JP2015226906A - Method of evaluating filter - Google Patents

Method of evaluating filter Download PDF

Info

Publication number
JP2015226906A
JP2015226906A JP2015140479A JP2015140479A JP2015226906A JP 2015226906 A JP2015226906 A JP 2015226906A JP 2015140479 A JP2015140479 A JP 2015140479A JP 2015140479 A JP2015140479 A JP 2015140479A JP 2015226906 A JP2015226906 A JP 2015226906A
Authority
JP
Japan
Prior art keywords
filter
solution
metal particles
filtrate
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015140479A
Other languages
Japanese (ja)
Other versions
JP6062504B2 (en
Inventor
史貴 市原
Fumitaka Ichihara
史貴 市原
一重 高橋
Kazushige Takahashi
一重 高橋
菅原 広
Hiroshi Sugawara
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2015140479A priority Critical patent/JP6062504B2/en
Publication of JP2015226906A publication Critical patent/JP2015226906A/en
Application granted granted Critical
Publication of JP6062504B2 publication Critical patent/JP6062504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To correctly evaluate particle removing performance of a filter by using metal particles.SOLUTION: Metal particles are added to medium liquid to disperse them in a storage tank 10, and sample liquid is prepared. The obtained sample liquid is passed through a filter 18 to be tested to obtain filtrate. The filtrate is sampled, and solution is obtained by dissolving the metal particles contained in the filtrate in chemical liquid. The obtained solution is analyzed by using ICP-MS26, and the amount of metal particles in the sampled filtrate is detected. On the basis of the amount of the metal particles in the filtrate obtained by the ICP-MS26, a filter membrane is evaluated.

Description

本発明は、金属粒子を添加した試料液をろ過し、得られたろ過液中の金属粒子の量に基づき、フィルターの除粒子性能を評価する方法に関する。   The present invention relates to a method for filtering a sample solution to which metal particles are added and evaluating the particle removal performance of a filter based on the amount of metal particles in the obtained filtrate.

半導体デバイスなどの製造工程において利用される純水やアルコールなどの液中の微粒子は、歩留まりを低下させる直接的な原因となるため厳しく管理されている。デバイスの設計寸法が小さくなるに従って、問題となる微粒子サイズも小さくなる。ITRS(International Technology Roadmap for Semiconductors)によると2010年のDRAMハーフピッチ寸法は、45nmであり、今後さらに微細化が進むと予想され、従って管理微粒子サイズもより小さくなると考えられる。実際に、ITRS2008からは、分析上の課題が克服されていない中でも、純水中の微粒子に関しては、「Critical particle size」という管理項目が追加されている。そして、ITRS2010では、2011年には20nm、2017年には10nmサイズの微粒子を、4個/mLレベルで管理する指針が示されている。同様に、IPA(イソプロピルアルコール)中の微粒子に関しても2011年には20nmサイズの微粒子を1.0E+04(10,000)個/mLレベルでの管理することが求められている。   Fine particles in liquids such as pure water and alcohol used in the manufacturing process of semiconductor devices and the like are strictly controlled because they directly cause a decrease in yield. As device design dimensions decrease, the problem particle size also decreases. According to ITRS (International Technology Roadmap for Semiconductors), the DRAM half-pitch size in 2010 is 45 nm, and further miniaturization is expected in the future. Actually, from the ITRS 2008, a management item “Critical particle size” has been added for fine particles in pure water, even though analytical problems have not been overcome. In ITRS 2010, a guideline for managing fine particles having a size of 20 nm in 2011 and 10 nm in 2017 at a level of 4 particles / mL is shown. Similarly, regarding the fine particles in IPA (isopropyl alcohol), in 2011, it is required to manage fine particles having a size of 20 nm at a level of 1.0E + 04 (10,000) / mL.

液中の微粒子数を高度に維持管理するためには、精密ろ過膜(以下、MF膜(という)や、限外ろ過膜(以下、UF膜という)などのフィルターが利用されている。一般的に、MF膜では標準粒子としてPSL(Polystyrene Latex)のような固体球状粒子を用いてその除去率が99%程度であるところをもって定格ろ過精度(μm)と称している。一方、UF膜では、タンパク質などの指標物質を用いてろ過を行い、阻止率が90%に相当する分子量を持って分画分子量としている。従って、両者の分離性能指標をそのまま比較することはできない。しかしながら、最近では半導体業界向けMF膜におけるレーティングが粒子径30nm以下に達してきており、事実上UF膜のレーティングと重なってきている。また、標準粒子としてのPSL粒子の粒子径下限が20nm程度であることなどから、粒子径30nm以下の微粒子除去用フィルターに対する新しい除粒子性能評価方法が求められている。   Filters such as microfiltration membranes (hereinafter referred to as MF membranes) and ultrafiltration membranes (hereinafter referred to as UF membranes) are used for highly maintaining and managing the number of fine particles in the liquid. In addition, the MF membrane uses solid spherical particles such as PSL (Polystyrene Latex) as standard particles, and the removal rate is about 99%, which is referred to as the rated filtration accuracy (μm). Filtration is carried out using an indicator substance such as protein, and the molecular weight corresponding to a blocking rate of 90% is used as the fractional molecular weight, so it is not possible to compare the separation performance indicators as they are. The rating of MF membranes for industry has reached a particle size of 30 nm or less, and is effectively overlapping with the rating of UF membranes. Therefore, there is a need for a new particle removal performance evaluation method for fine particle removal filters having a particle diameter of 30 nm or less.

そこで、近年、粒子径30nm以下のサイズの微粒子除去用フィルターに対する除粒子性能評価方法として、非特許文献1に挙げられるような金属微粒子を用いた新たな手法が提案されている。この手法では、金ナノ粒子をチャレンジ粒子として、DLS(動的光散乱法)やICP−MS(誘導結合プラズマ質量分析装置)を測定装置として用いることでフィルターの除粒子性能を求めている。中でも、保護配位子を変化させることにより金ナノ粒子の親水性/疎水性、およびカチオン性/アニオン性をコントロールし、フィルター(ろ過膜)の吸着特性も評価している。   Therefore, in recent years, a new method using metal fine particles as described in Non-Patent Document 1 has been proposed as a particle removal performance evaluation method for a fine particle removal filter having a particle size of 30 nm or less. In this method, the particle removal performance of the filter is obtained by using gold nanoparticles as challenge particles and using DLS (dynamic light scattering method) or ICP-MS (inductively coupled plasma mass spectrometer) as a measuring device. Above all, the hydrophilic / hydrophobic and cationic / anionic properties of the gold nanoparticles are controlled by changing the protective ligand, and the adsorption characteristics of the filter (filtration membrane) are also evaluated.

ここで、金の高感度分析手法として、ウエハ状の金(金属)分析についての提案もある。特許文献1では、シリコン基板表面を汚染した金、白金、銀、銅の分析において、基板表面にフッ酸蒸気を噴射した後、王水を滴下して基板上の不純物を分解し、その分解回収液を回収して原子吸光分析により分析する方法が開示されている。   Here, there is also a proposal for wafer-like gold (metal) analysis as a high-sensitivity analysis method for gold. In Patent Document 1, in analysis of gold, platinum, silver, and copper contaminating the silicon substrate surface, hydrofluoric acid vapor is sprayed on the substrate surface, and then aqua regia is dropped to decompose impurities on the substrate, and the decomposition and recovery thereof A method is disclosed in which the liquid is collected and analyzed by atomic absorption spectrometry.

また、特許文献2では、シリコンウエハ表面の白金などの金属汚染に対して、ウエハ表面を、王水を純水で希釈して調整した希王水に所定の時間接触させた後、希王水を回収し、これを蒸発乾固して硝酸等に再溶解させ、ICP−MS又は原子吸光分析(Atomic Absorption Spectrometry : AAS)により金属を定量する方法が開示されている。   Further, in Patent Document 2, against the metal contamination such as platinum on the surface of the silicon wafer, the wafer surface is brought into contact with a rare water prepared by diluting aqua regia with pure water for a predetermined time, Is recovered, evaporated to dryness, redissolved in nitric acid or the like, and a method for quantifying the metal by ICP-MS or atomic absorption spectrometry (AAS) is disclosed.

特開平5−218164号公報JP-A-5-218164 特開2001−77158号公報JP 2001-77158 A

クリーンテクノロジー 2009.2 P45-48Clean Technology 2009.2 P45-48 J.Phys.Chem.B 2004,108,2134-2139 「Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles」J.Phys.Chem.B 2004,108,2134-2139 `` Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles '' Chem.Mater.,Vol.16,No.13,2004 「A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants」Chem. Mater., Vol. 16, No. 13, 2004 "A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants"

しかし、上記非特許文献1のフィルターの除粒子性能を求める方法に関しては、ICP−MSに微粒子状態の金が直接導入された場合、その分散性のばらつきなどにより測定値が変動してしまい、正確な分析値が得られない可能性がある。その結果、フィルターの除粒子性能を正確に評価できない場合が生じ得る。   However, regarding the method for obtaining the particle removal performance of the filter described in Non-Patent Document 1, when gold in a fine particle state is directly introduced into ICP-MS, the measured value fluctuates due to dispersion in the dispersibility and the like. It may not be possible to obtain accurate analysis values. As a result, it may occur that the particle removal performance of the filter cannot be accurately evaluated.

特に、微粒子濃度が低濃度におけるフィルターの除粒子性能を評価する際には、フィルター後のろ過液中の金ナノ粒子濃度がより低濃度になるため、高感度に定量する方法が必要となる。   In particular, when evaluating the particle removal performance of a filter at a low concentration of fine particles, the gold nanoparticle concentration in the filtrate after the filter becomes lower, so a method for quantitative determination with high sensitivity is required.

また、特許文献1および特許文献2における分析は、基板を汚染している金属の分析であり、フィルターの除粒子性能評価とは、目的が異なっており、フィルターの吸着特性などについて考慮しようとする考え方もない。   Further, the analysis in Patent Document 1 and Patent Document 2 is an analysis of a metal that contaminates a substrate, and its purpose is different from the evaluation of the particle removal performance of the filter. There is no way of thinking.

本発明は、低濃度の微粒子を精度良く定量し、フィルターの除粒子性能を正確に評価することを目的とする。   An object of the present invention is to accurately quantify low-concentration fine particles and accurately evaluate the particle removal performance of a filter.

本発明は、媒質液に金属粒子を添加して分散させて試料液を調製する工程と、試料液を評価対象のフィルターに流通して、ろ過液を得る工程と、ろ過液を採取する工程と、採取したろ過液中の金属粒子を薬液に溶解して溶解液を得る工程と、得られた溶解液についてICP−MSによって分析し、採取したろ過液中の金属粒子の量を検出する工程と、を含み、得られたろ過液中の金属粒子の量に基づき、前記フィルターを評価することを特徴とする。   The present invention includes a step of preparing a sample solution by adding and dispersing metal particles in a medium solution, a step of distributing the sample solution to a filter to be evaluated to obtain a filtrate, and a step of collecting the filtrate. A step of dissolving a metal particle in the collected filtrate in a chemical solution to obtain a solution, a step of analyzing the obtained solution by ICP-MS, and detecting an amount of the metal particles in the collected filtrate; The filter is evaluated based on the amount of metal particles in the obtained filtrate.

また、前記媒質液は、水溶液であることが好適である。   The medium liquid is preferably an aqueous solution.

また、前記金属粒子は、金粒子であることが好適である。   The metal particles are preferably gold particles.

また、前記金属粒子の粒径は、30nm以下であることが好適である。   The metal particles preferably have a particle size of 30 nm or less.

また、前記薬液は、硝酸と、塩酸または塩化物と、を混合して調整されていることが好適である。   The chemical solution is preferably prepared by mixing nitric acid with hydrochloric acid or chloride.

また、前記採取したろ過液について、加熱処理を施す工程をさらに有し、前記溶解液を得る工程では、加熱処理したものに前記薬液を混合して前記溶解液を得ることが好適である。   The collected filtrate further includes a step of performing a heat treatment, and in the step of obtaining the solution, it is preferable to obtain the solution by mixing the chemical solution with the heat-treated product.

また、前記加熱処理は、前記媒質液を蒸発させて金属粒子の残渣物を得る処理であり、前記溶解液を得る工程では、得られた残渣物を薬液で溶解することが好適である。   The heat treatment is a treatment for evaporating the medium liquid to obtain a residue of metal particles. In the step of obtaining the solution, it is preferable to dissolve the obtained residue with a chemical solution.

また、前記溶解液を得る工程では、超音波振動を与えながら前記残渣物を薬液で溶解することが好適である。   In the step of obtaining the dissolution liquid, it is preferable to dissolve the residue with a chemical solution while applying ultrasonic vibration.

また、前記試料液中の金属粒子の量を計測し、(ろ過液中の金属粒子の量)/(試料液中の金属粒子の量)によりろ過膜における粒子除去性能を評価することが好適である。   It is also preferable to measure the amount of metal particles in the sample solution and evaluate the particle removal performance in the filtration membrane by (amount of metal particles in the filtrate) / (amount of metal particles in the sample solution). is there.

本発明によれば、金属粒子を用いて、フィルターの除粒子性能を効果的に評価することができる。   According to the present invention, the particle removal performance of a filter can be effectively evaluated using metal particles.

金ナノ粒子の定量が行われる処理システムの概要を示す図である。It is a figure which shows the outline | summary of the processing system in which quantification of a gold nanoparticle is performed. 定量の前処理手段を説明する図である。It is a figure explaining the pre-processing means of fixed_quantity | quantitative_assay. 定量の前処理手段を説明する図である。It is a figure explaining the pre-processing means of fixed_quantity | quantitative_assay. 金ナノ粒子の表面状態による回収率を示す図である。It is a figure which shows the collection | recovery rate by the surface state of a gold nanoparticle.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、フィルター18を評価するための処理システムの概要を示す図である。まず、貯槽10に、水溶液に金属粒子を添加混合して、金属粒子を分散させた試料液を調整する。水溶液としては、超純水が使用され、これに金ナノ粒子が分散される。特に、金属粒子として、粒子径30nm以下の金ナノ粒子を用いることが好適であり、粒子径が、30nm、20nm、10nmなどの金ナノ粒子を用いることができる。   FIG. 1 is a diagram showing an outline of a processing system for evaluating the filter 18. First, a sample solution in which metal particles are dispersed is prepared by adding metal particles to an aqueous solution in the storage tank 10. As the aqueous solution, ultrapure water is used, and gold nanoparticles are dispersed therein. In particular, it is preferable to use gold nanoparticles having a particle diameter of 30 nm or less as the metal particles, and gold nanoparticles having a particle diameter of 30 nm, 20 nm, 10 nm, or the like can be used.

また、貯槽10には、超音波照射装置12が設けられており、超音波の照射によって金属粒子が水溶液中に確実に分散される。超音波照射装置12は、各種液体等の混合用のものを適宜採用することができる。   Further, the storage tank 10 is provided with an ultrasonic irradiation device 12, and the metal particles are reliably dispersed in the aqueous solution by the ultrasonic irradiation. As the ultrasonic irradiation device 12, a device for mixing various liquids or the like can be appropriately employed.

貯槽10内の試料液は、ポンプ14により、バルブ16を介し、フィルター18に供給される。なお、フィルター18に供給される試料液の圧力は圧力計20で計測され、フィルター18における圧損などをチェックする。   The sample liquid in the storage tank 10 is supplied to the filter 18 via the valve 16 by the pump 14. Note that the pressure of the sample liquid supplied to the filter 18 is measured by the pressure gauge 20, and pressure loss in the filter 18 is checked.

フィルター18は、評価対象である、MF膜、UF膜などのろ過膜を利用したものであり、例えば高分子ろ過膜によって原液側とろ過液側が仕切られており、ろ過膜によって原液中の微粒子がろ過除去される。   The filter 18 uses a filtration membrane such as an MF membrane or a UF membrane to be evaluated. For example, the polymer solution membrane separates the stock solution side from the filtrate side, and fine particles in the stock solution are separated by the filtration membrane. Filtered off.

そして、フィルター18への供給路からバルブ22を介し、サンプリングされ、前処理手段S1に供給される。また、フィルター18で得られたろ液がサンプリングされて前処理手段S2に供給される。そして、前処理手段S1,S2で前処理された、試料液、ろ液が適宜ICP−MS26に供給され、ここで金属粒子濃度が定量分析される。   Then, the sample is sampled from the supply path to the filter 18 through the valve 22 and supplied to the preprocessing means S1. Further, the filtrate obtained by the filter 18 is sampled and supplied to the pretreatment means S2. Then, the sample solution and filtrate pretreated by the pretreatment means S1 and S2 are appropriately supplied to the ICP-MS 26, where the metal particle concentration is quantitatively analyzed.

ここで、前処理手段S1,S2について、図2,3に基づいて説明する。図2は、前処理手段S1,S2の一例を示すものである。この例では、サンプリングした被測定液(試料液またはろ液)に薬液を添加する。この薬液は、金属粒子を溶解させるためのものであり、金属粒子として金ナノ粒子を用いた場合には、硝酸と塩酸の混合溶液(濃硝酸に濃塩酸を混合したいわゆる王水など)が好適であるが、塩酸に代えて塩化物を用いる硝酸と塩化物の混合液を用いることもできる。   Here, pre-processing means S1 and S2 will be described with reference to FIGS. FIG. 2 shows an example of the preprocessing means S1 and S2. In this example, a chemical solution is added to the sampled solution to be measured (sample solution or filtrate). This chemical solution is for dissolving metal particles. When gold nanoparticles are used as the metal particles, a mixed solution of nitric acid and hydrochloric acid (so-called aqua regia in which concentrated hydrochloric acid is mixed with concentrated nitric acid) is suitable. However, it is also possible to use a mixed solution of nitric acid and chloride using chloride instead of hydrochloric acid.

すなわち、金を溶解するのは、濃硝酸(HNO)と濃塩酸(HCl)が反応して生ずるNOClと、Clである。従って、王水に限らずNOとClを生ずる組み合わせでも可能であり、例えば濃HNO+NaCl/NHClや、NaNO+濃HClなどを利用することもできる。 That is, gold is dissolved by NOCl and Cl 2 produced by the reaction of concentrated nitric acid (HNO 3 ) and concentrated hydrochloric acid (HCl). Therefore, not only aqua regia but also a combination that generates NO 3 and Cl is possible, and for example, concentrated HNO 3 + NaCl / NH 4 Cl, NaNO 3 + concentrated HCl, or the like can be used.

このように、被測定液に薬液を混合することで、被測定液中の金属粒子(金ナノ粒子)が溶解し、均質な液となる。そして、このように金属粒子が溶解された測定溶液をICP−MS26で定量分析する。これによって、測定溶液中の溶解金属の濃度を検出することができ、薬液の添加量を考慮して換算することで、溶解液中の金属粒子濃度を定量することができる。   In this way, by mixing the chemical solution with the liquid to be measured, the metal particles (gold nanoparticles) in the liquid to be measured are dissolved, and a homogeneous liquid is obtained. Then, the measurement solution in which the metal particles are dissolved in this way is quantitatively analyzed by ICP-MS26. Thereby, the concentration of the dissolved metal in the measurement solution can be detected, and the metal particle concentration in the solution can be quantified by performing conversion in consideration of the amount of the chemical solution added.

さらに、フィルターにおける処理において、金属粒子と、フィルターの吸着作用がろ過性能に影響を及ぼす。すなわち、試料液に混合されている金属粒子について吸着能力があれば、金属粒子の除去性能は高くなる。しかし、試料液中の金属粒子は、標準粒子であって、実際に除去対象とする粒子ではない。従って、フィルターの除粒子性能の評価を行うのであれば、吸着作用のない場合のろ過性能を評価することが好ましい。   Further, in the processing in the filter, the metal particles and the adsorption action of the filter affect the filtration performance. That is, if the metal particles mixed in the sample solution have an adsorption capability, the metal particle removal performance is enhanced. However, the metal particles in the sample liquid are standard particles and are not actually particles to be removed. Therefore, if the particle removal performance of the filter is evaluated, it is preferable to evaluate the filtration performance when there is no adsorption action.

そこで、金属粒子について保護配位子によりその表面状態を調整し、フィルターにおける吸着作用のない状態でのろ過性能を評価することが好ましい。   Therefore, it is preferable to adjust the surface state of the metal particles with a protective ligand and evaluate the filtration performance in a state where there is no adsorption action in the filter.

図3には、他の前処理例が示されている。この例では、サンプリングした被測定液は、まず加熱乾固される。すなわち、容器に入れた被測定液を100°C程度に加熱して、水分を蒸発させ、金属粒子を残渣物として乾固する。次に、残渣物に薬液を添加して、金属粒子からなる残渣物を薬液に溶解しICP−MS26により測定する測定溶液を得る。そして、得られた測定溶液をICP−MS26によって定量する。このように加熱乾固工程を設けることによって、金属粒子の濃度が低濃度であっても、ICP−MS26で定量するときには、高濃度化でき、定量の精度を上げることができる。試料液について、図2の手法によって分析を行い、ろ液について図3に示す加熱乾固工程を含む手法によって分析を行うことも好適である。   FIG. 3 shows another example of preprocessing. In this example, the sampled liquid to be measured is first heated and dried. That is, the liquid to be measured placed in the container is heated to about 100 ° C. to evaporate the water and dry the metal particles as a residue. Next, a chemical solution is added to the residue, and the residue consisting of metal particles is dissolved in the chemical solution to obtain a measurement solution that is measured by ICP-MS26. And the obtained measurement solution is quantified by ICP-MS26. By providing the heating and drying step in this way, even when the concentration of the metal particles is low, when quantifying with the ICP-MS 26, the concentration can be increased and the accuracy of quantification can be increased. It is also preferable to analyze the sample solution by the method of FIG. 2 and analyze the filtrate by the method including the heating and drying step shown in FIG.

なお、ICP−MS26は、市販のものを利用することができ、特別な手法を用いなくても定量分析を行うことが可能である。複数の濃度の標準試料を用い、カウント値(CPS)と金属粒子濃度の検量線を作成しておき、実際の測定の際に得られたカウント値を濃度に換算する。   Note that a commercially available ICP-MS 26 can be used, and quantitative analysis can be performed without using a special technique. Using a standard sample having a plurality of concentrations, a calibration curve of the count value (CPS) and the metal particle concentration is prepared, and the count value obtained in the actual measurement is converted into the concentration.

また、ろ過の原液について、IPAなどのアルコールを採用し、アルコール中の微粒子の除去性能を評価することも行われる。この場合には、チャレンジ粒子をIPA中に分散させ、これを定量する必要がある。この場合は、アルコールを蒸発させて、金属粒子を加熱乾固して残渣物を得、得られた残渣物を王水等の薬液で溶解させる。そして、溶解液を必要に応じて希釈し、これをICP−MSで分析する。   Moreover, alcohol, such as IPA, is employ | adopted about the undiluted | stock solution of filtration, and evaluation of the removal performance of the microparticles | fine-particles in alcohol is also performed. In this case, it is necessary to disperse the challenge particles in IPA and quantify them. In this case, the alcohol is evaporated, the metal particles are heated to dryness to obtain a residue, and the obtained residue is dissolved with a chemical solution such as aqua regia. And a solution is diluted as needed and this is analyzed by ICP-MS.

この際、上述したように、金属粒子について保護配位子により表面を修飾する場合がある。このような金属粒子の表面状態の調整については、非特許文献2,3等に記載があり、本実施例についても、同様の手法が利用できる。   At this time, as described above, the surface of the metal particles may be modified with a protective ligand. Such adjustment of the surface state of the metal particles is described in Non-Patent Documents 2 and 3 and the like, and the same method can be used for this embodiment.

また、金を表面修飾する際に用いられる配位子としては、MEA(2-mercaptoethanoic Acid)、MPA(3-mercaptopropanoic acid)、TA(thioctic acid)、11-MUDA(11-mercaptoundecanoic acid)、Oleylamine(9-octadecenylamine)、1-Dodecanethiol等が挙げられる。   In addition, as ligands used for surface modification of gold, MEA (2-mercaptoethanoic acid), MPA (3-mercaptopropanoic acid), TA (thioctic acid), 11-MUDA (11-mercaptoundecanoic acid), Oleylamine (9-octadecenylamine), 1-Dodecanethiol and the like.

そして、保護配位子を用いて金属粒子に表面修飾を行った場合に、金属粒子の残渣物の硝酸と塩酸の混合溶液等の薬液への溶解しやすさが、異なってくる。例えば、IPA中で、保護配位子によって疎水性の表面修飾を行った場合、親水性の表面修飾を行う場合に比べ、高濃度の硝酸と塩酸の混合溶液によって金属粒子の溶解回収を行うことが好適である。また、溶解を促進するために、超音波照射時間を比較的長くするとよい。   When surface modification is performed on metal particles using a protective ligand, the ease of dissolution of metal particle residues in a chemical solution such as a mixed solution of nitric acid and hydrochloric acid differs. For example, when hydrophobic surface modification is performed with a protective ligand in IPA, metal particles are dissolved and recovered with a mixed solution of nitric acid and hydrochloric acid at a higher concentration than when hydrophilic surface modification is performed. Is preferred. Further, in order to promote dissolution, it is preferable to make the ultrasonic irradiation time relatively long.

例えば、超音波照射時間を一定として硝酸と塩酸の混合溶液の濃度を高くすると、これによって残渣物中の金属粒子の回収率が向上する。また、硝酸と塩酸の混合溶液の濃度を一定として、超音波照射時間を変更した場合、回収率が向上する。例えば、IPA中の金ナノ粒子であって、チオクト酸や、10−カルボキシ−1−デカンチオールなどで表面修飾を行った場合、硝酸と塩酸の混合溶液について、硝酸濃度(asHNO)が1.5wt%かつ塩酸濃度(asHCl)が2.3wt%未満になると、回収率が低く、また硝酸濃度(asHNO)が7.5wt%かつ塩酸濃度(asHCl)が11.3wt%以上としても、回収率に変化はない。従って、硝酸と塩酸の混合溶液は、硝酸濃度(asHNO)1.5〜7.5wt%、塩酸濃度(asHCl)2.3〜11.3wt%の範囲とすることが好適である。なお、純水中の金ナノ粒子の場合、硝酸と塩酸の混合溶液は、硝酸濃度(asHNO)0.75wt%、塩酸濃度(asHCl)1.15wt%程度でも、十分な回収率が得られる。 For example, when the concentration of the mixed solution of nitric acid and hydrochloric acid is increased while keeping the ultrasonic irradiation time constant, this improves the recovery rate of the metal particles in the residue. Further, when the concentration of the mixed solution of nitric acid and hydrochloric acid is kept constant and the ultrasonic irradiation time is changed, the recovery rate is improved. For example, when gold nanoparticles in IPA are surface-modified with thioctic acid or 10-carboxy-1-decanethiol, the nitric acid concentration (asHNO 3 ) of the mixed solution of nitric acid and hydrochloric acid is 1. When 5 wt% and hydrochloric acid concentration (asHCl) are less than 2.3 wt%, the recovery rate is low, and even when the nitric acid concentration (asHNO 3 ) is 7.5 wt% and the hydrochloric acid concentration (asHCl) is 11.3 wt% or more, recovery is possible. There is no change in rate. Therefore, it is preferable that the mixed solution of nitric acid and hydrochloric acid has a nitric acid concentration (asHNO 3 ) of 1.5 to 7.5 wt% and a hydrochloric acid concentration (asHCl) of 2.3 to 11.3 wt%. In the case of gold nanoparticles in pure water, a sufficient recovery rate can be obtained even if the mixed solution of nitric acid and hydrochloric acid has a nitric acid concentration (asHNO 3 ) of 0.75 wt% and a hydrochloric acid concentration (asHCl) of about 1.15 wt%. .

(1)微粒子状態の金の定量分析
図2に示す手法によって、金ナノ粒子の定量を行った。
(1) Quantitative analysis of gold in a fine particle state Gold nanoparticles were quantified by the technique shown in FIG.

金ナノ粒子原液(市販品:BBI社製、粒子径20nm)を目的値(Xng/L)になるように超純水で希釈した。この際、一定量の硝酸と塩酸の混合溶液を添加し、混合するために数分間超音波を照射した。この硝酸と塩酸の混合溶液を含む金ナノ粒子希釈溶液(測定溶液)に含まれる金の濃度をICP−MS(横川アナリティカルシステムズ株式会社製、HP−4500)で定量した。測定結果の濃度をYng/Lとする。比較例として、金ナノ粒子原液に硝酸と塩酸の混合溶液を加えず超純水のみで希釈し、それ以外は上述と同様にして分析を行った。結果を表1,2に示す。   A gold nanoparticle stock solution (commercially available product: manufactured by BBI, particle diameter 20 nm) was diluted with ultrapure water so as to have a target value (Xng / L). At this time, a certain amount of a mixed solution of nitric acid and hydrochloric acid was added, and ultrasonic waves were applied for several minutes to mix. The concentration of gold contained in the gold nanoparticle diluted solution (measuring solution) containing the mixed solution of nitric acid and hydrochloric acid was quantified by ICP-MS (Yokogawa Analytical Systems, Inc., HP-4500). The concentration of the measurement result is Yng / L. As a comparative example, the gold nanoparticle stock solution was diluted with only ultrapure water without adding a mixed solution of nitric acid and hydrochloric acid, and the analysis was performed in the same manner as described above except for that. The results are shown in Tables 1 and 2.

なお、硝酸と塩酸の混合溶液については、硝酸(市販品:関東化学社製 Ultrapur、61wt%(asHNO))と、塩酸(市販品:関東化学社製 Ultrapur、31wt%(asHCl))を体積比で1:3で混合したものを原液として用いた。 In addition, about the mixed solution of nitric acid and hydrochloric acid, nitric acid (commercial product: Ultrapur manufactured by Kanto Chemical Co., 61 wt% (asHNO 3 )) and hydrochloric acid (commercial product: Ultrapur manufactured by Kanto Chemical Co., 31 wt% (asHCl)) by volume The mixture at a ratio of 1: 3 was used as the stock solution.

表1より、本実施例では、目的濃度X:28ng/Lに対して、測定値Y:25.1ng/L、ばらつき(標準偏差σ)3σ:1.5ng/Lとなり、精度よく分析されていることがわかる。一方、比較例では、目的濃度X:40ng/Lに対して、測定値Y:35.5ng/L、ばらつき(標準偏差σ)3σ:23.9ng/Lとなり、精度が実施例と比較して劣ることがわかった。   From Table 1, in this example, for the target concentration X: 28 ng / L, the measured value Y is 25.1 ng / L, the variation (standard deviation σ) is 3σ: 1.5 ng / L, and is analyzed with high accuracy. I understand that. On the other hand, in the comparative example, with respect to the target concentration X: 40 ng / L, the measured value Y is 35.5 ng / L, the variation (standard deviation σ) is 3σ: 23.9 ng / L, and the accuracy is compared with the example. I found it inferior.

また、表2より、各測定溶液における均一分散性を表すカウント値(CPS)を見ても、本実施例では、5回の測定の全てにおいて安定した値であるの対して、比較例では5回測定の内、3回目と4回目の測定溶液ではCPSがばらついてしまっていることがわかる。これは、測定溶液中に含まれる金ナノ粒子の分散状態が均一でなかったためと考えられる。   Also, from Table 2, the count value (CPS) representing the uniform dispersibility in each measurement solution is a stable value in all of the five measurements in this example, whereas it is 5 in the comparative example. It can be seen that CPS varies in the third and fourth measurement solutions among the repeated measurements. This is presumably because the dispersion state of the gold nanoparticles contained in the measurement solution was not uniform.

(2)金ナノ粒子の表面状態による回収率比較
図3に示す手法によって、金ナノ粒子の定量を行った。
(2) Comparison of recovery rate according to surface condition of gold nanoparticles Gold nanoparticles were quantified by the method shown in FIG.

金ナノ粒子原液(市販品:BBI社製、粒子径30nm)を一旦加熱乾固させた後、金ナノ粒子を含む残渣物を硝酸と塩酸の混合溶液で溶解し、得られた測定溶液をICP−MSによって定量した。なお、ここで使用した硝酸と塩酸の混合溶液原液は、(1)で使用したものと同じものを用いた。   A gold nanoparticle stock solution (commercial product: manufactured by BBI, particle size: 30 nm) was once heated to dryness, and then the residue containing gold nanoparticles was dissolved in a mixed solution of nitric acid and hydrochloric acid. -Quantified by MS. The mixed solution stock solution of nitric acid and hydrochloric acid used here was the same as that used in (1).

具体的には、まず超純水中に種々の金ナノ粒子(30nm)を0.5ng/Lになるように添加した金ナノ粒子溶液を調整した。この際、異なる保護配位子によって表面を修飾した。具体的には、上記市販の金ナノ粒子自体は、すでに親水性の保護配位子によって表面修飾されているため、それを2つの疎水性の保護配位子によって表面修飾し、合計3つの表面状態に調整した。   Specifically, first, a gold nanoparticle solution in which various gold nanoparticles (30 nm) were added to ultrapure water so as to be 0.5 ng / L was prepared. At this time, the surface was modified with different protective ligands. Specifically, since the commercially available gold nanoparticle itself is already surface-modified with a hydrophilic protective ligand, it is surface-modified with two hydrophobic protective ligands, resulting in a total of three surfaces. Adjusted to the condition.

本実施例では、保護配位子としては、(i)クエン酸(Citric acid)、(ii)チオクト酸(thioctic acid)、(iii)10−カルボキシ−1−デカンチオール(10-Carboxy-1-decanethiol or 11-Mercaptoundecanoic acid)を利用した。   In this example, as the protective ligand, (i) citric acid, (ii) thioctic acid, (iii) 10-carboxy-1-decanethiol (10-Carboxy-1- decanethiol or 11-Mercaptoundecanoic acid) was used.

ここで、前述した通り、上記の金ナノ粒子原液(市販品:BBI社製、粒子径30nm)については、すでに親水性の(i)クエン酸(Citric acid)で表面修飾されている。そこで、本実施例における親水性の保護配位子で表面修飾された金ナノ粒子としては、上記市販品をそのまま用いた。   Here, as described above, the gold nanoparticle stock solution (commercial product: manufactured by BBI, particle size: 30 nm) has already been surface-modified with hydrophilic (i) citric acid. Therefore, as the gold nanoparticles surface-modified with the hydrophilic protective ligand in this example, the above-mentioned commercially available product was used as it was.

また、上記の疎水性の保護配位子(ii),(iii)による金ナノ粒子の表面修飾については、具体的に以下の方法で行った。
(ii)チオクト酸(thioctic acid)による表面修飾方法
[1]BBI社製金コロイド(30nm,0.1wt%)を5ml分取する。
[2]金のモル数に対して10倍モルとなるように調整したチオクト酸を45ml添加する。
[3]1NのNaOHにてpH11に調整する。
[4]16時間攪拌する。
[5]遠心分離(11800rpm,10℃,10分)により上澄み液を除く。
上記方法により、チオクト酸で表面修飾した金コロイド濃縮液約1wt%を得た。
(iii)10−カルボキシ−1−デカンチオール(10-Carboxy-1-decanethiol or 11-Mercaptoundecanoic acid)による表面修飾方法
[1]上記(ii)により得られた金コロイド濃縮液について、さらに下記の操作を実施。
[2]金のモル数に対して25倍モルとなるように調整した10−カルボキシ−1−デカンチオールを45ml添加する。
[3]1NのNaOHにてpH11に調整する。
[4]16時間攪拌する。
[5]遠心分離(11800rpm,10℃,10分)により上澄み液を除く。
上記方法により、10−カルボキシ−1−デカンチオールで表面修飾した金コロイド濃縮液約1wt%を得た。
The surface modification of the gold nanoparticles with the hydrophobic protective ligands (ii) and (iii) was specifically performed by the following method.
(Ii) Surface modification method with thioctic acid [1] 5 ml of a gold colloid (30 nm, 0.1 wt%) manufactured by BBI is taken.
[2] 45 ml of thioctic acid adjusted so as to be 10 times the mole of gold is added.
[3] Adjust to pH 11 with 1N NaOH.
[4] Stir for 16 hours.
[5] The supernatant is removed by centrifugation (11800 rpm, 10 ° C., 10 minutes).
By the above method, about 1 wt% of a colloidal gold concentrate surface-modified with thioctic acid was obtained.
(Iii) Surface modification method using 10-Carboxy-1-decanethiol or 11-Mercaptoundecanoic acid [1] The gold colloid concentrate obtained by (ii) above is further subjected to the following operations: Implemented.
[2] 45 ml of 10-carboxy-1-decanethiol adjusted so as to be 25 moles per mole of gold is added.
[3] Adjust to pH 11 with 1N NaOH.
[4] Stir for 16 hours.
[5] The supernatant is removed by centrifugation (11800 rpm, 10 ° C., 10 minutes).
By the above method, about 1 wt% of a colloidal gold concentrate surface-modified with 10-carboxy-1-decanethiol was obtained.

(i)は親水性であり、溶液(液性)として超純水を利用した。配位子(ii),(iii)は比較的疎水性であり、溶液としてIPA(イソプロピルアルコール)を利用した。   (I) is hydrophilic, and ultrapure water was used as a solution (liquid property). The ligands (ii) and (iii) are relatively hydrophobic, and IPA (isopropyl alcohol) was used as a solution.

保護配位子で金ナノ粒子表面を修飾した金ナノ粒子を含む試料液を、加熱乾固し、金ナノ粒子を含む残渣物を析出させた。その後残渣物に所定量の硝酸と塩酸の混合溶液を加えてこれを溶解し、これに超純水を加えて希釈し、所定濃度として、ICP−MSで定量した。   A sample solution containing gold nanoparticles whose surface was modified with a protective ligand was heated and dried to precipitate a residue containing gold nanoparticles. Then, a predetermined amount of a mixed solution of nitric acid and hydrochloric acid was added to the residue to dissolve it, and ultrapure water was added to the residue to dilute it, and a predetermined concentration was determined by ICP-MS.

ここで、硝酸と塩酸の混合溶液の添加量と、超音波の照射時間を変化させて、回収率への寄与を評価した。その結果を図4に示す。ここで、回収条件1は、硝酸と塩酸の混合溶液の濃度として、硝酸濃度(asHNO)1.5wt%、塩酸濃度(asHCl)2.3wt%、超音波照射時間5分、回収条件2は、硝酸と塩酸の混合溶液の濃度として、硝酸濃度(asHNO)3.0wt%、塩酸濃度(asHCl)4.5wt%、超音波照射時間10分、回収条件3は、硝酸と塩酸の混合溶液の濃度として、硝酸濃度(asHNO)4.5wt%、塩酸濃度(asHCl)6.8wt%、超音波照射時間10分である。なお、硝酸と塩酸の混合溶液の濃度は、超純水に(1)の硝酸と塩酸の混合溶液原液を2,4,6mL添加して、添加後の水量を20mLに調整することで行った。 Here, the addition amount of the mixed solution of nitric acid and hydrochloric acid and the irradiation time of ultrasonic waves were changed, and the contribution to the recovery rate was evaluated. The result is shown in FIG. Here, the recovery condition 1 is that the concentration of the mixed solution of nitric acid and hydrochloric acid is as follows: nitric acid concentration (asHNO 3 ) 1.5 wt%, hydrochloric acid concentration (asHCl) 2.3 wt%, ultrasonic irradiation time 5 minutes, recovery condition 2 The concentration of the mixed solution of nitric acid and hydrochloric acid is as follows: nitric acid concentration (asHNO 3 ) 3.0 wt%, hydrochloric acid concentration (asHCl) 4.5 wt%, ultrasonic irradiation time 10 minutes, recovery condition 3 is a mixed solution of nitric acid and hydrochloric acid The concentration of nitric acid is 4.5 wt% nitric acid (asHNO 3 ), 6.8 wt% hydrochloric acid (asHCl), and the ultrasonic irradiation time is 10 minutes. The concentration of the mixed solution of nitric acid and hydrochloric acid was determined by adding 2, 4, 6 mL of the mixed solution of nitric acid and hydrochloric acid (1) to ultrapure water and adjusting the amount of water after the addition to 20 mL. .

このように、配位子としてクエン酸(親水性の保護配位子)を用い液性として超純水を用いた上記(i)の例では、回収条件1〜3のいずれにおいても、高い回収率を示しており、加熱乾固後の硝酸と塩酸の混合溶液の添加による溶解について保護配位子の影響がほとんどないことがわかる。一方、配位子としてチオクト酸、10−カルボキシ−1−デカンチオール(疎水性官能基を有する保護配位子)を用い液性としてIPAを用いた上記(ii),(iii)の例では、回収条件において、大きな変化がある。すなわち、硝酸と塩酸の混合溶液の濃度がある程度高い必要がある。また、超音波照射時間も長い方がよい。具体的には、回収条件3のように、硝酸と塩酸の混合溶液の濃度として、硝酸濃度(asHNO)4.5wt%、塩酸濃度(asHCl)6.8wt%以上で、超音波照射時間10分以上の場合、回収率が非常に高くなることが分かる。 Thus, in the example of the above (i) in which citric acid (hydrophilic protective ligand) is used as the ligand and ultrapure water is used as the liquid, high recovery is achieved in any of the recovery conditions 1 to 3. It can be seen that there is almost no influence of the protective ligand on dissolution by addition of a mixed solution of nitric acid and hydrochloric acid after heating to dryness. On the other hand, in the above examples (ii) and (iii) using thioctic acid, 10-carboxy-1-decanethiol (protective ligand having a hydrophobic functional group) as a ligand and IPA as a liquid, There are significant changes in recovery conditions. That is, the concentration of the mixed solution of nitric acid and hydrochloric acid needs to be high to some extent. Also, it is better that the ultrasonic irradiation time is longer. Specifically, as in the recovery condition 3, the concentration of the mixed solution of nitric acid and hydrochloric acid is as follows: nitric acid concentration (asHNO 3 ) 4.5 wt%, hydrochloric acid concentration (asHCl) 6.8 wt% or more, and ultrasonic irradiation time 10 It can be seen that the recovery rate is very high when it is more than a minute.

このように、比較的疎水性の保護配位子を用いて金ナノ粒子の表面を修飾して、アルコール中に分散させた試料液を用いた場合には、加熱乾固後に硝酸と塩酸の混合溶液で金ナノ粒子を溶解することは可能であるが、高濃度の硝酸と塩酸の混合溶液を用いることが必要であり、超音波照射を行うことが好適であることがわかった。   In this way, when a sample solution in which the surface of the gold nanoparticle is modified with a relatively hydrophobic protective ligand and dispersed in alcohol is used, a mixture of nitric acid and hydrochloric acid is mixed after heating to dryness. Although it is possible to dissolve the gold nanoparticles with a solution, it was necessary to use a mixed solution of high-concentration nitric acid and hydrochloric acid, and it was found preferable to perform ultrasonic irradiation.

(3)フィルターの除粒子性能評価
図1に示すシステムを用い、試料液をろ過処理し、フィルターの除粒子性能を評価した。
(3) Particle removal performance evaluation of filter Using the system shown in FIG. 1, the sample solution was filtered and the particle removal performance of the filter was evaluated.

粒子径30nmの金ナノ粒子を超純水で希釈した原水をフィルター:PES(ポリエーテルサルフォン)製UF膜(分画分子量:150,000)に通水させた。この際、UF膜の通水条件は、通水方式:デッドエンド、ろ過流速:5.0m/day、ろ過流量:27L/h(450ml/min)とした。フィルター前後の原水(S1)およびろ過液(S2)をサンプリングした。サンプリングした原水はそのまま硝酸と塩酸の混合溶液原液を添加して、金ナノ粒子を溶解し、その後超純水で所定濃度に希釈して、ICP−MSで定量した。一方、サンプリングしたろ過液は、一旦加熱乾固した後、硝酸と塩酸の混合溶液原液で溶解し、超純水で所定濃度に調整してICP−MSで定量した。なお、硝酸と塩酸の混合溶液の濃度は、硝酸濃度(asHNO)1.5wt%、塩酸濃度(asHCl)2.3wt%、超音波照射時間は10分とした。 Raw water obtained by diluting gold nanoparticles having a particle diameter of 30 nm with ultrapure water was passed through a filter: PES (polyethersulfone) UF membrane (fraction molecular weight: 150,000). At this time, the water flow conditions of the UF membrane were water flow method: dead end, filtration flow rate: 5.0 m / day, filtration flow rate: 27 L / h (450 ml / min). The raw water before and after the filter (S1) and the filtrate (S2) were sampled. The sampled raw water was directly added with a mixed solution of nitric acid and hydrochloric acid to dissolve the gold nanoparticles, and then diluted to a predetermined concentration with ultrapure water and quantified by ICP-MS. On the other hand, the sampled filtrate was once heated to dryness, dissolved in a mixed solution stock solution of nitric acid and hydrochloric acid, adjusted to a predetermined concentration with ultrapure water, and quantified by ICP-MS. The concentration of the mixed solution of nitric acid and hydrochloric acid was nitric acid concentration (asHNO 3 ) 1.5 wt%, hydrochloric acid concentration (asHCl) 2.3 wt%, and the ultrasonic irradiation time was 10 minutes.

この結果を表3に示す。   The results are shown in Table 3.

このように、除粒子性能(LRV)は、6.5以下となった。従って、このフィルターの微粒子捕捉率は、99.9999%以上であることがわかった。 Thus, the particle removal performance (LRV) was 6.5 or less. Therefore, it was found that the fine particle capture rate of this filter was 99.9999% or more.

(4)フィルターの除粒子性能評価(IPA)
図1に示すシステムに対応する実験装置を用い、IPA中に金ナノ粒子を分散させた試料液(原水)をろ過処理し、フィルターの除粒子性能を評価した。すなわち、貯槽10に所定量の原水を貯留し、ここに窒素ガスを圧送して、全量をフィルター18に供給してろ過処理した。そして、原水(S1)を予めサンプリングすると共に、ろ過液をサンプリングした。
(4) Particle removal performance evaluation of filters (IPA)
Using a test apparatus corresponding to the system shown in FIG. 1, a sample solution (raw water) in which gold nanoparticles were dispersed in IPA was filtered, and the particle removal performance of the filter was evaluated. That is, a predetermined amount of raw water was stored in the storage tank 10, nitrogen gas was pumped therein, and the entire amount was supplied to the filter 18 for filtration. And while sampling raw | natural water (S1) previously, the filtrate was sampled.

粒子径20nmの金ナノ粒子(BBI社製)をIPA((株)徳山製、トクソーIPA SE(商品名))で希釈するとともに、金ナノ粒子の表面を保護配位子で修飾して得た原水をフィルター18に通水させた。   Obtained by diluting gold nanoparticles (BBI) having a particle size of 20 nm with IPA (manufactured by Tokuyama Co., Ltd., Toxo IPA SE (trade name)) and modifying the surface of the gold nanoparticles with a protective ligand The raw water was passed through the filter 18.

なお、保護配位子としては、上述した(iii)10−カルボキシ−1−デカンチオールを利用した。   As the protective ligand, (iii) 10-carboxy-1-decanethiol described above was used.

また、フィルター18としては、膜種:MF膜、材質:UPE(超高分子量ポリエチレン)、除粒子径:5nmの、日本インテグリス(株)製、オプチマイザーDLE ディスポーザブルフィルター(商品名)を利用した。   As the filter 18, an Optimizer DLE disposable filter (trade name) manufactured by Nihon Integris Co., Ltd., having a membrane type: MF membrane, a material: UPE (ultra high molecular weight polyethylene), and a particle removal diameter: 5 nm was used.

この際、MF膜の通水条件は、通水方式:全量ろ過、通水圧力:0.1MPa、ろ過流量:67mL/minとした。フィルター前後の原水(S1)およびろ過液(S2)をサンプリングした。サンプリングした原水は、加熱乾固し、金ナノ粒子を含む残渣物を析出させ、その後残渣物に所定量の硝酸と塩酸の混合溶液を加えてこれを溶解し、これに超純水を加えて希釈し、所定濃度として、ICP−MSで定量した。一方、サンプリングしたろ過液は、一旦加熱乾固した後、硝酸と塩酸の混合溶液原液で溶解し、超純水で所定濃度に調整してICP−MSで定量した。なお、回収条件としては、上述の回収条件3を採用した。また、硝酸と塩酸の混合溶液の濃度は、硝酸濃度(asHNO)4.5wt%、塩酸濃度(asHCl)6.8wt%、超音波照射時間は10分とした。 At this time, the water flow conditions of the MF membrane were water flow method: total filtration, water flow pressure: 0.1 MPa, filtration flow rate: 67 mL / min. The raw water before and after the filter (S1) and the filtrate (S2) were sampled. The sampled raw water is heated to dryness to precipitate a residue containing gold nanoparticles, and then a predetermined amount of a mixed solution of nitric acid and hydrochloric acid is added to the residue to dissolve it, and ultrapure water is added to this. It diluted and quantified by ICP-MS as predetermined concentration. On the other hand, the sampled filtrate was once heated to dryness, dissolved in a mixed solution stock solution of nitric acid and hydrochloric acid, adjusted to a predetermined concentration with ultrapure water, and quantified by ICP-MS. Note that the above-mentioned recovery condition 3 was adopted as the recovery condition. The concentration of the mixed solution of nitric acid and hydrochloric acid was nitric acid concentration (asHNO 3 ) 4.5 wt%, hydrochloric acid concentration (asHCl) 6.8 wt%, and the ultrasonic irradiation time was 10 minutes.

この結果を表4に示す。   The results are shown in Table 4.

このように、このフィルターの微粒子捕捉率は、99.98%であることがわかった。従って、本実施例により、ITRSにおける20nm粒子の管理指標(1.0E+04個/mL)を満たすレベルでのフィルターの評価が可能であることがわかった。   Thus, the fine particle capture rate of this filter was found to be 99.98%. Therefore, according to the present example, it was found that the filter can be evaluated at a level satisfying the management index (1.0E + 04 particles / mL) of 20 nm particles in ITRS.

このように、本実施形態の手法によって、液中に存在する粒子径30nm以下、例えば20nmの微粒子についてのフィルターの除粒子性能を評価することが可能となった。   As described above, the method of this embodiment makes it possible to evaluate the particle removal performance of the filter for fine particles having a particle diameter of 30 nm or less, for example, 20 nm, present in the liquid.

10 貯槽、12 超音波照射装置、14 ポンプ、16 バルブ、18 フィルター、20 圧力計、22,24 バルブ、26 ICP−MS。   10 storage tanks, 12 ultrasonic irradiation devices, 14 pumps, 16 valves, 18 filters, 20 pressure gauges, 22, 24 valves, 26 ICP-MS.

本発明は、媒質液に粒径30nm以下の金粒子を添加して分散させて試料液を調製する工程と、試料液を評価対象の、粒子径30nm以下の微粒子除去用のフィルターに流通して、ろ過液を得る工程と、ろ過液を採取する工程と、前記試料液に、硝酸と、塩酸または塩化物と、を混合して調整された薬液を添加し、試料液中の金粒子を溶解して溶解液を得る工程と、採取したろ過液について、加熱処理を施して前記媒質液を蒸発させて金粒子の残渣物を得る工程と、前記残渣物を、硝酸と、塩酸または塩化物と、を混合して調整された薬液で溶解して溶解液を得る工程と、得られたそれぞれの溶解液についてICP−MSによって分析し、前記試料液および採取したろ過液中の粒子の量を検出する工程と、を含み、前記試料液および得られたろ過液中の粒子の量に基づき、前記フィルターを評価することを特徴とする。 The present invention includes a step of preparing a sample liquid by adding and dispersing gold particles having a particle diameter of 30 nm or less in a medium liquid, and distributing the sample liquid to a filter for removing fine particles having a particle diameter of 30 nm or less. The step of obtaining the filtrate, the step of collecting the filtrate, the chemical solution prepared by mixing nitric acid and hydrochloric acid or chloride is added to the sample solution, and the gold particles in the sample solution are dissolved. A step of obtaining a dissolved solution, a step of subjecting the collected filtrate to a heat treatment to evaporate the medium solution to obtain a residue of gold particles, and the residue of nitric acid and hydrochloric acid or chloride. , And a step of obtaining a solution by dissolving with an adjusted chemical solution, and analyzing each obtained solution by ICP-MS, and determining the amount of gold particles in the sample solution and the collected filtrate. wherein the step of detecting, the said sample solution and to obtain Based on the amount of gold particles in the filtrate, and evaluating the filter.

また、前記媒質液は、純水、超純水またはアルコールであることが好適である。 The medium liquid is preferably pure water, ultrapure water, or alcohol .

また、前記残渣物を前記薬液で溶解して溶解液を得る工程では、超音波振動を与えながら前記残渣物を前記薬液で溶解することが好適である。 Further, in the step of obtaining a solution by dissolving the residue in the chemical solution, it is preferable to dissolve in the liquid chemical to the residue while applying ultrasonic vibration.

また、(ろ過液中の粒子の量)/(試料液中の粒子の量)によりろ過膜における粒子除去性能を評価することが好適である。 Further, it is preferable to evaluate the particle removal performance in filtration membrane by (amount of gold particles in the filtrate) / (amount of gold particles in the sample liquid).

Claims (9)

媒質液に金属粒子を添加して分散させて試料液を調製する工程と、
試料液を評価対象のフィルターに流通して、ろ過液を得る工程と、
ろ過液を採取する工程と、
採取したろ過液中の金属粒子を薬液に溶解して溶解液を得る工程と、
得られた溶解液についてICP−MSによって分析し、採取したろ過液中の金属粒子の量を検出する工程と、
を含み、
得られたろ過液中の金属粒子の量に基づき、前記フィルターを評価することを特徴とするフィルターの評価方法。
Adding metal particles to the medium liquid and dispersing it to prepare a sample liquid;
Distributing the sample liquid to the filter to be evaluated to obtain a filtrate; and
Collecting the filtrate,
A step of dissolving the metal particles in the collected filtrate in a chemical solution to obtain a solution,
Analyzing the obtained solution by ICP-MS and detecting the amount of metal particles in the collected filtrate;
Including
A method for evaluating a filter, wherein the filter is evaluated based on an amount of metal particles in the obtained filtrate.
請求項1に記載のフィルターの評価方法において、
前記媒質液は、水溶液であることを特徴とするフィルターの評価方法。
The method for evaluating a filter according to claim 1,
The method for evaluating a filter, wherein the medium liquid is an aqueous solution.
請求項1〜2のいずれか1つに記載のフィルターの評価方法において、
前記金属粒子は、金粒子であることを特徴とするフィルターの評価方法。
In the evaluation method of the filter according to any one of claims 1 to 2,
The method for evaluating a filter, wherein the metal particles are gold particles.
請求項1〜3のいずれか1つに記載のフィルターの評価方法において、
前記金属粒子の粒径は、30nm以下であることを特徴とするフィルターの評価方法。
In the evaluation method of the filter according to any one of claims 1 to 3,
The method for evaluating a filter, wherein the metal particles have a particle size of 30 nm or less.
請求項1〜4のいずれか1つに記載のフィルターの評価方法において、
前記薬液は、硝酸と、塩酸または塩化物と、を混合して調整されていることを特徴とするフィルターの評価方法。
In the evaluation method of the filter according to any one of claims 1 to 4,
The method for evaluating a filter, wherein the chemical solution is prepared by mixing nitric acid and hydrochloric acid or chloride.
請求項5に記載のフィルターの評価方法において、
前記採取したろ過液について、加熱処理を施す工程をさらに有し、
前記溶解液を得る工程では、加熱処理したものに前記薬液を混合して前記溶解液を得ることを特徴とするフィルターの評価方法。
The filter evaluation method according to claim 5,
The collected filtrate further has a step of heat treatment,
In the step of obtaining the solution, the chemical solution is mixed with a heat-treated product to obtain the solution.
請求項6に記載のフィルターの評価方法において、
前記加熱処理は、前記媒質液を蒸発させて金属粒子の残渣物を得る処理であり、
前記溶解液を得る工程では、得られた残渣物を薬液で溶解することを特徴とするフィルターの評価方法。
The filter evaluation method according to claim 6,
The heat treatment is a treatment for evaporating the medium liquid to obtain a residue of metal particles,
In the step of obtaining the solution, the obtained residue is dissolved with a chemical solution.
請求項7に記載のフィルターの評価方法において、
前記溶解液を得る工程では、超音波振動を与えながら前記残渣物を薬液で溶解することを特徴とするフィルターの評価方法。
The filter evaluation method according to claim 7,
In the step of obtaining the dissolving solution, the residue is dissolved with a chemical solution while applying ultrasonic vibration.
請求項1〜8のいずれか1つに記載のフィルターの評価方法において、
前記試料液中の金属粒子の量を計測し、(ろ過液中の金属粒子の量)/(試料液中の金属粒子の量)によりフィルターにおける粒子除去性能を評価することを特徴とするフィルターの評価方法。
In the filter evaluation method according to any one of claims 1 to 8,
The amount of metal particles in the sample solution is measured, and the particle removal performance of the filter is evaluated by (amount of metal particles in the filtrate) / (amount of metal particles in the sample solution). Evaluation method.
JP2015140479A 2011-07-01 2015-07-14 Filter evaluation method Active JP6062504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015140479A JP6062504B2 (en) 2011-07-01 2015-07-14 Filter evaluation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011147484 2011-07-01
JP2011147484 2011-07-01
JP2015140479A JP6062504B2 (en) 2011-07-01 2015-07-14 Filter evaluation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012138396A Division JP6006541B2 (en) 2011-07-01 2012-06-20 Filter evaluation method

Publications (2)

Publication Number Publication Date
JP2015226906A true JP2015226906A (en) 2015-12-17
JP6062504B2 JP6062504B2 (en) 2017-01-18

Family

ID=47788184

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012138396A Active JP6006541B2 (en) 2011-07-01 2012-06-20 Filter evaluation method
JP2015140479A Active JP6062504B2 (en) 2011-07-01 2015-07-14 Filter evaluation method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012138396A Active JP6006541B2 (en) 2011-07-01 2012-06-20 Filter evaluation method

Country Status (1)

Country Link
JP (2) JP6006541B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5611276B2 (en) * 2011-07-01 2014-10-22 オルガノ株式会社 Quantification method of gold nanoparticles
JP6548942B2 (en) * 2015-04-03 2019-07-24 オルガノ株式会社 Filter evaluation method
JP6650772B2 (en) * 2016-02-04 2020-02-19 オルガノ株式会社 Particle capturing device and particle measuring method
CN106092848B (en) * 2016-03-22 2018-07-06 威海威高血液净化制品有限公司 Dialyzer ultrafiltration performance test fluid
JP6634918B2 (en) * 2016-03-25 2020-01-22 栗田工業株式会社 Ultrapure water production system
JP6871763B2 (en) * 2017-03-09 2021-05-12 オルガノ株式会社 Evaluation method of cleanliness of hollow fiber membrane device, cleaning method and cleaning device of hollow fiber membrane device
JP6940962B2 (en) * 2017-03-09 2021-09-29 オルガノ株式会社 Cleaning method of hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production device and cleaning device of hollow fiber membrane device
RU2716793C1 (en) * 2018-11-21 2020-03-16 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Apparatus and method of determining filtering properties of metal filters on molten mixture of halogenides of alkali metals
CN111272626A (en) * 2020-01-19 2020-06-12 上海化工研究院有限公司 Method for testing interception efficiency of non-woven filter material for liquid-solid separation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127791A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Method for analyzing precipitate and/or inclusion in metal material
JP2013033029A (en) * 2011-07-01 2013-02-14 Japan Organo Co Ltd Method of quantifying gold nanoparticles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005799A (en) * 2000-06-20 2002-01-09 Tokuyama Corp Analytical method for trace metal impurities
JP4424831B2 (en) * 2000-07-10 2010-03-03 オルガノ株式会社 Sample concentration method for measuring trace metals in liquids
JP2008268222A (en) * 2008-05-12 2008-11-06 Toshiba Corp Analytical vessel and trace element quantity analytical method
JP2009283350A (en) * 2008-05-23 2009-12-03 Toyota Motor Corp Power generator and fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127791A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Method for analyzing precipitate and/or inclusion in metal material
JP2013033029A (en) * 2011-07-01 2013-02-14 Japan Organo Co Ltd Method of quantifying gold nanoparticles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016032428; 水野 豪仁: '30nm以下粒子除去フィルターの新規定格方法' クリーンテクノロジー Volume 2009.2, 2009, 第45-48頁 *

Also Published As

Publication number Publication date
JP2013031835A (en) 2013-02-14
JP6062504B2 (en) 2017-01-18
JP6006541B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6062504B2 (en) Filter evaluation method
JP5611276B2 (en) Quantification method of gold nanoparticles
Telgmann et al. Rapid size characterization of silver nanoparticles by single particle ICP-MS and isotope dilution
Hinterwirth et al. Comparative method evaluation for size and size‐distribution analysis of gold nanoparticles
MacCuspie et al. Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions
Bi et al. Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm
Palencia et al. Size separation of silver nanoparticles by dead-end ultrafiltration: Description of fouling mechanism by pore blocking model
Luo et al. Measurement and characterization of engineered titanium dioxide nanoparticles in the environment
Toncelli et al. Flow injection with on-line dilution and single particle inductively coupled plasma–mass spectrometry for monitoring silver nanoparticles in seawater and in marine microorganisms
Palchoudhury et al. Methods for measuring concentration (mass, surface area and number) of nanomaterials
JP5206120B2 (en) Metal analysis method and semiconductor wafer manufacturing method
Lee et al. Evaluation of concentration measurement techniques of colloidal nanoparticles for microfiltration and ultrafiltration applications: Inductively coupled plasma-mass spectrometry, nanoparticle tracking analysis and electrospray-scanning mobility particle sizer
CN106338542A (en) Method for detecting serum small molecule metabolites by using mass spectrometry
Peng et al. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation
Ahmad et al. Enrichment of trace Hg (II) ions from food and water samples after solid phase extraction combined with ICP-OES determination
Motellier et al. Contribution of single particle inductively coupled plasma mass spectrometry and asymmetrical flow field-flow fractionation for the characterization of silver nanosuspensions. Comparison with other sizing techniques
Shin et al. Evaluation of size distribution measurement methods for sub-100 nm colloidal silica nanoparticles and its application to CMP slurry
Hellin et al. Validation of vapor phase decomposition–droplet collection–total reflection X-ray fluorescence spectrometry for metallic contamination analysis of silicon wafers
JP2012524908A (en) How to characterize particles
JP3822132B2 (en) Ultrapure water fine particle measuring device and ultrapure water fine particle measuring method
JP4450117B2 (en) Water quality evaluation method for silicon substrate cleaning ultrapure water
Motellier et al. Direct quantification of airborne nanoparticles composition by TXRF after collection on filters
Mader et al. Measurements of nanomaterials in environmentally relevant water matrices using liquid nebulization/differential mobility analysis
Hadioui et al. Assessing the fate of silver nanoparticles in surface water using single particle ICP-MS
JP2005249546A (en) Analysis method for metal element on wafer surface

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6062504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250