JP2015225026A - Method for solidifying boric acid containing waste liquid with cement - Google Patents

Method for solidifying boric acid containing waste liquid with cement Download PDF

Info

Publication number
JP2015225026A
JP2015225026A JP2014111330A JP2014111330A JP2015225026A JP 2015225026 A JP2015225026 A JP 2015225026A JP 2014111330 A JP2014111330 A JP 2014111330A JP 2014111330 A JP2014111330 A JP 2014111330A JP 2015225026 A JP2015225026 A JP 2015225026A
Authority
JP
Japan
Prior art keywords
boric acid
waste liquid
containing waste
cement
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014111330A
Other languages
Japanese (ja)
Other versions
JP6271341B2 (en
Inventor
寛史 岡部
Hiroshi Okabe
寛史 岡部
恵二朗 安村
Keijiro Yasumura
恵二朗 安村
金子 昌章
Masaaki Kaneko
昌章 金子
佐藤 龍明
Tatsuaki Sato
龍明 佐藤
宮本 真哉
Masaya Miyamoto
真哉 宮本
哲郎 本橋
Tetsuo Motohashi
哲郎 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014111330A priority Critical patent/JP6271341B2/en
Publication of JP2015225026A publication Critical patent/JP2015225026A/en
Application granted granted Critical
Publication of JP6271341B2 publication Critical patent/JP6271341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for solidifying a boric acid containing waste liquid with cement, capable of forming the boric acid containing waste liquid into a stable solidified body having high volume reduction.SOLUTION: The method for solidifying a boric acid containing waste liquid with cement comprises: the preparation step of adding an alkali metal compound having an amount satisfying an alkali metal/boron molar ratio of 0.15-0.35 to a boric acid included in a radioactive boric acid containing waste liquid to the radioactive boric acid containing waste liquid; the drying step of supplying the boric acid containing waste liquid having the alkali metal compound added at the preparation step to a drier to prepare a dried powder; and the mixing step of mixing the dried powder, mixing water and a hydraulic inorganic solidification material while controlling a temperature to 0-45°C to prepare a mixture.

Description

本発明は、ホウ酸含有廃液のセメント固化処理方法に関する。   The present invention relates to a cement solidification method for boric acid-containing waste liquid.

加圧水型原子力発電所では、原子炉の出力調整等に使用したホウ酸含有廃液が多く発生する。また、沸騰水型原子力発電所では、原子炉に緊急に注入するホウ酸水が貯蔵されており、ホウ酸含有廃液が発生する。   In a pressurized water nuclear power plant, a lot of boric acid-containing waste liquid used for adjusting the output of a nuclear reactor is generated. Moreover, in a boiling water nuclear power plant, boric acid water that is urgently injected into a nuclear reactor is stored, and boric acid-containing waste liquid is generated.

ホウ酸含有廃液は水酸化ナトリウム等により中和処理され、その後、セメントやアスファルトで固化されている。   The boric acid-containing waste liquid is neutralized with sodium hydroxide or the like and then solidified with cement or asphalt.

セメント固化ではホウ酸がセメントの凝結反応を妨害するために、大幅な硬化遅延や固化体の強度低下が生じることがある。そのため、減容性を高めながらホウ酸含有廃液をセメント固化する観点から、ホウ酸含有廃液とセメントの混練物に、水酸化カルシウム等を前処理剤として添加して固化する等、種々の提案がなされている。   In cement solidification, boric acid interferes with the setting reaction of the cement, which may cause a significant delay in setting and a decrease in strength of the solidified body. Therefore, various proposals such as adding calcium hydroxide as a pretreatment agent to the kneaded mixture of boric acid containing waste liquid and cement from the viewpoint of solidifying the boric acid containing waste liquid while increasing volume reduction have been proposed. Has been made.

また、ホウ酸塩による硬化遅延やホウ酸ナトリウムの水和物化を回避するために、放射性のホウ酸含有廃液に水酸化カルシウムを添加して乾燥粉体化した後、圧縮固化、樹脂による固化、セメント固化等を行う方法が提案されている(例えば、特許文献1参照。)。この方法では、ホウ酸塩を安定化してから処理するため有用であるが、難溶化した廃液成分が配管内や乾燥機等の内部に付着する可能性があり、さらにこれら付着した廃液成分が洗浄し難い等の不都合があった。   In addition, in order to avoid delay in hardening due to borate and hydrate formation of sodium borate, after adding calcium hydroxide to radioactive boric acid-containing waste liquid to dry powder, compression solidification, solidification with resin, A method of performing cement solidification or the like has been proposed (for example, see Patent Document 1). This method is useful for processing after stabilizing the borate, but it is possible that insoluble waste liquid components may adhere to the inside of pipes and dryers, and these attached waste liquid components are washed. There were inconveniences such as difficulty.

また、放射性のホウ酸含有廃液を乾燥粉体化した後にセメント固化する方法として、難溶化等の前処理をせずにホウ酸含有廃液を乾燥し、セメントの固化促進材としてアルミン酸ナトリウムを固化材に添加するとともに、助材として水酸化リチウムを固化材に添加してセメント固化する方法が提案されている(例えば、特許文献2参照。)。この方法では、アルミン酸ナトリウム及び水酸化リチウムの添加量が固化材中35重量%程度と多くなる。そして、これらの固化促進材等が高価であるため、コストが増大するという課題もあった。   Also, as a method of solidifying cement after drying radioactive boric acid containing waste liquid into dry powder, boric acid containing waste liquid is dried without pretreatment such as poor solubilization, and sodium aluminate is solidified as a cement solidification accelerator. A method has been proposed in which lithium hydroxide is added to a solidification material as an auxiliary material and cemented by cementation (for example, see Patent Document 2). In this method, the amount of sodium aluminate and lithium hydroxide added increases to about 35% by weight in the solidified material. And since these solidification promotion materials etc. are expensive, there also existed the subject that cost increased.

また、従来のホウ酸含有廃液のセメント固化方法では、混練時に混練性の悪化や偽凝結が生じることがあった。   In addition, in the conventional method for solidifying a boric acid-containing waste liquid, deterioration of kneadability and false setting may occur during kneading.

特開平2−208600号公報JP-A-2-208600 特開2001−97757号公報JP 2001-97757 A

このように、従来のホウ酸含有廃液のセメント固化処理方法においては、作業安定性を向上させるとともに、さらなる高減容や、より安定な固化体を製造することなどへの要望があった。   As described above, in the conventional cement solidification treatment method for boric acid-containing waste liquid, there is a demand for improving the work stability, producing a higher volume reduction, and producing a more stable solidified body.

本発明は、上述した課題を解決するためになされたものであり、作業安定性を向上させるとともに、ホウ酸含有廃液を高減容化し、安定した固化体を作製することのできるホウ酸含有廃液のセメント固化処理方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and improves the stability of the work, reduces the volume of the boric acid-containing waste liquid, and can produce a stable solidified body. An object of the present invention is to provide a method for solidifying cement.

本発明によるホウ酸含有廃液のセメント固化処理方法の一態様は、放射性のホウ酸含有廃液を、固化容器内で固化する方法であって、前記ホウ酸含有廃液に、前記ホウ酸含有廃液に含まれるホウ酸に対して、アルカリ金属/ホウ素モル比が0.15〜0.35となる量のアルカリ金属化合物を添加する調整工程と、前記調整工程でアルカリ金属化合物の添加された前記ホウ酸含有廃液を乾燥機に供給して乾燥粉体を調製する乾燥工程と、前記乾燥粉体と混練水と水硬性無機固化材とを0〜45℃に温度制御しつつ混練して混練物を調製する混練工程とを備えることを特徴とする。   One aspect of the method for solidifying a boric acid-containing waste liquid according to the present invention is a method of solidifying a radioactive boric acid-containing waste liquid in a solidification container, the boric acid-containing waste liquid being included in the boric acid-containing waste liquid. Adjustment step of adding an alkali metal compound in an amount such that the alkali metal / boron molar ratio is 0.15 to 0.35 with respect to the boric acid to be added, and the boric acid containing alkali metal compound added in the adjustment step A kneaded product is prepared by supplying a waste liquid to a dryer to prepare a dry powder, and kneading the dry powder, kneaded water, and a hydraulic inorganic solidified material while controlling the temperature at 0 to 45 ° C. And a kneading step.

本発明のセメント固化処理方法によれば、作業安定性を向上させるとともに、ホウ酸含有廃液を、高減容化し、安定した固化体を作製することができる。   According to the cement solidification treatment method of the present invention, it is possible to improve the work stability and reduce the volume of the boric acid-containing waste liquid to produce a stable solidified body.

本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理方法の工程を示すフロー図。The flowchart which shows the process of the cement solidification processing method of the boric acid containing waste liquid which concerns on one Embodiment of this invention. 本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理方法に用いられるホウ酸含有廃液のセメント固化処理装置を概略的に示すブロック図。The block diagram which shows roughly the cement solidification processing apparatus of the boric acid containing waste liquid used for the cement solidification processing method of the boric acid containing waste liquid which concerns on one Embodiment of this invention. 実施例及び比較例における混練物の温度と粘度の関係を示すグラフ。The graph which shows the relationship between the temperature of the kneaded material and a viscosity in an Example and a comparative example.

図1は、本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理方法の工程を示すフロー図であり、図2は本実施形態のセメント固化処理方法に用いられるホウ酸含有廃液のセメント固化処理装置を示す概略構成図である。以下、図1及び図2を参照して本発明の実施形態について説明する。   FIG. 1 is a flowchart showing the steps of a cement solidification treatment method for boric acid-containing waste liquid according to an embodiment of the present invention, and FIG. 2 shows a cement of boric acid-containing waste liquid used in the cement solidification treatment method of the present embodiment. It is a schematic block diagram which shows a solidification processing apparatus. Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1は、本実施形態のホウ酸含有廃液のセメント固化処理方法を示すフロー図である。本実施形態のホウ酸含有廃液のセメント固化処理方法は、ホウ酸含有廃液1に、アルカリ金属/ホウ素モル比が0.15〜0.35となる量のアルカリ金属化合物2を添加する調整工程S100と、アルカリ金属化合物2の添加されたホウ酸含有廃液1を乾燥して乾燥粉体3を調製する乾燥工程S200と、乾燥粉体3に混練水4及び水硬性無機固化材5を混練して混練物6を調製する混練工程S300を有している。   FIG. 1 is a flow chart showing a method for solidifying cement of boric acid-containing waste liquid according to this embodiment. In the cement solidification processing method of the boric acid-containing waste liquid according to the present embodiment, the adjustment step S100 in which the alkali metal compound 2 is added to the boric acid-containing waste liquid 1 in such an amount that the alkali metal / boron molar ratio is 0.15 to 0.35. And drying step S200 for preparing the dry powder 3 by drying the boric acid-containing waste liquid 1 to which the alkali metal compound 2 is added, and kneading the water 4 and the hydraulic inorganic solidified material 5 into the dry powder 3. It has a kneading step S300 for preparing the kneaded product 6.

また、図2は本実施形態のセメント固化処理方法に用いられるセメント固化処理装置20を概略的に示すブロック図である。セメント固化処理装置20は、ホウ酸含有廃液1を収容するホウ酸含有廃液タンク21と、ホウ酸含有廃液タンク21内のホウ酸含有廃液1にアルカリ金属化合物2を供給するアルカリ金属化合物供給装置22とを備えている。アルカリ金属化合物供給装置22は、アルカリ金属化合物2を計量し、ホウ酸含有廃液タンク21内に供給する。また、セメント固化処理装置20は、アルカリ金属化合物2の添加されたホウ酸含有廃液1を乾燥して乾燥粉体3を調製する乾燥機23と、乾燥機23に接続された混練機24とを備えている。乾燥機23で調製された乾燥粉体3は、混練機24に供給される。さらに、混練機24には、混練機24に混練水4を供給する混練水供給装置25と、水硬性無機固化材5を供給する水硬性無機固化材供給装置26とが接続されている。符号27は混練物6を内部に収容して固化する固化容器である。   FIG. 2 is a block diagram schematically showing the cement solidification treatment apparatus 20 used in the cement solidification treatment method of the present embodiment. The cement solidification processing device 20 includes a boric acid-containing waste liquid tank 21 that contains the boric acid-containing waste liquid 1, and an alkali metal compound supply device 22 that supplies the alkali metal compound 2 to the boric acid-containing waste liquid 1 in the boric acid-containing waste liquid tank 21. And. The alkali metal compound supply device 22 measures the alkali metal compound 2 and supplies it to the boric acid-containing waste liquid tank 21. The cement solidification processing apparatus 20 includes a dryer 23 that prepares the dry powder 3 by drying the boric acid-containing waste liquid 1 to which the alkali metal compound 2 is added, and a kneader 24 connected to the dryer 23. I have. The dry powder 3 prepared by the dryer 23 is supplied to the kneader 24. Further, a kneading water supply device 25 that supplies the kneading water 4 to the kneading machine 24 and a hydraulic inorganic solidifying material supply device 26 that supplies the hydraulic inorganic solidifying material 5 are connected to the kneading machine 24. Reference numeral 27 denotes a solidification container in which the kneaded material 6 is housed and solidified.

(調整工程S100)
本実施形態におけるセメント固化の対象物は、ホウ酸を含有する放射性の廃液(ホウ酸含有廃液1)である。調整工程S100は、ホウ酸含有廃液1にアルカリ金属化合物2を添加する工程である。これにより、アルカリ金属化合物2がホウ酸含有廃液1中のホウ素と反応して、ホウ酸アルカリ金属化合物塩が生成する。アルカリ金属化合物2としては、例えば、アルカリ金属水酸化物を用いることができる。また、ナトリウム化合物を用いることができる。アルカリ金属化合物2として具体的には、水酸化ナトリウムが好適に用いられる。
(Adjustment step S100)
The object of cement solidification in this embodiment is a radioactive waste liquid containing boric acid (boric acid-containing waste liquid 1). The adjustment step S100 is a step of adding the alkali metal compound 2 to the boric acid-containing waste liquid 1. As a result, the alkali metal compound 2 reacts with boron in the boric acid-containing waste liquid 1 to produce an alkali metal borate salt. As the alkali metal compound 2, for example, an alkali metal hydroxide can be used. Moreover, a sodium compound can be used. Specifically, sodium hydroxide is preferably used as the alkali metal compound 2.

調整工程S100では、アルカリ金属/ホウ素モル比が0.15〜0.35、好ましくは0.2〜0.3となる量のアルカリ金属化合物2を添加する。これにより、ホウ酸アルカリ金属化合物塩の水に対する溶解度を高め、配管や乾燥機等の洗浄性を向上させることができる。   In the adjustment step S100, the alkali metal compound 2 is added in such an amount that the alkali metal / boron molar ratio is 0.15 to 0.35, preferably 0.2 to 0.3. Thereby, the solubility with respect to the water of an alkali metal borate compound salt can be improved, and washing | cleaning properties, such as piping and a dryer, can be improved.

(乾燥工程S200)
本実施形態の乾燥工程S200は、ホウ酸含有廃液1を高減容で多量に固化するために、アルカリ金属化合物2を添加したホウ酸含有廃液1を乾燥して減容する工程である。乾燥工程S200では、アルカリ金属化合物2を添加したホウ酸含有廃液1を乾燥機へ供給し、ここで乾燥処理を施して乾燥粉体3を得る。
(Drying step S200)
The drying step S200 of the present embodiment is a step of drying and reducing the volume of the boric acid-containing waste liquid 1 to which the alkali metal compound 2 has been added in order to solidify the boric acid-containing waste liquid 1 in a large volume with a high volume reduction. In the drying step S200, the boric acid-containing waste liquid 1 to which the alkali metal compound 2 has been added is supplied to a dryer, where a drying process is performed to obtain a dry powder 3.

配管等への付着物低減の観点から、アルカリ金属化合物2の添加後のホウ酸含有廃液1の温度を、例えば、アルカリ金属化合物2として水酸化ナトリウムを用いる場合、ホウ酸ナトリウム塩の析出温度以上、好ましくは60℃以上、より好ましくは80℃〜90℃以上程度に調節して、ホウ酸含有廃液1を乾燥機23に供給する。乾燥機23内では、ホウ酸含有廃液1を好ましくは80℃以上程度、より好ましくは120〜180℃程度、特に好ましくは160℃程度に加熱して乾燥処理を施す。   From the viewpoint of reducing deposits on the piping, etc., the temperature of the boric acid-containing waste liquid 1 after addition of the alkali metal compound 2 is, for example, higher than the precipitation temperature of sodium borate salt when sodium hydroxide is used as the alkali metal compound 2 The boric acid-containing waste liquid 1 is supplied to the dryer 23, preferably adjusted to 60 ° C. or higher, more preferably about 80 ° C. to 90 ° C. or higher. In the dryer 23, the boric acid-containing waste liquid 1 is preferably heated to about 80 ° C. or more, more preferably about 120 to 180 ° C., and particularly preferably about 160 ° C. to perform a drying treatment.

乾燥機23としては特に限定されるものではないが、遠心薄膜乾燥機を用いることが好ましい。遠心薄膜乾燥機は、熱効率が高いことから装置をコンパクト化できる、乾燥処理時の気相部への粉体移行量が少ない、得られるホウ酸ナトリウム塩粉末の粒径が安定する等の特徴を有するためである。   Although it does not specifically limit as the dryer 23, It is preferable to use a centrifugal thin film dryer. Centrifugal thin film dryers have features such as high thermal efficiency, which can reduce the size of the device, reduce the amount of powder transferred to the gas phase during the drying process, and stabilize the particle size of the resulting sodium borate powder. It is for having.

なお、ホウ酸含有廃液1の減容に際しては、上記した乾燥工程S200を行う代わりに、濃縮処理や沈降処理を行ってもよい。これにより、濃縮廃液を得ることができる。濃縮処理では、例えば、ホウ酸含有廃液1を加熱濃縮し、ホウ酸含有廃液1中の水分含有量を重量比で30%以下程度に調製する。沈降処理では、ホウ酸含有廃液1に添加剤を添加することでホウ酸ナトリウム塩を沈降させる。この沈降したホウ酸ナトリウム塩を分離して濃縮廃液を得ることができる。本実施形態では、いずれの処理を行っても同様の効果を得ることができる。   Note that, when the volume of the boric acid-containing waste liquid 1 is reduced, a concentration process or a sedimentation process may be performed instead of performing the above-described drying step S200. Thereby, a concentrated waste liquid can be obtained. In the concentration treatment, for example, the boric acid-containing waste liquid 1 is concentrated by heating, and the water content in the boric acid-containing waste liquid 1 is adjusted to about 30% or less by weight. In the sedimentation process, sodium borate is precipitated by adding an additive to the boric acid-containing waste liquid 1. A concentrated waste liquid can be obtained by separating the precipitated sodium borate salt. In this embodiment, the same effect can be obtained regardless of which processing is performed.

(混練工程S300)
混練工程S300では、乾燥粉体3、混練水4、水硬性無機固化材5を混練し、混練物6を得る。このとき、混練中に発熱するため、混練物6の温度を0〜45℃、好ましくは0〜40℃に温度制御する。また、混練工程S300では、さらに、必要に応じて、アルカリ性骨材、高性能減水剤を混練する。
(Kneading process S300)
In the kneading step S300, the dry powder 3, the kneaded water 4, and the hydraulic inorganic solidified material 5 are kneaded to obtain the kneaded product 6. At this time, since heat is generated during kneading, the temperature of the kneaded product 6 is controlled to 0 to 45 ° C, preferably 0 to 40 ° C. Moreover, in kneading | mixing process S300, an alkaline aggregate and a high performance water reducing agent are further knead | mixed as needed.

乾燥粉体3と混練水4を混練すると、水和反応によって、含水塩が生成する。含水塩が生成した場合には、混練物6の粘度が極端に高まって混練性が悪化するおそれがある。また、乾燥粉体3と混練水4の水和反応によって発熱し、偽凝結が起こるおそれがある。本実施形態によれば、混練工程S300において、混練物6の温度を45℃以下に温度制御しつつ混練を行うことで、含水塩の生成やこれによる発熱を抑制することができる。そのため、混練性の悪化や偽凝結を抑制することができる。   When the dry powder 3 and the kneaded water 4 are kneaded, a hydrated salt is generated by a hydration reaction. When a hydrate salt is produced, the viscosity of the kneaded product 6 is extremely increased and the kneadability may be deteriorated. Moreover, heat may be generated due to a hydration reaction between the dry powder 3 and the kneaded water 4, and false condensation may occur. According to this embodiment, in kneading | mixing process S300, the production | generation of a hydrate salt and the heat_generation | fever by this can be suppressed by knead | mixing, controlling the temperature of the kneaded material 6 to 45 degrees C or less. Therefore, deterioration of kneadability and false condensation can be suppressed.

混練工程S300において、混練物6を温度制御する方法としては、例えば実験室レベルでは、混練時間を調節して、例えば10〜60分間以上の時間をかけて、混練物6を45℃以下に除熱しながら混練する方法を採ることができる。また、実際の装置のスケールでは発熱量が多くなるため、冷却装置等を用いて混練機24を冷却することで、混練物6を上記した温度以下に冷却してもよい。この方法は、多量の乾燥粉体3をセメント固化処理する場合に、工業的に有利である。また、混練物6の温度が45℃以下となるように、混練工程S300で混練される材料、すなわち、乾燥粉体3、混練水4、水硬性無機固化材5等を予め冷却してもよい。この場合、例えば予め−20℃以上20℃以下に冷却することで、混練物6を45℃以下に温度制御することができる。なお、混練水4を予め冷却して用いる場合には、混練水4の温度は混練水4が凍結しない温度、通常は0度以上に冷却する。   In the kneading step S300, as a method of controlling the temperature of the kneaded product 6, for example, at the laboratory level, the kneading time is adjusted to 45 ° C. or lower by adjusting the kneading time and taking, for example, 10 to 60 minutes or more. A method of kneading while heating can be employed. Moreover, since the calorific value increases in the scale of an actual apparatus, the kneaded material 6 may be cooled to the above temperature or lower by cooling the kneader 24 using a cooling device or the like. This method is industrially advantageous when a large amount of dry powder 3 is subjected to cement solidification treatment. Further, the material kneaded in the kneading step S300, that is, the dry powder 3, the kneaded water 4, the hydraulic inorganic solidified material 5 and the like may be cooled in advance so that the temperature of the kneaded product 6 is 45 ° C. or lower. . In this case, the temperature of the kneaded product 6 can be controlled to 45 ° C. or lower by cooling in advance to −20 ° C. or higher and 20 ° C. or lower, for example. When the kneaded water 4 is cooled in advance, the temperature of the kneaded water 4 is cooled to a temperature at which the kneaded water 4 does not freeze, usually 0 degrees or more.

なお、混練時間や混練後の混練機24の洗浄時間を、裕度を持って確保する観点から、混練物6の流動性(粘度特性)は、1時間以上程度に亘って得られることが好ましい。   In addition, it is preferable that the fluidity (viscosity characteristic) of the kneaded material 6 is obtained over about 1 hour or more from the viewpoint of ensuring the kneading time and the washing time of the kneading machine 24 after kneading with a margin. .

水硬性無機固化材5としては、特に限定されるものではないが、ポルトランドセメントを用いることが好ましい。ホウ酸含有廃液1をセメント固化する際には、セメント中のカルシウムがホウ酸と結合することでセメント固化に寄与するカルシウムが少なくなる傾向にある。そのため、水硬性無機固化材5中のカルシウム量が多いポルトランドセメントを好適に用いることができる。また、水硬性無機固化材5としては、ポルトランドセメントと高炉スラグの混合物、ポルトランドセメントとフライアッシュの混合物等を用いてもよい。   Although it does not specifically limit as the hydraulic inorganic solidification material 5, It is preferable to use Portland cement. When the boric acid-containing waste liquid 1 is cemented, the calcium in the cement tends to decrease due to the binding of calcium in the cement with boric acid. Therefore, Portland cement having a large amount of calcium in the hydraulic inorganic solidified material 5 can be suitably used. Further, as the hydraulic inorganic solidifying material 5, a mixture of Portland cement and blast furnace slag, a mixture of Portland cement and fly ash, or the like may be used.

アルカリ性骨材としては、例えば、セメント硬化物を粉砕したものや、粒状の消石灰などを用いることができる。アルカリ性骨材の粒径は、一般的なセメント固化に用いられる細骨材と同様に、2.5mm以下程度であることが好ましい。我が国における放射性廃棄物処分の観点から、セメント固化体8の浸出液はアルカリ性であることが好ましいが、アルカリ性骨材を添加することで、セメント固化体8の浸出液をアルカリ性、好ましくはpHを12以上に調整することができる。   As alkaline aggregate, what grind | pulverized cement hardened | cured material, granular slaked lime, etc. can be used, for example. The particle size of the alkaline aggregate is preferably about 2.5 mm or less, like the fine aggregate used for general cement solidification. From the viewpoint of disposal of radioactive waste in Japan, the leachate of the cement solidified body 8 is preferably alkaline, but by adding alkaline aggregate, the leachate of the cement solidified body 8 is made alkaline, preferably the pH is 12 or more. Can be adjusted.

また、本実施形態における混練工程S300は、一次混練工程S301と二次混練工程S302を備えることが好ましい。   The kneading step S300 in the present embodiment preferably includes a primary kneading step S301 and a secondary kneading step S302.

この場合、一次混練工程S301では、混練水4に乾燥粉体3を混練して、一次混練物7を得る。通常のセメント練り混ぜ手順のように、セメントと混練水とを混練したものに乾燥粉体3を混練すると、含水塩が生成するため、混練性が悪化し易い。本態様では、一次混練工程で、乾燥粉体3と混練水4とを先に混練することで、この間にあらかじめ含水塩を生成させておくことができる。一次混練工程S301では、含水塩の生成時間を考慮して、乾燥粉体3と混練水4を例えば10分以上混練することが好ましい。   In this case, in the primary kneading step S301, the dry powder 3 is kneaded in the kneaded water 4 to obtain the primary kneaded product 7. When the dry powder 3 is kneaded into a kneaded mixture of cement and kneaded water as in a normal cement kneading procedure, a hydrated salt is generated, and the kneadability is likely to deteriorate. In this aspect, in the primary kneading step, the dry powder 3 and the kneaded water 4 are kneaded first, so that a hydrated salt can be generated in advance during this time. In the primary kneading step S301, it is preferable to knead the dry powder 3 and the kneaded water 4 for, for example, 10 minutes or longer in consideration of the generation time of the hydrated salt.

二次混練工程S302では、一次混練工程S301で得られた一次混練物7に水硬性無機固化材5を混練して、混練物6を得る。必要に応じて用いられるアルカリ性骨材、高性能減水剤は、二次混練工程S302で混練することが好ましい。   In the secondary kneading step S302, the hydraulic inorganic solidified material 5 is kneaded with the primary kneaded material 7 obtained in the primary kneading step S301 to obtain the kneaded material 6. The alkaline aggregate and the high-performance water reducing agent used as necessary are preferably kneaded in the secondary kneading step S302.

なお、一次混練工程S301と二次混練工程S302の順序は、上記に限定されず、二次混練工程S302を先に行い、次いで一次混練工程S301を行ってもよい。この場合、先ず、二次混練工程S302で混練水4に水硬性無機固化材5を混練して、次いで、一次混練工程S301で乾燥粉体3を混練する。   Note that the order of the primary kneading step S301 and the secondary kneading step S302 is not limited to the above, and the secondary kneading step S302 may be performed first, and then the primary kneading step S301 may be performed. In this case, first, the hydraulic inorganic solidified material 5 is kneaded with the kneaded water 4 in the secondary kneading step S302, and then the dry powder 3 is kneaded in the primary kneading step S301.

このようにして得られる混練物6は粘度特性に優れる。混練物6は、混練機23から固化容器27に投入して固化容器27内で固化することで、固化特性に優れたセメント固化体8を得ることができる(アウトドラムミキシング法)。   The kneaded material 6 thus obtained is excellent in viscosity characteristics. The kneaded product 6 is charged into the solidification container 27 from the kneader 23 and solidified in the solidification container 27, whereby a cement solidified body 8 having excellent solidification characteristics can be obtained (outdrum mixing method).

また、本実施形態のセメント固化処理方法は、インドラムミキシング法で行ってもよい。すなわち乾燥粉体3、混練水4、水硬性無機固化材5、必要に応じて用いられるアルカリ性骨材、高性能減水剤の混練を全て固化容器27の中で行い、得られる混練物6を固化容器27内でそのまま固化させてもよい。この場合、混練物6の冷却方法としては、固化容器27を冷却することで混練物6を冷却する方法を採ることもできる。インドラムミキシング法では、さらに設備コスト、運転コストを低減することができる。   Moreover, you may perform the cement solidification processing method of this embodiment by the in-drum mixing method. That is, the dry powder 3, the kneaded water 4, the hydraulic inorganic solidifying material 5, the alkaline aggregate used as needed, and the high-performance water reducing agent are all kneaded in the solidifying container 27, and the resulting kneaded material 6 is solidified. The container 27 may be solidified as it is. In this case, as a method for cooling the kneaded product 6, a method of cooling the kneaded product 6 by cooling the solidification container 27 can also be adopted. The in-drum mixing method can further reduce equipment costs and operation costs.

以上、本実施形態のセメント固化処理方法は、混練物6の粘度上昇を抑制し、良好な粘度特性を有する混練物6を得ることができるため、作業性に優れる。さらに、カルシウムを用いないため廃液成分の配管等への付着の問題がない。   As mentioned above, since the cement solidification processing method of this embodiment can suppress the viscosity increase of the kneaded material 6 and can obtain the kneaded material 6 having a good viscosity characteristic, it is excellent in workability. Furthermore, since calcium is not used, there is no problem of adhesion of waste liquid components to piping or the like.

(実施例1)
以下、図1に示した工程に基づき、ホウ酸含有廃液のセメント固化試験を行った結果について説明する。本実施例では、以下で混練する乾燥粉体、混練水、普通ポルトランドセメント(水硬性無機固化材)は、使用前に常温(25℃)で保存されていたものを用いた。
Example 1
Hereinafter, the result of the cement solidification test of the boric acid-containing waste liquid based on the process shown in FIG. 1 will be described. In this example, dry powder, kneaded water, and ordinary Portland cement (hydraulic inorganic solidified material) kneaded in the following were used that were stored at room temperature (25 ° C.) before use.

60℃程度に加温したホウ酸12重量%の水溶液に水酸化ナトリウムを投入して、Na/Bモル比を0.25に調整し、ホウ酸ナトリウムの水溶液を得た(調整工程)。このホウ酸ナトリウム水溶液を模擬廃液として、加熱温度160℃程度に設定した遠心薄膜乾燥機に定量供給して、ホウ酸ナトリウムの乾燥粉体を得た(乾燥工程)。   Sodium hydroxide was added to a 12% by weight aqueous solution of boric acid heated to about 60 ° C. to adjust the Na / B molar ratio to 0.25 to obtain an aqueous solution of sodium borate (adjustment step). This sodium borate aqueous solution was used as a simulated waste liquid and quantitatively supplied to a centrifugal thin film dryer set at a heating temperature of about 160 ° C. to obtain a dry powder of sodium borate (drying step).

次に、1Lポリカップに、混練水393g、続いて上記で作製したホウ酸ナトリウムの乾燥粉体315gを投入して卓上攪拌機で60分程度混練した(一次混練工程)。このとき、乾燥粉体と混練水の水和反応によって、発熱したが、混練に上記の時間を費やすことで、一次混練物を除熱した。   Next, 393 g of kneaded water and then 315 g of the dry powder of sodium borate prepared above were put into a 1 L polycup and kneaded for about 60 minutes with a table stirrer (primary kneading step). At this time, heat was generated due to the hydration reaction of the dry powder and the kneaded water, but the primary kneaded product was removed by spending the above time for kneading.

次いで、一次混練物に、普通ポルトランドセメント750gを混合し、10分程度混練して混練物を得た(二次混練工程)。このとき、混練に上記の時間を費やすことで、混練物を除熱した。また、混練中に発熱したが、発熱量は一次混練工程より少なく、混練性は良好であった。混練終了時の混練物の温度は29.8℃、粘度は8.5dPa・sであった。その後、混練物を、内径50mmφ×高さ100mmHの型枠に注ぎ、固化することで、良好な固化特性の固化体を得た。   Next, 750 g of ordinary Portland cement was mixed with the primary kneaded material and kneaded for about 10 minutes to obtain a kneaded material (secondary kneading step). At this time, the kneaded product was removed from heat by spending the above time for kneading. Further, although heat was generated during kneading, the amount of heat generated was less than in the primary kneading step, and the kneading property was good. The temperature of the kneaded product at the end of kneading was 29.8 ° C., and the viscosity was 8.5 dPa · s. Thereafter, the kneaded material was poured into a mold having an inner diameter of 50 mmφ × height of 100 mmH and solidified to obtain a solidified body having good solidification characteristics.

(実施例2)
実施例1と同様に、ホウ酸ナトリウムの乾燥粉体、混練水を60分程度混練した。これに、実施例1と同様に普通ポルトランドセメントを混合して、10分程度混練した。混練性は良好であり、混練終了時の混練物の、温度は35.8℃、粘度は8dPa・sであった。その後、混練物を実施例1と同様に固化することで、良好な固化特性の固化体を得た。
(Example 2)
In the same manner as in Example 1, a dry powder of sodium borate and kneaded water were kneaded for about 60 minutes. In the same manner as in Example 1, ordinary Portland cement was mixed and kneaded for about 10 minutes. The kneadability was good, and the temperature of the kneaded product at the end of kneading was 35.8 ° C. and the viscosity was 8 dPa · s. Thereafter, the kneaded product was solidified in the same manner as in Example 1 to obtain a solidified body having good solidification characteristics.

(実施例3)
実施例1と同様に、ホウ酸ナトリウムの乾燥粉体、混練水を60分程度混練した。これに、実施例1と同様に普通ポルトランドセメントを混合して、10分程度混練した。混練性は良好であり、混練終了時の混練物の、温度は34.1℃、粘度は9dPa・sであった。その後、混練物を実施例1と同様に固化することで、良好な固化特性の固化体を得た。
(Example 3)
In the same manner as in Example 1, a dry powder of sodium borate and kneaded water were kneaded for about 60 minutes. In the same manner as in Example 1, ordinary Portland cement was mixed and kneaded for about 10 minutes. The kneadability was good, and the temperature of the kneaded product at the end of kneading was 34.1 ° C. and the viscosity was 9 dPa · s. Thereafter, the kneaded product was solidified in the same manner as in Example 1 to obtain a solidified body having good solidification characteristics.

(比較例1)
実施例1と同様に、ホウ酸ナトリウムの乾燥粉体、混練水を15分程度混練した。これに、実施例1と同様に普通ポルトランドセメントを混合して10分程度混練したところ、混練物の粘度が上昇し、混練性が悪化した。このときの混練物の温度は49.5℃、粘度は80dPa・sであった。
(Comparative Example 1)
In the same manner as in Example 1, a dry powder of sodium borate and kneaded water were kneaded for about 15 minutes. When ordinary Portland cement was mixed and kneaded for about 10 minutes in the same manner as in Example 1, the viscosity of the kneaded product increased and the kneadability deteriorated. The temperature of the kneaded product at this time was 49.5 ° C., and the viscosity was 80 dPa · s.

(比較例2)
実施例1において、温度を予め40℃に調節したホウ酸ナトリウムの乾燥粉体、混練水を用いた他は、実施例1と同様の条件で混練した。ホウ酸ナトリウムの乾燥粉体と混練水を60分間混練した後に、普通ポルトランドセメントを混合したところ、混練物の粘度が上昇し、偽凝結が起こって、混練できなくなった。このときの混練物の温度は67℃であり、粘度は150dPa・s以上に上昇した。
(Comparative Example 2)
In Example 1, it knead | mixed on the conditions similar to Example 1 except having used the dry powder of sodium borate which temperature was previously adjusted to 40 degreeC, and kneading | mixing water. When the dry powder of sodium borate and the kneaded water were kneaded for 60 minutes and then ordinary Portland cement was mixed, the viscosity of the kneaded product was increased, and false coagulation occurred, making it impossible to knead. The temperature of the kneaded material at this time was 67 ° C., and the viscosity increased to 150 dPa · s or more.

上記した実施例及び比較例における混練開始前の材料(乾燥粉体、混練水、普通ポルトランドセメント)の温度と、混練終了時の温度及び粘度、混練性について表1に示す。   Table 1 shows the temperature of the material (dry powder, kneaded water, ordinary Portland cement) before starting kneading, the temperature and viscosity at the end of kneading, and kneadability in the above Examples and Comparative Examples.

Figure 2015225026
Figure 2015225026

また、実施例及び比較例における、混練終了時の温度と粘度の関係を、混練物の温度を横軸、粘度を縦軸として、図3のグラフに示す。   Moreover, the relationship between the temperature at the end of kneading and the viscosity in Examples and Comparative Examples is shown in the graph of FIG. 3 with the temperature of the kneaded product as the horizontal axis and the viscosity as the vertical axis.

表1より、実施例1〜3では、混練物を45℃以下に温度制御するため、混練終了時の混練物は、粘度が50dPa・s以下であり、粘度特性に優れることが分かる。さらに、実施例1〜3では、偽凝結の発生も確認されていない。
これに対し、比較例1、2では、混練工程(一次混練工程又は二次混練工程)において、混練物の粘度が大きく上昇し、混練性が悪化したことが分かる。さらに、比較例2では偽凝結が起こった。
From Table 1, it can be seen that in Examples 1 to 3, the temperature of the kneaded product is controlled to 45 ° C. or lower, and thus the kneaded product at the end of kneading has a viscosity of 50 dPa · s or less and is excellent in viscosity characteristics. Furthermore, in Examples 1 to 3, the occurrence of false condensation has not been confirmed.
On the other hand, in Comparative Examples 1 and 2, it can be seen that in the kneading step (primary kneading step or secondary kneading step), the viscosity of the kneaded product was greatly increased and the kneadability deteriorated. Further, in Comparative Example 2, false condensation occurred.

また、図3より、混練物の粘度を50dPa・s以下に調整するためには、混練物の濃度を略43℃以下に冷却すればよいことが分かる。   Further, FIG. 3 shows that in order to adjust the viscosity of the kneaded product to 50 dPa · s or lower, the concentration of the kneaded product may be cooled to about 43 ° C. or lower.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

S100…調整工程、S200…乾燥工程、S300…混練工程、S301…一次混練工程、S302…二次混練工程、1…ホウ酸含有廃液、2…アルカリ金属化合物、3…乾燥粉体、4…混練水、5…水硬性無機固化材、6…混練物、7…一次混練物、8…セメント固化体、17…固化容器、20…セメント固化処理装置、21…ホウ酸含有廃液タンク、22…アルカリ金属化合物供給装置、23…乾燥機、24…混練機、25…混練水供給装置、26…水硬性無機固化材供給装置。   S100 ... Adjustment step, S200 ... Drying step, S300 ... Kneading step, S301 ... Primary kneading step, S302 ... Secondary kneading step, 1 ... Boric acid-containing waste liquid, 2 ... Alkali metal compound, 3 ... Dry powder, 4 ... Kneading Water, 5 ... Hydraulic inorganic solidified material, 6 ... Kneaded product, 7 ... Primary kneaded product, 8 ... Cement solidified body, 17 ... Solidified container, 20 ... Cement solidified treatment device, 21 ... Boric acid-containing waste liquid tank, 22 ... Alkali Metal compound supply device, 23 ... dryer, 24 ... kneading machine, 25 ... kneading water supply device, 26 ... hydraulic inorganic solidified material supply device.

Claims (10)

放射性のホウ酸含有廃液を、固化容器内で固化する方法であって、
前記ホウ酸含有廃液に、前記ホウ酸含有廃液に含まれるホウ酸に対して、アルカリ金属/ホウ素モル比が0.15〜0.35となる量のアルカリ金属化合物を添加する調整工程と、
前記調整工程でアルカリ金属化合物の添加された前記ホウ酸含有廃液を乾燥機に供給して乾燥粉体を調製する乾燥工程と、
前記乾燥粉体と混練水と水硬性無機固化材とを0〜45℃に温度制御しつつ混練して混練物を調製する混練工程と
を備えることを特徴とするホウ酸含有廃液のセメント固化処理方法。
A method for solidifying radioactive boric acid-containing waste liquid in a solidification container,
An adjusting step of adding an alkali metal compound in an amount such that an alkali metal / boron molar ratio is 0.15 to 0.35 with respect to boric acid contained in the boric acid-containing waste liquid, to the boric acid-containing waste liquid;
A drying step of supplying the boric acid-containing waste liquid to which the alkali metal compound has been added in the adjustment step to a dryer to prepare a dry powder;
A cement solidification treatment of a boric acid-containing waste liquid, comprising: a kneading step of preparing a kneaded product by kneading the dry powder, kneaded water, and a hydraulic inorganic solidified material at a temperature of 0 to 45 ° C. Method.
前記混練工程は、
前記乾燥粉体と前記混練水を混練して一次混練物を調製する一次混練工程と、
前記一次混練物に水硬性無機固化材を混練する二次混練工程と
を備えることを特徴とする請求項1記載のホウ酸含有廃液のセメント固化処理方法。
The kneading step includes
A primary kneading step of kneading the dry powder and the kneaded water to prepare a primary kneaded product;
A cement solidification treatment method for a boric acid-containing waste liquid according to claim 1, further comprising a secondary kneading step of kneading a hydraulic inorganic solidified material in the primary kneaded product.
前記アルカリ金属化合物は、ナトリウム化合物であることを特徴とする請求項1又は2記載のホウ酸含有廃液のセメント固化処理方法。   3. The method for solidifying cement of boric acid-containing waste liquid according to claim 1 or 2, wherein the alkali metal compound is a sodium compound. 前記アルカリ金属化合物は、アルカリ金属水酸化物であることを特徴とする請求項1乃至3のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   The method for solidifying a cement of boric acid-containing waste liquid according to any one of claims 1 to 3, wherein the alkali metal compound is an alkali metal hydroxide. 前記乾燥機は、遠心薄膜乾燥機であることを特徴とする請求項1乃至4のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   5. The method for solidifying a boric acid-containing waste liquid according to any one of claims 1 to 4, wherein the dryer is a centrifugal thin film dryer. 前記水硬性無機固化材は、ポルトランドセメントであることを特徴とする請求項1乃至5のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   6. The method for solidifying a boric acid-containing waste liquid according to claim 1, wherein the hydraulic inorganic solidifying material is Portland cement. 前記混練工程において、前記固化容器内で前記混練物を調製し、その後固化することを特徴とする請求項1乃至6のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   The method for solidifying a cement containing boric acid-containing waste liquid according to any one of claims 1 to 6, wherein in the kneading step, the kneaded product is prepared in the solidification container and then solidified. 前記混練工程において、混練機を用いて前記混練物を調製し、前記混練物を前記混練機から前記固化容器に投入し、その後固化することを特徴とする請求項1乃至7のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   In the kneading step, the kneaded product is prepared using a kneader, and the kneaded product is charged into the solidification container from the kneader and then solidified. The cement solidification method of the boric acid containing waste liquid as described. 前記乾燥粉体、前記混練水及び前記水硬性無機固化材を、前記混練工程の前に予め冷却することで、前記混練工程における前記混練物の温度制御を行うことを特徴とする請求項1乃至8のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。   The temperature control of the kneaded material in the kneading step is performed by cooling the dry powder, the kneading water, and the hydraulic inorganic solidified material in advance before the kneading step. 9. The method for solidifying cement of boric acid-containing waste liquid according to any one of 8 above. 前記乾燥粉体、前記混練水及び前記水硬性無機固化材を前記混練工程の前に予め−20〜20℃に冷却することを特徴とする請求項9に記載のホウ酸含有廃液のセメント固化処理方法。   10. The cement solidification treatment of boric acid-containing waste liquid according to claim 9, wherein the dry powder, the kneaded water, and the hydraulic inorganic solidified material are cooled to −20 to 20 ° C. in advance before the kneading step. Method.
JP2014111330A 2014-05-29 2014-05-29 Cement solidification method for boric acid containing waste liquid Active JP6271341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111330A JP6271341B2 (en) 2014-05-29 2014-05-29 Cement solidification method for boric acid containing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111330A JP6271341B2 (en) 2014-05-29 2014-05-29 Cement solidification method for boric acid containing waste liquid

Publications (2)

Publication Number Publication Date
JP2015225026A true JP2015225026A (en) 2015-12-14
JP6271341B2 JP6271341B2 (en) 2018-01-31

Family

ID=54841863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111330A Active JP6271341B2 (en) 2014-05-29 2014-05-29 Cement solidification method for boric acid containing waste liquid

Country Status (1)

Country Link
JP (1) JP6271341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032595A (en) * 2019-08-19 2021-03-01 株式会社東芝 Radioactive waste solidification method and radioactive waste solidification device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150694A (en) * 1984-08-20 1986-03-12 Kobe Steel Ltd Treatment of sodium borate waste solution
JPS6189593A (en) * 1984-10-08 1986-05-07 三菱重工業株式会社 Method of treating radioactive waste liquor
JPS6345598A (en) * 1986-08-13 1988-02-26 株式会社日立製作所 Radioactive waste solidifying body and method of processing radioactive waste
JPH08179097A (en) * 1994-12-22 1996-07-12 Hitachi Ltd Solidifying method for radioactive waste and device thereof
JPH08179095A (en) * 1994-10-27 1996-07-12 Jgc Corp Solidifying agent for radioactive waste, solidifying method thereof, and solidified object
US5732363A (en) * 1994-10-27 1998-03-24 Jgc Corporation Solidifying material for radioactive wastes, process for solidifying radioactive wastes and solidified product
JP2008020333A (en) * 2006-07-13 2008-01-31 Toshiba Corp Solidification method and solidification device for radioactive waste
JP2011149803A (en) * 2010-01-21 2011-08-04 Toshiba Corp System and method for solidification treatment of radioactive waste
JP2014106144A (en) * 2012-11-28 2014-06-09 Toshiba Corp Solidification method of boric acid-containing radioactive waste liquid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150694A (en) * 1984-08-20 1986-03-12 Kobe Steel Ltd Treatment of sodium borate waste solution
JPS6189593A (en) * 1984-10-08 1986-05-07 三菱重工業株式会社 Method of treating radioactive waste liquor
JPS6345598A (en) * 1986-08-13 1988-02-26 株式会社日立製作所 Radioactive waste solidifying body and method of processing radioactive waste
JPH08179095A (en) * 1994-10-27 1996-07-12 Jgc Corp Solidifying agent for radioactive waste, solidifying method thereof, and solidified object
US5732363A (en) * 1994-10-27 1998-03-24 Jgc Corporation Solidifying material for radioactive wastes, process for solidifying radioactive wastes and solidified product
JPH08179097A (en) * 1994-12-22 1996-07-12 Hitachi Ltd Solidifying method for radioactive waste and device thereof
JP2008020333A (en) * 2006-07-13 2008-01-31 Toshiba Corp Solidification method and solidification device for radioactive waste
JP2011149803A (en) * 2010-01-21 2011-08-04 Toshiba Corp System and method for solidification treatment of radioactive waste
JP2014106144A (en) * 2012-11-28 2014-06-09 Toshiba Corp Solidification method of boric acid-containing radioactive waste liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032595A (en) * 2019-08-19 2021-03-01 株式会社東芝 Radioactive waste solidification method and radioactive waste solidification device

Also Published As

Publication number Publication date
JP6271341B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6672014B2 (en) Treatment of radioactive liquid waste
CN110423081A (en) More solid waste coordinate systems are for Stainless-steel fibre ultra-high performance concrete and preparation method thereof
JP6271341B2 (en) Cement solidification method for boric acid containing waste liquid
CN104402286B (en) A kind of concrete early strength agent and preparation method thereof
JP6934337B2 (en) Geopolymer composition and cured geopolymer
JP5231975B2 (en) Solidification method of boric acid waste liquid
JP2017081763A (en) Silica fume-containing cement composition
JP2018084412A (en) Solidification method of radioactive waste
JP2014106144A (en) Solidification method of boric acid-containing radioactive waste liquid
WO2014203498A1 (en) Cementation method and cementation device for boric-acid-containing liquid waste
KR101991317B1 (en) cement clinker composition
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
JP2015105859A (en) Borate waste cement solidification treatment method and borate waste cement solidification treatment apparatus
JP6015585B2 (en) Hydrated cured body
JP6058474B2 (en) Method for producing a cured geopolymer
JP2013087011A (en) Steel slag hydration hardened body, and method for manufacturing the same
JP2011173768A (en) Method for producing fine aggregate using steelmaking slag, method for producing hydration hardened object using the fine aggregate, and fine aggregate and hydration hardened object using steelmaking slag
CN105669237A (en) High-sulphate-resistance cement foam concrete and preparation method thereof
WO2020121738A1 (en) Soil grouting material, cured product thereof, soil improvement method, and powder material for soil grouting
JP2013209236A (en) Cement composition and concrete composition
JP2014040332A (en) Geopolymer composition
JP4846653B2 (en) Method and apparatus for treating graphite powder waste
TWI741833B (en) Inorganic calcium-silicate-hydrate material and method of manufacturing the same
CN103964724A (en) Multifunctional concrete intensifier
JP2018177622A (en) Production method of inorganic hardened body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171227

R150 Certificate of patent or registration of utility model

Ref document number: 6271341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150