JP2006248800A - Blue fluorescent glass - Google Patents

Blue fluorescent glass Download PDF

Info

Publication number
JP2006248800A
JP2006248800A JP2005063955A JP2005063955A JP2006248800A JP 2006248800 A JP2006248800 A JP 2006248800A JP 2005063955 A JP2005063955 A JP 2005063955A JP 2005063955 A JP2005063955 A JP 2005063955A JP 2006248800 A JP2006248800 A JP 2006248800A
Authority
JP
Japan
Prior art keywords
glass
blue
ultraviolet light
fluorescence
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005063955A
Other languages
Japanese (ja)
Inventor
Koichi Miyauchi
晃一 宮宇地
Seiki Miura
清貴 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2005063955A priority Critical patent/JP2006248800A/en
Publication of JP2006248800A publication Critical patent/JP2006248800A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blue fluorescent glass which, when irradiated with an intense ultraviolet radiation such as excimer lasers, does not change in a fluorescent color, is not broken, and exhibits a high efficiency of conversion from an ultraviolet radiation into a blue light and high fluorescent intensity. <P>SOLUTION: The blue fluorescent glass comprises (expressed in terms of mol%) 15 to 55 of AlF<SB>3</SB>, 0 to 20 of MgF<SB>2</SB>, 0 to 25 of CaF<SB>2</SB>, 0 to 20 of SrF<SB>2</SB>, 0 to 35 of BaF<SB>2</SB>, 0 to 15 of RX<SB>2</SB>(R is at least one element selected from among Mg, Ca, Sr, and Ba; and X is at least one element selected from among Cl, Br, and I), 0 to 25 of LnF<SB>3</SB>(wherein Ln is at least one element selected from among Y, La, Gd, Yb, Lu, and Dy), and 0.01 to 5 of EuX'<SB>3</SB>(wherein X' is at least one element selected from among F, Cl, Br, and I). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ディスプレイや照明器具用の蛍光体や光センサーなどとして利用される、紫外光を高効率で可視光に変換する材料に関し、特に青色光を発光する青色蛍光ガラスに関する。   The present invention relates to a material for converting ultraviolet light into visible light with high efficiency, which is used as a phosphor or an optical sensor for a display or a lighting fixture, and particularly to blue fluorescent glass that emits blue light.

ディスプレイ用やランプ用として実用化されている蛍光体は一般的に、主に硫化物や酸硫化物あるいはハロ燐酸塩を母体材料とし、希土類元素を発光中心とするものである。青色光を発光する蛍光体としては、ディスプレイ用にZnS:Agが実用化され、またランプ用にはBaMgAl1627:Eu2+などが実用化されている。しかし、これらの蛍光体は不透明な粉体であり、その粉体を基板の上に塗布して利用されているため、用途が蛍光体の表面から発光する蛍光を利用する場合だけに限られている。(非特許文献1)
この問題を解決する手段として、特公昭57−27047号公報、特公昭57−27048号公報、特開平9−202642号公報、および特開平10−167755号公報には、表面のみならず内部からも発光する透明な蛍光ガラスが開示されている。
特公昭57−27047号公報、特公昭57−27048号公報、および特開10−167755号公報に開示された蛍光ガラスは、酸化物ガラスに希土類イオンを添加した透明な蛍光ガラスであり、美術工芸品、エキシマレーザー等の紫外線レーザー光軸調整用光学部品、などに利用することができる。
In general, phosphors that are put to practical use for displays and lamps are mainly composed of sulfide, oxysulfide, or halophosphate as a base material, and a rare earth element as a luminescent center. As a phosphor emitting blue light, ZnS: Ag + is put into practical use for displays, and BaMg 2 Al 16 O 27 : Eu 2+ is put into practical use for lamps. However, these phosphors are opaque powders, and are used by applying the powders on a substrate. Therefore, the use is limited to the case of using fluorescence emitted from the surface of the phosphors. Yes. (Non-Patent Document 1)
As means for solving this problem, JP-B-57-27047, JP-B-57-27048, JP-A-9-202642, and JP-A-10-167755 disclose not only the surface but also the inside. A transparent fluorescent glass that emits light is disclosed.
The fluorescent glass disclosed in JP-B-57-27047, JP-B-57-27048, and JP-A-10-167755 is a transparent fluorescent glass obtained by adding rare earth ions to oxide glass, Product, an optical component for adjusting the optical axis of an ultraviolet laser such as an excimer laser, and the like.

特開平9−202642号公報に開示された蛍光体は、フツ燐酸塩ガラスに希土類イオンを添加した透明な青色蛍光ガラスであり、エキシマレーザー等の紫外線レーザー光軸調整用光学部品などに利用することができる。
蛍光体ハンドブック、オーム社、1987年、3編:実用蛍光体、165 特公昭57−27047号公報 特公昭57−27048号公報 特開平9−202642号公報 特開平10−167755号公報
The phosphor disclosed in Japanese Patent Laid-Open No. 9-202642 is a transparent blue fluorescent glass obtained by adding rare earth ions to a fluorophosphate glass, and is used for an optical component for adjusting an optical axis of an ultraviolet laser such as an excimer laser. Can do.
Phosphor Handbook, Ohmsha, 1987, 3rd edition: Practical phosphor, 165 Japanese Patent Publication No.57-27047 Japanese Patent Publication No.57-27048 JP-A-9-206422 Japanese Patent Laid-Open No. 10-167755

ユーロピウム(以下適宜、Euと略す)イオンは通常3価の状態であり、3価のEuイオンは紫外線による励起によって赤色の蛍光を示す。Euイオンを発光中心とする蛍光体が青色光を発光するためには、Euイオンを2価の状態にする必要がある。
Euイオンを添加した酸化物ガラスは、大気中で溶融すると3価のEuイオンが最も安定である。溶融時の雰囲気を還元性にするか、または原料に還元剤を添加しても、2価と3価のEuイオンが混在する。酸化物ガラスでは、Euイオンの大部分を2価にすることは困難である。
フツ燐酸塩ガラスは、価電子帯と伝導帯間のバンドギャップエネルギーがリンと酸素の電子軌道の作用によってフッ化物ガラスよりも小さくなるため、吸収端波長が長波長側にシフトして200nm以下の紫外領域の透過率が低下する。紫外領域における母体ガラスの透過率が小さいと、母体ガラスは、励起紫外光を吸収し、格子振動を励起して紫外光を熱に変換して発熱する。紫外光を長時間照射すると、ガラスが著しく発熱し、割れてしまうという問題があった。
また、フツ燐酸塩系の青色蛍光ガラスは、発振波長が193nmや248nmのエキシマレーザーなどの青色光への変換効率が小さく、格子振動を励起して紫外光を熱に変換して発熱する。紫外光を長時間照射すると、ガラスが著しく発熱し、割れてしまうという問題があった。
さらに、フツ燐酸塩系の青色蛍光ガラスは、エキシマレーザーのような強い紫外光の照射によって発光中心である2価のEuイオンが3価に酸化され、蛍光色が青色から赤色へ変化する問題があった。
さらに、フツ燐酸塩系の青色蛍光ガラスは蛍光強度が小さく、蛍光表示板や紫外線パワーモニター用センサーなどへ応用するためには、紫外光の青色光への変換効率と発光強度の改善が必要であった。
本発明は上記課題を解決するためになされたものであり、エキシマレーザーなどの強い紫外光の照射によって蛍光色が変化せず、またガラスが破損せず、さらに蛍光強度が大きい青色蛍光ガラスを提供することを目的とする。
Europium (hereinafter abbreviated as Eu) ions are usually in a trivalent state, and trivalent Eu ions exhibit red fluorescence when excited by ultraviolet rays. In order for a phosphor having an emission center of Eu ions to emit blue light, the Eu ions need to be in a divalent state.
When the oxide glass to which Eu ions are added melts in the atmosphere, trivalent Eu ions are most stable. Even if the melting atmosphere is made reducible or a reducing agent is added to the raw material, divalent and trivalent Eu ions are mixed. In oxide glass, it is difficult to make most of the Eu ions bivalent.
The fluorophosphate glass has a band gap energy between the valence band and the conduction band that is smaller than that of fluoride glass due to the action of the electron orbit of phosphorus and oxygen. The transmittance in the ultraviolet region decreases. When the transmittance of the base glass in the ultraviolet region is small, the base glass absorbs excitation ultraviolet light, excites lattice vibrations, converts the ultraviolet light into heat, and generates heat. When ultraviolet light was irradiated for a long time, there was a problem that the glass was extremely heated and cracked.
In addition, fluorophosphate-based blue fluorescent glass has low conversion efficiency to blue light such as an excimer laser having an oscillation wavelength of 193 nm or 248 nm, and excites lattice vibrations to convert ultraviolet light into heat and generate heat. When ultraviolet light was irradiated for a long time, there was a problem that the glass was extremely heated and cracked.
Furthermore, the fluorophosphate-based blue fluorescent glass has a problem that the fluorescent color changes from blue to red due to oxidation of divalent Eu ions, which are the emission center, to trivalent by irradiation with strong ultraviolet light such as excimer laser. there were.
Furthermore, fluorophosphate-based blue fluorescent glass has low fluorescence intensity, and it is necessary to improve the conversion efficiency and emission intensity of ultraviolet light into blue light for application to fluorescent display panels and ultraviolet power monitor sensors. there were.
The present invention has been made to solve the above-mentioned problems, and provides a blue fluorescent glass having a fluorescent intensity that does not change due to irradiation of intense ultraviolet light such as an excimer laser, does not break the glass, and has a high fluorescent intensity. The purpose is to do.

本発明は、モル%表示で、AlFが15〜55、MgFが0〜20、CaFが0〜25、SrFが0〜20、BaFが0〜35、RXが0〜15(ただし、Rは、Mg、Ca、Sr、Baから選ばれる一種以上の元素で、Xは、Cl、Br、Iから選ばれる一種以上の元素)、LnFが0〜25(ただしLnは、Y、La、Gd、Yb、Lu、Dyから選ばれる一種以上の元素)、EuX´が0.01〜5(ただしX´は、F、Cl、Br、Iから選ばれる一種以上の元素)であり、紫外光励起によって青色蛍光を呈することを特徴とする蛍光ガラスである。 In the present invention, AlF 3 is 15 to 55, MgF 2 is 0 to 20, CaF 2 is 0 to 25, SrF 2 is 0 to 20, BaF 2 is 0 to 35, and RX 2 is 0 to 15 in terms of mol%. (However, R is one or more elements selected from Mg, Ca, Sr, and Ba, X is one or more elements selected from Cl, Br, and I), and LnF 3 is 0 to 25 (where Ln is One or more elements selected from Y, La, Gd, Yb, Lu, and Dy), and EuX ′ 3 is 0.01 to 5 (where X ′ is one or more elements selected from F, Cl, Br, and I). It is a fluorescent glass characterized by exhibiting blue fluorescence by ultraviolet light excitation.

本発明の蛍光ガラスは、紫外光を高効率で青色光に変換することができ、蛍光強度が大きい。また、強い紫外光の照射によっても、蛍光色の変化やガラスの破損がなく、耐久性に優れている。   The fluorescent glass of the present invention can convert ultraviolet light into blue light with high efficiency, and has high fluorescence intensity. Further, even when irradiated with intense ultraviolet light, there is no change in fluorescent color or breakage of the glass, and the durability is excellent.

本発明の青色蛍光ガラスは、母体材料がフッ化アルミニウムを主成分としたハロゲン化物ガラスであり、これに付活剤として2価のEuイオンを添加してなるものである。   The blue fluorescent glass of the present invention is a halide glass whose main material is aluminum fluoride as a main component, and is obtained by adding divalent Eu ions as an activator.

以下、当該青色蛍光ガラスの母体ガラスを上記に様に選択し、構成成分範囲を限定した理由について説明する。なお、構成成分範囲の表示は、特に断らない限りモル%である。   Hereinafter, the reason why the base glass of the blue fluorescent glass is selected as described above and the constituent component ranges are limited will be described. In addition, unless otherwise indicated, the display of a component component range is mol%.

フッ化物材料は、酸化物材料や硫化物材料と比較してバンドギャップエネルギーが大きいため、紫外側の吸収端の波長が短く、紫外光に対してより透明である。光吸収が小さいと、エキシマレーザーに代表される強い紫外光を照射したときに光吸収にともなう材料の発熱が小さく、母体材料が発熱によって破損する恐れも小さい。よって、本発明の青色蛍光ガラスの母体材料は、フッ化物材料を選択した。
フッ化物ガラスは、フッ素イオンの分極率が小さいため添加した希土類イオンは2価の状態が比較的安定であり、大部分のEuイオンを2価の状態で存在させることができる。また、イオン結合性と共有結合性とをあわせ持つ酸化物と比べると、フッ化物はイオン結合性が強いため、母体材料を形成する陽イオンが還元されにくい。よって、本発明の青色蛍光ガラスの母体材料は、フッ化物ガラスを選択した。
Since the fluoride material has a larger band gap energy than the oxide material and the sulfide material, the wavelength of the absorption edge on the ultraviolet side is short and it is more transparent to ultraviolet light. When the light absorption is small, the heat generation of the material due to the light absorption is small when irradiated with strong ultraviolet light typified by an excimer laser, and the possibility that the base material is damaged by the heat generation is small. Therefore, a fluoride material was selected as the base material of the blue fluorescent glass of the present invention.
Since fluoride glass has a low polarizability of fluorine ions, the rare earth ions added are relatively stable in the divalent state, and most of the Eu ions can exist in the divalent state. In addition, as compared with an oxide having both ionic bonding properties and covalent bonding properties, fluoride has strong ionic bonding properties, so that the cations forming the base material are less likely to be reduced. Therefore, fluoride glass was selected as the base material of the blue fluorescent glass of the present invention.

フッ化アルミニウム(AlF)はガラス形成成分である。AlFが15モル%に達しないと結晶化しやすくなり、55モル%を超えると溶解性が悪くなる。好ましくは、30〜40モル%である。 Aluminum fluoride (AlF 3 ) is a glass forming component. If AlF 3 does not reach 15 mol%, crystallization tends to occur, and if it exceeds 55 mol%, the solubility becomes poor. Preferably, it is 30-40 mol%.

フッ化ハフニウム(HfF)フッ化ジルコニウム(ZrF)、フッ化インジウム(InF)、などのフッ化物もガラス形成成分であるが、AlFは、これらのフッ化物よりも紫外領域の透過率が高く、化学的耐候性が優れている。また、AlF3は、アルミニウムの電子親和力が3価のEuイオンよりも小さいため、3価のEuイオンを優先的に2価に還元する。さらに、AlF3を主成分としたガラスは、格子振動エネルギーが酸化物系のガラスに比べて小さいため、格子振動とのカップリングが関与する非輻射緩和によって、紫外光による励起電子が熱エネルギーを放出して失活することを抑制する。その結果、紫外光の励起エネルギーの多くは光子エネルギーに変換され、発光中心からの蛍光強度が大きくなる。つまりAlFは、紫外光の可視光への変換効率を高め、蛍光強度を大きくする。 Fluorides such as hafnium fluoride (HfF 4 ), zirconium fluoride (ZrF 4 ), and indium fluoride (InF 3 ) are also glass-forming components, but AlF 3 has a higher transmittance in the ultraviolet region than these fluorides. And chemical weather resistance is excellent. In addition, since AlF3 has an electron affinity of aluminum smaller than that of trivalent Eu ions, the trivalent Eu ions are preferentially reduced to divalent. Furthermore, since glass with AlF3 as the main component has a lower lattice vibration energy than oxide-based glass, excited electrons from ultraviolet light emit thermal energy due to non-radiative relaxation that involves coupling with lattice vibration. To suppress inactivation. As a result, much of the excitation energy of ultraviolet light is converted into photon energy, and the fluorescence intensity from the emission center increases. That is, AlF 3 increases the conversion efficiency of ultraviolet light into visible light and increases the fluorescence intensity.

MgF、CaF、SrF、およびBaFは、ガラスの溶解性を向上させる成分である。MgF、CaF、SrF、およびBaFがそれぞれ、20モル%、25モル%、20モル%、35モル%を超えると分相化や結晶化が起こりやすくなり、ガラスの安定性が低下する。MgF、CaF、SrF、およびBaFの好ましい成分量はそれぞれ、5〜15モル%、5〜20モル%、5〜15モル%、および5〜20モル%、である。 MgF 2 , CaF 2 , SrF 2 , and BaF 2 are components that improve the solubility of the glass. When MgF 2 , CaF 2 , SrF 2 , and BaF 2 exceed 20 mol%, 25 mol%, 20 mol%, and 35 mol%, respectively, phase separation and crystallization are likely to occur, and the stability of the glass is lowered. To do. MgF 2, CaF 2, SrF 2 , and preferred components of BaF 2, respectively, 5 to 15 mol%, 5 to 20 mol%, 5 to 15 mol%, and 5 to 20 mol%, it is.

ハロゲン元素のCl、Br、IはFよりも、3価のEuイオンの還元を促進させる効果があり、その能力は、F<Cl<Br<Iの順で強くなる。また、Cl、Br、IはFよりも、2価のEuイオンからの青色蛍光を強める効果がある。RX(ただし、Rは、Mg、Ca、Sr、Ba、などのアルカリ土類金属元素から選ばれる一種以上の原子。Xは、F、Cl、Br、I、などのハロゲン元素から選ばれる一種以上の原子)の総量が15モル%を超えると分相化や結晶化が起こりやすくなる。RXの好ましい総量は、0〜10モル%である。 The halogen elements Cl, Br, and I are more effective than F in promoting the reduction of trivalent Eu ions, and the ability is enhanced in the order of F <Cl <Br <I. Further, Cl, Br, and I are more effective than F in enhancing blue fluorescence from divalent Eu ions. RX 2 (where R is one or more atoms selected from alkaline earth metal elements such as Mg, Ca, Sr, Ba, etc. X is a type selected from halogen elements such as F, Cl, Br, I, etc.) When the total amount of the above atoms) exceeds 15 mol%, phase separation and crystallization are likely to occur. A preferred total amount of RX 2 is 0-10 mol%.

LnF(ただしLnは、Y、La、Gd、Yb、Lu、Dyから選ばれる一種以上の元素)は、ガラスの結晶化を抑制する成分である。これらの成分が25モル%を超えると結晶化しやすくなる。LnFが少量の場合も結晶化しやすくなるため、LnFの好ましい成分量は、5〜20モル%である。 LnF 3 (where Ln is one or more elements selected from Y, La, Gd, Yb, Lu, and Dy) is a component that suppresses crystallization of glass. When these components exceed 25 mol%, crystallization tends to occur. Since LnF 3 even if a small amount tends to crystallize, preferred components of LnF 3 is 5 to 20 mol%.

EuX´(ただしX´は、F、Cl、Br、I、などのハロゲン元素から選ばれる一種以上の原子)は、紫外光の励起によって可視光の蛍光を呈する成分である。2価のEuイオンは青色の蛍光を示し、3価のEuイオンは赤色の蛍光を示す。EuX´が0.01モル%に達しないと十分な蛍光強度が得られず、5モル%を超えると3価のEuイオンが混在して、青色と赤色の蛍光強度がともに低下する。好ましくは、0.1〜0.5モル%である。 EuX ′ 3 (where X ′ is one or more atoms selected from halogen elements such as F, Cl, Br, and I) is a component that exhibits visible light fluorescence by excitation of ultraviolet light. Divalent Eu ions exhibit blue fluorescence, and trivalent Eu ions exhibit red fluorescence. If EuX ′ 3 does not reach 0.01 mol%, sufficient fluorescence intensity cannot be obtained, and if it exceeds 5 mol%, trivalent Eu ions are mixed, and both blue and red fluorescence intensities decrease. Preferably, it is 0.1-0.5 mol%.

なお、上記の各成分は、成分量の合計が100モル%の蛍光ガラスになるように各成分の範囲で調整する。   In addition, each said component is adjusted in the range of each component so that it may become the fluorescent glass whose sum total of a component amount is 100 mol%.

以下、本発明を実施例により詳細に説明するが、本発明はかかる実施例に限定されるものではない。表1は、モル%で表示した本発明の実施例の青色蛍光ガラス(試料NO.1〜14)を示す。表2は、重量%で表示した本発明の実施例の青色蛍光ガラス(試料NO.1〜14)を示す。
(実施例1)表2に示した化合物を原料とし、表2のNo1の重量割合になるように原料を調合した。原料中の酸素や水分などの不純物をフッ素化して除去するために、フッ素化剤として酸性フッ化アンモニウム(NHF・HF)0.15gを調合したバッチ30gに添加した。このバッチをグラッシーカーボン製の坩堝に入れ、水素の濃度が3%の水素と窒素のガス雰囲気中で、1000℃で30分間、加熱溶融した後、窒素雰囲気中で急冷することによって、Eu2+を含有したガラスを得た。ガラスはその後、20mm×20mm×3mmのサイズに切断加工し、両面を光学研磨した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this Example. Table 1 shows the blue fluorescent glass (samples Nos. 1 to 14) of the examples of the present invention expressed in mol%. Table 2 shows the blue fluorescent glass (samples Nos. 1 to 14) of the examples of the present invention expressed in weight%.
(Example 1) The compounds shown in Table 2 were used as raw materials, and the raw materials were prepared so as to have a weight ratio of No. 1 in Table 2. In order to fluorinate and remove impurities such as oxygen and moisture in the raw material, it was added to 30 g of a batch prepared by adding 0.15 g of acidic ammonium fluoride (NH 4 F · HF) as a fluorinating agent. This batch is put into a crucible made of glassy carbon, heated and melted at 1000 ° C. for 30 minutes in a gas atmosphere of hydrogen and nitrogen having a hydrogen concentration of 3%, and then rapidly cooled in a nitrogen atmosphere to obtain Eu 2+ . The contained glass was obtained. The glass was then cut into a size of 20 mm × 20 mm × 3 mm and both sides were optically polished.

このガラスは、波長365nmの紫外光で励起すると、強い青色光を発光することを目視によって確認した。その蛍光スペクトルは図1に実線で示した。図1中実線の413nmのブロードなピークは、Eu2+:4f5d→4f遷移による発光を示すものである。 It was visually confirmed that this glass emits strong blue light when excited with ultraviolet light having a wavelength of 365 nm. The fluorescence spectrum is shown by a solid line in FIG. In FIG. 1, a broad peak at 413 nm, which is a solid line, indicates light emission due to Eu 2+ : 4f5d → 4f transition.

次に、作製したガラスに波長248nmのKrFエキシマレーザーを照射して、耐紫外光特性を調査した。照射条件は、照射エネルギー250mJ/cm、繰り返し周波数10Hzであった。照射中ガラスからは強い青色の蛍光が確認できた。その蛍光スペクトルは図2に実線で示した。図2中実線の蛍光スペクトルはEu2+:4f5d→4f遷移による発光だけを示し、Eu3+(J=0,1,2,3,4)遷移による発光は確認できなかった。3分間照射を続けても、蛍光スペクトルに変化はなく、ガラスに損傷もなかった。
(実施例2〜6)表2に示した化合物を原料とし、表2のNo2〜6に示した重量割合になるように原料を調合した。原料中の酸素や水分などの不純物をフッ素化して除去するために、フッ素化剤として酸性フッ化アンモニウム(NHF・HF)0.15gを調合したバッチ30gに添加した。このバッチをグラッシーカーボン製の坩堝に入れ、水素の濃度が3%の水素と窒素のガス雰囲気中で、1000℃で30分間、加熱溶融した後、窒素雰囲気中で急冷することによって、Eu2+を含有したガラスを得た。ガラスはその後、20mm×20mm×3mmのサイズに切断加工し、両面を光学研磨した。
Next, the produced glass was irradiated with a KrF excimer laser having a wavelength of 248 nm to investigate the ultraviolet light resistance. The irradiation conditions were an irradiation energy of 250 mJ / cm 2 and a repetition frequency of 10 Hz. During the irradiation, strong blue fluorescence was confirmed from the glass. The fluorescence spectrum is shown by a solid line in FIG. Fluorescence spectra of the solid line in FIG. 2 Eu 2+: 4f5d → 4f transition by showing an emission only, Eu 3+: 5 D 0 → 7 F J (J = 0,1,2,3,4) emission by transition confirmed There wasn't. Even after 3 minutes of irradiation, the fluorescence spectrum did not change and the glass was not damaged.
(Examples 2 to 6) The compounds shown in Table 2 were used as raw materials, and the raw materials were prepared so as to have the weight ratios shown in Nos. 2 to 6 in Table 2. In order to fluorinate and remove impurities such as oxygen and moisture in the raw material, it was added to 30 g of a batch prepared by adding 0.15 g of acidic ammonium fluoride (NH 4 F · HF) as a fluorinating agent. This batch is put into a crucible made of glassy carbon, heated and melted at 1000 ° C. for 30 minutes in a gas atmosphere of hydrogen and nitrogen having a hydrogen concentration of 3%, and then rapidly cooled in a nitrogen atmosphere to obtain Eu 2+ . The contained glass was obtained. The glass was then cut into a size of 20 mm × 20 mm × 3 mm and both sides were optically polished.

このガラスは、実施例1と同じ条件で波長365nmの紫外光を照射すると、強い青色光を発光することを目視によって確認した。その蛍光スペクトルは、実施例1と同様、413nmにEu2+:4f5d→4f遷移による発光を示した。その強度は、実施例1のガラスの3/4であった。 It was visually confirmed that this glass emits strong blue light when irradiated with ultraviolet light having a wavelength of 365 nm under the same conditions as in Example 1. As in Example 1, the fluorescence spectrum showed light emission due to Eu 2+ : 4f5d → 4f transition at 413 nm. Its strength was 3/4 of the glass of Example 1.

次に、作製したガラスに波長248nmのKrFエキシマレーザーを照射して、耐紫外光特性を調査した。照射条件は、照射エネルギー250mJ/cm、繰り返し周波数10Hzであった。照射中ガラスからは強い青色の蛍光が確認できた。その蛍光スペクトルは、実施例1と同様、Eu2+:4f5d→4f遷移による発光だけを示し、Eu3+(J=0,1,2,3,4)遷移による発光は確認できなかった。3分間照射を続けても、蛍光スペクトルに変化はなく、ガラスに損傷もなかった。
(実施例7〜9)表2に示した化合物を原料とし、表2のNo7〜9に示した重量割合になるように原料を調合した。原料中の酸素や水分などの不純物をフッ素化して除去するために、フッ素化剤として酸性フッ化アンモニウム(NHF・HF)0.15gを調合したバッチ30gに添加した。このバッチをグラッシーカーボン製の坩堝に入れ、水素の濃度が3%の水素と窒素のガス雰囲気中で、1000℃で30分間、加熱溶融した後、窒素雰囲気中で急冷することによって、Eu2+を含有したガラスを得た。ガラスはその後、20mm×20mm×3mmのサイズに切断加工し、両面を光学研磨した。
Next, the produced glass was irradiated with a KrF excimer laser having a wavelength of 248 nm to investigate the ultraviolet light resistance. The irradiation conditions were an irradiation energy of 250 mJ / cm 2 and a repetition frequency of 10 Hz. During the irradiation, strong blue fluorescence was confirmed from the glass. Its fluorescence spectrum, as in Example 1, Eu 2+: 4f5d → 4f transition by showing an emission only, Eu 3+: 5 D 0 → 7 F J (J = 0,1,2,3,4) emission by transition Could not be confirmed. Even after 3 minutes of irradiation, the fluorescence spectrum did not change and the glass was not damaged.
(Examples 7 to 9) The compounds shown in Table 2 were used as raw materials, and the raw materials were prepared so as to have the weight ratios shown in Nos. 7 to 9 in Table 2. In order to fluorinate and remove impurities such as oxygen and moisture in the raw material, it was added to 30 g of a batch prepared by adding 0.15 g of acidic ammonium fluoride (NH 4 F · HF) as a fluorinating agent. This batch is put into a crucible made of glassy carbon, heated and melted at 1000 ° C. for 30 minutes in a gas atmosphere of hydrogen and nitrogen having a hydrogen concentration of 3%, and then rapidly cooled in a nitrogen atmosphere to obtain Eu 2+ . The contained glass was obtained. The glass was then cut into a size of 20 mm × 20 mm × 3 mm and both sides were optically polished.

このガラスは、実施例1と同じ条件で波長365nmの紫外光を照射すると、強い青色光を発光することを目視によって確認した。その蛍光スペクトルは、実施例1と同様、413nmにEu2+:4f5d→4f遷移による発光を示した。その強度は、実施例1のガラスとほぼ同じであった。 It was visually confirmed that this glass emits strong blue light when irradiated with ultraviolet light having a wavelength of 365 nm under the same conditions as in Example 1. As in Example 1, the fluorescence spectrum showed light emission due to Eu 2+ : 4f5d → 4f transition at 413 nm. Its strength was almost the same as the glass of Example 1.

次に、作製したガラスに波長248nmのKrFエキシマレーザーを照射して、耐紫外光特性を調査した。照射条件は、照射エネルギー250mJ/cm、繰り返し周波数10Hzであった。照射中ガラスからは強い青色の蛍光が確認できた。その蛍光スペクトルは、実施例1と同様、Eu2+:4f5d→4f遷移による発光だけを示し、Eu3+(J=0,1,2,3,4)遷移による発光は確認できなかった。3分間照射を続けても、蛍光スペクトルに変化はなく、ガラスに損傷もなかった。
(実施例10)表2に示した化合物を原料とし、表2のNo10に示した重量割合になるように原料を調合した。原料中の酸素や水分などの不純物をフッ素化して除去するために、フッ素化剤として酸性フッ化アンモニウム(NHF・HF)0.15gを調合したバッチ30gに添加した。このバッチをグラッシーカーボン製の坩堝に入れ、水素の濃度が3%の水素と窒素のガス雰囲気中で、1000℃で30分間、加熱溶融した後、窒素雰囲気中で急冷することによって、Eu2+を含有したガラスを得た。ガラスはその後、20mm×20mm×3mmのサイズに切断加工し、両面を光学研磨した。
Next, the produced glass was irradiated with a KrF excimer laser having a wavelength of 248 nm to investigate the ultraviolet light resistance. The irradiation conditions were an irradiation energy of 250 mJ / cm 2 and a repetition frequency of 10 Hz. During the irradiation, strong blue fluorescence was confirmed from the glass. Its fluorescence spectrum, as in Example 1, Eu 2+: 4f5d → 4f transition due represents the emission only, Eu 3+: 5 D 0 → 7 F J (J = 0,1,2,3,4) emission by transition Could not be confirmed. Even after 3 minutes of irradiation, the fluorescence spectrum did not change and the glass was not damaged.
(Example 10) Using the compounds shown in Table 2 as raw materials, the raw materials were prepared so as to have the weight ratios shown in No. 10 of Table 2. In order to fluorinate and remove impurities such as oxygen and moisture in the raw material, it was added to 30 g of a batch prepared by adding 0.15 g of acidic ammonium fluoride (NH 4 F · HF) as a fluorinating agent. This batch is put into a crucible made of glassy carbon, heated and melted at 1000 ° C. for 30 minutes in a gas atmosphere of hydrogen and nitrogen having a hydrogen concentration of 3%, and then rapidly cooled in a nitrogen atmosphere to obtain Eu 2+ . The contained glass was obtained. The glass was then cut into a size of 20 mm × 20 mm × 3 mm and both sides were optically polished.

このガラスは、実施例1と同じ条件で波長365nmの紫外光を照射すると、強い青色光を発光することを目視によって確認した。その蛍光スペクトルは、実施例1と同様、413nmにEu2+:4f5d→4f遷移による発光を示した。その強度は、実施例1のガラスの3/4であった。 It was visually confirmed that this glass emits strong blue light when irradiated with ultraviolet light having a wavelength of 365 nm under the same conditions as in Example 1. As in Example 1, the fluorescence spectrum showed light emission due to Eu 2+ : 4f5d → 4f transition at 413 nm. Its strength was 3/4 of the glass of Example 1.

次に、作製したガラスに波長248nmのKrFエキシマレーザーを照射して、耐紫外光特性を調査した。照射条件は、照射エネルギー250mJ/cm、繰り返し周波数10Hzであった。照射中ガラスからは強い青色の蛍光が確認できた。その蛍光スペクトルは、実施例1と同様、Eu2+:4f5d→4f遷移による発光だけを示し、Eu3+(J=0,1,2,3,4)遷移による発光は確認できなかった。3分間照射を続けても、蛍光スペクトルに変化はなく、ガラスに損傷もなかった。
(実施例11〜12)表2に示した化合物を原料とし、表2のNo11〜12に示した重量割合になるように原料を調合した。原料中の酸素や水分などの不純物をフッ素化して除去するために、フッ素化剤として酸性フッ化アンモニウム(NHF・HF)0.15gを調合したバッチ30gに添加した。このバッチをグラッシーカーボン製の坩堝に入れ、水素の濃度が3%の水素と窒素のガス雰囲気中で、1000℃で30分間、加熱溶融した後、窒素雰囲気中で急冷することによって、Eu2+を含有したガラスを得た。ガラスはその後、20mm×20mm×3mmのサイズに切断加工し、両面を光学研磨した。
Next, the produced glass was irradiated with a KrF excimer laser having a wavelength of 248 nm to investigate the ultraviolet light resistance. The irradiation conditions were an irradiation energy of 250 mJ / cm 2 and a repetition frequency of 10 Hz. During the irradiation, strong blue fluorescence was confirmed from the glass. Its fluorescence spectrum, as in Example 1, Eu 2+: 4f5d → 4f transition by showing an emission only, Eu 3+: 5 D 0 → 7 F J (J = 0,1,2,3,4) emission by transition Could not be confirmed. Even after 3 minutes of irradiation, the fluorescence spectrum did not change and the glass was not damaged.
(Examples 11 to 12) The compounds shown in Table 2 were used as raw materials, and the raw materials were prepared so as to have the weight ratios shown in No. 11 to No. 12 of Table 2. In order to fluorinate and remove impurities such as oxygen and moisture in the raw material, it was added to 30 g of a batch prepared by adding 0.15 g of acidic ammonium fluoride (NH 4 F · HF) as a fluorinating agent. This batch is put into a crucible made of glassy carbon, heated and melted at 1000 ° C. for 30 minutes in a gas atmosphere of hydrogen and nitrogen having a hydrogen concentration of 3%, and then rapidly cooled in a nitrogen atmosphere to obtain Eu 2+ . The contained glass was obtained. The glass was then cut into a size of 20 mm × 20 mm × 3 mm and both sides were optically polished.

このガラスは、実施例1と同じ条件で波長365nmの紫外光を照射すると、青色光を発光することを目視によって確認した。その蛍光スペクトルは、実施例1と同様、413nmにEu2+:4f5d→4f遷移による発光を示した。その強度は、実施例1のガラスの1/4であった。 It was confirmed by visual observation that this glass emits blue light when irradiated with ultraviolet light having a wavelength of 365 nm under the same conditions as in Example 1. As in Example 1, the fluorescence spectrum showed light emission due to Eu 2+ : 4f5d → 4f transition at 413 nm. Its strength was ¼ that of the glass of Example 1.

次に、作製したガラスに波長248nmのKrFエキシマレーザーを照射して、耐紫外光特性を調査した。照射条件は、照射エネルギー250mJ/cm、繰り返し周波数10Hzであった。照射中ガラスからは強い青色の蛍光が確認できた。その蛍光スペクトルは、実施例1と同様、Eu2+:4f5d→4f遷移による発光だけを示し、Eu3+(J=0,1,2,3,4)遷移による発光は確認できなかった。3分間照射を続けても、蛍光スペクトルに変化はなく、ガラスに損傷もなかった。
(実施例13〜14)表2に示した化合物を原料とし、表2のNo13〜14に示した重量割合になるように原料を調合した。原料中の酸素や水分などの不純物をフッ素化して除去するために、フッ素化剤として酸性フッ化アンモニウム(NHF・HF)0.15gを調合したバッチ30gに添加した。このバッチをグラッシーカーボン製の坩堝に入れ、水素の濃度が3%の水素と窒素のガス雰囲気中で、1000℃で30分間、加熱溶融した後、窒素雰囲気中で急冷することによって、Eu2+を含有したガラスを得た。ガラスはその後、20mm×20mm×3mmのサイズに切断加工し、両面を光学研磨した。
Next, the produced glass was irradiated with a KrF excimer laser having a wavelength of 248 nm to investigate the ultraviolet light resistance. The irradiation conditions were an irradiation energy of 250 mJ / cm 2 and a repetition frequency of 10 Hz. During the irradiation, strong blue fluorescence was confirmed from the glass. Its fluorescence spectrum, as in Example 1, Eu 2+: 4f5d → 4f transition by showing an emission only, Eu 3+: 5 D 0 → 7 F J (J = 0,1,2,3,4) emission by transition Could not be confirmed. Even after 3 minutes of irradiation, the fluorescence spectrum did not change and the glass was not damaged.
Examples 13 to 14 The compounds shown in Table 2 were used as raw materials, and the raw materials were prepared so as to have the weight ratios shown in No. 13 to No. 14 of Table 2. In order to fluorinate and remove impurities such as oxygen and moisture in the raw material, it was added to 30 g of a batch prepared by adding 0.15 g of acidic ammonium fluoride (NH 4 F · HF) as a fluorinating agent. This batch is put into a crucible made of glassy carbon, heated and melted at 1000 ° C. for 30 minutes in a gas atmosphere of hydrogen and nitrogen having a hydrogen concentration of 3%, and then rapidly cooled in a nitrogen atmosphere to obtain Eu 2+ . The contained glass was obtained. The glass was then cut into a size of 20 mm × 20 mm × 3 mm and both sides were optically polished.

このガラスは、実施例1と同じ条件で波長365nmの紫外光を照射すると、青色光を発光することを目視によって確認した。その蛍光スペクトルは、実施例1と同様、413nmにEu2+:4f5d→4f遷移による発光を示した。その強度は、実施例1のガラスの2/4であった。 It was confirmed by visual observation that this glass emits blue light when irradiated with ultraviolet light having a wavelength of 365 nm under the same conditions as in Example 1. As in Example 1, the fluorescence spectrum showed light emission due to Eu 2+ : 4f5d → 4f transition at 413 nm. Its strength was 2/4 of the glass of Example 1.

次に、作製したガラスに波長248nmのKrFエキシマレーザーを照射して、耐紫外光特性を調査した。照射条件は、照射エネルギー250mJ/cm、繰り返し周波数10Hzであった。照射中ガラスからは強い青色の蛍光が確認できた。その蛍光スペクトルは、実施例1と同様、Eu2+:4f5d→4f遷移による発光だけを示し、Eu3+(J=0,1,2,3,4)遷移による発光は確認できなかった。3分間照射を続けても、蛍光スペクトルに変化はなく、ガラスに損傷もなかった。
(比較例1)従来公知のガラス組成、すなわちモル%でAl(PO:1.12%、Ba(PO:1.00%、AlF:32.23%、MgF:6.51%、CaF:24.84%,SrF:22.24%、BaCl:12.00%、Eu:0.06%に従って調合した原料を、900〜1300℃で溶融し、黒鉛型に流し出すことによってガラスを得た。ガラスはその後、20mm×20mm×3mmのサイズに切断加工し、両面を光学研磨した。
Next, the produced glass was irradiated with a KrF excimer laser having a wavelength of 248 nm to investigate the ultraviolet light resistance. The irradiation conditions were an irradiation energy of 250 mJ / cm 2 and a repetition frequency of 10 Hz. During the irradiation, strong blue fluorescence was confirmed from the glass. Its fluorescence spectrum, as in Example 1, Eu 2+: 4f5d → 4f transition by showing an emission only, Eu 3+: 5 D 0 → 7 F J (J = 0,1,2,3,4) emission by transition Could not be confirmed. Even after 3 minutes of irradiation, the fluorescence spectrum did not change and the glass was not damaged.
Comparative Example 1 Conventionally known glass composition, that is, Al (PO 3 ) 3 : 1.12%, Ba (PO 3 ) 2 : 1.00%, AlF 3 : 32.23%, MgF 2 : Raw materials prepared according to 6.51%, CaF 2 : 24.84%, SrF 2 : 22.24%, BaCl 2 : 12.00%, Eu 2 O 3 : 0.06% were melted at 900 to 1300 ° C. The glass was obtained by pouring out into a graphite mold. The glass was then cut into a size of 20 mm × 20 mm × 3 mm and both sides were optically polished.

このガラスは、実施例1と同じ条件で波長365nmの紫外光を照射すると、青色光を発光した。その蛍光スペクトルは図1に破線で示した。図1中破線の413nmのブロードなピークは、Eu2+:4f5d→4f遷移による発光を示すものであるが、その強度は、実施例1のガラスの1/4程度であった。 This glass emitted blue light when irradiated with ultraviolet light having a wavelength of 365 nm under the same conditions as in Example 1. The fluorescence spectrum is shown by a broken line in FIG. The broad peak at 413 nm shown by the broken line in FIG. 1 indicates light emission due to the Eu 2+ : 4f5d → 4f transition, but the intensity thereof is about ¼ that of the glass of Example 1.

次に、作製したガラスに波長248nmのKrFエキシマレーザーを照射して、耐紫外光特性を調査した。照射条件は、照射エネルギー250mJ/cm、繰り返し周波数10Hzであった。照射開始直後、ガラスからは強い青色の蛍光が確認できたが、発光色は時間経過とともに青色からピンク色へ変化した。その蛍光スペクトルは図2に破線で示した。図2中破線の蛍光スペクトルは、Eu2+:4f5d→4f遷移による発光だけでなく、Eu3+(J=0,1,2,3,4)遷移による発光も示した。照射を続けると30秒後、照射領域にクラックが入り、ガラスは破損した。 Next, the produced glass was irradiated with a KrF excimer laser having a wavelength of 248 nm to investigate the ultraviolet light resistance. The irradiation conditions were an irradiation energy of 250 mJ / cm 2 and a repetition frequency of 10 Hz. Immediately after the start of irradiation, strong blue fluorescence could be confirmed from the glass, but the emission color changed from blue to pink over time. The fluorescence spectrum is shown by a broken line in FIG. Fluorescence spectra of the broken line in FIG. 2, Eu 2+: 4f5d → 4f well emission by the transition, Eu 3+: 5 D 0 → 7 F J (J = 0,1,2,3,4) also shows emission by transition It was. When irradiation was continued, after 30 seconds, the irradiated area cracked and the glass was broken.

本実施例では、発光中心となるEu以外の希土類元素は、LaまたはGdを用いたが、これ以外にも同一族のDy、Yb、Lu、などの希土類元素から選ばれる一種以上の希土類元素を使うこともできる。   In this example, La or Gd was used as the rare earth element other than Eu serving as the light emission center. You can also use it.

本実施例では、希土類元素のハロゲン化物はフッ化物のLnF(ただしLnは、Y、La、Gd、Yb、Lu、Dyから選ばれる一種以上の元素)を用いたが、これ以外にもFと同一族のCl、Br、Iなどのハロゲン元素との化合物を使うこともできる。 In this example, the halide of the rare earth element was LnF 3 of fluoride (where Ln is one or more elements selected from Y, La, Gd, Yb, Lu, and Dy). A compound with a halogen element such as Cl, Br, or I in the same group can also be used.

また、前記フッ素化剤との反応に起因する揮発性生成物、還元雰囲気での溶融によっても避けられない微量の酸素原子の混入、およびFe、MnO、その他の不純物の混入は、本発明を妨げるものではない。 Further, the volatile product resulting from the reaction with the fluorinating agent, the mixing of a trace amount of oxygen atoms that cannot be avoided even by melting in a reducing atmosphere, and the mixing of Fe 2 O 3 , MnO 2 , and other impurities, This does not hinder the present invention.

青色蛍光ガラスを波長365nmの紫外光で励起したときの蛍光スペクトル。(図中の実線は実施例1、図中の破線は比較例1)Fluorescence spectrum when blue fluorescent glass is excited with ultraviolet light having a wavelength of 365 nm. (The solid line in the figure is Example 1, and the broken line in the figure is Comparative Example 1) 青色蛍光ガラスを波長248nmのKrFエキシマレーザーで励起したときの蛍光スペクトル。(図中の実線は実施例1、図中の破線は比較例1)Fluorescence spectrum when blue fluorescent glass is excited with a KrF excimer laser having a wavelength of 248 nm. (The solid line in the figure is Example 1, and the broken line in the figure is Comparative Example 1)

Claims (1)

モル%表示で、AlFが15〜55、MgFが0〜20、CaFが0〜25、SrFが0〜20、BaFが0〜35、RXが0〜15(ただし、Rは、Mg、Ca、Sr、Baから選ばれる一種以上の元素で、Xは、Cl、Br、Iから選ばれる一種以上の元素)、LnFが0〜25(ただしLnは、Y、La、Gd、Yb、Lu、Dyから選ばれる一種以上の元素)、EuX´が0.01〜5(ただしX´は、F、Cl、Br、Iから選ばれる一種以上の元素)であり、紫外光励起によって青色蛍光を呈することを特徴とする蛍光ガラス。 In terms of mol%, AlF 3 is 15 to 55, MgF 2 is 0 to 20, CaF 2 is 0 to 25, SrF 2 is 0 to 20, BaF 2 is 0 to 35, RX 2 is 0 to 15 (however, R Is one or more elements selected from Mg, Ca, Sr and Ba, X is one or more elements selected from Cl, Br and I, and LnF 3 is 0 to 25 (where Ln is Y, La, One or more elements selected from Gd, Yb, Lu and Dy), EuX ′ 3 is 0.01 to 5 (where X ′ is one or more elements selected from F, Cl, Br and I), and ultraviolet A fluorescent glass which exhibits blue fluorescence by photoexcitation.
JP2005063955A 2005-03-08 2005-03-08 Blue fluorescent glass Pending JP2006248800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063955A JP2006248800A (en) 2005-03-08 2005-03-08 Blue fluorescent glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063955A JP2006248800A (en) 2005-03-08 2005-03-08 Blue fluorescent glass

Publications (1)

Publication Number Publication Date
JP2006248800A true JP2006248800A (en) 2006-09-21

Family

ID=37089683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063955A Pending JP2006248800A (en) 2005-03-08 2005-03-08 Blue fluorescent glass

Country Status (1)

Country Link
JP (1) JP2006248800A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008621A1 (en) 2013-07-19 2015-01-22 セントラル硝子株式会社 Phosphor-dispersed glass and method for producing same
JP2015229724A (en) * 2014-06-05 2015-12-21 セントラル硝子株式会社 Broad band luminescent material
CN106904831A (en) * 2017-04-01 2017-06-30 湖北新华光信息材料有限公司 Optical glass and preparation method thereof and optical element
CN115403952A (en) * 2022-10-28 2022-11-29 广东腐蚀科学与技术创新研究院 Modified fluorescent montmorillonite nano composite filler, preparation method thereof and UV (ultraviolet) moisture dual-curing coating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008621A1 (en) 2013-07-19 2015-01-22 セントラル硝子株式会社 Phosphor-dispersed glass and method for producing same
CN105392746A (en) * 2013-07-19 2016-03-09 中央硝子株式会社 Phosphor-dispersed glass and method for producing same
EP3023396A4 (en) * 2013-07-19 2017-03-22 Central Glass Company, Limited Phosphor-dispersed glass and method for producing same
JP2015229724A (en) * 2014-06-05 2015-12-21 セントラル硝子株式会社 Broad band luminescent material
CN106904831A (en) * 2017-04-01 2017-06-30 湖北新华光信息材料有限公司 Optical glass and preparation method thereof and optical element
CN106904831B (en) * 2017-04-01 2019-07-09 湖北新华光信息材料有限公司 Optical glass and preparation method thereof and optical element
CN115403952A (en) * 2022-10-28 2022-11-29 广东腐蚀科学与技术创新研究院 Modified fluorescent montmorillonite nano composite filler, preparation method thereof and UV (ultraviolet) moisture dual-curing coating

Similar Documents

Publication Publication Date Title
JP4179641B2 (en) Fluorophosphate fluorescent glass containing Tb or Eu
JP3961585B2 (en) Fluorophosphate fluorescent glass with visible fluorescence
JP3974211B2 (en) Oxide fluorescent glass exhibiting visible fluorescence
JP6101700B2 (en) LED red phosphor and light-emitting device containing the phosphor
US8168085B2 (en) White light phosphors for fluorescent lighting
Juárez-Batalla et al. Green to white tunable light emitting phosphors: Dy3+/Tb3+ in zinc phosphate glasses
JP2009286681A (en) Luminescent glass and luminescent crystallized glass
Vijayalakshmi et al. Dazzling cool white light emission from Ce3+/Sm3+ activated LBZ glasses for W-LED applications
JP2006248800A (en) Blue fluorescent glass
JP2007153626A (en) Fluorescent glass
NL8602520A (en) METHOD FOR PREPARING A QUARTZ ACTIVATED QUARTZ GLASS, LUMINESCENT QUARTZ GLASS OBTAINED WITH SUCH A METHOD AND LUMINESCENT SCREEN PROVIDED WITH SUCH A LUMINESCENT QUARTZ GLASS.
US8673180B2 (en) Up-conversion white light phosphors
EP0637861A1 (en) Infrared light-excited light-emitting substance
JPH10236843A (en) Glass containing copper ion
JP2008127255A (en) Tin oxide-containing glass
Lee et al. Afterglow Effect from Adding BaF 2 to Oxyfluoride Glass Ceramic Containing Eu2+-doped Nepheline
JP2006298743A (en) Green fluorescent glass
JP3396264B2 (en) Infrared blue light wavelength up-converting phosphor
JPH08259942A (en) Infrared-excitable phosphor
JP2015229724A (en) Broad band luminescent material
JP2020083722A (en) Transparent crystallized glass, and method for producing transparent crystallized glass
JPH05319859A (en) Wavelength variable fluoride laser glass doped with tm ion
WO2016042679A1 (en) Manganese oxide-containing glass
JPH05270858A (en) Red color light emitting glass
JPH04349141A (en) Wavelength changing glass material