JP2013033029A - Method of quantifying gold nanoparticles - Google Patents

Method of quantifying gold nanoparticles Download PDF

Info

Publication number
JP2013033029A
JP2013033029A JP2012138397A JP2012138397A JP2013033029A JP 2013033029 A JP2013033029 A JP 2013033029A JP 2012138397 A JP2012138397 A JP 2012138397A JP 2012138397 A JP2012138397 A JP 2012138397A JP 2013033029 A JP2013033029 A JP 2013033029A
Authority
JP
Japan
Prior art keywords
gold nanoparticles
solution
hydrochloric acid
nitric acid
quantifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012138397A
Other languages
Japanese (ja)
Other versions
JP5611276B2 (en
Inventor
Fumitaka Ichihara
史貴 市原
Kazushige Takahashi
一重 高橋
Hiroshi Sugawara
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2012138397A priority Critical patent/JP5611276B2/en
Publication of JP2013033029A publication Critical patent/JP2013033029A/en
Application granted granted Critical
Publication of JP5611276B2 publication Critical patent/JP5611276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively quantifying gold nanoparticles in a measurement liquid where gold nanoparticles surface-modified with protection ligands are dispersed in alcohol.SOLUTION: A measurement liquid is heated to obtain gold nanoparticles as a residue. The obtained residue is added with chemical liquids produced by mixing nitric acid and hydrochloric acid or chloride to obtain a dissolved liquid where the residue is dissolved. The obtained dissolved liquid is analyzed by ICP-MS to detect the amount of gold nanoparticles in the measurement liquid.

Description

本発明は、保護配位子によって表面修飾された金ナノ粒子がアルコール中に分散された測定液中の金ナノ粒子の定量方法に関する。   The present invention relates to a method for quantifying gold nanoparticles in a measurement liquid in which gold nanoparticles surface-modified with a protective ligand are dispersed in alcohol.

半導体デバイスなどの製造工程において利用される純水やアルコールなどの液中の微粒子は、歩留まりを低下させる直接的な原因となるため厳しく管理されている。デバイスの設計寸法が小さくなるに従って、問題となる微粒子サイズも小さくなる。ITRS(International Technology Roadmap for Semiconductors)によると2010年のDRAMハーフピッチ寸法は、45nmであり、今後さらに微細化が進むと予想され、従って管理微粒子サイズもより小さくなると考えられる。実際に、ITRS2008からは、分析上の課題が克服されていない中でも、純水中の微粒子に関しては、「Critical particle size」という管理項目が追加されている。そして、ITRS2010では、2011年には20nm、2017年には10nmサイズの微粒子を、4個/mLレベルで管理する指針が示されている。同様に、IPA(イソプロピルアルコール)中の微粒子に関しても2011年には20nmサイズの微粒子を1.0E+04(10,000)個/mLレベルでの管理することが求められている。   Fine particles in liquids such as pure water and alcohol used in the manufacturing process of semiconductor devices and the like are strictly controlled because they directly cause a decrease in yield. As device design dimensions decrease, the problem particle size also decreases. According to ITRS (International Technology Roadmap for Semiconductors), the DRAM half-pitch size in 2010 is 45 nm, and further miniaturization is expected in the future. Actually, from the ITRS 2008, a management item “Critical particle size” has been added for fine particles in pure water, even though analytical problems have not been overcome. In ITRS 2010, a guideline for managing fine particles having a size of 20 nm in 2011 and 10 nm in 2017 at a level of 4 particles / mL is shown. Similarly, regarding the fine particles in IPA (isopropyl alcohol), in 2011, it is required to manage fine particles having a size of 20 nm at a level of 1.0E + 04 (10,000) / mL.

液中の微粒子数を高度に維持管理するためには、精密ろ過膜(以下、MF膜という)や、限外ろ過膜(以下、UF膜という)などのフィルターが利用されている。一般的に、MF膜では標準粒子としてPSL(Polystyrene Latex)のような固体球状粒子を用いてその除去率が99%程度であるところをもって定格ろ過精度(μm)と称している。一方、UF膜では、タンパク質などの指標物質を用いてろ過を行い、阻止率が90%に相当する分子量を持って分画分子量としている。従って、両者の分離性能指標をそのまま比較することはできない。しかしながら、最近では半導体業界向けMF膜におけるレーティングが粒子径30nm以下に達してきており、事実上UF膜のレーティングと重なってきている。また、標準粒子としてのPSL粒子の粒子径下限が20nm程度であることなどから、粒子径30nm以下の微粒子除去用フィルターに対する新しい除粒子性能評価方法が求められている。   Filters such as microfiltration membranes (hereinafter referred to as MF membranes) and ultrafiltration membranes (hereinafter referred to as UF membranes) are used for highly maintaining and managing the number of fine particles in the liquid. In general, in the MF membrane, solid spherical particles such as PSL (Polystyrene Latex) are used as standard particles, and the removal rate is about 99%, which is called rated filtration accuracy (μm). On the other hand, in the UF membrane, filtration is performed using an indicator substance such as protein, and the molecular weight equivalent to 90% of the blocking rate is set as the fractional molecular weight. Therefore, it is not possible to directly compare the separation performance indexes of the two. However, recently, the rating in the MF film for the semiconductor industry has reached a particle size of 30 nm or less, and is effectively overlapping with the rating of the UF film. In addition, since the lower limit of the particle size of PSL particles as standard particles is about 20 nm, a new particle removal performance evaluation method for fine particle removal filters having a particle size of 30 nm or less is required.

そこで、近年、粒子径30nm以下のサイズの微粒子除去用フィルターに対する除粒子性能評価方法として、非特許文献1に挙げられるような金属微粒子を用いた新たな手法が提案されている。この手法では、金ナノ粒子をチャレンジ粒子として、DLS(動的光散乱法)やICP−MS(誘導結合プラズマ質量分析装置)を測定装置として用いることでフィルターの除粒子性能を求めている。中でも、保護配位子を変化させることにより金ナノ粒子の親水性/疎水性、およびカチオン性/アニオン性をコントロールし、フィルター(ろ過膜)の吸着特性も評価している。   Therefore, in recent years, a new method using metal fine particles as described in Non-Patent Document 1 has been proposed as a particle removal performance evaluation method for a fine particle removal filter having a particle size of 30 nm or less. In this method, the particle removal performance of the filter is obtained by using gold nanoparticles as challenge particles and using DLS (dynamic light scattering method) or ICP-MS (inductively coupled plasma mass spectrometer) as a measuring device. Above all, the hydrophilic / hydrophobic and cationic / anionic properties of the gold nanoparticles are controlled by changing the protective ligand, and the adsorption characteristics of the filter (filtration membrane) are also evaluated.

ここで、金の高感度分析手法として、ウエハ状の金(金属)分析についての提案もある。特許文献1では、シリコン基板表面を汚染した金、白金、銀、銅の分析において、基板表面にフッ酸蒸気を噴射した後、王水を滴下して基板上の不純物を分解し、その分解回収液を回収して原子吸光分析により分析する方法が開示されている。   Here, there is also a proposal for wafer-like gold (metal) analysis as a high-sensitivity analysis method for gold. In Patent Document 1, in the analysis of gold, platinum, silver, and copper contaminating the silicon substrate surface, hydrofluoric acid vapor is sprayed on the substrate surface, and then aqua regia is dropped to decompose impurities on the substrate, and the decomposition and recovery thereof are performed. A method is disclosed in which the liquid is collected and analyzed by atomic absorption spectrometry.

また、特許文献2では、シリコンウエハ表面の白金などの金属汚染に対して、ウエハ表面を、王水を純水で希釈して調整した希王水に所定の時間接触させた後、希王水を回収し、これを蒸発乾固して硝酸等に再溶解させ、ICP−MS又は原子吸光分析(Atomic Absorption Spectrometry : AAS)により金属を定量する方法が開示されている。   Further, in Patent Document 2, against the metal contamination such as platinum on the surface of the silicon wafer, the wafer surface is brought into contact with a rare water prepared by diluting aqua regia with pure water for a predetermined time, Is recovered, evaporated to dryness, redissolved in nitric acid or the like, and a method for quantifying the metal by ICP-MS or atomic absorption spectrometry (AAS) is disclosed.

特開平5−218164号公報JP-A-5-218164 特開2001−77158号公報JP 2001-77158 A

クリーンテクノロジー 2009.2 P45-48Clean Technology 2009.2 P45-48 J.Phys.Chem.B 2004,108,2134-2139 「Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles」J.Phys.Chem.B 2004,108,2134-2139 `` Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles '' Chem.Mater.,Vol.16,No.13,2004 「A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants」Chem. Mater., Vol. 16, No. 13, 2004 "A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants"

上記非特許文献1では、ICP−MSを用いた金ナノ粒子の定量方法において、保護配位子を変化させることにより金ナノ粒子の親水性/疎水性、およびカチオン性/アニオン性をコントロールし、フィルター(ろ過膜)の吸着特性を評価している。しかしながら、このような保護配位子の利用がICP−MSを用いた金ナノ粒子の定量に影響があるかどうかについて何ら考慮していない。   In the said nonpatent literature 1, in the determination method of the gold nanoparticle using ICP-MS, hydrophilicity / hydrophobicity of gold nanoparticle and cationic / anionic property are controlled by changing a protective ligand, The adsorption characteristics of the filter (filtration membrane) are evaluated. However, no consideration is given to whether the use of such a protective ligand has an effect on the quantification of gold nanoparticles using ICP-MS.

本発明は、IPAなどのアルコール中に分散された保護配位子によって表面修飾された金ナノ粒子を精度良く定量することを目的とする。   The object of the present invention is to accurately quantify gold nanoparticles whose surface is modified by a protective ligand dispersed in an alcohol such as IPA.

本発明は、保護配位子によって表面修飾された金ナノ粒子がアルコール中に分散された測定液中の金ナノ粒子の定量方法であって、前記測定液を加熱して、金ナノ粒子を残渣物とする工程と、得られた残渣物に対し、硝酸と、塩酸または塩化物とを混合して調整された薬液を添加して前記残渣物を溶解した溶解液を得る工程と、得られた溶解液についてICP−MSによって分析し、測定液中の金ナノ粒子の量を検出する工程と、を含むことを特徴とする。   The present invention relates to a method for quantifying gold nanoparticles in a measurement liquid in which gold nanoparticles surface-modified with a protective ligand are dispersed in alcohol, and the measurement liquid is heated to leave the gold nanoparticles as a residue. And a step of adding a chemical solution prepared by mixing nitric acid and hydrochloric acid or chloride to the obtained residue to obtain a solution obtained by dissolving the residue. Analyzing the dissolved solution by ICP-MS, and detecting the amount of gold nanoparticles in the measurement solution.

また、前記溶解液を得る工程において、前記薬液の濃度を前記保護配位子の種類によって変更することが好適である。   In the step of obtaining the dissolution solution, it is preferable that the concentration of the chemical solution is changed depending on the type of the protective ligand.

また、前記溶解液を得る工程において、前記残渣物に前記薬液を添加した後、超音波を照射することが好適である。   Further, in the step of obtaining the solution, it is preferable to irradiate ultrasonic waves after adding the chemical solution to the residue.

また、前記薬液は、硝酸と、塩酸の混合物であって、硝酸1.5〜7.5重量%、塩酸2.3〜11.3重量%を含むことが好適である。   The chemical solution is a mixture of nitric acid and hydrochloric acid, and preferably contains 1.5 to 7.5% by weight of nitric acid and 2.3 to 11.3% by weight of hydrochloric acid.

また、前記薬液は、硝酸と塩酸の混合物であって、硝酸4.5〜7.5重量%、塩酸6.8〜11.3重量%を含むことが好適である。   Moreover, the said chemical | medical solution is a mixture of nitric acid and hydrochloric acid, Comprising: It is suitable that nitric acid 4.5-7.5 weight% and hydrochloric acid 6.8-11.3 weight% are included.

また、前記保護配位子は、チオクト酸または10−カルボキシ−1−デカンチオールであることが好適である。   The protective ligand is preferably thioctic acid or 10-carboxy-1-decanethiol.

また、前記アルコールはIPAであることが好適である。   The alcohol is preferably IPA.

また、前記測定液は、フィルターの除粒子性能を評価する際に用いられるフィルターのろ過液であることが好適である。   Moreover, it is preferable that the measurement liquid is a filter filtrate used when evaluating the particle removal performance of the filter.

本発明によれば、アルコール中に分散された保護配位子によって表面修飾された金ナノ粒子を精度良く定量することができる。   According to the present invention, gold nanoparticles surface-modified with a protective ligand dispersed in alcohol can be accurately quantified.

金ナノ粒子の定量が行われる処理システムの概要を示す図である。It is a figure which shows the outline | summary of the processing system in which fixed_quantity | quantitative_assay of a gold nanoparticle is performed. 定量の前処理手段を説明する図である。It is a figure explaining the pre-processing means of fixed_quantity | quantitative_assay. 金ナノ粒子の表面状態による回収率を示す図である。It is a figure which shows the collection | recovery rate by the surface state of a gold nanoparticle.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、フィルター18を評価するための処理システムの概要を示す図である。まず、貯槽10に、アルコールに金ナノ粒子を添加混合して、金ナノ粒子を分散させた試料液を調整する。特に、金ナノ粒子として、粒子径30nm以下の粒子を用いることが好適であり、粒子径が、30nm、20nm、10nmなどの金ナノ粒子を用いることができる。   FIG. 1 is a diagram showing an outline of a processing system for evaluating the filter 18. First, a sample liquid in which gold nanoparticles are dispersed is prepared by adding and mixing gold nanoparticles into alcohol in the storage tank 10. In particular, it is preferable to use particles having a particle diameter of 30 nm or less as the gold nanoparticles, and gold nanoparticles having a particle diameter of 30 nm, 20 nm, 10 nm, or the like can be used.

また、貯槽10には、超音波照射装置12が設けられており、超音波の照射によって金ナノ粒子がアルコール中に確実に分散される。超音波照射装置12は、各種液体等の混合用のものを適宜採用することができる。   Further, the storage tank 10 is provided with an ultrasonic irradiation device 12, and the gold nanoparticles are reliably dispersed in the alcohol by the irradiation of the ultrasonic waves. As the ultrasonic irradiation device 12, a device for mixing various liquids or the like can be appropriately employed.

貯槽10内の試料液は、ポンプ14により、バルブ16を介し、フィルター18に供給される。なお、フィルター18に供給される試料液の圧力は圧力計20で計測され、フィルター18における圧損などをチェックする。   The sample liquid in the storage tank 10 is supplied to the filter 18 via the valve 16 by the pump 14. Note that the pressure of the sample liquid supplied to the filter 18 is measured by the pressure gauge 20, and pressure loss in the filter 18 is checked.

フィルター18は、評価対象である、MF膜、UF膜などのろ過膜を利用したものであり、例えば高分子ろ過膜によって原液側とろ過液側が仕切られており、ろ過膜によって原液中の微粒子がろ過除去される。   The filter 18 uses a filtration membrane such as an MF membrane or a UF membrane to be evaluated. For example, the polymer solution membrane separates the stock solution side from the filtrate side, and fine particles in the stock solution are separated by the filtration membrane. Filtered off.

そして、フィルター18への供給路からバルブ22を介し、サンプリングされ、前処理手段S1に供給される。また、フィルター18で得られたろ液がサンプリングされて前処理手段S2に供給される。そして、前処理手段S1,S2で前処理された、試料液、ろ液が適宜ICP−MS26に供給され、ここで金ナノ粒子濃度が定量分析される。   Then, the sample is sampled from the supply path to the filter 18 through the valve 22 and supplied to the preprocessing means S1. Further, the filtrate obtained by the filter 18 is sampled and supplied to the pretreatment means S2. Then, the sample solution and filtrate pretreated by the pretreatment means S1 and S2 are appropriately supplied to the ICP-MS 26, where the gold nanoparticle concentration is quantitatively analyzed.

ここで、前処理手段S1,S2について、図2に基づいて説明する。この例では、サンプリングした被測定液は、まず加熱乾固される。すなわち、容器に入れた被測定液を100°C程度に加熱して、アルコールを蒸発させ、金ナノ粒子を残渣物として乾固する。次に、残渣物に薬液を添加して、金ナノ粒子からなる残渣物を薬液に溶解しICP−MS26により測定する測定溶液を得る。そして、得られた測定溶液をICP−MS26によって定量する。このように加熱乾固工程を設けることによって、アルコールを除去して、ICP−MS26における分析への弊害を除去する。また、これによって、金ナノ粒子の濃度が低濃度であっても、ICP−MS26で定量するときには、高濃度化でき、定量の精度を上げることができる。   Here, pre-processing means S1 and S2 will be described with reference to FIG. In this example, the sampled liquid to be measured is first heated and dried. That is, the liquid to be measured placed in the container is heated to about 100 ° C. to evaporate the alcohol and dry the gold nanoparticles as a residue. Next, a chemical solution is added to the residue, and the residue consisting of gold nanoparticles is dissolved in the chemical solution to obtain a measurement solution that is measured by ICP-MS26. And the obtained measurement solution is quantified by ICP-MS26. By providing the heating and drying step in this way, alcohol is removed and adverse effects on the analysis in the ICP-MS 26 are removed. Moreover, even if the density | concentration of a gold nanoparticle is low by this, when quantifying with ICP-MS26, it can raise concentration and can raise the precision of fixed_quantity | quantitative_assay.

ここで、残渣物に添加する薬液は、金ナノ粒子を溶解させるためのものであり、硝酸と塩酸の混合溶液(濃硝酸に濃塩酸を混合したいわゆる王水など)が好適であるが、塩酸に代えて塩化物を用いる硝酸と塩化物の混合液を用いることもできる。   Here, the chemical solution added to the residue is for dissolving gold nanoparticles, and a mixed solution of nitric acid and hydrochloric acid (so-called aqua regia in which concentrated hydrochloric acid is mixed with concentrated nitric acid) is preferable. Alternatively, a mixed solution of nitric acid and chloride using chloride may be used.

すなわち、金を溶解するのは、濃硝酸(HNO)と濃塩酸(HCl)が反応して生ずるNOClと、Clである。従って、王水に限らずNOとClを生ずる組み合わせでも可能であり、例えば濃HNO+NaCl/NHClや、NaNO+濃HClなどを利用することもできる。 That is, gold is dissolved by NOCl and Cl 2 produced by the reaction of concentrated nitric acid (HNO 3 ) and concentrated hydrochloric acid (HCl). Therefore, not only aqua regia but also a combination that generates NO 3 and Cl is possible, and for example, concentrated HNO 3 + NaCl / NH 4 Cl, NaNO 3 + concentrated HCl, or the like can be used.

このように、残渣物に薬液を添加することで、残渣物中の金ナノ粒子が溶解し、均質な液となる。そして、このように金ナノ粒子が溶解された測定溶液をICP−MS26で定量分析する。これによって、測定溶液中の金の濃度を検出することができ、薬液の添加量を考慮して換算することで、溶解液中の金ナノ粒子濃度を定量することができる。   Thus, by adding a chemical | medical solution to a residue, the gold nanoparticle in a residue dissolves and it becomes a homogeneous liquid. Then, the measurement solution in which the gold nanoparticles are dissolved in this way is quantitatively analyzed by ICP-MS26. Thereby, the concentration of gold in the measurement solution can be detected, and the gold nanoparticle concentration in the solution can be quantified by conversion in consideration of the addition amount of the chemical solution.

ここで、フィルターにおける処理において、金ナノ粒子と、フィルターの吸着作用がろ過性能に影響を及ぼす。すなわち、試料液に混合されている金ナノ粒子について吸着能力があれば、金ナノ粒子の除去性能は高くなる。しかし、試料液中の金ナノ粒子は、標準粒子であって、実際に除去対象とする粒子ではない。従って、フィルターの除粒子性能の評価を行うのであれば、吸着作用のない場合のろ過性能を評価することが好ましい。   Here, in the treatment in the filter, the gold nanoparticles and the adsorption action of the filter affect the filtration performance. That is, if the gold nanoparticles mixed in the sample solution have an adsorption ability, the removal performance of the gold nanoparticles is enhanced. However, the gold nanoparticles in the sample liquid are standard particles and are not actually particles to be removed. Therefore, if the particle removal performance of the filter is evaluated, it is preferable to evaluate the filtration performance when there is no adsorption action.

そこで、本実施形態では、金ナノ粒子について保護配位子によりその表面状態を調整し、フィルターにおける吸着作用のない状態でのろ過性能を評価する。   Therefore, in this embodiment, the surface state of the gold nanoparticle is adjusted with a protective ligand, and the filtration performance in a state where there is no adsorption action in the filter is evaluated.

なお、ICP−MS26は、市販のものを利用することができ、特別な手法を用いなくても定量分析を行うことが可能である。複数の濃度の標準試料を用い、カウント値(CPS)と金ナノ粒子濃度の検量線を作成しておき、実際の測定の際に得られたカウント値を濃度に換算する。   Note that a commercially available ICP-MS 26 can be used, and quantitative analysis can be performed without using a special technique. Using a standard sample having a plurality of concentrations, a calibration curve of the count value (CPS) and the gold nanoparticle concentration is prepared, and the count value obtained in the actual measurement is converted into the concentration.

ここで、金を表面修飾する際に用いられる配位子としては、MEA(2-mercaptoethanoic Acid)、MPA(3-mercaptopropanoic acid)、TA(thioctic acid)、11-MUDA(11-mercaptoundecanoic acid)、Oleylamine(9-octadecenylamine)、1-Dodecanethiol等が挙られる。   Here, as the ligand used when modifying the surface of gold, MEA (2-mercaptoethanoic acid), MPA (3-mercaptopropanoic acid), TA (thioctic acid), 11-MUDA (11-mercaptoundecanoic acid), Examples include Oleylamine (9-octadecenylamine) and 1-Dodecanethiol.

そして、保護配位子を用いて金ナノ粒子に表面修飾を行った場合に、金ナノ粒子の残渣物の硝酸と塩酸の混合溶液等の薬液への溶解しやすさが、異なってくる。例えば、IPA中で、保護配位子によって疎水性の表面修飾を行った場合、高濃度の硝酸と塩酸の混合溶液によって金ナノ粒子の溶解回収を行うことが好適である。また、溶解を促進するために、超音波照射時間を比較的長くするとよい。   When gold nanoparticles are subjected to surface modification using a protective ligand, the ease of dissolution of gold nanoparticle residues in a chemical solution such as a mixed solution of nitric acid and hydrochloric acid differs. For example, when hydrophobic surface modification is performed with a protective ligand in IPA, it is preferable to perform dissolution and recovery of gold nanoparticles with a mixed solution of high-concentration nitric acid and hydrochloric acid. Further, in order to promote dissolution, it is preferable to make the ultrasonic irradiation time relatively long.

例えば、超音波照射時間を一定として硝酸と塩酸の混合溶液の濃度を高くすると、これによって残渣物中の金ナノ粒子の回収率が向上する。また、硝酸と塩酸の混合溶液の濃度を一定として、超音波照射時間を変更した場合、回収率が向上する。例えば、IPA中の金ナノ粒子であって、チオクト酸や、10−カルボキシ−1−デカンチオールなどで表面修飾を行った場合、硝酸と塩酸の混合溶液について、硝酸濃度(asHNO)が1.5wt%かつ塩酸濃度(asHCl)が2.3wt%未満になると、回収率が低く、また硝酸濃度(asHNO)が7.5wt%かつ塩酸濃度(asHCl)が11.3wt%以上としても、回収率に変化はない。従って、硝酸と塩酸の混合溶液は、硝酸濃度(asHNO)1.5〜7.5wt%、塩酸濃度(asHCl)2.3〜11.3wt%の範囲とすることが好適である。なお、純水中の金ナノ粒子の場合、硝酸と塩酸の混合溶液は、硝酸濃度(asHNO)0.75wt%、塩酸濃度(asHCl)1.15wt%程度でも、十分な回収率が得られる。 For example, when the concentration of the mixed solution of nitric acid and hydrochloric acid is increased while keeping the ultrasonic irradiation time constant, this improves the recovery rate of gold nanoparticles in the residue. Further, when the concentration of the mixed solution of nitric acid and hydrochloric acid is kept constant and the ultrasonic irradiation time is changed, the recovery rate is improved. For example, when gold nanoparticles in IPA are surface-modified with thioctic acid or 10-carboxy-1-decanethiol, the nitric acid concentration (asHNO 3 ) of the mixed solution of nitric acid and hydrochloric acid is 1. When 5 wt% and hydrochloric acid concentration (asHCl) are less than 2.3 wt%, the recovery rate is low, and even when the nitric acid concentration (asHNO 3 ) is 7.5 wt% and the hydrochloric acid concentration (asHCl) is 11.3 wt% or more, recovery is possible. There is no change in rate. Therefore, it is preferable that the mixed solution of nitric acid and hydrochloric acid has a nitric acid concentration (asHNO 3 ) of 1.5 to 7.5 wt% and a hydrochloric acid concentration (asHCl) of 2.3 to 11.3 wt%. In the case of gold nanoparticles in pure water, a sufficient recovery rate can be obtained even if the mixed solution of nitric acid and hydrochloric acid has a nitric acid concentration (asHNO 3 ) of 0.75 wt% and a hydrochloric acid concentration (asHCl) of about 1.15 wt%. .

(1)金ナノ粒子の表面状態による回収率比較
図2に示す手法によって、金ナノ粒子の定量を行った。
(1) Comparison of recovery rate according to surface state of gold nanoparticles Gold nanoparticles were quantified by the method shown in FIG.

金ナノ粒子原液(市販品:BBI社製、粒子径30nm)を一旦加熱乾固させた後、金ナノ粒子を含む残渣物を硝酸と塩酸の混合溶液で溶解し、得られた測定溶液をICP−MSによって定量した。   A gold nanoparticle stock solution (commercial product: manufactured by BBI, particle size: 30 nm) was once heated to dryness, and then the residue containing gold nanoparticles was dissolved in a mixed solution of nitric acid and hydrochloric acid. -Quantified by MS.

具体的には、まず超純水中に種々の金ナノ粒子(30nm)を0.5ng/Lになるように添加した金ナノ粒子溶液を調整した。この際、異なる保護配位子によって表面を修飾した。具体的には、上記市販の金ナノ粒子自体は、すでに親水性の保護配位子によって表面修飾されているため、それを2つの疎水性の保護配位子によって表面修飾し、合計3つの表面状態に調整した。   Specifically, first, a gold nanoparticle solution in which various gold nanoparticles (30 nm) were added to ultrapure water so as to be 0.5 ng / L was prepared. At this time, the surface was modified with different protective ligands. Specifically, since the commercially available gold nanoparticle itself is already surface-modified with a hydrophilic protective ligand, it is surface-modified with two hydrophobic protective ligands, resulting in a total of three surfaces. Adjusted to the condition.

本実施例では、保護配位子としては、(i)クエン酸(Citric acid)、(ii)チオクト酸(thioctic acid)、(iii)10−カルボキシ−1−デカンチオール(10-Carboxy-1-decanethiol or 11-Mercaptoundecanoic acid)を利用した。   In this example, as the protective ligand, (i) citric acid, (ii) thioctic acid, (iii) 10-carboxy-1-decanethiol (10-Carboxy-1- decanethiol or 11-Mercaptoundecanoic acid) was used.

ここで、前述した通り、上記の金ナノ粒子原液(市販品:BBI社製、粒子径30nm)については、すでに親水性の(i)クエン酸(Citric acid)で表面修飾されている。そこで、本実施例における親水性の保護配位子で表面修飾された金ナノ粒子としては、上記市販品をそのまま用いた。   Here, as described above, the gold nanoparticle stock solution (commercial product: manufactured by BBI, particle size: 30 nm) has already been surface-modified with hydrophilic (i) citric acid. Therefore, as the gold nanoparticles surface-modified with the hydrophilic protective ligand in this example, the above-mentioned commercially available product was used as it was.

また、上記の疎水性の保護配位子(ii),(iii)による金ナノ粒子の表面修飾については、具体的に以下の方法で行った。
(ii)チオクト酸(thioctic acid)による表面修飾方法
[1]BBI社製金コロイド(30nm,0.1wt%)を5ml分取する。
[2]金のモル数に対して10倍モルとなるように調整したチオクト酸を45ml添加する。
[3]1NのNaOHにてpH11に調整する。
[4]16時間攪拌する。
[5]遠心分離(11800rpm,10℃,10分)により上澄み液を除く。
上記方法により、チオクト酸で表面修飾した金コロイド濃縮液約1wt%を得た。
(iii)10−カルボキシ−1−デカンチオール(10-Carboxy-1-decanethiol or 11-Mercaptoundecanoic acid)による表面修飾方法
[1]上記(ii)により得られた金コロイド濃縮液について、さらに下記の操作を実施。
[2]金のモル数に対して25倍モルとなるように調整した10−カルボキシ−1−デカンチオールを45ml添加する。
[3]1NのNaOHにてpH11に調整する。
[4]16時間攪拌する。
[5]遠心分離(11800rpm,10℃,10分)により上澄み液を除く。
上記方法により、10−カルボキシ−1−デカンチオールで表面修飾した金コロイド濃縮液約1wt%を得た。
The surface modification of the gold nanoparticles with the hydrophobic protective ligands (ii) and (iii) was specifically performed by the following method.
(Ii) Surface modification method with thioctic acid [1] 5 ml of a gold colloid (30 nm, 0.1 wt%) manufactured by BBI is taken.
[2] 45 ml of thioctic acid adjusted so as to be 10 times the mole of gold is added.
[3] Adjust to pH 11 with 1N NaOH.
[4] Stir for 16 hours.
[5] The supernatant is removed by centrifugation (11800 rpm, 10 ° C., 10 minutes).
By the above method, about 1 wt% of a colloidal gold concentrate surface-modified with thioctic acid was obtained.
(Iii) Surface modification method using 10-Carboxy-1-decanethiol or 11-Mercaptoundecanoic acid [1] The gold colloid concentrate obtained by (ii) above is further subjected to the following operations: Implemented.
[2] 45 ml of 10-carboxy-1-decanethiol adjusted so as to be 25 moles per mole of gold is added.
[3] Adjust to pH 11 with 1N NaOH.
[4] Stir for 16 hours.
[5] The supernatant is removed by centrifugation (11800 rpm, 10 ° C., 10 minutes).
By the above method, about 1 wt% of a colloidal gold concentrate surface-modified with 10-carboxy-1-decanethiol was obtained.

(i)は親水性であり、溶液(液性)として超純水を利用した。配位子(ii),(iii)は比較的疎水性であり、溶液としてIPA(イソプロピルアルコール)を利用した。   (I) is hydrophilic, and ultrapure water was used as a solution (liquid property). The ligands (ii) and (iii) are relatively hydrophobic, and IPA (isopropyl alcohol) was used as a solution.

保護配位子で金ナノ粒子表面を修飾した金ナノ粒子を含む試料液を、加熱乾固し、金ナノ粒子を含む残渣物を析出させた。その後残渣物に所定量の硝酸と塩酸の混合溶液を加えてこれを溶解し、これに超純水を加えて希釈し、所定濃度として、ICP−MSで定量した。   A sample solution containing gold nanoparticles whose surface was modified with a protective ligand was heated and dried to precipitate a residue containing gold nanoparticles. Then, a predetermined amount of a mixed solution of nitric acid and hydrochloric acid was added to the residue to dissolve it, and ultrapure water was added to the residue to dilute it, and a predetermined concentration was determined by ICP-MS.

なお、硝酸と塩酸の混合溶液については、硝酸(市販品:関東化学社製 Ultrapur、61wt%(asHNO))と、塩酸(市販品:関東化学社製 Ultrapur、31wt%(asHCl))を体積比で1:3で混合したものを原液として用いた。 As for the mixed solution of nitric acid and hydrochloric acid, nitric acid (commercial product: Ultrapur, 61 wt% (asHNO 3 ) manufactured by Kanto Chemical Co., Ltd.) and hydrochloric acid (commercial product: Ultrapur, 31 wt% (asHCl) manufactured by Kanto Chemical Co., Ltd.) are volumetric. The mixture at a ratio of 1: 3 was used as the stock solution.

ここで、硝酸と塩酸の混合溶液の添加量と、超音波の照射時間を変化させて、回収率への寄与を評価した。その結果を図3に示す。ここで、回収条件1は、硝酸と塩酸の混合溶液の濃度として、硝酸濃度(asHNO)1.5wt%、塩酸濃度(asHCl)2.3wt%、超音波照射時間5分、回収条件2は、硝酸と塩酸の混合溶液の濃度として、硝酸濃度(asHNO)3.0wt%、塩酸濃度(asHCl)4.5wt%、超音波照射時間10分、回収条件3は、硝酸と塩酸の混合溶液の濃度として、硝酸濃度(asHNO)4.5wt%、塩酸濃度(asHCl)6.8wt%、超音波照射時間10分である。なお、硝酸と塩酸の混合溶液の濃度は、超純水に前述の硝酸と塩酸の混合溶液原液を2,4,6mL添加して、添加後の水量を20mLに調整することで行った。 Here, the addition amount of the mixed solution of nitric acid and hydrochloric acid and the irradiation time of ultrasonic waves were changed, and the contribution to the recovery rate was evaluated. The result is shown in FIG. Here, the recovery condition 1 is that the concentration of the mixed solution of nitric acid and hydrochloric acid is as follows: nitric acid concentration (asHNO 3 ) 1.5 wt%, hydrochloric acid concentration (asHCl) 2.3 wt%, ultrasonic irradiation time 5 minutes, recovery condition 2 The concentration of the mixed solution of nitric acid and hydrochloric acid is as follows: nitric acid concentration (asHNO 3 ) 3.0 wt%, hydrochloric acid concentration (asHCl) 4.5 wt%, ultrasonic irradiation time 10 minutes, recovery condition 3 is a mixed solution of nitric acid and hydrochloric acid The concentration of nitric acid is 4.5 wt% nitric acid (asHNO 3 ), 6.8 wt% hydrochloric acid (asHCl), and the ultrasonic irradiation time is 10 minutes. In addition, the density | concentration of the mixed solution of nitric acid and hydrochloric acid was performed by adding 2, 4, 6 mL of the above-mentioned mixed solution stock solution of nitric acid and hydrochloric acid to ultrapure water and adjusting the amount of water after the addition to 20 mL.

このように、配位子としてクエン酸(親水性の保護配位子)を用い液性として超純水を用いた上記(i)の例では、回収条件1〜3のいずれにおいても、高い回収率を示しており、加熱乾固後の硝酸と塩酸の混合溶液の添加による溶解について保護配位子の影響がほとんどないことがわかる。一方、配位子としてチオクト酸、10−カルボキシ−1−デカンチオール(疎水性官能基を有する保護配位子)を用い液性としてIPAを用いた上記(ii),(iii)の例では、回収条件において、大きな変化がある。すなわち、硝酸と塩酸の混合溶液の濃度がある程度高い必要がある。また、超音波照射時間も長い方がよい。具体的には、回収条件3のように、硝酸と塩酸の混合溶液の濃度として、硝酸濃度(asHNO)4.5wt%、塩酸濃度(asHCl)6.8wt%以上で、超音波照射時間10分以上の場合、回収率が非常に高くなることが分かる。 Thus, in the example of the above (i) in which citric acid (hydrophilic protective ligand) is used as the ligand and ultrapure water is used as the liquid, high recovery is achieved in any of the recovery conditions 1 to 3. It can be seen that there is almost no influence of the protective ligand on dissolution by addition of a mixed solution of nitric acid and hydrochloric acid after heating to dryness. On the other hand, in the above examples (ii) and (iii) using thioctic acid, 10-carboxy-1-decanethiol (protective ligand having a hydrophobic functional group) as a ligand and IPA as a liquid, There are significant changes in recovery conditions. That is, the concentration of the mixed solution of nitric acid and hydrochloric acid needs to be high to some extent. Also, it is better that the ultrasonic irradiation time is longer. Specifically, as in the recovery condition 3, the concentration of the mixed solution of nitric acid and hydrochloric acid is as follows: nitric acid concentration (asHNO 3 ) 4.5 wt%, hydrochloric acid concentration (asHCl) 6.8 wt% or more, and ultrasonic irradiation time 10 It can be seen that the recovery rate is very high when it is more than a minute.

(2)フィルターの除粒子性能評価(IPA)
図1に示すシステムに対応する実験装置を用い、IPA中に金ナノ粒子を分散させた試料液(原水)をろ過処理し、フィルターの除粒子性能を評価した。すなわち、貯槽10に所定量の原水を貯留し、ここに窒素ガスを圧送して、全量をフィルター18に供給してろ過処理した。そして、原水(S1)を予めサンプリングすると共に、ろ過液をサンプリングした。
(2) Particle removal performance evaluation of filters (IPA)
Using a test apparatus corresponding to the system shown in FIG. 1, a sample solution (raw water) in which gold nanoparticles were dispersed in IPA was filtered, and the particle removal performance of the filter was evaluated. That is, a predetermined amount of raw water was stored in the storage tank 10, nitrogen gas was pumped therein, and the entire amount was supplied to the filter 18 for filtration. And while sampling raw | natural water (S1) previously, the filtrate was sampled.

粒子径20nmの金ナノ粒子(BBI社製)をIPA((株)徳山製、トクソーIPA SE(商品名))で希釈するとともに、金ナノ粒子の表面を保護配位子で修飾して得た原水をフィルター18に通水させた。   Obtained by diluting gold nanoparticles (BBI) having a particle size of 20 nm with IPA (manufactured by Tokuyama Co., Ltd., Toxo IPA SE (trade name)) and modifying the surface of the gold nanoparticles with a protective ligand The raw water was passed through the filter 18.

なお、保護配位子としては、上述した(iii)10−カルボキシ−1−デカンチオールを利用した。   As the protective ligand, (iii) 10-carboxy-1-decanethiol described above was used.

また、フィルター18としては、膜種:MF膜、材質:UPE(超高分子量ポリエチレン)、除粒子径:5nmの、日本インテグリス(株)製、オプチマイザーDLE ディスポーザブルフィルター(商品名)を利用した。   As the filter 18, an Optimizer DLE disposable filter (trade name) manufactured by Nihon Integris Co., Ltd., having a membrane type: MF membrane, a material: UPE (ultra high molecular weight polyethylene), and a particle removal diameter: 5 nm was used.

この際、MF膜の通水条件は、通水方式:全量ろ過、通水圧力:0.1MPa、ろ過流量:67mL/minとした。フィルター前後の原水(S1)およびろ過液(S2)をサンプリングした。サンプリングした原水は、加熱乾固し、金ナノ粒子を含む残渣物を析出させ、その後残渣物に所定量の硝酸と塩酸の混合溶液を加えてこれを溶解し、これに超純水を加えて希釈し、所定濃度として、ICP−MSで定量した。一方、サンプリングしたろ過液は、一旦加熱乾固した後、硝酸と塩酸の混合溶液原液で溶解し、超純水で所定濃度に調整してICP−MSで定量した。なお、回収条件としては、上述の回収条件3を採用した。また、硝酸と塩酸の混合溶液の濃度は、硝酸濃度(asHNO)4.5wt%、塩酸濃度(asHCl)6.8wt%、超音波照射時間は10分とした。 At this time, the water flow conditions of the MF membrane were water flow method: total filtration, water flow pressure: 0.1 MPa, filtration flow rate: 67 mL / min. The raw water before and after the filter (S1) and the filtrate (S2) were sampled. The sampled raw water is heated to dryness to precipitate a residue containing gold nanoparticles, and then a predetermined amount of a mixed solution of nitric acid and hydrochloric acid is added to the residue to dissolve it, and ultrapure water is added to this. It diluted and quantified by ICP-MS as predetermined concentration. On the other hand, the sampled filtrate was once heated to dryness, dissolved in a mixed solution stock solution of nitric acid and hydrochloric acid, adjusted to a predetermined concentration with ultrapure water, and quantified by ICP-MS. Note that the above-mentioned recovery condition 3 was adopted as the recovery condition. The concentration of the mixed solution of nitric acid and hydrochloric acid was nitric acid concentration (asHNO 3 ) 4.5 wt%, hydrochloric acid concentration (asHCl) 6.8 wt%, and the ultrasonic irradiation time was 10 minutes.

この結果を表1に示す。   The results are shown in Table 1.

Figure 2013033029
このように、このフィルターの微粒子捕捉率は、99.98%であることがわかった。従って、本実施例により、ITRSにおける20nm粒子の管理指標(1.0E+04個/mL)を満たすレベルでのフィルターの評価が可能であることがわかった。
Figure 2013033029
Thus, the fine particle capture rate of this filter was found to be 99.98%. Therefore, according to the present example, it was found that the filter can be evaluated at a level satisfying the management index (1.0E + 04 particles / mL) of 20 nm particles in ITRS.

このように、比較的疎水性の保護配位子を用いて金ナノ粒子の表面を修飾して、アルコール中に分散させた試料液を用いた場合には、加熱乾固後に硝酸と塩酸の混合溶液で金ナノ粒子を溶解することは可能であるが、高濃度の硝酸と塩酸の混合溶液を用いることが必要であり、超音波照射を行うことが好適であることがわかった。   In this way, when a sample solution in which the surface of the gold nanoparticle is modified with a relatively hydrophobic protective ligand and dispersed in alcohol is used, a mixture of nitric acid and hydrochloric acid is mixed after heating to dryness. Although it is possible to dissolve the gold nanoparticles with a solution, it was necessary to use a mixed solution of high-concentration nitric acid and hydrochloric acid, and it was found preferable to perform ultrasonic irradiation.

さらに、本実施形態の金ナノ粒子の定量方法を用いて、フィルター前後のサンプル中の金ナノ粒子を定量することで、フィルターを評価することができる。   Furthermore, the filter can be evaluated by quantifying the gold nanoparticles in the sample before and after the filter using the gold nanoparticle quantification method of the present embodiment.

10 貯槽、12 超音波照射装置、14 ポンプ、16 バルブ、18 フィルター、20 圧力計、22,24 バルブ、26 ICP−MS。   10 storage tanks, 12 ultrasonic irradiation devices, 14 pumps, 16 valves, 18 filters, 20 pressure gauges, 22, 24 valves, 26 ICP-MS.

Claims (8)

保護配位子によって表面修飾された金ナノ粒子がアルコール中に分散された測定液中の金ナノ粒子の定量方法であって、
前記測定液を加熱して、金ナノ粒子を残渣物とする工程と、
得られた残渣物に対し、硝酸と、塩酸または塩化物とを混合して調整された薬液を添加して前記残渣物を溶解した溶解液を得る工程と、
得られた溶解液についてICP−MSによって分析し、測定液中の金ナノ粒子の量を検出する工程と、
を含むことを特徴とする金ナノ粒子の定量方法。
A method for quantifying gold nanoparticles in a measurement liquid in which gold nanoparticles surface-modified with a protective ligand are dispersed in alcohol,
Heating the measurement liquid to form gold nanoparticles as a residue;
A step of adding a chemical solution prepared by mixing nitric acid and hydrochloric acid or chloride to the obtained residue to obtain a solution in which the residue is dissolved; and
Analyzing the obtained solution by ICP-MS and detecting the amount of gold nanoparticles in the measurement solution;
A method for quantifying gold nanoparticles, comprising:
請求項1に記載の金ナノ粒子の定量方法において、
前記溶解液を得る工程において、前記薬液の濃度を前記保護配位子の種類によって変更することを特徴とする金ナノ粒子の定量方法。
The method for quantifying gold nanoparticles according to claim 1,
In the step of obtaining the dissolution solution, the concentration of the chemical solution is changed depending on the type of the protective ligand.
請求項2に記載の金ナノ粒子の定量方法において、
前記溶解液を得る工程において、前記残渣物に前記薬液を添加した後、超音波を照射することを特徴とする金ナノ粒子の定量方法。
The method for quantifying gold nanoparticles according to claim 2,
In the step of obtaining the solution, a gold nanoparticle quantification method comprising irradiating an ultrasonic wave after adding the chemical solution to the residue.
請求項3に記載の金ナノ粒子の定量方法において、
前記薬液は、硝酸と塩酸の混合物であって、硝酸1.5〜7.5重量%、塩酸重量%を含むことを特徴とする金ナノ粒子の定量方法。
The method for quantifying gold nanoparticles according to claim 3,
The said chemical | medical solution is a mixture of nitric acid and hydrochloric acid, Comprising: Nitric acid 1.5-7.5 weight% and hydrochloric acid weight%, The determination method of the gold nanoparticle characterized by the above-mentioned.
請求項3に記載の金ナノ粒子の定量方法において、
前記薬液は、硝酸と塩酸の混合物であって、硝酸4.5〜7.5重量%、塩酸6.8〜11.3重量%を含むことを特徴とする金ナノ粒子の定量方法。
The method for quantifying gold nanoparticles according to claim 3,
The said chemical | medical solution is a mixture of nitric acid and hydrochloric acid, Comprising: Nitric acid 4.5-7.5 weight% and hydrochloric acid 6.8-11.3 weight%, The determination method of the gold nanoparticle characterized by the above-mentioned.
請求項4または5に記載の金ナノ粒子の定量方法において、
前記保護配位子は、チオクト酸または10−カルボキシ−1−デカンチオールであることを特徴とする金ナノ粒子の定量方法。
The method for quantifying gold nanoparticles according to claim 4 or 5,
The method for quantifying gold nanoparticles, wherein the protective ligand is thioctic acid or 10-carboxy-1-decanethiol.
請求項1〜6のいずれか1つに記載の金ナノ粒子の定量方法において、
前記アルコールはIPAであることを特徴とする金ナノ粒子の定量方法。
In the determination method of the gold nanoparticle according to any one of claims 1 to 6,
The method for quantifying gold nanoparticles, wherein the alcohol is IPA.
請求項1〜7のいずれか1つに記載の金ナノ粒子の定量方法において、
前記測定液は、フィルターのろ過液であることを特徴とする金ナノ粒子の定量方法。
In the determination method of the gold nanoparticles according to any one of claims 1 to 7,
The method for quantifying gold nanoparticles, wherein the measurement liquid is a filtrate of a filter.
JP2012138397A 2011-07-01 2012-06-20 Quantification method of gold nanoparticles Active JP5611276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138397A JP5611276B2 (en) 2011-07-01 2012-06-20 Quantification method of gold nanoparticles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011147485 2011-07-01
JP2011147485 2011-07-01
JP2012138397A JP5611276B2 (en) 2011-07-01 2012-06-20 Quantification method of gold nanoparticles

Publications (2)

Publication Number Publication Date
JP2013033029A true JP2013033029A (en) 2013-02-14
JP5611276B2 JP5611276B2 (en) 2014-10-22

Family

ID=47789013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138397A Active JP5611276B2 (en) 2011-07-01 2012-06-20 Quantification method of gold nanoparticles

Country Status (1)

Country Link
JP (1) JP5611276B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007095A (en) * 2014-05-30 2014-08-27 桂林理工大学 Method for measuring concentration of nanogold by adopting near infrared luminescent quantum dot fluorescent spectrometry
CN104483373A (en) * 2014-12-03 2015-04-01 金川集团股份有限公司 Method for rapidly measuring trace elements in black copper slags
JP2015226906A (en) * 2011-07-01 2015-12-17 オルガノ株式会社 Method of evaluating filter
JP2016197048A (en) * 2015-04-03 2016-11-24 オルガノ株式会社 Filter evaluating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885410A (en) 2016-03-31 2018-11-23 富士胶片株式会社 The manufacturing method of electronic material manufacture medical fluid, pattern forming method, the manufacturing method of semiconductor device, electronic material are manufactured with medical fluid, container and quality inspection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149593A (en) * 2007-11-29 2009-07-09 Kyushu Univ Embedded fine particles, method for preparing the same and use
JP2013031835A (en) * 2011-07-01 2013-02-14 Japan Organo Co Ltd Method of evaluating filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149593A (en) * 2007-11-29 2009-07-09 Kyushu Univ Embedded fine particles, method for preparing the same and use
JP2013031835A (en) * 2011-07-01 2013-02-14 Japan Organo Co Ltd Method of evaluating filter

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CSNC201008100723; 水野豪仁 他: '"30nm以下フィルターの除粒子性能評価方法とろ過操作条件"' 第69回応用物理学会学術講演会講演予稿集 Volume 2, 20080902, Page 697 *
CSNC201008130778; 水野豪仁 他: '"金ナノ粒子を用いたフィルターろ過性能評価における保護配位子添加効果"' 第56回応用物理学関係連合講演会講演予稿集 Volume 2, 20090330, Page 829 *
JPN6014031082; MERTENS,P.G.N. 他: '"Gold nanoclusters as colloidal catalysts for oxidation of long chain aliphatic 1,2-diol in alcohol' Gold Bulletin Volume 38, Number 4, 200512, Pages 157-162 *
JPN6014031083; 水野豪仁 他: '"30nm以下フィルターの除粒子性能評価方法とろ過操作条件"' 第69回応用物理学会学術講演会講演予稿集 Volume 2, 20080902, Page 697 *
JPN6014031084; 水野豪仁 他: '"金ナノ粒子を用いたフィルターろ過性能評価における保護配位子添加効果"' 第56回応用物理学関係連合講演会講演予稿集 Volume 2, 20090330, Page 829 *
JPN6014031085; HAN,Y. 他: '"Reverse Microemulsion-Mediated Synthesis of Silica-Coated Gold and Silver Nanoparticles"' Langmuir Volume 24, Number 11, 20080509, Pages 5842-5848 *
JPN6014031086; 水野豪仁: '"30nm以下粒子除去フィルターの新規定格方法"' クリーンテクノロジー Volume 2009.2, 2009, Pages 45-48 *
JPN6014031087; ALLABASHI,R. 他: '"ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous' Journal of Nanoparticle Research Volume 11, Issue 8, 200911, Pages 2003-2011 *
JPN6014031088; CHING,T.T.: "PREPARATION AND OPTICAL CHARACTERIZATION OF METALLIC NANOPARTICLES" , 2010, PP.14-15,23-24,30-34,42-43,52-55,60-61, National University of Singapore *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226906A (en) * 2011-07-01 2015-12-17 オルガノ株式会社 Method of evaluating filter
CN104007095A (en) * 2014-05-30 2014-08-27 桂林理工大学 Method for measuring concentration of nanogold by adopting near infrared luminescent quantum dot fluorescent spectrometry
CN104483373A (en) * 2014-12-03 2015-04-01 金川集团股份有限公司 Method for rapidly measuring trace elements in black copper slags
JP2016197048A (en) * 2015-04-03 2016-11-24 オルガノ株式会社 Filter evaluating method

Also Published As

Publication number Publication date
JP5611276B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP6062504B2 (en) Filter evaluation method
JP5611276B2 (en) Quantification method of gold nanoparticles
Sikder et al. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV–Vis
Ulrich et al. Critical aspects of sample handling for direct nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a multi-detector approach
Palencia et al. Size separation of silver nanoparticles by dead-end ultrafiltration: Description of fouling mechanism by pore blocking model
Fernandes et al. Green microfluidic synthesis of monodisperse silver nanoparticles via genetic algorithm optimization
JP5206120B2 (en) Metal analysis method and semiconductor wafer manufacturing method
WO2006006370A1 (en) Method of rating water quality, ultrapure water rating apparatus utilizing the method and system for ultrapure water production
Peng et al. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation
Ning-Ning et al. Au@ PVP core-shell nanoparticles used as surface-enhanced Raman spectroscopic substrate to detect malachite green
Dastafkan et al. Mechanism and behavior of silver nanoparticles in aqueous medium as adsorbent
Jiang et al. Implications of the differential toxicological effects of III–V ionic and particulate materials for hazard assessment of semiconductor slurries
Ahmad et al. Enrichment of trace Hg (II) ions from food and water samples after solid phase extraction combined with ICP-OES determination
TW201639788A (en) A gold nanoparticle array and process of making the same and application thereof
Kellenberger et al. Limestone nanoparticles as nanopore templates in polymer membranes: Narrow pore size distribution and use as self-wetting dialysis membranes
WO2015036868A2 (en) Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation
Xia et al. Large-scale synthesis of gold dendritic nanostructures for surface enhanced Raman scattering
Santos et al. Synthesis, characterization and application of ion imprinted poly (vinylimidazole) for zinc ion extraction/preconcentration with FAAS determination
Motellier et al. Contribution of single particle inductively coupled plasma mass spectrometry and asymmetrical flow field-flow fractionation for the characterization of silver nanosuspensions. Comparison with other sizing techniques
Romero et al. Facile preparation of an immobilized surfactant-free palladium nanocatalyst for metal hydride trapping: a novel sensing platform for TXRF analysis
JP4450117B2 (en) Water quality evaluation method for silicon substrate cleaning ultrapure water
Libman et al. Ultrapure water for advance semiconductor manufacturing: Challenges and opportunities
JP6548942B2 (en) Filter evaluation method
KR20110062825A (en) Gold-silver alloy nano particles chip, method for preparing the chip and method for detecting microorganism using the same
CN110296984A (en) The new material of mercury ion in a kind of detection environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140626

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140626

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R150 Certificate of patent or registration of utility model

Ref document number: 5611276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250