JP6058474B2 - Method for producing a cured geopolymer - Google Patents

Method for producing a cured geopolymer Download PDF

Info

Publication number
JP6058474B2
JP6058474B2 JP2013120311A JP2013120311A JP6058474B2 JP 6058474 B2 JP6058474 B2 JP 6058474B2 JP 2013120311 A JP2013120311 A JP 2013120311A JP 2013120311 A JP2013120311 A JP 2013120311A JP 6058474 B2 JP6058474 B2 JP 6058474B2
Authority
JP
Japan
Prior art keywords
producing
geopolymer
cured
solution
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013120311A
Other languages
Japanese (ja)
Other versions
JP2014237561A (en
Inventor
元樹 上原
元樹 上原
隆恒 佐藤
隆恒 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2013120311A priority Critical patent/JP6058474B2/en
Publication of JP2014237561A publication Critical patent/JP2014237561A/en
Application granted granted Critical
Publication of JP6058474B2 publication Critical patent/JP6058474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、ジオポリマー硬化体の製造方法に係り、特にその凝結時間の制御方法に関するものである。   The present invention relates to a method for producing a cured geopolymer, and more particularly to a method for controlling the setting time.

従来、ジオポリマー硬化体は、鉄道のまくらぎなどコンクリートの二次製品として用いられている。   Conventionally, a geopolymer hardened body is used as a secondary product of concrete such as a sleeper for railways.

ジオポリマー硬化体では、高価なK系材料を使用すると凝結時間が長くとれるが安価なNa系材料を使うと凝結時間が短く、可使時間(作製に使える時間)が長くとれない。   In the cured geopolymer, if an expensive K-based material is used, the setting time can be increased. However, if an inexpensive Na-based material is used, the setting time is short, and the pot life (time available for production) cannot be increased.

その解決方法として、本願発明者は溶液を加温する方法を提案している。すなわち、ケイ酸ナトリウム溶液(例えば水ガラス)とアルカリ溶液(水酸化ナトリウム)を混合して得られるジオポリマー前駆体をあらかじめ所定の温度以上に加温し、かつ所定時間保持する処理を施すことにより、凝結開始時間を大幅に遅延し、十分な可使時間を確保することを可能とすることを提案している(下記特許文献1参照)。   As a solution to this problem, the present inventor has proposed a method of heating the solution. That is, by subjecting a geopolymer precursor obtained by mixing a sodium silicate solution (for example, water glass) and an alkaline solution (sodium hydroxide) to a predetermined temperature or higher and holding it for a predetermined time. It has been proposed to significantly delay the setting start time and ensure a sufficient pot life (see Patent Document 1 below).

すなわち、従来のジオポリマー硬化体の製造方法は、図5に示すように、水ガラス101の(ケイ酸ナトリウム溶液)が固まるのを抑えるため、石炭灰などの粉体(FA)103を暖めた水酸化ナトリウム(NaOH)溶液102と混合し、ジオポリマー硬化体を作製する。 That is, in the conventional method for producing a cured geopolymer, as shown in FIG. 5, the powder (FA) 103 such as coal ash is heated in order to prevent the (sodium silicate solution) of the water glass 101 from solidifying. mixed with hydroxyl kana thorium (NaOH) solution 102 to produce the geopolymer cured product.

特開2012−240852号公報JP 2012-240852 A

しかしながら、上記した従来のジオポリマー硬化体の製造方法では石炭灰(フライアッシュ)だけを使用したときは良好であるが、高炉スラグを利用するとかえって凝結が速くなる欠点があった。   However, the conventional method for producing a cured geopolymer described above is good when only coal ash (fly ash) is used, but there is a drawback that condensing is accelerated when blast furnace slag is used.

本発明は、上記状況に鑑みて、シリカ分をシリカヒュームの粉体で後添加する処理を行うことにより、高炉スラグを利用した系においても、可使時間を長くとれるようにすることにより、ジオポリマー硬化体の工業的レベルでの製造を可能とするジオポリマー硬化体の製造方法を提供することを目的とする。   In view of the above situation, the present invention provides a process in which the silica content is post-added with silica fume powder, so that even in a system utilizing blast furnace slag, the pot life can be increased. It aims at providing the manufacturing method of the geopolymer hardening body which enables manufacture at the industrial level of a polymer hardening body.

本発明は、上記目的を達成するために、
〔1〕ジオポリマー硬化体の製造方法において、水酸化ナトリウム溶液と石炭灰・高炉スラグの粉体を攪拌した後、Si源としてケイ酸Na溶液を使用せず、シリカ(SiO 2 )の微粒子粉体を添加することにより、このシリカの微粒子粉体を徐々に溶解させ、前記ケイ酸Na溶液を使用した場合よりも凝結時間を延伸し、可使時間を確保することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the method for producing a cured geopolymer, after stirring sodium hydroxide solution and coal ash / blast furnace slag powder , silica (SiO 2 ) fine particle powder is used without using a sodium silicate solution as a Si source. By adding the body, the fine particle powder of silica is gradually dissolved, and the setting time is extended and the pot life is ensured as compared with the case where the Na silicate solution is used .

〔2〕上記〔1〕記載のジオポリマー硬化体の製造方法において、前記ケイ素分であるシリカの微粒子粉体がシリカヒューム(SF)であることを特徴とする。 [2] The method for producing a cured geopolymer according to [1] above, wherein the silica fine particle powder which is the silicon content is silica fume (SF).

〔3〕上記〔1〕又は〔2〕記載のジオポリマー硬化体の製造方法において、ジオポリマー硬化体を鉄道のまくらぎとして用いることを特徴とする。   [3] The method for producing a cured geopolymer according to [1] or [2], wherein the cured geopolymer is used as a sleeper for a railway.

本発明によれば、今まで、可使時間が短く製造が不可であったが、可使時間を長くとることができ、しかもジオポリマー硬化体を安価に製造することができる。特に、かかるジオポリマー硬化体は、堅牢にして安価であり、鉄道のまくらぎとして用いるのに好適である。   According to the present invention, the pot life has heretofore been short and cannot be manufactured. However, the pot life can be increased and the cured geopolymer can be manufactured at low cost. In particular, such a cured geopolymer is robust and inexpensive, and is suitable for use as a railway sleeper.

本発明の実施例を示すジオポリマー硬化体の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the geopolymer hardening body which shows the Example of this invention. FA−GP硬化体のケイ酸Na溶液の加温温度・時間と始発時間との関係を示す図である。It is a figure which shows the relationship between the heating temperature and time of the sodium silicate solution of FA-GP hardening body, and initial time. 従来法とSF後添加法の始発時間(分)を示す特性図である。It is a characteristic view which shows the first time (minutes) of the conventional method and the post-SF addition method. 従来法とSF後添加法の練り上がり温度(℃)と圧縮強度(MPa)を示す特性図である。It is a characteristic view which shows the kneading temperature (degreeC) and compressive strength (MPa) of the conventional method and the post-SF addition method. 従来のジオポリマー硬化体の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the conventional geopolymer hardening body.

ジオポリマー硬化体の製造方法は、水酸化ナトリウム溶液と石炭灰・高炉スラグの粉体を攪拌した後、Si源としてケイ酸Na溶液を使用せず、シリカ(SiO 2 )の微粒子粉体を添加することにより、該シリカの微粒子粉体を徐々に溶解させ、前記ケイ酸Na溶液を使用した場合よりも凝結時間を延伸し、可使時間を確保する。 The method for producing a cured geopolymer is to stir the sodium hydroxide solution and coal ash / blast furnace slag powder, and then add silica (SiO 2 ) fine particle powder without using the sodium silicate solution as the Si source. By doing so, the silica fine particle powder is gradually dissolved, and the setting time is extended as compared with the case where the Na silicate solution is used, and the pot life is ensured.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の実施例を示すジオポリマー硬化体の製造方法を示す模式図である。   FIG. 1 is a schematic diagram showing a method for producing a cured geopolymer according to an embodiment of the present invention.

従来のジオポリマー硬化体の製造方法の場合は、高炉スラグを利用した場合、高炉スラグのCa分が反応し、C−S−H(カルシウムシリケート水和物)を生成し、かえって凝結する。そこで、本発明の場合は、ケイ酸ナトリウム溶液化せずに、水酸化ナトリウム(NaOH)1と石炭灰(フライアッシュ、以下FA)2・高炉スラグ(以下、BS)3等の粉体を攪拌した後、ケイ素分としてシリカヒューム(以下、SF)〔BAFS社製メイコ(商標)MS610〕4の粉体を徐々に溶かす処理をすることにより、凝結時間を稼ぎ、可使時間を確保するようにする。このケイ素分は、シリカヒューム(SF)に限定されるものではなく、同様の微粒子粉体(例えば、もみ殻焼却灰、東ソー・シリカ製NIPSIL、NIPGELなど)を用いるようにしてもよい。 In the case of a conventional method for producing a cured geopolymer, when blast furnace slag is used, the Ca content of the blast furnace slag reacts to produce C—S—H (calcium silicate hydrate), which condenses. Therefore, in the case of the present invention, powders such as sodium hydroxide (NaOH) 1, coal ash (fly ash , hereinafter referred to as FA ) 2 and blast furnace slag ( hereinafter referred to as BS) 3 are agitated without forming a sodium silicate solution. After that, the silica fume ( hereinafter referred to as “ SF”) [Meiko (trademark) MS610] manufactured by BAFS Co., Ltd.] 4 is gradually dissolved to obtain a setting time and a pot life. To do. The silicon content is not limited to silica fume (SF), and the same fine particle powder (for example, rice husk incineration ash, Tosoh silica NIPSIL, NIPGEL, etc.) may be used.

以下、ジオポリマー硬化体製造時における問題点の改善について詳細に説明する。   Hereinafter, the improvement of the problem at the time of manufacturing a geopolymer cured body will be described in detail.

(1)溶液加温による凝結時間のコントロール方法の開発
ジオポリマー(以下、GP)硬化体を製造する際、K系と比較して安価なNa系のJIS1号水ガラス(以下、WG)を使用すると、硬化前性状が悪化して型枠への投入が困難な場合もあり、また凝縮時間が短くなり、時には練り混ぜ中に凝結してしまう等、その生産性・作業性に問題があった。このため、高価なK系材料の添加が必要であったが、低コスト化をはかり、広く実用化ためには安価なNa系材料で、十分な可使時間を得ることが重要である。そこで、Na系溶液を使用した場合の可使時間を延伸させる方法を検討した。試験方法は以下の通りである。
(1) Development of a method for controlling the setting time by heating the solution When manufacturing a geopolymer (hereinafter referred to as GP) cured body, Na-based JIS No. 1 water glass ( hereinafter referred to as WG), which is less expensive than K-based, is used. Then, the properties before curing may be deteriorated and it may be difficult to put into the mold, and the condensation time is shortened, sometimes congealing during kneading. . For this reason, it was necessary to add an expensive K-based material, but it is important to obtain a sufficient pot life with an inexpensive Na-based material in order to reduce the cost and to put it to practical use. Then, the method of extending the pot life when using Na-type solution was examined. The test method is as follows.

ジオポリマーペーストを使用して、ケイ酸Na溶液の加温・時間と始発時間(凝結してある一定の硬さになるまでの時間)との関係を検討した。 Using the geopolymer paste, the relationship between the heating / time of the sodium silicate solution and the initial time (the time required for condensation to reach a certain hardness) was examined.

試験材料として48%NaOHと2倍希釈JIS1号WGをアルカリ/水(モル)=0.15、Si/アルカリ(モル)=0.38となるように調整し、35〜90℃で5分〜24時間保持した溶液とJIS1種FA(水/粉体=0.41)とを混合攪拌したものを始発時間の測定に使用した。   48% NaOH and 2-fold diluted JIS No. WG as test materials were adjusted so that alkali / water (mol) = 0.15 and Si / alkali (mol) = 0.38, and 35-90 ° C. for 5 minutes to A solution obtained by mixing and stirring a solution maintained for 24 hours and JIS type 1 FA (water / powder = 0.41) was used to measure the initial time.

図2はFA−GP硬化体のケイ酸Na溶液の溶液温度と始発時間との関係を示す図である。   FIG. 2 is a diagram showing the relationship between the solution temperature of the FA-GP cured body of the sodium silicate solution and the initial time.

この図から明らかなように、加温温度が高いほど、加温温度時間が長いほど、始発時間が延伸する傾向であった。これは単純に投入時のケイ酸Na溶液の温度だけでなく、加温時間も影響することから、ケイ酸Na溶液中の重合構造が変わるためだと考えられる。一般的にコンクリート二次製品を工場で作製するために必要な可使時間は最低1時間〜2時間以上とされていることから、35℃で5分以上保持することにより、それらの条件を満たすことを確認した。ただし、より高温で保持したケイ酸Na溶液を使用したが、硬化前の流動性が向上することから、作業性の点で望ましいものと考えられる。 As is clear from this figure, the higher the heating temperature and the longer the heating temperature time, the longer the starting time was extended. This is considered to be because not only the temperature of the sodium silicate solution at the time of charging but also the heating time affects the polymerization structure in the sodium silicate solution. In general, the pot life required for producing concrete secondary products at the factory is at least 1 to 2 hours or more. Confirmed to meet. However, although the sodium silicate solution held at a higher temperature was used, it is considered desirable from the viewpoint of workability because the fluidity before curing is improved.

(2)シリカフューム(SF)後添加による凝結時間のコントロール方法の開発
上記(1)に活性フィラーとしてBSを使用しない場合、ケイ酸Na溶液(JIS1号WGとNaOH溶液の混合溶液)を加温することにより、凝結時間のコントロールが可能であることを示した。しかし、BSを使用した場合、BSのアルカリ刺激によりカルシウム−ケイ酸塩−水和物(C−S−H)が生じる反応で硬化するため、溶液温度高くすると、それによりBSの凝結が生じ、かえって可使時間が短くなる。そこで、Si源として、ケイ酸Na溶液を使用せず、GP作製時に水酸化Na溶液にシリカ(SiO2 )微粉を後添加し、徐々に溶解させることで凝結時間を延伸させる方法を開発した。試験方法は以下の通りである。
(2) Development of a method for controlling the setting time by post-addition of silica fume (SF) When BS is not used as the active filler in (1) above, a sodium silicate solution (mixed solution of JIS No. WG and NaOH solution) is heated. It was shown that the setting time can be controlled. However, when BS is used, it hardens with a reaction in which calcium-silicate-hydrate (C—S—H) is generated by the alkali stimulation of BS. Therefore, when the solution temperature is raised, condensation of BS occurs. On the contrary, the pot life is shortened. Therefore, a method has been developed in which a silica silicate solution is not used as a Si source, but silica (SiO 2 ) fine powder is post-added to a Na hydroxide solution at the time of GP production and is gradually dissolved to extend the setting time. The test method is as follows.

従来の方法およびSF後添加で、GPモルタルを作製し、その練り混ぜ温度、始発時間、圧縮強度により各GP作製方法を評価した。配合および養生条件を以下に示す。   A GP mortar was prepared by a conventional method and post-SF addition, and each GP preparation method was evaluated based on the kneading temperature, start time, and compressive strength. The formulation and curing conditions are shown below.

配合は、アルカリ/水(モル)=0.165、Si/アルカリ(モル)=0.350、粉体部は、FA90%、BS10%であり、粉体:細骨材比は1:2である。養生温度・時間は85℃、10時間とした。それぞれの作製手順は以下の通りである。   The composition is alkali / water (mol) = 0.165, Si / alkali (mol) = 0.350, the powder part is FA 90%, BS 10%, and the powder: fine aggregate ratio is 1: 2. is there. Curing temperature and time were 85 ° C. and 10 hours. Each production procedure is as follows.

(1)従来法:市販JIS1号WGとNaOH溶液を混合して作製したケイ酸Na溶液を粉体と骨材の混合物に投入しGPモルタルを作製する。   (1) Conventional method: A sodium silicate solution prepared by mixing commercially available JIS No. 1 WG and NaOH solution is charged into a mixture of powder and aggregate to prepare GP mortar.

(2)SF後添加法:NaOH溶液と活性フィラーとしてのBSを混合後、SFを添加、最後に骨材を投入してGPモルタルを作製する。 (2) Post-SF addition method: After mixing the NaOH solution and BS as an active filler, SF is added, and finally aggregate is added to make a GP mortar.

図3は従来法とSF後添加法の始発時間(分)特性図、図4は従来法とSF後添加法の練り上がり温度(℃)と圧縮強度(MPa)特性図である。   FIG. 3 is a graph showing the initial time (minutes) of the conventional method and the post-SF addition method, and FIG. 4 is a diagram showing the kneading temperature (° C.) and compressive strength (MPa) characteristics of the conventional method and the post-SF addition method.

これらの図から明らかなように、SF後添加法では従来法と比較して、始発時間が伸延し、可使時間が長くとれることがわかった。一方、圧縮強度に関しては練り上がり時間の影響を受け、35℃程度の練り上がり温度を維持することで、JIS1号WGを使用して作製した従来方法と同等の強度が得られることがわかった。 As is clear from these figures, it was found that the post-SF addition method has a longer initial use time and a longer pot life than the conventional method. On the other hand, it was found that the compressive strength is affected by the kneading time, and by maintaining the kneading temperature of about 35 ° C., it is possible to obtain the same strength as the conventional method produced using JIS No. 1 WG.

なお、始発時間の伸延は、練り混ぜ初期にNaOH溶液によりFAが溶解し、pHが下がることにより、SFの溶解速度が遅くなるためと考えられる。一方、練り上がり温度が低いときは、SFの溶解が進まないため、圧縮強度の低下が起こるものと推察される。 Note that the extension of the initial time is considered to be due to the fact that the dissolution rate of SF is slowed by the fact that FA is dissolved by the NaOH solution at the initial stage of kneading and the pH is lowered. On the other hand, when the kneading temperature is low, it is presumed that the compression strength is lowered because the dissolution of SF does not proceed.

本発明によれば、高炉スラグを添加すると圧縮強度が上がるため同一強度なら低コストで製造することができる。今まで、可使時間が短く作製不可であったが、本発明により、安価にジオポリマー硬化体を製造することができるようになる。   According to the present invention, when the blast furnace slag is added, the compressive strength increases, so that the same strength can be produced at a low cost. Up to now, the pot life was short and could not be produced. However, according to the present invention, a geopolymer cured product can be produced at low cost.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明のジオポリマー硬化体の製造方法は、高炉スラグを利用した系においても、可使時間を長くとれるようにすることにより、ジオポリマー硬化体の工業的レベルでの製造を可能とするジオポリマー硬化体の製造方法として利用可能である。   The method for producing a cured geopolymer of the present invention is a geopolymer that enables production of a cured geopolymer at an industrial level by enabling a longer pot life even in a system utilizing blast furnace slag. It can be used as a method for producing a cured product.

1 水酸化ナトリウム(NaOH)
2 石炭灰(フライアッシュ)
3 高炉スラグ(BS)
4 シリカヒューム(SF)
1 Sodium hydroxide (NaOH)
2 Coal ash (fly ash)
3 Blast furnace slag (BS)
4 Silica fume (SF)

Claims (3)

水酸化ナトリウム溶液と石炭灰・高炉スラグの粉体を攪拌した後、Si源としてケイ酸Na溶液を使用せず、シリカ(SiO 2 )の微粒子粉体を添加することにより、該シリカの微粒子粉体を徐々に溶解させ、前記ケイ酸Na溶液を使用した場合よりも凝結時間を延伸し、可使時間を確保することを特徴とするジオポリマー硬化体の製造方法。 After stirring the sodium hydroxide solution and the coal ash / blast furnace slag powder , the silica fine particle powder is added by adding the fine particle powder of silica (SiO 2 ) without using the sodium silicate solution as the Si source. A method for producing a cured geopolymer, characterized in that the body is gradually dissolved and the setting time is extended more than when the sodium silicate solution is used, thereby ensuring a pot life . 請求項1記載のジオポリマー硬化体の製造方法において、前記ケイ素分であるシリカの微粒子粉体がシリカヒューム(SF)であることを特徴とするジオポリマー硬化体の製造方法。 2. The method for producing a cured geopolymer according to claim 1, wherein the silica fine particle powder that is the silicon content is silica fume (SF). 3. 請求項1又は2記載のジオポリマー硬化体の製造方法において、ジオポリマー硬化体を鉄道のまくらぎとして用いることを特徴とするジオポリマー硬化体の製造方法。   The method for producing a cured geopolymer according to claim 1 or 2, wherein the cured geopolymer is used as a railroad sleeper.
JP2013120311A 2013-06-07 2013-06-07 Method for producing a cured geopolymer Active JP6058474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013120311A JP6058474B2 (en) 2013-06-07 2013-06-07 Method for producing a cured geopolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013120311A JP6058474B2 (en) 2013-06-07 2013-06-07 Method for producing a cured geopolymer

Publications (2)

Publication Number Publication Date
JP2014237561A JP2014237561A (en) 2014-12-18
JP6058474B2 true JP6058474B2 (en) 2017-01-11

Family

ID=52135096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013120311A Active JP6058474B2 (en) 2013-06-07 2013-06-07 Method for producing a cured geopolymer

Country Status (1)

Country Link
JP (1) JP6058474B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6284388B2 (en) * 2014-02-25 2018-02-28 前田建設工業株式会社 Geopolymer composition
JP6746302B2 (en) * 2015-12-01 2020-08-26 一般財団法人電力中央研究所 Method for producing cured geopolymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150699A (en) * 1974-05-27 1975-12-03
JP2898238B2 (en) * 1995-11-07 1999-05-31 守 西岡 Method of forming fly ash as industrial waste
JP5749949B2 (en) * 2011-03-14 2015-07-15 株式会社Kri Geopolymer and method for producing the same

Also Published As

Publication number Publication date
JP2014237561A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
JP6430268B2 (en) Porous geopolymer cured body
CN113620618B (en) Method for preparing integrated cementing material by utilizing granite powder and coal slag
CN112521113B (en) Low-temperature hydration hardening gel material and preparation method and application thereof
JP2017132657A (en) Method for producing geopolymer composition
JP6058474B2 (en) Method for producing a cured geopolymer
JP2014028726A (en) Method for adjusting the setting time of a geopolymer composition
KR102181104B1 (en) Cement for hardening accelerated secondary concrete product using industrial by-products
KR101553371B1 (en) a manufacturing method for concrete using blast furnace slag and manufactured thereof
JP4171200B2 (en) Method for producing concrete solidified body using steelmaking slag
CN104446571B (en) A kind of castable and preparation method thereof
KR100928402B1 (en) Cement binder for concrete having ultra high compressive strength and manufacturing method of concrete using the same
KR101204909B1 (en) Precast Concrete Mixture and Manufacturing Method Of Precast Concrete Member
JP6686693B2 (en) Method for producing cured product
JP2019014617A (en) Geopolymer composition and geopolymer-cured body
JP6580313B2 (en) Geopolymer additive and geopolymer cured product
JP5870613B2 (en) Steelmaking slag hydrated hardened body and method for producing the same
JP6300678B2 (en) Method for promoting curing and production of geopolymer composition
JP2016005994A (en) Geopolymer composition and mortar or concrete or secondary concrete product
KR20200113453A (en) Manufacturing method of geopolymer concrete with enhanced flowability and geopolymer concrete composition with enhanced flowability
KR101272814B1 (en) Non-sintering inorganic binder comprising blast-furnace slag and mortar composition using thereof
KR101147985B1 (en) Cementless concrete using blast slag and producing method therof
JP5743650B2 (en) Method for producing slag curing composition
JP6729875B2 (en) Construction method of support structure
JP5993080B1 (en) Geopolymer composition production method, geopolymer composition strength diagnostic method, and geopolymer composition strength improvement method
KR101726354B1 (en) Pre-treating Composition for Manufacturing Delayed Slag And Method for Manufacturing Alcali Activated Slag Using the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6058474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150