JP2015226277A - 量子鍵配送装置 - Google Patents

量子鍵配送装置 Download PDF

Info

Publication number
JP2015226277A
JP2015226277A JP2014111627A JP2014111627A JP2015226277A JP 2015226277 A JP2015226277 A JP 2015226277A JP 2014111627 A JP2014111627 A JP 2014111627A JP 2014111627 A JP2014111627 A JP 2014111627A JP 2015226277 A JP2015226277 A JP 2015226277A
Authority
JP
Japan
Prior art keywords
optical
pulse train
pulse
transmitter
degenerate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014111627A
Other languages
English (en)
Other versions
JP6214093B2 (ja
Inventor
武居 弘樹
Hiroki Takei
弘樹 武居
卓弘 稲垣
Takahiro Inagaki
卓弘 稲垣
恭 井上
Yasushi Inoue
恭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Osaka University NUC
Original Assignee
Nippon Telegraph and Telephone Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Osaka University NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014111627A priority Critical patent/JP6214093B2/ja
Publication of JP2015226277A publication Critical patent/JP2015226277A/ja
Application granted granted Critical
Publication of JP6214093B2 publication Critical patent/JP6214093B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】ランダム位相パルス列の生成部分を簡略化した差動位相シフト量子鍵配送システムを提供する。【解決手段】差動位相シフト型の量子鍵配送システムで用いられる送信器30であって、縮退光パラメトリック発振により相対位相がランダムに0またはπである一定周期の光パルス列を出力する縮退光パラメトリック発振器31と、光パラメトリック発振器31からの光パルス列を2分岐するビームスプリッタ32と、ビームスプリッタの一方の光パルス列を減衰して光伝送路へ送出する光減衰器36と、ビームスプリッタの他方の光パルス列が入力され、光パルス列を干渉させて2つの出力端から出力するマッハツェンダ干渉計33と、マッハツェンダ干渉計の2つの出力端からの光出力強度を検出する光検出器34、35と、検出された光パルスの位置と位相差とを記憶する位相差データ記憶手段を備え、記憶したパルス位置と位相差を利用して秘密鍵を生成する。【選択図】図2

Description

本発明は、暗号通信に用いる秘密鍵を離れた2者に供給する量子鍵配送装置に関する。
暗号通信に用いる秘密鍵を量子力学の原理を利用して安全に離れた2者に供給する量子鍵配送(Quantum Key Distribution: QKD)の研究開発が進められている。量子鍵配送にもいくつかの方式があり、例えば、差動位相シフト(Differential Phase Shift: DPS)QKDと呼ばれる方式が知られている。
図1は、従来のDPS−QKDシステムの基本構成である。送信器10は、コヒーレントパルス光源11と、位相変調器12と、光減衰器13とを備えている。コヒーレントパルス光源11から出力されたコヒーレント光パルス列の各パルスの搬送波位相を、位相変調器12において{0,π}のいずれかでランダムに位相変調し、かつ光減衰器13においてその光パワーを1パルス当たり平均1光子未満(例えば、0.2光子/パルス)まで弱めて光伝送路に送出する。この際、送信器10では位相変調データを記録しておく。受信器20は、遅延マッハツェンダ干渉計21において、送られてきた光パルス列P1を2分岐し、一方にパルス間隔分の時間遅延を与えた後、2×2光カップラにより再び合波する。この構成は、遅延マッハツェンダ干渉計と呼ばれているものである。この遅延マッハツェンダ干渉計内の2経路の伝播遅延位相差は0とする。光カップラの2つの出力端子にはそれぞれ光子検出器22、23が備えられている。すると、合波カップラでは隣接するパルスが干渉し、干渉の結果、2つの光子検出器22、23のいずれかで光子を検出する。2経路の伝播遅延位相差を0としているので、隣接パルスの位相差が0なら光子検出器22で、πなら光子検出器23で、光子が検出される。ただし、受信光パワーが1光子未満/パルスなので、光子が検出されるのは稀かつ時間的にランダムである。
上記装置を用いて、送受信者は次の手順により秘密鍵を獲得する。(1) 光パルス列送受信後、受信器20は光子検出時刻を送信器10に通知する。(2) 送信器10は、光子検出時刻および自身の位相変調データからどちら光子検出器22、23で光子が検出されたかを知る。(3) 送信器10および受信器20では、検出器22で光子検出された事象をビット「0」、検出器23で光子検出された事象をビット「1」とする。上記動作原理により、両者のビットは一致している。ここで外部に公開されるのは光子検出時刻のみであり、ビット情報は非公開である。そこで、送信器10および受信器20では、上記により得たビット列を秘密鍵とする。
得られた秘密鍵の安全性は、送信される光パルス列のパワーが1光子未満/パルスであることにより保証される。盗聴者がこのような低パワーの光パルス列の全ての位相差を測定することは量子力学的に不可能であり、一部の鍵情報しか盗聴することはできない。一部の漏洩分は秘匿性増強と呼ばれるデータ処理により消去可能であり、これにより、送受信者は完全に安全な秘密鍵を得る。
K. Inoue, et al., "Differential-phase-shift quantum key distribution using coherent light", PHYSICAL REVIEW A 68, 022317 (2003). Hiroki Takesue, et al., "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors", nature photonics, VOL. 1, JUNE 2007.
上記従来構成では、{0,π}ランダム位相パルス列の生成には、コヒーレントパルス光源からの出力光を、乱数発生装置から出力される乱数データに基づいて位相変調する手段が用いられていた。安全な量子鍵配送を実現するには、パターンに周期性が発生する疑似乱数は使用できず、完全にランダムな乱数を用いて位相変調を行う必要がある。そのため、これまではランダムな物理現象に基づいて乱数を発生する物理乱数発生器が用いられてきた。物理乱数発生器としては、たとえば雑音の物理量を検出し、検出された物理量が所定の閾値を超えるか否かを基準としてバイナリデータを出力するなどの方式がある。すなわち、従来の構成では、コヒーレントパルス光源に加え、物理乱数発生装置と位相変調器を組み合わせて、{0,π}ランダム位相パルス列の生成していたため、構成が複雑となる問題があった。
本発明は、上記課題に鑑みてなされたもので、その目的とするところは、{0,π}ランダム位相パルス列の生成部分を大幅に簡略化した差動位相シフト量子鍵配送システムを提供することにある。
上記の課題を解決するために、一実施形態に記載された発明は、差動位相シフト型の量子鍵配送システムにおいて用いられる送信器であって、縮退光パラメトリック発振により相対位相がランダムに0またはπである一定周期の光パルス列を出力する縮退光パラメトリック発振器と、前記光パラメトリック発振器からの光パルス列を2分岐する分岐手段と、前記分岐手段の一方の光パルス列を減衰して光伝送路へ送出する手段と、前記分岐手段の他方の光パルス列が入力され、該光パルス列を干渉させて2つの出力端から出力するマッハツェンダ干渉計と、前記マッハツェンダ干渉計の2つの出力端からの光出力強度を検出する検出手段と、前記検出手段で検出された光パルスのパルス位置とその位相差とを記憶する位相差データ記憶手段とを備え、前記位相差データ記憶手段に記憶したパルス位置とその位相差を利用して秘密鍵を生成することを特徴とする送信器である。
本発明によれば、送信器では乱数発生器及び光位相変調器を不要とすることができ、従来よりも簡便な量子鍵配送システムが提供できる。
従来のDPS−QKDシステムの基本構成である。 本発明実施形態の量子鍵配送システムの基本構成例を示す図である。 縮退光パラメトリック発振器の構成の一例を示す図である。 縮退光パラメトリック発振器の構成の他の一例を示す図である。
以下、本発明の実施の形態について、詳細に説明する。
本実施形態の量子鍵配送システムは、差動位相シフト量子鍵配送システムにおいて、送信器の光源として縮退光パラメトリック発振による連続光パルス列を用いている。縮退光パラメトリック発振で得られる連続光パルス列の各パルスは、その搬送波の相対位相が0またはπであり、いずれの位相となるかは完全にランダムとなる。
このように本実施形態の量子鍵配送システムでは、縮退光パラメトリック発振で得られた連続光パルス列そのものを光源として利用できるため、新たに乱数発生器と光位相変調器を必要とせず、従来よりも簡便な構成の差動位相シフト量子鍵配送システムを実現できる。
図2は、本発明実施形態の量子鍵配送システムの基本構成例を示す図である。本実施形態の量子鍵配送システムは、縮退光パラメトリック発振による連続光パルス列を出力する光源を有する送信器30と従来と同様の構成の受信器20とを備えている。
送信器30は、縮退光パラメトリック発振器31と、ビームスプリッタ32と、遅延マッハツェンダ干渉計33と、光検出器34、35と、光減衰器36とを有している。縮退光パラメトリック発振器31は、縮退光パラメトリック発振による連続光パルス列を発生させる。発生したパルス列はビームスプリッタ32により2分岐され、一方は光減衰器36により1光子/パルス未満まで弱められた後、光伝送路へ送出される。分岐された他方は、従来システムで受信器20において用いたものと同様の遅延マッハツェンダ干渉計33を経て、光検出器34、35に入力される。この光検出器34、35は光子検出器ではなく、通常の光通信システムで用いられているのと同様の光検出器を用いることができる。
受信器20では、送られてきた光パルス列を従来のDPS−QKDシステムと同様の構成により受信する。
ここで、縮退光パラメトリック発振器31について説明する。光パラメトリック発振器31は、2次または3次の非線形光学媒質に高パワーのポンプ光を入射した時に起こる光パラメトリック増幅現象を増幅手段とする光発振器である。
例えば、2次非線形光学媒質にE=Aexp(i2πft)で表される光周波数fのポンプ光とE=Aexp(i2πft)で表される光周波数fのシグナル光を入射する(A:複素振幅、t:時間)。すると、P=εχ =εχ exp[i2π(f−f)t]という非線形分極が生じ(ε:真空中の誘電率、χ:2次非線形感受率、は複素共役を表す)、これより、f−f=fという周波数位置に新たな光(これをアイドラー光と呼ぶ)が発生する。この光は上記非線形分極から生じるため、その振幅はεχ に比例している。すなわち、シグナル光振幅の複素共役に比例している。アイドラー光が発生すると、この光とポンプ光とのパラメトリック相互作用により、f−f=f−(f−f)=fという周波数位置に新たな光が発生する。この光はシグナル光と同じ周波数であり、シグナル光に同位相で重畳される。すなわち、シグナル光増加となる。シグナル光が増加すると、それによりアイドラー光がさらに発生し、それによりさらにシグナル光が増加し、ということが誘導的に起こる。このようにしてシグナル光が増幅される現象を光パラメトリック増幅という。ここで、増幅されるシグナル光周波数は、新たに発生した光が元のシグナル光に同位相で重畳されるための条件で決まる。これを位相整合条件という。
一般に、光増幅媒質を光共振器内に配置すると光発振器として動作し、外部から信号光を入射しなくても、コヒーレントな光が発振・出力される。光パラメトリック増幅の場合も同様で、非線形光学媒質を光共振器内に配置して光パラメトリック増幅条件を満たすポンプ光を入射すると、コヒーレントな光が発振・出力される。これが光パラメトリック発振器である。発振光周波数は位相整合条件で決まり、これを調整することにより、波長可変な光発振器として利用されている。
縮退光パラメトリック発振器31は、光パラメトリック発振器のシグナル光とアイドラー光が縮退した特殊な形態である。光パラメトリック増幅現象の説明では、暗にシグナル光とアイドラー光は別々の光としたが、シグナル光周波数をf=f/2とすると、アイドラー光周波数はf=f−f=f/2=fとなり、シグナル光とアイドラー光が重なり合う(縮退する)。ここで、前述のように、アイドラー光にはシグナル光の複素共役波という性質がある。また、パラメトリック増幅の利得が十分であれば、シグナル光とアイドラー光の大きさはほぼ等しい。すると、縮退波の複素振幅はE=Aexp[i(θ+θ)]+Aexp[i(θ−θ)]=Aexp(iθ){exp(iθ)+exp(−iθ)}=2cos(θ)Aexp(iθ)、その光強度は|E|=4Acos(θ)と表される。ここで、Aは実数振幅、θはシグナル光位相、θはθ以外の位相成分である。
光強度|E|=4Acos(θ)は、シグナル光出力強度はシグナル光位相に依存し、θ=0またはπの時に最大となることを示している。すなわち、縮退型光パラメトリック増幅では、シグナル光位相が0またはπの時に増幅利得が最大となることが判る。一般に共振器構成においては、増幅利得最大の条件下で光発振を起こす。したがって、縮退光パラメトリック発振器31からは相対位相が0またはπの光が出力される。どちらの位相値であるかは、発振の種となる自然放出光の位相で決まり、これは原理的に完全にランダムである。
ここで縮退光パラメトリック発振器31の構成について説明する。図3は、縮退光パラメトリック発振器31の構成の一例を示す図である。図3では、送信器30は、一定間隔Tの連続光パルス列をポンプ光として用いている。すなわち、縮退光パラメトリック発振器31(図2参照)は、光周波数f、パルス間隔Tである連続光パルスP3を生成する連続光パルスレーザ40と、光スイッチ41と、連続光パルスP3が入力される光共振器44と、光共振器44内に設けられた非線形光学媒質42と、光周波数f/2の光を透過させることができる光フィルタ43とを備えている。ポンプ光である連続光パルスP3が非線形光学媒質42を伝搬すると、縮退光パラメトリック増幅現象により、光周波数f/2、パルス間隔Tである連続光パルスP4がシグナル光として生成される。ここで、連続光パルスP3と連続光パルスP4とは、時間的に同期している。非線形光学媒質42から出力された連続光パルスP3およびP4は、光フィルタ43により連続光パルスP3が除去されるため、光共振器44内にはシグナル光である連続光パルスP4のみが周回(共振)する。ここで、光共振器44で縮退光パラメトリック増幅を効率的に起こすためには、光共振器44内に入力される連続光パルスP3と、周回した連続光パルスP4とが時間的に重なり合う必要がある。連続光パルスP3とP4とは同期しているため、連続光パルスP3としては、パルス間隔Tが共振器一周時間のN分の1である光パルス列(Nは自然数)とすればよい。連続光パルスレーザ40の出力段に設けられる光スイッチ41は、必要に応じて発振状態をリセットするためにポンプ光パルス入射を定期的に一定時間停止する機能を有する。
なお、縮退光パラメトリック発振器31の構成例として図3ではファブリ・ペロー型の光共振器44を用いた構成例を説明したが、これに限定されるものではなく、代わりに例えば図4に示すように、リング型の光共振器50(光リング共振器)を用いてもよい。非線形光学媒質42に光ファイバを用いる場合には、光リング共振器50を用いる構成が好適である。図4は、縮退光パラメトリック発振器31の構成の他の一例を示す図である。リング共振器50は、光入力手段45と非線形光学媒質42と光フィルタ43と光出力手段46とを有している。リング共振器50には、ポンプ光P5、P6が入力され、縮退光パラメトリック増幅が発生して、縮退光パラメトリック発振器パルスP7が出力される。
図2に戻ると、縮退光パラメトリック光発振器31からは、上記の原理により、相対位相が完全にランダムに{0,π}である光パルス列が出力される。この光パルス列を2分岐し、一方を1光子/パルス未満まで減衰して、受信器20に向け送出する。送出される光パルス列P2は、従来システムにおいて送信器10(図1参照)が送出した光パルス列P1と同様の形態となっている。2分岐した他方は、受信器20の遅延マッハツェンダ干渉計21と同様の構成の遅延マッハツェンダ干渉計33に入力され、その出力を光検出器34、35で光検出する。遅延マッハツェンダ干渉計33に入力される光パルス列は減衰されていないので、各パルスについて、2つの光検出器34、35のいずれかから受信信号が出力され、これより各パルスの位相差が分かる。送信器30では図示しない記録手段にこの情報(位相差データ:パルス位置とその位相差)を記録しておく。すなわち送信器30は、DPS−QKD信号を送信し、かつ各パルスの位相差データを保持している。送信器30は、受信器20から送られた検出したパルス位置の情報に基づいてこの位相差データを利用して秘密鍵を生成する。これは、図1に示す従来のDPS−QKDシステムにおいて、送信器10がコヒーレントパルス光源11と乱数データで駆動された光位相変調器12を用いて行った動作と同じである。
したがって本実施形態の送信器30は、縮退光パラメトリック発振で得られた、ランダムな0かπの相対位相を有する連続光パルス列をそのまま光源として利用できるため、従来よりも簡便な構成の差動位相シフト量子鍵配送システムを実現できる。
本実施形態では、縮退光パラメトリック発振器31として2次光非線形効果を利用したものを例としたが、これに限るものでなく、シグナル光とアイドラー光が縮退した他の光パラメトリック増幅過程、例えば、3次光非線形性による縮退四光波混合過程を増幅手段とする光発振器を用いても、同様の作用が得られる。この場合、縮退光パラメトリック発振器31としては、図4に示すように、光源である連続光パルスレーザ40として、異なる光周波数fp1およびfp2である2つの連続光パルスレーザ40と、当該2つの連続光パルスレーザ40から出力される2つの連続光パルスP5、P6が入力される光共振器50と、光共振器50内に備えられる3次非線形光学媒質42と、同じく光共振器50内に備えられ、光周波数(fp1+fp2)/2の光を3次非線形光学媒質へフィードバックする光フィルタ43とを備えるようにすればよい。
縮退光パラメトリック発振器31に用いる非線形光学媒質としては、2次非線形光学媒質としてLiNbO、3次非線形光学媒質として光ファイバ、などが利用可能である。但し、光ファイバを用いる場合、単位長さ当たりのパラメトリック増幅利得が大きくないため、パラメトリック発振のためのファイバ長が長くなり、そのため共振器長が長くなる場合がある。この場合、パルス間隔Tを共振器一周時間と同等なポンプ光パルス列を用いると、速い繰り返しの信号パルス列を得ることができず、その結果、量子暗号鍵配送システムとしての動作速度を制限することになる。この制限を避けるためには、パルス間隔Tが共振器一周時間のN分の1であるポンプ光パルス列(Nは1以外の自然数)を入射し、共振器内で複数の独立なパルス発振が起こるようにすればよい。このようにすれば、共振器からは時間間隔の狭い(繰返し周期の短い)発振光パルス列が出力される。もちろん、動作速度に制限のない用途では、パルス間隔Tを共振器一周時間と同等なポンプ光パルス列(すなわち、N=1のポンプ光パルス列)を用いてもよい。また、ポンプ光パルス列を連続的に入射し続けると、Nパルスごとに同じ位相の発振光パルスが出力されるので、発振状態をリセットするために、ポンプ光パルス入射を定期的に一定時間停止する光スイッチを、連続光パルスレーザの出力段に設けるようにすればよい。
10 送信器
11 コヒーレントパルス光源
12 位相変調器
13 光減衰器
20 受信器
21 遅延マッハツェンダ干渉計
22、23 光子検出器
30 送信器
31 縮退光パラメトリック発振器
32 ビームスプリッタ
33 遅延マッハツェンダ干渉計
34、35 光検出器
36 光減衰器
40 連続光パルスレーザ
41 光スイッチ
42 非線形光学媒質
43 光フィルタ
44 光共振器
45 光入力手段
46 光出力手段
50 リング共振器

Claims (6)

  1. 差動位相シフト型の量子鍵配送システムにおいて用いられる送信器であって、
    縮退光パラメトリック発振により相対位相がランダムに0またはπである一定周期の光パルス列を出力する縮退光パラメトリック発振器と、
    前記光パラメトリック発振器からの光パルス列を2分岐する分岐手段と、
    前記分岐手段の一方の光パルス列を減衰して光伝送路へ送出する手段と、
    前記分岐手段の他方の光パルス列が入力され、該光パルス列を干渉させて2つの出力端から出力するマッハツェンダ干渉計と、
    前記マッハツェンダ干渉計の2つの出力端からの光出力強度を検出する検出手段と、
    前記検出手段で検出された光パルスのパルス位置とその位相差とを記憶する位相差データ記憶手段とを備え、
    前記位相差データ記憶手段に記憶したパルス位置とその位相差を利用して秘密鍵を生成することを特徴とする送信器。
  2. 前記縮退光パラメトリック発振器は、2次非線形光学媒質と、前記2次非線形光学媒質へ光周波数fのポンプ光パルス列を入射する手段と、前記2次非線形光学媒質から出力される光を該2次非線形光学媒質にフィードバックして光共振をさせる光共振手段とを有し、前記2次非線形光学媒質は、前記ポンプ光パルス列を光周波数f/2の光パルス列に増幅することを特徴とする請求項1に記載の送信器。
  3. 前記縮退光パラメトリック発振器は、3次非線形光学媒質と、前記3次非線形光学媒質へ光周波数がfp1およびfp2である2つのポンプ光パルス列を入射する手段と、前記3次非線形光学媒質から出力される光を該3次非線形光学媒質にフィードバックして光共振をさせる光共振手段とを有し、前記2次非線形光学媒質は、前記ポンプ光パルス列を光周波数(fp1+fp2)/2の光パルス列に増幅することを特徴とする請求項1に記載の送信器。
  4. 前記縮退光パラメトリック発振器内の3次非線形光学媒質は光ファイバであることを特徴とする請求項3に記載の送信器。
  5. 前記縮退光パラメトリック発振器内の非線形光学媒質へのポンプ光パルス列入射を一定時間停止することを特徴とする請求項4に記載の送信器。
  6. 請求項1から5のいずれかに記載された送信器と、
    前記送信器から送信された該光パルス列を干渉させて2つの出力端から出力する受信側マッハツェンダ干渉計と、
    前記受信側マッハツェンダ干渉計の2つの出力端からの光出力を光子検出する光子検出手段とを有する受信器とを備え、
    前記受信器は、光検出器で観測できたパルス位置とその位相差とに基づいて量子鍵を生成するとともに、観測できたパルス位置を前記送信器に送り、
    前記送信器は、受信器から受け取ったパルス位置に対応するパルスの位相差に基づいて秘密鍵を生成することを特徴とする、量子鍵配送システム。
JP2014111627A 2014-05-29 2014-05-29 量子鍵配送装置 Active JP6214093B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111627A JP6214093B2 (ja) 2014-05-29 2014-05-29 量子鍵配送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111627A JP6214093B2 (ja) 2014-05-29 2014-05-29 量子鍵配送装置

Publications (2)

Publication Number Publication Date
JP2015226277A true JP2015226277A (ja) 2015-12-14
JP6214093B2 JP6214093B2 (ja) 2017-10-18

Family

ID=54842743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111627A Active JP6214093B2 (ja) 2014-05-29 2014-05-29 量子鍵配送装置

Country Status (1)

Country Link
JP (1) JP6214093B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048860A (ja) * 2014-08-27 2016-04-07 日本電信電話株式会社 量子鍵配送システムおよび量子鍵配送方法
CN108762724A (zh) * 2018-05-18 2018-11-06 湖北工业大学 基于光量子学的真随机数发生装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11743037B2 (en) 2021-07-29 2023-08-29 QuNu Labs Private Ltd Quantum key distribution system and method for performing differential phase shift in a quantum network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001075136A (ja) * 1999-09-07 2001-03-23 Furukawa Electric Co Ltd:The 光ファイバ型広帯域波長変換装置及びそれに使用される波長変換用光ファイバ
JP2007094087A (ja) * 2005-09-29 2007-04-12 Matsushita Electric Ind Co Ltd 単一光子の供給方法
JP2007221583A (ja) * 2006-02-17 2007-08-30 Nippon Telegr & Teleph Corp <Ntt> 量子暗号鍵配送装置及び鍵情報盗聴検出方法
US20140016168A1 (en) * 2012-07-16 2014-01-16 Alireza Marandi Optical quantum random number generator
JP2014007521A (ja) * 2012-06-22 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> 光パルス発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001075136A (ja) * 1999-09-07 2001-03-23 Furukawa Electric Co Ltd:The 光ファイバ型広帯域波長変換装置及びそれに使用される波長変換用光ファイバ
JP2007094087A (ja) * 2005-09-29 2007-04-12 Matsushita Electric Ind Co Ltd 単一光子の供給方法
JP2007221583A (ja) * 2006-02-17 2007-08-30 Nippon Telegr & Teleph Corp <Ntt> 量子暗号鍵配送装置及び鍵情報盗聴検出方法
JP2014007521A (ja) * 2012-06-22 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> 光パルス発生装置
US20140016168A1 (en) * 2012-07-16 2014-01-16 Alireza Marandi Optical quantum random number generator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
本庄 利守ほか: "差動位相シフト量子鍵配送 (DPS-QKD) 実験", NTT技術ジャーナル, vol. 23, no. 6, JPN6017034926, 1 June 2011 (2011-06-01), pages 49 - 52, ISSN: 0003640756 *
武居 弘樹ほか: ">2500パルス多重縮退光パラメトリック発振器のコヒーレンス特性", 第61回応用物理学会春季学術講演会 講演予稿集, JPN6017034927, 3 March 2014 (2014-03-03), pages 04 - 020, ISSN: 0003640757 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048860A (ja) * 2014-08-27 2016-04-07 日本電信電話株式会社 量子鍵配送システムおよび量子鍵配送方法
CN108762724A (zh) * 2018-05-18 2018-11-06 湖北工业大学 基于光量子学的真随机数发生装置及方法

Also Published As

Publication number Publication date
JP6214093B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
Zhao et al. Physical layer encryption for WDM optical communication systems using private chaotic phase scrambling
Zhang et al. Entanglement’s benefit survives an entanglement-breaking channel
Merolla et al. Single-photon interference in sidebands of phase-modulated light for quantum cryptography
Gleim et al. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference
JP4822811B2 (ja) 光通信装置
JP5963869B2 (ja) 量子通信ネットワークのエンタングルメント生成源を同期させる方法及び装置
JP4800674B2 (ja) 通信方法および通信システム
US10389526B2 (en) Methods for quantum key distribution and related devices
US7768692B2 (en) Single-photon generator
WO2019149383A1 (en) Quantum key distribution apparatus, system and method
JP6214093B2 (ja) 量子鍵配送装置
Bao et al. WDM-based bidirectional chaotic communication for semiconductor lasers system with time delay concealment
Merolla et al. Integrated quantum key distribution system using single sideband detection
JP4746588B2 (ja) 量子暗号通信装置及び量子暗号通信方法
JP2007318445A (ja) 量子鍵配送システムおよび量子鍵生成方法
JP4026701B2 (ja) 量子暗号送信装置及び量子暗号送信方法
JP2004356996A (ja) 受信兼再送信機および送信兼再受信機からなる量子暗号通信システム及びそのタイミング信号作成法
JP4728288B2 (ja) 量子暗号受信装置及び量子暗号システム及び量子暗号送受信方法
Ren et al. Experimental demonstration of high key rate and low complexity CVQKD system with local local oscillator
Salem et al. Two-photon absorption for optical clock recovery in OTDM networks
JP4705077B2 (ja) 量子暗号システム
Gleim et al. Polarization insensitive 100 MHz clock subcarrier quantum key distribution over a 45 dB loss optical fiber channel
Kurochkin et al. Using single-photon detectors for quantum key distribution in an experimental fiber-optic communication system
GRUENENFELDER Performance, Security and Network Integration of Simplified BB84 Quantum Key Distribution
Mukherjee et al. Quantum Key Distribution Over Existing Optical Fibre Carrying Traffic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170915

R150 Certificate of patent or registration of utility model

Ref document number: 6214093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250