赤色(600nm以上)の成分が少ないため、複数の蛍光体を添加することによって、不足する波長成分を補っている。例えば、特許文献1では、YAG−Ce蛍光体に赤色に発光するEu錯体を添加することで高演色な白色光源を実現している。   In the combination of this conventional blue LED and YAG-Ce, since there are few components of cyan (-500 nm) and red (600 nm or more), the lack of wavelength components is compensated by adding a plurality of phosphors. For example, in Patent Document 1, a high color rendering white light source is realized by adding an Eu complex that emits red light to a YAG-Ce phosphor.

一方で、このように複数の蛍光体を混合して高演色な白色光源を作製する場合、特許文献2で指摘されているように、個々の白色発光体の色バラツキが大きくなってしまう問題があった。また、複数の蛍光体を混合して白色発光体を構成したとしても、各色蛍光体の中心発光波長の中間波長においては、発光強度は著しく低いため、高い演色性を示す白色発光体を実現することが困難であった。また、前述した従来の青色LEDとYAG−Ceの組み合わせは、励起波長(約450nm)と蛍光波長(中心波長約550nm、GdとYの添加量により波長シフトする)の差が少ないため、ストークスシフト量が小さく、発光効率が良いという利点があるが、青色の励起光の一部を照明光として使用するため、青色光が通過する蛍光体層の厚みの違いによって、照明光の色味が変化するという問題がある(特許文献3)。ゆえに、青色LED上に実装された黄色蛍光体部において、素子中央部と周辺部で色合いが異なってしまうことが示唆されている。   On the other hand, when a high color rendering white light source is produced by mixing a plurality of phosphors in this manner, as pointed out in Patent Document 2, there is a problem that the color variation of individual white light emitters becomes large. there were. Even when a plurality of phosphors are mixed to form a white light emitter, the light emission intensity is remarkably low at the intermediate wavelength of the central light emission wavelength of each color phosphor, so that a white light emitter exhibiting high color rendering is realized. It was difficult. In addition, since the combination of the conventional blue LED and YAG-Ce described above has a small difference between the excitation wavelength (about 450 nm) and the fluorescence wavelength (center wavelength is about 550 nm, the wavelength shifts depending on the amount of Gd and Y added), the Stokes shift There is an advantage that the amount is small and luminous efficiency is good, but because the part of blue excitation light is used as illumination light, the color of the illumination light changes depending on the thickness of the phosphor layer through which the blue light passes (Patent Document 3). Therefore, it has been suggested that in the yellow phosphor portion mounted on the blue LED, the hue is different between the central portion and the peripheral portion of the element.

単一で白色発光する材料として、2価のイッテルビウムイオン(以下Yb2+)を含むフッ化物ガラス(特許文献4)や、青色の蛍光が得られる2価のユーロピウムイオン(以下Eu2+)およびP(リン)を含むフツリン酸塩ガラスが知られている(特許文献5、非特許文献1)。 As a single material that emits white light, fluoride glass (Patent Document 4) containing divalent ytterbium ions (hereinafter Yb 2+ ), divalent europium ions (hereinafter Eu 2+ ) and P ( A fluorophosphate glass containing phosphorus is known (Patent Document 5, Non-Patent Document 1).

特許文献4では、AlFを20〜45モル%、アルカリ土類フッ化物としてMgFを0〜15モル%、CaFを7〜25モル%、SrFを0〜15モル%、及びBaFを5〜25モル%の範囲で且つアルカリ土類フッ化物を合計で40〜65モル%含有し、さらに、Y、La、Gd、及びLuから選ばれる一種以上の元素のフッ化物を10〜25モル%含有するハロゲン化物ガラスに、発光中心となるYb2+を含有することを特徴とする、白色光発光材料が提案されている。 In Patent Document 4, the AlF 3 20 to 45 mol%, the MgF 2 0 to 15 mol% as the alkaline earth fluorides, the CaF 2 7 to 25 mol%, the SrF 2 0 to 15 mol%, and BaF 2 In the range of 5 to 25 mol% and a total of 40 to 65 mol% of the alkaline earth fluoride, and further 10 to 25 fluorides of one or more elements selected from Y, La, Gd, and Lu are contained. There has been proposed a white light emitting material characterized in that a halide glass containing mol% contains Yb 2+ as an emission center.

特願2001−135116号公報Japanese Patent Application No. 2001-135116 特開2007−335495号公報JP 2007-335495 A 特開2008−88257号公報JP 2008-88257 A 特開2008−201610号公報JP 2008-201610 A 特許第3961585号公報Japanese Patent No. 3951585 特許第3700502号公報Japanese Patent No. 3700502

沢登成人、蛍光ガラスの開発、マテリアルインテグレーションVol.17 No.3(2004)Sawato adult, development of fluorescent glass, material integration Vol.17 No.3 (2004) M.Poulain et al., Chemtronics. Vol.3, no.2, pp.77-85.1988M.Poulain et al., Chemtronics.Vol.3, no.2, pp.77-85.1988 J.W.M. Verwey et al., Journal of Physics and Chemistry of Solids, Volume 53, Issue 9, September 1992, Pages 1157-1162J.W.M.Verwey et al., Journal of Physics and Chemistry of Solids, Volume 53, Issue 9, September 1992, Pages 1157-1162 Lihong Liu et al., “Photoliminescence properties of β-SiAlON:Si2+, A novel green-emitting phosphre for white-emitting diodes”, Sci. Technol. Adv. Mater., 12, 034404(2011)Lihong Liu et al., “Photoliminescence properties of β-SiAlON: Si2 +, A novel green-emitting phosphre for white-emitting diodes”, Sci. Technol. Adv. Mater., 12, 034404 (2011) M. Poulain and C. Maze, “Chemistry of fluoride glasses,” Chemitronics 3, 77-85 (1988)M. Poulain and C. Maze, “Chemistry of fluoride glasses,” Chemitronics 3, 77-85 (1988)

前述したように、現在の青色LEDとYAG−Ce蛍光体の組み合わせでは、シアン色と赤色の成分が不足しており、その不足した色味成分を補うために複数の蛍光体を添加すると、各色蛍光体の中心発光波長の中間波長における発光強度が低いため、高い演色性な白色光発光材料を実現することが困難であった。   As described above, in the combination of the current blue LED and YAG-Ce phosphor, cyan and red components are insufficient, and when a plurality of phosphors are added to compensate for the insufficient color component, each color is added. Since the emission intensity at the intermediate wavelength of the central emission wavelength of the phosphor is low, it has been difficult to realize a white light emitting material having high color rendering properties.

フッ化物ガラス中においてYb2+による白色発光を得るには、還元雰囲気下等の条件でガラスを溶融することによって得られるが(非特許文献2、非特許文献3)、ガラス化が困難な組成であるために、金属の型に流し出すなどして、融液を急冷してガラスを作製する必要があったり、ガラスが灰色に着色したりするなどの問題があった。すなわち、フッ化物ガラス中での希土類元素の還元を行う場合、選択できる組成に制約があり、フッ化物ガラス中におけるYb2+イオンの白色発光効率を高めることは難しかった。 In order to obtain white light emission by Yb 2+ in fluoride glass, it can be obtained by melting the glass under conditions such as a reducing atmosphere (Non-patent Documents 2 and 3), but with a composition that is difficult to vitrify. For this reason, there has been a problem that it is necessary to prepare a glass by quenching the melt by pouring out into a metal mold, or the glass is colored gray. That is, when the rare earth element is reduced in the fluoride glass, the composition that can be selected is limited, and it is difficult to increase the white luminous efficiency of Yb 2+ ions in the fluoride glass.

特許文献5では、Eu2+と、テルビウムと、サマリウム又はマンガンなどを含むフツリン酸塩ガラスが白色蛍光を示す記載があるが、これはEu2+による青色発光とテルビウムによる緑色発光と、サマリウムやマンガンの赤色蛍光を混合することによって擬似的に白色を得るものであり、太陽光スペクトルのように連続的なスペクトルが得られていないため、この方式による白色照明で物体を照射すると、太陽光下で見た場合と異なる色に見える場合があった。 In Patent Document 5, there is a description that a fluorophosphate glass containing Eu 2+ , terbium, samarium, manganese, or the like exhibits white fluorescence, but this includes blue emission by Eu 2+, green emission by terbium, and samarium and manganese. By mixing red fluorescent light, a pseudo white color is obtained, and a continuous spectrum such as the sunlight spectrum cannot be obtained. Sometimes it looked a different color.

従って、本発明では高い演色性を示す白色光源に利用可能な発光材料を得ることを目的とした。   Accordingly, an object of the present invention is to obtain a light emitting material that can be used for a white light source exhibiting high color rendering properties.

フッ化物ガラスや塩化物ガラスなどのハロゲン化物ガラスは、紫外〜可視領域だけでなく、赤外領域まで広がる広帯域な透過窓を有しているため、光通信用のファイバとして長年開発されてきた。フッ化物ガラス原料に含まれる残留酸化物はフッ化物ファイバの品質を低下させるため、酸性フッ化アンモニウム(NHFHF)等を混合することによって残留酸化物はフッ素化されている(非特許文献5)。すなわち、フッ化物ガラスを作製する上では、可能な限り酸化物を除去することが常識となっている。 Halide glasses such as fluoride glass and chloride glass have been developed for many years as optical communication fibers because they have a wide-band transmission window that extends not only in the ultraviolet to visible region but also in the infrared region. Since the residual oxide contained in the fluoride glass raw material deteriorates the quality of the fluoride fiber, the residual oxide is fluorinated by mixing acidic ammonium fluoride (NH 4 FHF) or the like (Non-patent Document 5). ). That is, in producing fluoride glass, it is common knowledge to remove oxides as much as possible.

しかし、本発明者らが鋭意検討を重ねた結果、特定のフッ化物ガラス中に、フッ化物以外のハロゲン化物を含有させることによって、広帯域に亘ってYb2+の発光強度を向上させることが可能であることを見出し、さらには、特定の酸化物のカチオンを適正に加えることにより、白色発光強度を損なうことなく励起波長帯を長波長へシフトさせる事が可能であることを見出した。 However, as a result of intensive studies by the present inventors, it is possible to improve the emission intensity of Yb 2+ over a wide band by including a halide other than fluoride in a specific fluoride glass. It has been found that the excitation wavelength band can be shifted to a long wavelength without impairing the white light emission intensity by appropriately adding a cation of a specific oxide.

すなわち本発明は、AlFを20〜45モル%、アルカリ土類フッ化物を20〜63モル%、Y、La、Gd及びLuからなる群から選ばれる少なくとも1種の元素のフッ化物を3〜25モル%を含有するフッ化物ガラスに、発光中心となる2価希土類イオンとしてイッテルビウムイオンを含有する発光材料において、該フッ化物ガラスが、Al、Ba、Sr、Ca、及びMgからなる群から選ばれる少なくとも1種とCl、Br、及びIからなる群から選ばれる少なくとも1種とからなるハロゲン化物を1〜15モル%含有し、Al、Ba、Sr、Ca、Mg、及びYからなる群から選ばれる少なくとも1種の酸化物を0.1〜20モル%含むことを特徴とする広帯域発光材料である。 That is, the present invention provides AlF 3 at 20 to 45 mol%, alkaline earth fluoride at 20 to 63 mol%, and fluoride of at least one element selected from the group consisting of Y, La, Gd and Lu. In a luminescent material containing ytterbium ion as a divalent rare earth ion serving as a luminescent center in a fluoride glass containing 25 mol%, the fluoride glass is selected from the group consisting of Al, Ba, Sr, Ca, and Mg. 1 to 15 mol% of a halide comprising at least one selected from the group consisting of Cl, Br, and I, and from the group consisting of Al, Ba, Sr, Ca, Mg, and Y A broadband light-emitting material containing 0.1 to 20 mol% of at least one selected oxide.

前記の2価希土類イオンとしてのイッテルビウムイオンは、原料としてYbFやYbClなどYb化合物を添加し、還元雰囲気下でガラスを溶融することによってYb2+イオンを得ることができる。この時、Yb2+に還元されなかったYb化合物は、ガラス組成中に残留する。 As the ytterbium ions as the divalent rare earth ions, Yb 2+ ions can be obtained by adding a Yb compound such as YbF 3 or YbCl 3 as a raw material and melting the glass in a reducing atmosphere. At this time, the Yb compound that has not been reduced to Yb 2+ remains in the glass composition.

また、本発明における「広帯域」とは視認可能な光に関係する波長380〜700nm程度の範囲を指すものとする。   In addition, “broadband” in the present invention refers to a wavelength range of about 380 to 700 nm related to visible light.

また、本発明のフッ化物ガラスは、ガラス化前の原料中に酸素が混合した原料混合物を用いても、上記のイッテルビウムイオンを含有する発光材料が失活しないことがわかった。   In addition, it was found that the light emitting material containing the ytterbium ion does not deactivate the fluoride glass of the present invention even when a raw material mixture in which oxygen is mixed in the raw material before vitrification is used.

すなわち本願発明は、AlFを20〜45モル%、アルカリ土類フッ化物を20〜63モル%、Y、La、Gd及びLuからなる群から選ばれる少なくとも1種の元素のフッ化物を3〜25モル%、Al、Ba、Sr、Ca、及びMgからなる群から選ばれる少なくとも1種とCl、Br、及びIからなる群から選ばれる少なくとも1種とからなるハロゲン化物1〜15モル%、Al、Ba、Sr、Ca、Mg、及びYからなる群から選ばれる少なくとも1種の酸化物を0〜20モル%含むフッ化物ガラスの原料と、イッテルビウムイオンを含有する原料とを混合して、原料混合物を得る工程、該原料混合物を還元雰囲気において溶融する工程、溶融した後、溶融物を冷却する工程、を有する広帯域発光材料の製造方法であって、該原料混合物を得る工程を酸素を含む条件下で行うことを特徴とする広帯域発光材料の製造方法である。 That is, the present invention relates to a fluoride of at least one element selected from the group consisting of 20 to 45 mol% AlF 3 , 20 to 63 mol% alkaline earth fluoride, Y, La, Gd and Lu. 25 mol%, halide 1-15 mol% consisting of at least one selected from the group consisting of Al, Ba, Sr, Ca and Mg and at least one selected from the group consisting of Cl, Br, and I, Mixing a raw material of fluoride glass containing 0 to 20 mol% of at least one oxide selected from the group consisting of Al, Ba, Sr, Ca, Mg, and Y, and a raw material containing ytterbium ions, A method for producing a broadband light-emitting material, comprising: a step of obtaining a raw material mixture; a step of melting the raw material mixture in a reducing atmosphere; and a step of cooling the melt after melting. A method for producing a broadband light-emitting material, wherein the step of obtaining a compound is performed under conditions containing oxygen.

上記の原料混合物中には酸素を含み、該酸素は原料由来の酸素でも、雰囲気中に含まれる酸素が混合したものでもよい。前述したように、一般的にフッ化物ガラスを作製する上では可能な限り酸化物を除去する事が要求され、原料混合物中の残留酸素を除去する為に、酸素や酸化物をフッ素化させる為の酸性フッ化アンモニウム等のフッ素化剤を原料の他に加える。本発明の製造方法は該フッ素化剤を加えないものである。   The raw material mixture contains oxygen, and the oxygen may be oxygen derived from the raw material or a mixture of oxygen contained in the atmosphere. As described above, it is generally required to remove oxide as much as possible in producing fluoride glass. In order to remove residual oxygen in the raw material mixture, oxygen and oxide are fluorinated. In addition to the raw material, a fluorinating agent such as acidic ammonium fluoride is added. In the production method of the present invention, the fluorinating agent is not added.

本発明により、高い演色性を示す白色光源に利用可能な発光材料を得ることが可能となった。また、励起波長帯が長波長側へシフトする為、励起波長と蛍光波長の差が少なくなるため、発光効率の向上が期待できる。   According to the present invention, it is possible to obtain a light emitting material that can be used for a white light source exhibiting high color rendering properties. In addition, since the excitation wavelength band shifts to the longer wavelength side, the difference between the excitation wavelength and the fluorescence wavelength is reduced, so that improvement in light emission efficiency can be expected.

No.1〜No.3のサンプルについて、波長500nmでモニタしたときの励起スペクトル。No. 1-No. Excitation spectrum for 3 samples monitored at a wavelength of 500 nm. No.1〜No.3のサンプルについて、波長375nmで励起させた発光スペクトル。No. 1-No. An emission spectrum of 3 samples excited at a wavelength of 375 nm.

本発明は、AlFを20〜45モル%、アルカリ土類フッ化物を20〜63モル%、Y、La、Gd及びLuからなる群から選ばれる少なくとも1種の元素のフッ化物を3〜25モル%を含有するフッ化物ガラスに、発光中心となる2価希土類イオンとしてイッテルビウムイオンを含有する発光材料において、該フッ化物ガラスが、Al、Ba、Sr、Ca、及びMgからなる群から選ばれる少なくとも1種とCl、Br、及びIからなる群から選ばれる少なくとも1種とからなるハロゲン化物1〜15モル%含有し、Al、Ba、Sr、Ca、Mg、及びYからなる群から選ばれる少なくとも1種の酸化物を0.1〜20モル%含むことを特徴とする広帯域発光材料である。 The present invention provides 3 to 25 fluorides of at least one element selected from the group consisting of 20 to 45 mol% AlF3, 20 to 63 mol% alkaline earth fluoride, Y, La, Gd and Lu. In a luminescent material containing ytterbium ion as a divalent rare earth ion serving as a luminescent center in a fluoride glass containing mol%, the fluoride glass is selected from the group consisting of Al, Ba, Sr, Ca, and Mg. Contains 1 to 15 mol% of a halide consisting of at least one selected from the group consisting of Cl, Br, and I, and selected from the group consisting of Al, Ba, Sr, Ca, Mg, and Y A broadband light-emitting material containing 0.1 to 20 mol% of at least one oxide.

AlFは本発明のフッ化物ガラスを構成するガラス形成成分であり、組成中に20〜45モル%含有される。AlFが20モル%未満、又は45モル%を超えるとガラス化しにくくなる。また、好ましくは30〜40モル%としてもよい。 AlF 3 is a glass forming component constituting the fluoride glass of the present invention, and is contained in an amount of 20 to 45 mol% in the composition. AlF 3 is less than 20 mole%, or greater than 45 mol% becomes difficult to vitrify. Moreover, it is good also as 30-40 mol% preferably.

アルカリ土類フッ化物は前述したAlFと同様、本発明のフッ化物ガラスを構成するガラス形成成分であり、組成中に20〜63モル%含有される。該アルカリ土類フッ化物が20モル%未満、又は63モル%を超えるとガラスが結晶化し易くなることがある。また、好ましくは30〜48モル%としてもよい。 Alkaline earth fluoride is a glass forming component constituting the fluoride glass of the present invention, similar to AlF 3 described above, and is contained in an amount of 20 to 63 mol% in the composition. If the alkaline earth fluoride is less than 20 mol% or exceeds 63 mol%, the glass may be easily crystallized. Moreover, it is good also as 30-48 mol% preferably.

また、前述したアルカリ土類フッ化物の含有量は、MgFを0〜15モル%、CaFを7〜25モル%、SrFを0〜22モル%、及びBaFを0〜5モル%とするのが好ましい。上記のようなアルカリ土類フッ化物の各成分のバランスによって、発光時の色調が変化する。好ましくはMgFは5〜12モル%、CaFは10〜20モル%、SrFは5〜14モル%、及びBaFは0〜5モル%としてもよい。 The content of alkaline earth fluorides described above, the MgF 2 0 to 15 mol%, the CaF 2 7 to 25 mol%, the SrF 2 0 to 22 mol%, and BaF 2 0-5 mol% Is preferable. The color tone at the time of light emission changes depending on the balance of each component of the alkaline earth fluoride as described above. Preferably MgF 2 is 5 to 12 mol%, CaF 2 is 10 to 20 mol%, SrF 2 is 5 to 14 mol%, and BaF 2 may be 0 to 5 mol%.

Y、La、Gd、及びLuからなる群から選ばれる少なくとも1種の元素のフッ化物は本発明のフッ化物ガラスを構成するガラス形成成分であり、組成中に3〜25モル%を含有される。本発明のようなフッ化物ガラスは潜在的にガラス化が困難な組成であるため、融液を急冷する等の操作を行うが、該フッ化物が3モル%未満、又は25モル%を超えると、前述した操作の過程で好適なガラスが得られないことがある。また、好ましくは10〜20モル%としてもよい。   Fluoride of at least one element selected from the group consisting of Y, La, Gd, and Lu is a glass forming component constituting the fluoride glass of the present invention, and contains 3 to 25 mol% in the composition. . Since the fluoride glass like the present invention has a composition that is potentially difficult to vitrify, an operation such as quenching the melt is performed, but when the fluoride is less than 3 mol% or more than 25 mol% In some cases, a suitable glass cannot be obtained in the process of operation described above. Moreover, it is good also as 10-20 mol% preferably.

Al、Ba、Sr、Ca、及びMgからなる群から選ばれる少なくとも1種とCl、Br、及びIからなる群から選ばれる少なくとも1種とからなるハロゲン化物は1〜15モル%含有される。含有量が1モル%未満では発光強度が顕著に増加されず、また、15モル%を超えると結晶化し易くなる。また、好ましくは1〜12モル%含有するのがよい。特に、融点が極端に低くなく、かつフッ化物ガラスの溶融温度である800〜1200℃でも溶融可能なSrCl、CaCl、及びMgClを用いることにより、さらに結晶化し難くなり、蛍光の発光強度が増加するため好適である。 1-15 mol% of halides comprising at least one selected from the group consisting of Al, Ba, Sr, Ca, and Mg and at least one selected from the group consisting of Cl, Br, and I are contained. If the content is less than 1 mol%, the emission intensity is not significantly increased, and if it exceeds 15 mol%, crystallization is likely to occur. Moreover, it is preferable to contain 1-12 mol% preferably. In particular, by using SrCl 2 , CaCl 2 , and MgCl 2 that are not extremely low in melting point and can be melted even at a melting temperature of fluoride glass of 800 to 1200 ° C., it becomes difficult to crystallize, and fluorescence emission intensity Is preferable because of an increase.

Al、Ba、Sr、Ca、Mg、及びYからなる群から選ばれる少なくとも1種の酸化物は0.1〜20モル%の割合で含有される。20モル%を超えると、白色発光強度が低下しさらに結晶化が生じ易くなる。また、5モル%以上とすると、励起波長が長波長側へシフトする効果が顕著になるため好ましい。また、SrO及びMgOは高濃度に含有させてもガラスが結晶化し難いため好適に用いる事が可能である。   At least one oxide selected from the group consisting of Al, Ba, Sr, Ca, Mg, and Y is contained in a proportion of 0.1 to 20 mol%. When it exceeds 20 mol%, the white light emission intensity decreases and crystallization is likely to occur. Moreover, it is preferable to set it as 5 mol% or more because the effect of shifting the excitation wavelength to the long wavelength side becomes remarkable. Further, SrO and MgO can be preferably used because they are difficult to crystallize even if they are contained in a high concentration.

本発明は波長が190nm以上450nm以下の励起光で励起することによって蛍光を発する発光材料である。励起波長として190nm未満では、空気中を伝搬できないだけでなく、母材であるフッ化物ガラスの短波長側吸収端に近づくため、該母材が損傷を受けやすくなる。一方、450nmを超えると、Yb2+イオンの吸収係数が極端に低下するため効率の良い励起は困難になる。また、本発明は酸化物を含有させる事により、励起波長帯が長波長側へシフトした。励起波長帯が長波長側へシフトすると、励起波長と蛍光体の発光波長との差が小さくなるため、発光効率の向上が期待される。また、より波長の長い汎用励起光源、例えばブルーレイ機器の記録で使用される405nm帯光源等での励起も期待出来る。 The present invention is a light-emitting material that emits fluorescence when excited with excitation light having a wavelength of 190 nm to 450 nm. When the excitation wavelength is less than 190 nm, not only cannot the light propagate in the air, but it also approaches the short wavelength side absorption edge of the fluoride glass as the base material, so that the base material is easily damaged. On the other hand, if it exceeds 450 nm, the absorption coefficient of Yb 2+ ions is extremely reduced, so that efficient excitation becomes difficult. In the present invention, the excitation wavelength band was shifted to the long wavelength side by containing an oxide. When the excitation wavelength band is shifted to the longer wavelength side, the difference between the excitation wavelength and the emission wavelength of the phosphor is reduced, so that the emission efficiency is expected to be improved. Further, excitation with a general-purpose excitation light source having a longer wavelength, for example, a 405 nm band light source used for recording in a Blu-ray device can be expected.

上記のイッテルビウムイオンは、原料としてYbFやYbClなどのYb化合物を添加し、還元雰囲気下でガラスを溶融することによって得ることができる。この時、原料としてのYb化合物の添加量は、好ましい量を適宜選択すれば良いが、例えば本発明の場合は0.01〜1.0モル%含有させることにより、還元後に前述したYb2+の濃度とすることが可能である。また、Yb化合物の還元を促進するために、Alなどの金属を0.1モル%以下添加してもよい。 The ytterbium ion can be obtained by adding a Yb compound such as YbF 3 or YbCl 3 as a raw material and melting the glass in a reducing atmosphere. At this time, the preferred amount of the Yb compound added as a raw material may be appropriately selected. However, in the case of the present invention, for example, 0.01 to 1.0 mol% of the above-described Yb 2+ is added after the reduction. It can be a concentration. Moreover, in order to promote the reduction | restoration of a Yb compound, you may add metals, such as Al, 0.1 mol% or less.

また、本発明の好適な実施形態のひとつは、前述した広帯域発光材料を一般的な蛍光体と同様、封止材料を用いて封止した広帯域発光材料(例えば特許文献6)。すなわち、本発明は前記広帯域発光材料が封止材料に分散されてなるのが好ましい。   In addition, one preferred embodiment of the present invention is a broadband light-emitting material in which the above-described broadband light-emitting material is sealed using a sealing material in the same manner as a general phosphor (for example, Patent Document 6). That is, in the present invention, the broadband light emitting material is preferably dispersed in a sealing material.

上記の封止材料は特に限定するものではないが、ガラス、シリコーン樹脂、エポキシ樹脂、有機無機ハイブリッド組成物、もしくはそれらの混合物等が挙げられる。   Although said sealing material is not specifically limited, Glass, a silicone resin, an epoxy resin, an organic inorganic hybrid composition, or mixtures thereof etc. are mentioned.

また、当該実施形態において、蛍光体として用いる広帯域発光材料は、上記の封止材料中に1〜50質量%となるように混合するのが好ましい。混合する量が1質量%未満だと発光が不足し、50質量%を超えると蛍光体が沈降し、均一な材質が得られないなどの問題が生じやすくなる。   Moreover, in the said embodiment, it is preferable to mix the broadband luminescent material used as fluorescent substance so that it may become 1-50 mass% in said sealing material. When the amount to be mixed is less than 1% by mass, the light emission is insufficient, and when it exceeds 50% by mass, the phosphor is settled, and a problem such as failure to obtain a uniform material tends to occur.

また、当該実施形態において、広帯域発光材料のメジアン径D50は1mm以下となるように粉砕するのが好ましい。また、1mmを超えると該広帯域発光材料が沈降し易くなることがある。また、通常の蛍光体粉末はメジアン径D50の下限値が1μm程度であることから1μm以上としてもよい。各広帯域発光材料を用いた蛍光体を封止した広帯域発光材料は、波長190nm以上、450nm以下のチッ化ガリウム系光源で励起することが可能である。   In this embodiment, it is preferable to grind so that the median diameter D50 of the broadband luminescent material is 1 mm or less. On the other hand, if it exceeds 1 mm, the broadband luminescent material may easily settle. Moreover, since the lower limit of the median diameter D50 is about 1 μm, the normal phosphor powder may be 1 μm or more. A broadband light emitting material in which a phosphor using each broadband light emitting material is sealed can be excited by a gallium nitride light source having a wavelength of 190 nm or more and 450 nm or less.

なお、本明細書でメジアン径d50とは、レーザ回折・散乱法により測定した粒度分布の積算値50%における粒子径の値である。   In this specification, the median diameter d50 is a value of the particle diameter at an integrated value of 50% of the particle size distribution measured by a laser diffraction / scattering method.

また、本願発明は、AlFを20〜45モル%、アルカリ土類フッ化物を20〜63モル%、Y、La、Gd及びLuからなる群から選ばれる少なくとも1種の元素のフッ化物を3〜25モル%、Al、Ba、Sr、Ca、及びMgからなる群から選ばれる少なくとも1種とCl、Br、及びIからなる群から選ばれる少なくとも1種とからなるハロゲン化物1〜15モル%、Al、Ba、Sr、Ca、Mg、及びYからなる群から選ばれる少なくとも1種の酸化物を0〜20モル%含むフッ化物ガラスの原料と、イッテルビウムイオンを含有する原料とを混合して、原料混合物を得る工程、該原料混合物を還元雰囲気において溶融する工程、溶融した後、溶融物を冷却する工程、を有する広帯域発光材料の製造方法であって、該原料混合物を得る工程を酸素を含む条件下で行うことを特徴とする広帯域発光材料の製造方法である。 In the present invention, the fluoride of at least one element selected from the group consisting of 20 to 45 mol% AlF 3 , 20 to 63 mol% alkaline earth fluoride, Y, La, Gd and Lu is 3 1 to 15 mol% of halide consisting of at least one selected from the group consisting of ˜25 mol%, Al, Ba, Sr, Ca and Mg and at least one selected from the group consisting of Cl, Br and I A raw material of fluoride glass containing 0 to 20 mol% of at least one oxide selected from the group consisting of Al, Ba, Sr, Ca, Mg, and Y, and a raw material containing ytterbium ions A process for obtaining a raw material mixture, a step of melting the raw material mixture in a reducing atmosphere, and a step of cooling the melt after melting, a method for producing a broadband light-emitting material, A method for producing a broadband luminescent material, wherein the step of obtaining a product is performed under a condition containing oxygen.

前述したように、本発明を用いれば原料混合物に含まれる酸素や酸化物を除去する事なく広帯域発光材料を得る事が可能である。例えば、上記の原料混合物を得る工程の雰囲気は、大気中又は大気程度の濃度で酸素を含む気体中で行うのが好ましい。   As described above, by using the present invention, it is possible to obtain a broadband light emitting material without removing oxygen and oxide contained in the raw material mixture. For example, the atmosphere in the step of obtaining the raw material mixture is preferably performed in the atmosphere or in a gas containing oxygen at a concentration of the atmosphere.

また、上記の還元雰囲気としては、還元用ガス、又は不活性ガスに還元用ガスを混合した混合ガスを用いるのが好ましい。該還元用ガスとしては、水素、一酸化炭素、アンモニア等のガスが挙げられる。   Further, as the reducing atmosphere, it is preferable to use a reducing gas or a mixed gas obtained by mixing a reducing gas with an inert gas. Examples of the reducing gas include gases such as hydrogen, carbon monoxide, and ammonia.

また、溶融時の温度範囲としては800〜1300℃、前記温度での保持時間は10分〜240分が好ましく、例えば1100℃で60分維持するのが好適である。また、還元雰囲気を高温で処理するため、管状炉の中に坩堝を配置し、ヒーター加熱や高周波による誘導加熱等の手法をとってもよい。特にヒーターを用いて管状炉(例えば石英管を炉心に配置した電気炉)を加熱する場合、1100℃以上にすると石英管が劣化もしくは変形する可能性があるため、ヒーターを用いて管状炉を使用する場合は、加熱温度としては1100℃が望ましい。   Further, the temperature range at the time of melting is preferably 800 to 1300 ° C., and the holding time at the above temperature is preferably 10 to 240 minutes, for example, preferably maintained at 1100 ° C. for 60 minutes. Further, in order to treat the reducing atmosphere at a high temperature, a crucible may be disposed in a tubular furnace, and a method such as heater heating or induction heating by high frequency may be used. Especially when using a heater to heat a tubular furnace (for example, an electric furnace in which a quartz tube is placed in the core), use a tubular furnace with a heater because the quartz tube may deteriorate or deform at 1100 ° C or higher. In this case, the heating temperature is preferably 1100 ° C.

また、冷却工程は、還元雰囲気中で実施されるのが望ましいが、不活性ガス中で行ってもよい。融液の冷却方法としては、坩堝のまま金属板の上に静置して冷却しても良いし、融液を急冷ロールを用いて粉砕したり、ガスアトマイズなどを用いて微粒子化しながら急冷却しても良い。   The cooling step is preferably performed in a reducing atmosphere, but may be performed in an inert gas. As a method for cooling the melt, it may be cooled by leaving it on a metal plate as it is in a crucible, or it may be cooled rapidly by pulverizing the melt using a quenching roll or by atomizing it using gas atomization. May be.

本発明の実施例及び比較例を以下に記載する。   Examples of the present invention and comparative examples are described below.

実施例1
表1に示した化合物を出発原料とし、表1中のNo.1、2に示したモル%となるように調合したガラス原料をグラッシーカーボンるつぼに投入し、原料に含まれる残留酸化物をフッ素化するため酸性フッ化アンモニウムを外配で1wt%加えた後、還元雰囲気(水素ガスを3体積%含有した窒素ガス中)において1000℃で1時間溶融した後、るつぼごと銅ブロック上で冷却しサンプルを得た。尚、原料の調合、溶融、冷却までの全工程を窒素雰囲気下(酸素濃度および水分量はいずれも1ppm以下)で行った。
Example 1
The compounds shown in Table 1 were used as starting materials. After adding the glass raw material prepared so as to be the mol% shown in 1 and 2 to the glassy carbon crucible, and adding 1 wt% of acidic ammonium fluoride externally to fluorinate the residual oxide contained in the raw material, After melting at 1000 ° C. for 1 hour in a reducing atmosphere (in nitrogen gas containing 3% by volume of hydrogen gas), the crucible and the copper block were cooled to obtain a sample. In addition, all the processes from preparation of raw materials, melting, and cooling were performed in a nitrogen atmosphere (both oxygen concentration and water content were 1 ppm or less).

比較例1
表1に示した化合物を出発原料とし、表1中のNo.4〜No.9に示したモル%となるように調合したガラス原料を用いた以外は、実施例1と同様の方法でサンプルを得た。No.3はNo.1に対し、Mgカチオンの含有量が変わらないように、MgOの全量をMgFに変えた。No.4、5はNo.1に対し、Alカチオンの含有量が変わらないように、AlFの一部または全量をAlに変えた。No.6はNo.1に対し、Caカチオンの含有量が変わらないように、CaFの全量をCaOに変えた。No.7はNo.1に対し、Yカチオンの含有量が変わらないように、YFの全量をYに変えた。No.8はフッ化物以外のハロゲン化物を含有せず、酸化物も含有しない組成である。No.9はフッ化物以外のハロゲン化物を含有しない組成である。
Comparative Example 1
The compounds shown in Table 1 were used as starting materials. 4-No. A sample was obtained in the same manner as in Example 1 except that the glass raw material prepared so as to have the mol% shown in 9 was used. No. 3 is No.3. In contrast, the total amount of MgO was changed to MgF 2 so that the content of Mg cations did not change. No. 4 and 5 are No. To 1, as does not change the content of Al cations, changing a part or whole amount of AlF 3 in Al 2 O 3. No. 6 is No.6. In contrast, the total amount of CaF 2 was changed to CaO so that the content of Ca cation did not change. No. 7 is No.7. To 1, as does not change the content of the Y cations, changing the total amount of YF 3 to Y 2 O 3. No. 8 is a composition containing no halide other than fluoride and containing no oxide. No. 9 is a composition containing no halide other than fluoride.

Figure 2015229724
Figure 2015229724

<XRDスペクトルの測定>
得られたサンプルについて、X線回折装置(RIGAKU製Ultima3)を用いてXRDスペクトルを測定したところ、サンプル1〜3、8、9はハローパターンが得られ、結晶化していないことが示された。他のサンプル4〜7はいずれも結晶化が見られ、本発明の目的には適さないものであった。
<Measurement of XRD spectrum>
About the obtained sample, when the XRD spectrum was measured using the X-ray-diffraction apparatus (RIGAKU Ultima3), the halo pattern was obtained for samples 1-3, 8, and 9 and it was shown that it has not crystallized. The other samples 4 to 7 all showed crystallization and were not suitable for the purpose of the present invention.

<発光スペクトル及び励起スペクトルの測定>
得られたサンプルについて、蛍光分光光度計(日本分光製FP6500)を用いて、以下のように励起スペクトル及び発光スペクトルを測定した。尚、サンプル8、9は励起スペクトル及び発光スペクトル共に強度が小さく、発光材料として適さないものであることがわかった。
<Measurement of emission spectrum and excitation spectrum>
About the obtained sample, the excitation spectrum and the emission spectrum were measured as follows using the fluorescence spectrophotometer (the JASCO make FP6500). Samples 8 and 9 were found to have low intensities in both the excitation spectrum and the emission spectrum and were not suitable as a light emitting material.

(励起スペクトルの測定)
No.1〜No.3のサンプルについて、発光波長を500nmとした時の励起スペクトルを測定した。得られた励起スペクトルを図1に示した。図1より、酸化物導入量が増えるに従って、励起スペクトルが長波長側にシフトし、波長400nm以上まで分布するようになることが分かる。すなわち、酸化物を導入することによって、より波長の長い汎用励起光源(たとえば、ブルーレイ機器の記録で使用される405nm帯光源)等でも励起できる可能性があることがわかった。
(Measurement of excitation spectrum)
No. 1-No. For the sample 3, the excitation spectrum was measured when the emission wavelength was 500 nm. The obtained excitation spectrum is shown in FIG. As can be seen from FIG. 1, as the amount of oxide introduced increases, the excitation spectrum shifts to the longer wavelength side and is distributed to a wavelength of 400 nm or more. That is, it has been found that by introducing an oxide, it may be possible to excite even a general-purpose excitation light source having a longer wavelength (for example, a 405 nm band light source used for recording in a Blu-ray device).

(発光スペクトルの測定)
No.1〜3のサンプルについて、波長375nmで励起させその発光スペクトルを測定した。得られた発光スペクトルを図2に示した。No.1〜No.3の全サンプルにおいて、波長400〜700nmにわたる広帯域な発光スペクトルが得られた。すなわち、酸化物原料を導入しても広帯域な発光が維持されることが確認できた。
(Measurement of emission spectrum)
No. About 1-3 samples, it excited by wavelength 375nm and measured the emission spectrum. The obtained emission spectrum is shown in FIG. No. 1-No. In all three samples, a broad emission spectrum ranging from 400 to 700 nm was obtained. In other words, it was confirmed that broadband emission was maintained even when the oxide raw material was introduced.

<量子効率の測定>
No.1〜No.3、8、9のサンプルについて、内部量子効率と外部量子効率を測定し、表1に示した。内部量子効率及び外部量子効率の測定は、非特許文献4の記載に準じ、積分球(日本分光製ILF−533)が接続された蛍光分光光度計(日本分光製FP−6500)を用いて、積分球内に進入した励起光スペクトルの積分強度をA、サンプルで吸収された励起光スペクトルの積分強度をB、サンプルから放出された蛍光スペクトルの積分強度をCとして、外部量子効率をC/A、内部量子効率をC/Bで求めた。
<Measurement of quantum efficiency>
No. 1-No. The internal quantum efficiency and external quantum efficiency of the samples 3, 8, and 9 were measured and shown in Table 1. According to the description of Non-Patent Document 4, the measurement of the internal quantum efficiency and the external quantum efficiency is performed using a fluorescence spectrophotometer (FP-6500 manufactured by JASCO Corporation) to which an integrating sphere (ILF-533 manufactured by JASCO Corporation) is connected. The integrated intensity of the excitation light spectrum entering the integrating sphere is A, the integrated intensity of the excitation light spectrum absorbed by the sample is B, the integrated intensity of the fluorescence spectrum emitted from the sample is C, and the external quantum efficiency is C / A. The internal quantum efficiency was determined by C / B.

内部量子効率及び外部量子効率はその値が高い程、発光効率が高いことを意味する。表1より、No.3に比べNo.1の方が、より高い発光効率を示していることがわかった。また、No.2はNo.1、No.3よりも発光強度は低下したが、酸化物成分を20モル%含有する組成であっても著しい失活は生じないことがわかった。また、フッ化物以外のハロゲン化物を含有しない組成であるNo.8、9は内部量子効率、外部量子効率共に低い値となった。   The higher the value of the internal quantum efficiency and the external quantum efficiency, the higher the light emission efficiency. From Table 1, No. No. 3 compared with No. 3. It was found that 1 showed higher luminous efficiency. No. 2 is No.2. 1, no. Although the emission intensity was lower than 3, it was found that even a composition containing 20 mol% of the oxide component did not cause significant deactivation. Moreover, No. which is a composition which does not contain halides other than fluoride. 8 and 9 were low values for both internal quantum efficiency and external quantum efficiency.

以上より、ガラス組成に適量の酸化物を含有させても高い発光効率を有する発光材料が実現できることが確認できた。   From the above, it was confirmed that a light emitting material having high luminous efficiency can be realized even when an appropriate amount of oxide is contained in the glass composition.

実施例2
表1に示した化合物を出発原料とし、表1中のNo.3に示したモル%となるように大気中で調合した。次に混合した原料混合物を窒素雰囲気(水素ガスを3体積%含有した窒素ガス中)下に移動し、残留酸化物を除去する酸性フッ化アンモニウムを加えずに、1000℃で1時間溶融した後、るつぼごと銅ブロック上で冷却しサンプルを得た。
Example 2
The compounds shown in Table 1 were used as starting materials. The mixture was prepared in the air so that the mol% shown in 3 was obtained. Next, the mixed raw material mixture was moved under a nitrogen atmosphere (in nitrogen gas containing 3% by volume of hydrogen gas) and melted at 1000 ° C. for 1 hour without adding ammonium acid fluoride for removing residual oxide. The sample was obtained by cooling on a copper block with a crucible.

励起および発光スペクトルを図1および図2にそれぞれ示す。その結果、広帯域に発光するガラスが得られ、励起スペクトルが酸化物を含有した組成であるNo.1、2と同様に長波長側へシフトする事がわかった。また、発光スペクトルは、酸性フッ化アンモニウムを加えて作製したサンプル(No.3)に比べると、長波長側の成分が低下していることから、Ybイオンの周辺構造が僅かに変化していることがわかった。さらに、前述の方法で量子効率を測定したところ、内部量子効率は49%、外部量子効率は38%となり、表1中のNo.3よりも高い発光効率が得られた。すなわち、残留酸素を除去しなくとも量子効率を大きく損なわないことが明らかとなった。   Excitation and emission spectra are shown in FIGS. 1 and 2, respectively. As a result, a glass emitting light in a broad band is obtained, and the excitation spectrum is No. 1 which is a composition containing an oxide. It turned out that it shifts to the long wavelength side like 1 and 2. In addition, the emission spectrum shows a slight change in the peripheral structure of the Yb ion because the component on the long wavelength side is lower than that of the sample (No. 3) prepared by adding ammonium acid fluoride. I understood it. Further, when the quantum efficiency was measured by the above-described method, the internal quantum efficiency was 49% and the external quantum efficiency was 38%. A luminous efficiency higher than 3 was obtained. That is, it has been clarified that the quantum efficiency is not greatly impaired without removing residual oxygen.

実施例3
表1のNo.1のサンプルを用いて、該サンプルをジェットミル粉砕機(日清エンジニアリング製、SJ−100)を用いてメジアン径D50=約50μmになるように粉砕し発光材料の粉末を得た。その後、得られた粉末を5質量%となる割合でシリコーン樹脂(信越化学工業製、SCR−1011(A/B))と混合したのち、約150℃で5時間加熱し硬化させた。
Example 3
No. in Table 1 Using the sample No. 1, the sample was pulverized using a jet mill pulverizer (Nisshin Engineering, SJ-100) so that the median diameter D50 was about 50 μm, to obtain a powder of a luminescent material. Thereafter, the obtained powder was mixed with a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., SCR-1011 (A / B)) at a ratio of 5% by mass, and then heated and cured at about 150 ° C. for 5 hours.

得られた硬化体を紫外LED(日亜化学工業製、NC4U134、中心波長385nm)の上に配置したところ白色発光が得られた。以上より、本発明による広帯域発光材料は粉砕し、樹脂やガラス中に封止することによって発光素子の上に実装可能であることが確認できた。   When the obtained cured product was placed on an ultraviolet LED (manufactured by Nichia Corporation, NC4U134, center wavelength 385 nm), white light emission was obtained. From the above, it was confirmed that the broadband light-emitting material according to the present invention can be mounted on a light-emitting element by pulverizing and sealing in resin or glass.

Claims (4)

AlFを20〜45モル%、アルカリ土類フッ化物を20〜63モル%、Y、La、Gd及びLuからなる群から選ばれる少なくとも1種の元素のフッ化物を3〜25モル%を含有するフッ化物ガラスに、発光中心となる2価希土類イオンとしてイッテルビウムイオンを含有する発光材料において、
該フッ化物ガラスが、Al、Ba、Sr、Ca、及びMgからなる群から選ばれる少なくとも1種とCl、Br、及びIからなる群から選ばれる少なくとも1種とからなるハロゲン化物を1〜15モル%含有し、
Al、Ba、Sr、Ca、Mg、及びYからなる群から選ばれる少なくとも1種の酸化物を0.1〜20モル%含むことを特徴とする広帯域発光材料。
AlF 3 20 to 45 mol%, containing 20 to 63 mole% of alkaline earth fluoride, which Y, La, 3-25 mole% of a fluoride of at least one element selected from the group consisting of Gd and Lu In a luminescent material containing ytterbium ion as a divalent rare earth ion serving as a luminescent center in fluoride glass,
The fluoride glass comprises 1 to 15 halides comprising at least one selected from the group consisting of Al, Ba, Sr, Ca and Mg and at least one selected from the group consisting of Cl, Br and I. Containing mol%,
A broadband light-emitting material comprising 0.1 to 20 mol% of at least one oxide selected from the group consisting of Al, Ba, Sr, Ca, Mg, and Y.
前記アルカリ土類フッ化物は、MgFを0〜15モル%、CaFを7〜25モル%、SrFを0〜22モル%、及びBaFを0〜5モル%含有することを特徴とする請求項1に記載の広帯域発光材料。 The alkaline earth fluoride, an MgF 2 0 to 15 mol%, the CaF 2 7 to 25 mol%, and characterized by containing SrF 2 0 to 22 mol%, and BaF 2 0-5 mol% The broadband light-emitting material according to claim 1. 請求項1又は請求項2に記載の広帯域発光材料であり、該広帯域発光材料が封止材料に分散していることを特徴とする広帯域発光材料。 The broadband light-emitting material according to claim 1 or 2, wherein the broadband light-emitting material is dispersed in a sealing material. AlFを20〜45モル%、アルカリ土類フッ化物を20〜63モル%、Y、La、Gd及びLuからなる群から選ばれる少なくとも1種の元素のフッ化物を3〜25モル%、Al、Ba、Sr、Ca、及びMgからなる群から選ばれる少なくとも1種とCl、Br、及びIからなる群から選ばれる少なくとも1種とからなるハロゲン化物1〜15モル%、Al、Ba、Sr、Ca、Mg、及びYからなる群から選ばれる少なくとも1種の酸化物を0〜20モル%含むフッ化物ガラスの原料と、イッテルビウムイオンを含有する原料とを混合して、原料混合物を得る工程、
該原料混合物を還元雰囲気において溶融する工程、
溶融した後、溶融物を冷却する工程、を有する広帯域発光材料の製造方法であって、該原料混合物を得る工程を酸素を含む条件下で行うことを特徴とする広帯域発光材料の製造方法。
AlF 3 20 to 45 mol%, 20 to 63 mole% of alkaline earth fluorides, Y, La, a fluoride of at least one element selected from the group consisting of Gd and Lu 3 to 25 mol%, Al 1-15 mol% of a halide comprising at least one selected from the group consisting of Ba, Sr, Ca, and Mg and at least one selected from the group consisting of Cl, Br, and I, Al, Ba, Sr , A step of mixing a raw material of fluoride glass containing 0 to 20 mol% of at least one oxide selected from the group consisting of Ca, Mg, and Y and a raw material containing ytterbium ions to obtain a raw material mixture ,
Melting the raw material mixture in a reducing atmosphere;
A method for producing a broadband luminescent material, comprising: a step of cooling the melt after melting, wherein the step of obtaining the raw material mixture is performed under conditions containing oxygen.
JP2014116371A 2014-06-05 2014-06-05 Broad band luminescent material Pending JP2015229724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014116371A JP2015229724A (en) 2014-06-05 2014-06-05 Broad band luminescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014116371A JP2015229724A (en) 2014-06-05 2014-06-05 Broad band luminescent material

Publications (1)

Publication Number Publication Date
JP2015229724A true JP2015229724A (en) 2015-12-21

Family

ID=54886690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116371A Pending JP2015229724A (en) 2014-06-05 2014-06-05 Broad band luminescent material

Country Status (1)

Country Link
JP (1) JP2015229724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632739A (en) * 2018-12-21 2019-04-16 武汉理工大学 The quantitative detecting method of rare earth doping phosphoric acid calcium fluorescent nano particle in vivo

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202642A (en) * 1995-11-21 1997-08-05 Sumita Kogaku Glass:Kk Fluorophosphate salt fluorescent glass exhibiting visible fluorescent light
JP2006248800A (en) * 2005-03-08 2006-09-21 Central Glass Co Ltd Blue fluorescent glass
JP2007197249A (en) * 2006-01-26 2007-08-09 Ohara Inc Glass ceramic and method for producing glass ceramic
WO2008090675A1 (en) * 2007-01-22 2008-07-31 Central Glass Company, Limited Visible light-emitting material and visible light-emitting device
JP2008201610A (en) * 2007-02-19 2008-09-04 Central Glass Co Ltd White light-emitting material and white-light emitting device
JP2014093403A (en) * 2012-11-02 2014-05-19 Shin Etsu Chem Co Ltd Thermosetting silicone resin sheet and process of manufacturing the same, and light-emitting device using the same and process of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202642A (en) * 1995-11-21 1997-08-05 Sumita Kogaku Glass:Kk Fluorophosphate salt fluorescent glass exhibiting visible fluorescent light
JP2006248800A (en) * 2005-03-08 2006-09-21 Central Glass Co Ltd Blue fluorescent glass
JP2007197249A (en) * 2006-01-26 2007-08-09 Ohara Inc Glass ceramic and method for producing glass ceramic
WO2008090675A1 (en) * 2007-01-22 2008-07-31 Central Glass Company, Limited Visible light-emitting material and visible light-emitting device
JP2008201610A (en) * 2007-02-19 2008-09-04 Central Glass Co Ltd White light-emitting material and white-light emitting device
JP2014093403A (en) * 2012-11-02 2014-05-19 Shin Etsu Chem Co Ltd Thermosetting silicone resin sheet and process of manufacturing the same, and light-emitting device using the same and process of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632739A (en) * 2018-12-21 2019-04-16 武汉理工大学 The quantitative detecting method of rare earth doping phosphoric acid calcium fluorescent nano particle in vivo

Similar Documents

Publication Publication Date Title
TWI413625B (en) Glass or glass-ceramic
WO2019188377A1 (en) Phosphor, production method for same, and light-emitting device
JP6311715B2 (en) Phosphor-dispersed glass and method for producing the same
JP5118837B2 (en) Silicate orange phosphor
JP2009286681A (en) Luminescent glass and luminescent crystallized glass
TWI510448B (en) Wideband luminescent materials and white light luminescent materials
JP2007153626A (en) Fluorescent glass
CN104087300B (en) A kind of thiophosphate fluorophor and its application
FR2630430A1 (en) NEW LUMINESCENT VITREOUS COMPOSITIONS, THEIR PREPARATION AND THEIR APPLICATION
KR102004054B1 (en) Phosphor in glass composite, LED device and LCD display using the same
JP2015229724A (en) Broad band luminescent material
JP2010053213A (en) Fluorescent light emitting material, and method for producing the same
JP7400378B2 (en) Light emitting devices, lighting devices, image display devices and nitride phosphors
KR100937240B1 (en) Ynbo4 systems with enhanced red emission properties and white light emitting diodes using the same
JP2007314657A (en) Wavelength converting material using fluorescent substance
Xu et al. A new high-efficiency color converter based on the design of phosphate composite for solid-state laser lighting
JP7090905B2 (en) Transparent crystallized glass and method for producing transparent crystallized glass
JP2008127255A (en) Tin oxide-containing glass
WO2016042679A1 (en) Manganese oxide-containing glass
JP2007314658A (en) Light emitting device
JP6519746B2 (en) Phosphor material and light emitting device
RU2636997C1 (en) Ap-conversion fluorescent nano-glass ceramics
Lee et al. Afterglow Effect from Adding BaF 2 to Oxyfluoride Glass Ceramic Containing Eu2+-doped Nepheline
RU2574223C1 (en) Luminescent glass
CN108164132A (en) A kind of preparation method for mixing yttrium jaundice green light glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306