JP2015222700A - Superconductive tape wire and superconductive coil - Google Patents

Superconductive tape wire and superconductive coil Download PDF

Info

Publication number
JP2015222700A
JP2015222700A JP2014107443A JP2014107443A JP2015222700A JP 2015222700 A JP2015222700 A JP 2015222700A JP 2014107443 A JP2014107443 A JP 2014107443A JP 2014107443 A JP2014107443 A JP 2014107443A JP 2015222700 A JP2015222700 A JP 2015222700A
Authority
JP
Japan
Prior art keywords
superconducting
wire
tape wire
coil
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014107443A
Other languages
Japanese (ja)
Other versions
JP6522891B2 (en
JP2015222700A5 (en
Inventor
寛史 宮崎
Hiroshi Miyazaki
寛史 宮崎
貞憲 岩井
Sadanori Iwai
貞憲 岩井
泰造 戸坂
Taizo Tosaka
泰造 戸坂
賢司 田崎
Kenji Tazaki
賢司 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014107443A priority Critical patent/JP6522891B2/en
Publication of JP2015222700A publication Critical patent/JP2015222700A/en
Publication of JP2015222700A5 publication Critical patent/JP2015222700A5/ja
Application granted granted Critical
Publication of JP6522891B2 publication Critical patent/JP6522891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive tape wire and a superconductive coil which are strong to load stress generated in individual layers of a superconductive wire and reduce eddy currents occurring during AC electrification while minimizing decrease of the current density.SOLUTION: A superconductive tape wire 10 includes a superconductive part 14 which is composed of a thin-film superconductive wire 1 with its outer periphery coated with a good-conductivity metal and a reinforcing part which is fastened to the outer surface, on the side of the superconductive layer 4, of the thin-film superconductive wire 1 constituting the superconductive part 14 and composed of a reinforcing tape wire 11. In the superconductive part 14, there is provided a partition part 13 which divides the superconductive part 14 into a plurality of sections in the width direction of the thin-film superconductive wire 1 to fragment superconductive connections among the individual sections of the superconductive part 14.

Description

本発明は、超電導テープ線および超電導コイルに関する。   The present invention relates to a superconducting tape wire and a superconducting coil.

従来の多層構造の超電導テープ線は、基板の上に中間層が形成され、中間層の上に酸化物超電導層が形成され、酸化物超電導層の上に保護層が形成される構造のものが一般的である。この従来の多層構造の超電導テープ線を用いて超電導コイルを作成し、交流運転を行うと、超電導コイルに渦電流が発生し、交流損失が生じる。   A conventional multilayer superconducting tape wire has a structure in which an intermediate layer is formed on a substrate, an oxide superconducting layer is formed on the intermediate layer, and a protective layer is formed on the oxide superconducting layer. It is common. When a superconducting coil is prepared using this conventional multilayer superconducting tape wire and AC operation is performed, an eddy current is generated in the superconducting coil, resulting in an AC loss.

このような交流損失を低減する技術として、酸化物超電導層をその幅方向に複数に分断する細線化溝を前記基材に達するように形成した超電導テープ線が提案されている(例えば、特許文献1参照)。   As a technique for reducing such AC loss, there has been proposed a superconducting tape wire in which a thinning groove that divides an oxide superconducting layer into a plurality in the width direction is formed so as to reach the base material (for example, Patent Documents). 1).

特許第4777749号公報Japanese Patent No. 4777749

しかしながら、特許文献1に記載される超電導テープ線では、基板より上の各層が溝によって分断されていることから、この溝が超電導テープ線の内部に中空部分を形成することになり、超電導テープ線の内部に中空部分が形成されていない多層構造の超電導テープ線よりも強度的には懸念がある。   However, in the superconducting tape wire described in Patent Document 1, each layer above the substrate is divided by a groove, so that this groove forms a hollow portion inside the superconducting tape wire, and the superconducting tape wire. There is a concern in terms of strength compared to a superconducting tape wire having a multilayer structure in which no hollow portion is formed.

また、超電導テープ線の内部に中空部分が形成されていない多層構造の超電導テープ線を用いて超電導コイルを作成し、運転を行った場合においても、超電導テープ線を構成する各層に生じる負荷応力により、層が剥離、変形、クラックを起こし得ることから、超電導テープ線の僅かな強度低下も回避することが望ましいといえる。   In addition, even when a superconducting coil is created using a multi-layer superconducting tape wire in which no hollow portion is formed inside the superconducting tape wire and operated, the load stress generated in each layer constituting the superconducting tape wire Since the layer can be peeled, deformed, and cracked, it can be said that it is desirable to avoid a slight decrease in strength of the superconducting tape wire.

本発明は、上記課題を考慮してなされたものであり、超電導テープ線を巻回して作成される超電導コイルについて、超電導線の各層に生じる負荷応力に対して強く、交流通電時に発生する渦電流を従来よりも抑制可能な超電導テープ線および超電導コイルを提供することを目的とする。   The present invention has been made in consideration of the above-mentioned problems. For a superconducting coil formed by winding a superconducting tape wire, the present invention is strong against load stress generated in each layer of the superconducting wire, and is an eddy current generated during AC energization. It is an object of the present invention to provide a superconducting tape wire and a superconducting coil capable of suppressing the above-described conventional problems.

本発明の実施形態に係る超電導テープ線は、上述した課題を解決するため、外周が良導電性の金属層で覆われた超電導線材で形成される超電導部と、前記超電導部を形成する前記超電導線材の超電導層側の外表面に固着される、補強テープ線で形成される補強部とを備え、前記超電導部に、前記超電導部を前記超電導線材の幅方向に対して複数個に区切り、前記超電導部の各区分間の超電導的な接続を分断する隔離部を設けたことを特徴とする。   In order to solve the above-described problem, a superconducting tape wire according to an embodiment of the present invention has a superconducting portion formed of a superconducting wire whose outer periphery is covered with a highly conductive metal layer, and the superconducting portion forming the superconducting portion. A reinforcing portion formed of a reinforcing tape wire fixed to the outer surface of the wire on the superconducting layer side, and the superconducting portion is divided into a plurality of the superconducting portions in the width direction of the superconducting wire, The present invention is characterized in that an isolating portion for separating superconducting connection between each section of the superconducting portion is provided.

本発明の実施形態に係る超電導コイルは、前記超電導テープ線を巻枠に巻き回して形成されることを特徴とする。   A superconducting coil according to an embodiment of the present invention is formed by winding the superconducting tape wire around a winding frame.

本発明によれば、超電導テープ線を巻回して作成される超電導コイルについて、超電導線の各層に生じる負荷応力に対して強く、交流通電時に発生する渦電流を従来よりも抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is strong with respect to the load stress which arises in each layer of a superconducting wire about the superconducting coil produced by winding a superconducting tape wire, and can suppress the eddy current which generate | occur | produces at the time of alternating current conduction more than before.

本発明の実施形態に係る超電導テープ線に適用される薄膜超電導線材(従来の超電導テープ線)の一例を示す構成図。The block diagram which shows an example of the thin film superconducting wire (conventional superconducting tape wire) applied to the superconducting tape wire which concerns on embodiment of this invention. 本発明の実施形態に係る超電導テープ線の横断面図。The cross-sectional view of the superconducting tape wire which concerns on embodiment of this invention. 本発明の実施形態に係る超電導コイルの構成を示す構成図であり、(A)は平面図、(B)は縦断面図、(C)は巻線部の拡大断面図。It is a block diagram which shows the structure of the superconducting coil which concerns on embodiment of this invention, (A) is a top view, (B) is a longitudinal cross-sectional view, (C) is an expanded sectional view of a coil | winding part. 本発明の実施形態に係る超電導コイルの実施例および比較例の諸元一覧および評価結果を示す説明図(テーブル)。Explanatory drawing (table) which shows the item list and evaluation result of the Example of a superconducting coil which concerns on embodiment of this invention, and a comparative example. 本発明の実施形態に係る超電導コイルの実施例および比較例についての補強テープ線厚さに対するn値および電流密度の関係を示す説明図。Explanatory drawing which shows the relationship of n value and the current density with respect to the reinforcement tape wire thickness about the Example and comparative example of the superconducting coil which concern on embodiment of this invention.

以下、本発明の実施形態に係る超電導テープ線および当該超電導テープ線を用いた超電導コイルについて、添付の図面を参照して説明する。   Hereinafter, a superconducting tape wire according to an embodiment of the present invention and a superconducting coil using the superconducting tape wire will be described with reference to the accompanying drawings.

図1は本発明の実施形態に係る超電導テープ線の一例である超電導テープ線10に適用される薄膜超電導線材(従来の超電導テープ線)1の横断面を示す斜視図であり、図2は、超電導テープ線10の横断面図である。なお、図1では薄膜超電導線材1の厚さ方向は上下方向、図2では薄膜超電導線材1の厚さ方向は左右方向である。   FIG. 1 is a perspective view showing a transverse section of a thin film superconducting wire (conventional superconducting tape wire) 1 applied to a superconducting tape wire 10 which is an example of a superconducting tape wire according to an embodiment of the present invention. 1 is a cross-sectional view of a superconducting tape wire 10. FIG. In FIG. 1, the thickness direction of the thin film superconducting wire 1 is the vertical direction, and in FIG. 2, the thickness direction of the thin film superconducting wire 1 is the left and right direction.

超電導テープ線10は、図2に示されるように、例えば、厚さ0.13mm、幅5.0mm等、所定厚さおよび所定幅をもつ多層の線材で構成され、外周が良導電性の金属(安定化層6)で覆われた薄膜超電導線材1の超電導層4側と補強テープ線11とが向かい合うように、薄膜超電導線1と補強テープ線11がハンダ等のろう材12でろう付けされることによって固着されて構成される。   As shown in FIG. 2, the superconducting tape wire 10 is composed of a multi-layered wire having a predetermined thickness and a predetermined width, such as a thickness of 0.13 mm and a width of 5.0 mm, and the outer periphery is a highly conductive metal. The thin film superconducting wire 1 and the reinforcing tape wire 11 are brazed with a brazing material 12 such as solder so that the superconducting layer 4 side of the thin film superconducting wire 1 covered with (stabilizing layer 6) and the reinforcing tape wire 11 face each other. By being fixed, it is configured.

すなわち、超電導テープ線10は、一般的な(従来の)超電導テープ線に相当する薄膜超電導線材1で形成され、超電導特性を有する超電導部14と、補強テープ線11で形成され、超電導部14を補強する補強部とを備える構成である。超電導テープ線10の補強部は、薄膜超電導線材1の超電導層4側の外表面にハンダ等で通電可能に固着される。   That is, the superconducting tape wire 10 is formed of a thin film superconducting wire 1 corresponding to a general (conventional) superconducting tape wire, and is formed of a superconducting portion 14 having superconducting properties and a reinforcing tape wire 11, and the superconducting portion 14 is formed. It is the structure provided with the reinforcement part to reinforce. The reinforcing portion of the superconducting tape wire 10 is fixed to the outer surface of the thin film superconducting wire 1 on the superconducting layer 4 side so as to be energized with solder or the like.

また、超電導テープ線10は、超電導部14を薄膜超電導線材1の幅方向(図1においては左右方向の長さ、図2においては上下方向の長さ)に、例えば3つ等の複数に区分(分離)するとともに、超電導部14の各区分間の超電導的な接続を分断する隔離部13が設けられる。   In addition, the superconducting tape wire 10 divides the superconducting portion 14 into a plurality of, for example, three in the width direction of the thin film superconducting wire 1 (the length in the horizontal direction in FIG. 1 and the length in the vertical direction in FIG. 2). In addition to (separation), a separating portion 13 is provided that divides the superconducting connection between the sections of the superconducting portion 14.

図2に例示される超電導テープ線10は、厚さ0.13mm、幅1.6mmの薄膜超電導線1を同じ方向で幅方向(図2においては上下方向)に3本並列配置し、薄膜超電導線1間の各隔離部13を0.1mmの間隙としており、厚さ0.01〜0.08mm(後述する図4参照)、幅5.0mmの補強テープ線11をろう材12でろう付けすることによって、薄膜超電導線1と補強テープ線11とを固着させて形成される厚さ0.14〜0.21mm、幅5.0mmの超電導テープ線10である。   A superconducting tape wire 10 illustrated in FIG. 2 has three thin film superconducting wires 1 having a thickness of 0.13 mm and a width of 1.6 mm arranged in parallel in the same direction in the width direction (vertical direction in FIG. 2). Each separation portion 13 between the wires 1 has a 0.1 mm gap, and a reinforcing tape wire 11 having a thickness of 0.01 to 0.08 mm (see FIG. 4 described later) and a width of 5.0 mm is brazed with a brazing material 12. Thus, the superconducting tape wire 10 having a thickness of 0.14 to 0.21 mm and a width of 5.0 mm formed by fixing the thin film superconducting wire 1 and the reinforcing tape wire 11 to each other.

なお、ろう材12の厚さは、通常、数〜十数ミクロン[μm]程度であり、薄膜超電導線1や補強テープ線11の厚さに対して1桁程度小さく、無視しても支障のない厚さであることから、本説明において、ろう材12の厚さは考慮されてない(無視されている)。   The thickness of the brazing material 12 is usually about several to several tens of microns [μm], which is about an order of magnitude smaller than the thickness of the thin film superconducting wire 1 and the reinforcing tape wire 11 and can be ignored. In the present description, the thickness of the brazing filler metal 12 is not taken into account (ignored) because it is not thick.

薄膜超電導線1は、図1に示されるように、例えば、テープ基板2の上に中間層3が形成され、中間層3の上に超電導層4が形成されており、超電導層4の上に保護層5が形成され、テープ基板2、中間層3、超電導層4、および保護層5の積層物の表面を安定化層6によって被覆されて構成される。   As shown in FIG. 1, the thin film superconducting wire 1 has, for example, an intermediate layer 3 formed on a tape substrate 2, a superconducting layer 4 formed on the intermediate layer 3, and a superconducting layer 4 on the superconducting layer 4. The protective layer 5 is formed, and the surface of the laminate of the tape substrate 2, the intermediate layer 3, the superconducting layer 4, and the protective layer 5 is covered with the stabilization layer 6.

テープ基板2は、例えば、ステンレス鋼、ハステロイ(登録商標)等のニッケル合金、銀合金等の材質で形成される。   The tape substrate 2 is formed of a material such as a nickel alloy such as stainless steel or Hastelloy (registered trademark), a silver alloy, or the like.

中間層3は、拡散防止層であり、例えば、酸化セリウム、YSZ、酸化マグネシウム、酸化イットリウム、酸化イッテルビウム、バリウムジルコニアなどの材質からなり、テープ基板2の上に形成される。   The intermediate layer 3 is a diffusion prevention layer and is made of a material such as cerium oxide, YSZ, magnesium oxide, yttrium oxide, ytterbium oxide, barium zirconia, and is formed on the tape substrate 2.

超電導層4は、例えば、RE123系の組成(RE等)を有する超電導体薄膜からなる。なお、「RE1237」の「RE」は希土類元素(例えば、ネオジム(Nd)、ガドリニウム(Gd)、ホルミニウム(Ho)、サマリウム(Sm)等)およびイットリウム元素の少なくともいずれかを、「B」はバリウム(Ba)を、「C」は銅(Cu)を、「O」は酸素(O)を意味している。 The superconducting layer 4 is made of, for example, a superconducting thin film having a RE123-based composition (RE 1 B 2 C 3 O 7 or the like). Note that “RE” in “RE 1 B 2 C 3 O 7 ” is at least one of rare earth elements (for example, neodymium (Nd), gadolinium (Gd), holmium (Ho), samarium (Sm), etc.) and yttrium elements. “B” means barium (Ba), “C” means copper (Cu), and “O” means oxygen (O).

保護層5は、超電導層4が空気中の水分に触れて劣化するのを防止する等の目的で設けられ、銀等から形成される。なお、保護層5は超電導層4に過剰に電気が流れた場合に超電導層4が燃焼するのを防止する役割も果たす。   The protective layer 5 is provided for the purpose of preventing the superconducting layer 4 from deteriorating due to contact with moisture in the air, and is made of silver or the like. The protective layer 5 also serves to prevent the superconducting layer 4 from burning when electricity flows excessively through the superconducting layer 4.

安定化層6は、超電導層4に過剰に電気が流れた場合に超電導層4が燃焼するのを防止する目的で設けられ、例えば、銅、銀等の電導性の良好な金属をメッキ等することによって形成される。   The stabilization layer 6 is provided for the purpose of preventing the superconducting layer 4 from burning when excessive electricity flows through the superconducting layer 4, for example, plating with a metal having good conductivity such as copper or silver. Formed by.

補強テープ線11は、複数本が並列に配置される薄膜超電導線1を端部で固着させる基材としての機能を有する。また、補強テープ線11は、巻き回して作成される超電導コイル50(図3)の曲げ応力や冷却、電磁力による超電導線(薄膜超電導線1に相当し、以下、同様である。)の各層に生じる負荷応力に対して超電導線を補強する機能を有する。   The reinforcing tape wire 11 has a function as a base material for fixing the thin film superconducting wire 1 in which a plurality of wires are arranged in parallel at the end. Further, the reinforcing tape wire 11 is a layer of a superconducting wire (corresponding to the thin film superconducting wire 1, the same applies hereinafter) by bending stress, cooling, or electromagnetic force of the superconducting coil 50 (FIG. 3) formed by winding. It has a function to reinforce the superconducting wire against the load stress generated in.

補強テープ線11は、例えば、ステンレス鋼、銅−ベリリウム(Cu−Be)合金、アルミニウム、銅、ニッケル、および銅−ニッケル(Cu−Ni)合金の少なくとも1種類から成る材料から選択される。   The reinforcing tape wire 11 is selected from, for example, a material made of at least one of stainless steel, copper-beryllium (Cu—Be) alloy, aluminum, copper, nickel, and copper-nickel (Cu—Ni) alloy.

ろう材12は、薄膜超電導線1(より具体的には、安定化層6)と補強テープ線11とを電気的に接続しつつ、物理的に固着する機能を有する。ろう材12は、薄膜超電導線1と補強テープ線11とを導電可能に固着するものである。ろう材12は、導電性が良好で比較的低温度で接合可能なろう材、例えば、はんだ等であることが好ましい。   The brazing material 12 has a function of physically adhering the thin film superconducting wire 1 (more specifically, the stabilization layer 6) and the reinforcing tape wire 11 while electrically connecting them. The brazing material 12 fixes the thin film superconducting wire 1 and the reinforcing tape wire 11 so as to be conductive. The brazing material 12 is preferably a brazing material that has good conductivity and can be joined at a relatively low temperature, such as solder.

隔離部13は、薄膜超電導線1における幅方向の超電導的な接続を断つ機能を有する。隔離部13は、例えば、間隙や異なる薄膜超電導線1の界面(切離されていれば、隙間なく接触していてもよい)である。   The isolation part 13 has a function of cutting off the superconducting connection in the width direction of the thin film superconducting wire 1. The isolation portion 13 is, for example, a gap or an interface between different thin film superconducting wires 1 (they may be in contact with each other as long as they are separated).

超電導テープ線10では、薄膜超電導線1で形成される超電導部14と、薄膜超電導線1の超電導層4側の安定化層6(外表面)にろう材12で固着される補強テープ線11で形成される補強部とを備える構成とし、超電導部14における幅方向の超電導的な接続を断つ隔離部13を設けている。このような構成としたのは、超電導部14(薄膜超電導線1)の強度、渦電流、および作業性の3つの課題を解決する観点からである。   The superconducting tape wire 10 includes a superconducting portion 14 formed of the thin film superconducting wire 1 and a reinforcing tape wire 11 fixed to the stabilization layer 6 (outer surface) on the superconducting layer 4 side of the thin film superconducting wire 1 with a brazing material 12. The isolation part 13 which cuts off the superconducting connection of the width direction in the superconducting part 14 is provided. The reason why such a configuration is adopted is from the viewpoint of solving three problems of strength, eddy current, and workability of the superconducting portion 14 (thin film superconducting wire 1).

より詳細に説明すれば、薄膜超電導線1の幅は広い方が作成の作業性は良いが、渦電流は発生しやすくなる。一方、薄膜超電導線1の幅が狭いと渦電流の発生はしにくくなるものの作業性が損なわれる。そこで、超電導テープ線10では、幅狭な薄膜超電導線1を薄膜超電導線1の幅方向に、同じ方向で並列に配置し、これらの端部を薄膜超電導線1よりも幅広な補強テープ線11に接合する構成とすることで、薄膜超電導線1内に溝や間隙等の中空部分を設けることなく、超電導部14の超電導的な接続が維持される幅(1本の薄膜超電導線1の幅に相当)を狭くし、超電導テープ線10全体としては従来の幅を維持している。   More specifically, the wider the width of the thin film superconducting wire 1 is, the better the workability is, but the eddy current is likely to occur. On the other hand, when the width of the thin film superconducting wire 1 is narrow, eddy currents are hardly generated, but workability is impaired. Therefore, in the superconducting tape wire 10, the narrow thin film superconducting wire 1 is arranged in parallel in the same direction in the width direction of the thin film superconducting wire 1, and the end portions of the reinforcing tape wire 11 wider than the thin film superconducting wire 1. In such a structure, a superconducting connection of the superconducting portion 14 is maintained without providing a hollow portion such as a groove or a gap in the thin film superconducting wire 1 (width of one thin film superconducting wire 1). And the superconducting tape wire 10 as a whole maintains the conventional width.

このように、幅狭な薄膜超電導線1を薄膜超電導線1の幅方向に、同じ方向で並列に配置し、これらの端部を薄膜超電導線1よりも幅広な補強テープ線11に固着する構成とすることで、超電導部14自体の幅(各薄膜超電導線1の幅と各隔離部13の幅との和)を変えずに、薄膜超電導線1の強度を低下させることなく、超電導部14において超電導的な接続が維持される幅を狭くすることで、超電導部14(薄膜超電導線1)の強度を低下させることなく、また、作業性を損なうことなく、渦電流の発生抑止効果を高めている。   In this way, the thin film superconducting wire 1 having a narrow width is arranged in parallel in the same direction in the width direction of the thin film superconducting wire 1, and these end portions are fixed to the reinforcing tape wire 11 wider than the thin film superconducting wire 1. Thus, the superconducting portion 14 itself is not changed without reducing the strength of the thin film superconducting wire 1 without changing the width of the superconducting portion 14 itself (the sum of the width of each thin film superconducting wire 1 and the width of each separating portion 13). By reducing the width at which the superconducting connection is maintained, the effect of suppressing the generation of eddy currents is enhanced without reducing the strength of the superconducting portion 14 (thin film superconducting wire 1) and without impairing workability. ing.

また、補強テープ線11に必要な厚さを持たせることで、単に薄膜超電導線1を厚さ方向の一端で固着する基材としてだけではなく、薄膜超電導線1の各層に生じる負荷応力に起因する剥離、変形、クラック等の発生防止の効果を高める補強部材として機能することができる。すなわち、補強テープ線11に必要な厚さを持たせることで、超電導コイル50(図3)をコイル劣化に対してより強い構成とすることができる。   Further, by giving the necessary thickness to the reinforcing tape wire 11, not only as a base material for fixing the thin film superconducting wire 1 at one end in the thickness direction but also due to load stress generated in each layer of the thin film superconducting wire 1. It can function as a reinforcing member that enhances the effect of preventing the occurrence of peeling, deformation, cracks, and the like. That is, by providing the reinforcing tape wire 11 with a necessary thickness, the superconducting coil 50 (FIG. 3) can be made stronger against coil deterioration.

さらに、後述するように、補強テープ線11の厚さを適切(0.020mm超0.068mm以下、より好ましくは0.350mm以上0.065mm以下)に設定することで、電流密度の低下も最小限に止めることができる。すなわち、電流密度減少の最小限化および超電導コイル50の劣化防止を両立することができる。   Furthermore, as will be described later, by setting the thickness of the reinforcing tape wire 11 appropriately (over 0.020 mm and 0.068 mm or less, more preferably 0.350 mm or more and 0.065 mm or less), the decrease in current density is also minimized. It can be stopped to the limit. That is, it is possible to achieve both minimization of current density reduction and prevention of deterioration of the superconducting coil 50.

続いて、本発明の実施形態に係る超電導コイル、およびその評価結果(電流密度とn値)について説明する。   Then, the superconducting coil which concerns on embodiment of this invention, and its evaluation result (current density and n value) are demonstrated.

図3は、本発明の実施形態に係る超電導コイルの一例である超電導コイル50の構成を示す構成図であり、(A)は平面図、(B)は縦断面図、(C)は巻線部の拡大断面図である。   FIG. 3 is a configuration diagram showing a configuration of a superconducting coil 50 which is an example of a superconducting coil according to an embodiment of the present invention, where (A) is a plan view, (B) is a longitudinal sectional view, and (C) is a winding. It is an expanded sectional view of a part.

本発明の実施形態に係る超電導コイルの一例である超電導コイル50は、例えば、巻枠51に、上述したような多層の超電導テープ線10を取り付け、さらに絶縁テープ線15を重ねて巻回すことで巻線部52が形成され、全体がエポキシ樹脂等の樹脂で含浸された含浸コイルである。   A superconducting coil 50 which is an example of a superconducting coil according to an embodiment of the present invention is obtained by, for example, attaching a multilayer superconducting tape wire 10 as described above to a winding frame 51 and further winding an insulating tape wire 15 in an overlapping manner. The winding portion 52 is formed, and the whole is an impregnated coil impregnated with a resin such as an epoxy resin.

ここで、図3に一例として例示される超電導コイル50では、巻枠51の内径が30mmであり、絶縁テープ線15の幅が5.0mm、厚さが0.08mmである。また、超電導テープ線10の幅が5.0mm、厚さは0.14〜0.21mmである。   Here, in the superconducting coil 50 illustrated as an example in FIG. 3, the inner diameter of the winding frame 51 is 30 mm, the width of the insulating tape wire 15 is 5.0 mm, and the thickness is 0.08 mm. The superconducting tape wire 10 has a width of 5.0 mm and a thickness of 0.14 to 0.21 mm.

このように構成される超電導コイル50では、超電導テープ線10の超電導部14に超電導的な接続を断つ隔離部13が設けられているため、巻線部52の幅方向(図3に示される上下方向)においても、超電導的な接続を断つことができ、巻線部52の幅方向における長さは従来よりも短くなるため、従来よりも交流通電時における渦電流発生を抑制することができる。   In the superconducting coil 50 configured in this manner, the superconducting portion 14 of the superconducting tape wire 10 is provided with the separating portion 13 that cuts off the superconducting connection, so that the width direction of the winding portion 52 (the top and bottom shown in FIG. (Direction), the superconducting connection can be cut off, and the length of the winding portion 52 in the width direction is shorter than that in the prior art, so that generation of eddy currents during AC energization can be suppressed more than in the past.

また、超電導コイル50によれば、超電導テープ線10が補強部を備えるため、この超電導テープ線10を巻回してなる超電導コイル50では、超電導コイル50の作成時や運転時に薄膜超電導線1の各層に生じる負荷応力に起因するコイル劣化にも強い構成とすることができる。   Moreover, according to the superconducting coil 50, since the superconducting tape wire 10 has a reinforcing portion, each layer of the thin film superconducting wire 1 is formed in the superconducting coil 50 formed by winding the superconducting tape wire 10 during the production or operation of the superconducting coil 50. It is possible to adopt a configuration that is resistant to coil deterioration caused by the load stress generated in.

また、超電導コイル50によれば、後述するように、補強部としての補強テープ線11の厚さを適切(0.020mm超0.068mm以下、より好ましくは0.350mm以上0.065mm以下)に設定することで、電流密度の減少を最小限に止めつつ、従来よりも薄膜超電導線1の各層に生じる負荷応力に起因する剥離、変形、クラック等の発生を防止し、超電導コイル50の劣化を防止することができる。   Further, according to the superconducting coil 50, as will be described later, the thickness of the reinforcing tape wire 11 as the reinforcing portion is appropriately (over 0.020 mm and 0.068 mm or less, more preferably 0.350 mm or more and 0.065 mm or less). By setting, the decrease in current density is kept to a minimum, and the occurrence of peeling, deformation, cracks, etc. due to the load stress generated in each layer of the thin film superconducting wire 1 is prevented, and the superconducting coil 50 is deteriorated. Can be prevented.

[実施例]
続いて、本発明の実施形態に係る超電導コイルの実施例および比較例について説明する。後述する実施例および比較例は、本発明の実施形態に係る超電導コイルの一例である超電導コイル50を作成する際に巻回される超電導テープ線10の補強部の有効性および有効範囲を確認するためのものである。
[Example]
Then, the Example and comparative example of the superconducting coil which concern on embodiment of this invention are demonstrated. Examples and Comparative Examples to be described later confirm the effectiveness and effective range of the reinforcing portion of the superconducting tape wire 10 that is wound when the superconducting coil 50 that is an example of the superconducting coil according to the embodiment of the present invention is created. Is for.

図4は、本発明の実施形態に係る超電導コイルとしての超電導コイル50の実施例および比較例の諸元一覧および評価結果(電流密度およびn値)を示す説明図(テーブル)である。   FIG. 4 is an explanatory diagram (table) showing a list of specifications and evaluation results (current density and n value) of examples and comparative examples of the superconducting coil 50 as the superconducting coil according to the embodiment of the present invention.

ここで、作成した超電導コイル(コイル番号#1〜#21)は、補強テープ線としての銅テープ線(補強部)を薄膜超電導線の超電導層側の外表面(安定化層6)に固着した超電導テープ線を巻枠51(図3)に取り付け、さらに絶縁テープ線15(図3)を重ねて巻回することで形成される含浸コイルであり、超電導テープ線の幅は、何れも5.0mmである。   Here, the created superconducting coils (coil numbers # 1 to # 21) have copper tape wires (reinforcing portions) as reinforcing tape wires fixed to the outer surface (stabilizing layer 6) on the superconducting layer side of the thin film superconducting wires. This is an impregnated coil formed by attaching a superconducting tape wire to the winding frame 51 (FIG. 3) and further winding the insulating tape wire 15 (FIG. 3). The width of each superconducting tape wire is 5. 0 mm.

コイル番号#1〜#21のうち、コイル番号#1〜#14の超電導コイルは、厚さ0.13mm、幅1.6mmの薄膜超電導線1を同じ方向で幅方向(図2においては上下方向)に3本並列配置し、薄膜超電導線1間の各隔離部13を0.1mmの間隙として超電導部14の幅を5.0mmとしたものであり、幅5.0mmの銅テープ線の厚さを0mm(無)〜0.080mm(有)の範囲で8通りに変化させた超電導テープ線10(図2)を巻枠51に取り付け、さらに絶縁テープ線15を重ねて巻回することで形成される含浸コイルである。   Among the coil numbers # 1 to # 21, the superconducting coils of the coil numbers # 1 to # 14 are formed by extending the thin film superconducting wire 1 having a thickness of 0.13 mm and a width of 1.6 mm in the same direction in the width direction (in FIG. ), And the width of the superconducting part 14 is set to 5.0 mm with each separating part 13 between the thin film superconducting wires 1 having a gap of 0.1 mm, and the thickness of the copper tape wire having a width of 5.0 mm. By attaching the superconducting tape wire 10 (FIG. 2) whose thickness is changed in 8 ways in the range of 0 mm (no) to 0.080 mm (present) to the winding frame 51, and further winding the insulating tape wire 15 in an overlapping manner. It is an impregnated coil to be formed.

また、コイル番号#15〜#21は、幅5.0mmの銅テープ線(補強部)を、離隔部13を備えていない一般的な(従来の)超電導テープ線に相当する幅5.0mmの薄膜超電導線材1に固着し、銅テープ線の厚さを0.010mm〜0.080mmの範囲で7通りに変化させた超電導テープ線を作成し、これをコイル番号#1〜#14と同様に巻枠51に取り付け、さらに絶縁テープ線15を重ねて巻回することで形成される含浸コイルである。   In addition, coil numbers # 15 to # 21 have a 5.0 mm width copper tape wire (reinforcing portion) and a 5.0 mm width corresponding to a general (conventional) superconducting tape wire not provided with the separation portion 13. A superconducting tape wire is prepared which is fixed to the thin film superconducting wire 1 and the thickness of the copper tape wire is changed in seven ways within a range of 0.010 mm to 0.080 mm. This is the same as the coil numbers # 1 to # 14. It is an impregnation coil formed by attaching to the winding frame 51 and further winding the insulating tape wire 15 in an overlapping manner.

本説明では、コイル番号#1〜#21のうち、#6〜#13,#16〜#19は実施例、その他(#1〜#5,#14,#15,#20,#21)は比較例である。また、実施例および比較例に係る超電導コイルを評価する指標として、性能に関しては電流密度(相対値)、超電導コイルの劣化に関してはn値を使用する。   In this description, among coil numbers # 1 to # 21, # 6 to # 13 and # 16 to # 19 are examples, and the others (# 1 to # 5, # 14, # 15, # 20, # 21) are It is a comparative example. In addition, as an index for evaluating the superconducting coils according to Examples and Comparative Examples, current density (relative value) is used for performance, and n value is used for deterioration of the superconducting coil.

電流密度については、補強部が無い場合、すなわち、銅テープ線の厚さが0mmである場合を100%とし、補強部が無い場合に対する電流密度(相対値)を求め、性能低下の許容可能な5%減以下の範囲である95.0%以上であれば、性能は良好と判断する。   As for the current density, the case where there is no reinforcing portion, that is, the case where the thickness of the copper tape wire is 0 mm is defined as 100%, and the current density (relative value) with respect to the case where there is no reinforcing portion is obtained. If it is 95.0% or more, which is a range of 5% reduction or less, it is judged that the performance is good.

n値については、液体窒素中で通電した場合の電流に対する電圧特性を求め、求めた結果から導出される値を用いる。n値が20.00以上であれば、一般的には超電導コイルに劣化のない良好な状態と判断されることから、n値が20.00であれば、超電導コイルに劣化のない良好な状態と判断する。   As the n value, a voltage characteristic with respect to a current when energized in liquid nitrogen is obtained, and a value derived from the obtained result is used. If the n value is 20.00 or more, it is generally determined that the superconducting coil is in a good state without deterioration. If the n value is 20.00, the superconducting coil is in a good state without deterioration. Judge.

図4によれば、銅テープ線(補強テープ線11:図2)が存在しない場合を表すコイル番号#1では、n値は20.00未満である5.30となり、超電導コイルの劣化が生じていると判断できる。   According to FIG. 4, in coil number # 1, which represents the case where there is no copper tape wire (reinforcing tape wire 11: FIG. 2), the n value is 5.30, which is less than 20.00, and the superconducting coil deteriorates. Can be judged.

続いて、銅テープ線(補強テープ線11:図2)が存在する場合であって、その厚さが0.010mmの場合を表すコイル番号#2,3では、何れも電流密度は95%以上であるものの、n値は、それぞれ、9.25,3.25と、両方とも20.00未満となっているため、超電導コイルの劣化が生じていると判断できる。   Subsequently, in the case where there is a copper tape wire (reinforcement tape wire 11: FIG. 2) and the thickness is 0.010 mm, the coil numbers # 2 and 3 each represent a current density of 95% or more. However, since the n values are 9.25 and 3.25, respectively, both being less than 20.00, it can be determined that the superconducting coil is deteriorated.

また、銅テープ線の厚さが0.020mmの場合を表すコイル番号#4,5では、何れも電流密度は95%以上であるものの、n値は、それぞれ、26.90,14.00である。従って、コイル番号#4については、電流密度の減少を最小限に抑えつつ(電流密度95%以上を確保しつつ)、超電導線の各層に生じる負荷応力に起因するコイル劣化についても抑えられている(n値20以上を確保できている)という結果を得ることができたが、他方のコイル番号#5については、電流密度の減少を最小限に抑えられているものの、超電導線の各層に生じる負荷応力に起因するコイル劣化については抑えられていないという結果を得た。   Moreover, in coil numbers # 4 and 5 representing the case where the thickness of the copper tape wire is 0.020 mm, the current density is 95% or more, but the n values are 26.90 and 14.00, respectively. is there. Therefore, with respect to the coil # 4, the deterioration of the coil due to the load stress generated in each layer of the superconducting wire is suppressed while minimizing the decrease in the current density (while ensuring a current density of 95% or more). Although the result that the n value of 20 or more could be obtained was obtained, the decrease in current density was suppressed to the minimum for the other coil number # 5, but it occurred in each layer of the superconducting wire. The result that the coil deterioration resulting from load stress was not suppressed was obtained.

さらに、銅テープ線の厚さが0.020mm超となる0.035mmの場合を表すコイル番号#6,7では、何れも電流密度は95%以上であり、n値についても、それぞれ、30.90,30.80という20.00以上という結果を得ることができた。従って、コイル番号#6,7については、電流密度の減少を最小限に抑えつつ、超電導線の各層に生じる負荷応力に起因するコイル劣化についても抑えられているという結果を得た。   Furthermore, in the coil numbers # 6 and 7 representing the case where the thickness of the copper tape wire is 0.035 mm which exceeds 0.020 mm, the current density is 95% or more, and the n value is 30. The result of 20.00 or more of 90, 30.80 could be obtained. Therefore, as for coil numbers # 6 and 7, it was obtained that the deterioration of the coil due to the load stress generated in each layer of the superconducting wire was suppressed while minimizing the decrease in current density.

これらコイル番号#1〜#7の結果から、薄膜超電導線材1に補強テープ線(銅テープ線)11を固着したとしても、補強テープ線11の厚さが0.020mm未満等、厚さが十分でない場合には、超電導線の各層に生じる負荷応力に起因するコイル劣化を抑制する効果を十分に得ることはできないということが知見された。   From the results of these coil numbers # 1 to # 7, even if the reinforcing tape wire (copper tape wire) 11 is fixed to the thin film superconducting wire 1, the thickness of the reinforcing tape wire 11 is sufficiently small, such as less than 0.020 mm. If not, it has been found that it is not possible to sufficiently obtain the effect of suppressing coil deterioration caused by load stress generated in each layer of the superconducting wire.

また、銅テープ線の厚さが0.020mmの場合に良と否に分かれたものの、それ以上では何れも良となっていることから、補強テープ線11の厚さ0.020mm付近が、負荷応力に起因するコイル劣化を抑制する効果を得られるか否かの境界になっていると推定される。従って、超電導線の各層に生じる負荷応力に起因するコイル劣化を抑制するためには、補強テープ線11の厚さが0.020mm超であることが好ましく、0.035mm以上であることがより好ましいことが知見された。   Moreover, although it was divided into good or bad when the thickness of the copper tape wire is 0.020 mm, since it is good at any more than that, the thickness of the reinforcing tape wire 11 near 0.020 mm is the load. It is estimated that this is the boundary of whether or not the effect of suppressing the coil deterioration caused by the stress can be obtained. Therefore, in order to suppress coil deterioration caused by load stress generated in each layer of the superconducting wire, the thickness of the reinforcing tape wire 11 is preferably more than 0.020 mm, and more preferably 0.035 mm or more. It was discovered.

続いて、銅テープ線の厚さが0.020mm超の範囲で、0.035mm、0.050mm、0.065mm 、0.070mm、0.080mmと増加していくと、n値20.00以上は何れも満足する一方で、電流密度については徐々に減少していき、やがて95%を下回る。   Subsequently, when the thickness of the copper tape wire exceeds 0.020 mm and increases to 0.035 mm, 0.050 mm, 0.065 mm, 0.070 mm, 0.080 mm, the n value is 20.00 or more. Are satisfied, but the current density gradually decreases and eventually falls below 95%.

具体的に説明すれば、コイル番号#8〜11では、n値は、それぞれ、28.70,26.60,29.40,27.80と、何れも20.00以上であり、電流密度についても、それぞれ、96.3,96.3,95.2,95.2と、何れも95%以上となっている。従って、銅テープ線の厚さが0.035〜0.065mmの範囲では、電流密度の減少を最小限に抑える(電流密度95%以上を確保する)ことができ、かつ超電導線(薄膜超電導線1)の各層に生じる負荷応力に起因するコイル劣化を抑制することができるという結果が得られた。   Specifically, in the coil numbers # 8 to 11, the n values are 28.70, 26.60, 29.40, and 27.80, respectively, which are 20.00 or more. Are 96.3, 96.3, 95.2 and 95.2, respectively, which are 95% or more. Therefore, when the thickness of the copper tape wire is in the range of 0.035 to 0.065 mm, it is possible to minimize the decrease in current density (to ensure a current density of 95% or more) and to use a superconducting wire (thin film superconducting wire). As a result, the coil deterioration caused by the load stress generated in each layer of 1) can be suppressed.

一方、銅テープ線の厚さが0.070mm以上となるコイル番号#12〜14では、n値は、それぞれ、29.30,29.20,24.70と、何れも20.00以上であるものの、電流密度は、それぞれ、94.9,94.9,94.2%と、何れも95%未満となっている。従って、銅テープ線の厚さが0.070mm以上(0.080mm以下)となる範囲では、超電導線(薄膜超電導線1)の各層に生じる負荷応力に起因するコイル劣化を抑制すること(n値20以上を確保)できる一方で、電流密度については減少が大きくなってしまい、電流密度の減少を最小限に抑える(電流密度95%以上を確保する)ことができないという結果が得られた。   On the other hand, in the coil numbers # 12 to 14 in which the thickness of the copper tape wire is 0.070 mm or more, the n values are 29.30, 29.20, and 24.70, respectively, and 20.00 or more, respectively. However, the current densities are 94.9, 94.9, and 94.2%, respectively, which are less than 95%. Therefore, in the range where the thickness of the copper tape wire is 0.070 mm or more (0.080 mm or less), coil deterioration caused by load stress generated in each layer of the superconducting wire (thin film superconducting wire 1) is suppressed (n value). On the other hand, the current density is greatly reduced, and the decrease in current density cannot be minimized (a current density of 95% or more cannot be secured).

これらコイル番号#8〜#14の結果から、補強テープ線(銅テープ線)11の厚さが0.020mm超の十分な厚さがある場合、負荷応力に起因するコイル劣化を抑制する観点からは有効である一方、厚さが増し過ぎると、電流密度の維持の観点からは好ましくないという結果を得た。具体的には、厚さが0.070mm以上となると、電流密度95%以上を確保することができず、電流密度の減少を最小限に抑えることができなくなってしまうということが知見された。   From the results of these coil numbers # 8 to # 14, when the thickness of the reinforcing tape wire (copper tape wire) 11 has a sufficient thickness exceeding 0.020 mm, from the viewpoint of suppressing coil deterioration caused by load stress. Is effective, but when the thickness is increased too much, it is not preferable from the viewpoint of maintaining the current density. Specifically, it has been found that when the thickness is 0.070 mm or more, a current density of 95% or more cannot be ensured, and a decrease in current density cannot be minimized.

なお、電流密度については、超電導コイルのコイル形状に依存するため、電流密度95%となる銅テープ線の厚さ(理論値)を算出することができる。今回試作した超電導コイルの形状から算出される電流密度95%となる銅テープ線の厚さ(理論値)は、約0.068mmであり、上記実施例および比較例の結果は、この理論値を裏付ける結果となっている。   Since the current density depends on the coil shape of the superconducting coil, the thickness (theoretical value) of the copper tape wire at which the current density is 95% can be calculated. The thickness (theoretical value) of the copper tape wire with a current density of 95% calculated from the shape of the superconducting coil that was prototyped this time is about 0.068 mm, and the results of the above examples and comparative examples are the theoretical values. The result is supported.

故に、電流密度の減少を最小限に抑える(電流密度95%以上を確保する)ためには、補強テープ線11の厚さが0.068mm以下であることが好ましく、0.065mm以下であることがより好ましいことが知見された。   Therefore, in order to minimize the decrease in current density (to ensure a current density of 95% or more), the thickness of the reinforcing tape wire 11 is preferably 0.068 mm or less, and 0.065 mm or less. Has been found to be more preferable.

一方、離隔部13を設けた超電導テープ線10を巻回して形成される超電導コイル50の他、離隔部13を備えていない一般的な(従来の)超電導テープ線に補強部を追設した超電導テープ線を巻回して形成される超電導コイルであるコイル番号#15〜#21の超電導コイルについても、離隔部13を設けた超電導テープ線10を巻回して形成される超電導コイル50の結果と同様の結果が得られることが確認された。   On the other hand, in addition to the superconducting coil 50 formed by winding the superconducting tape wire 10 provided with the separation portion 13, a superconductivity in which a reinforcing portion is added to a general (conventional) superconducting tape wire not provided with the separation portion 13. The superconducting coils of coil numbers # 15 to # 21, which are superconducting coils formed by winding a tape wire, are similar to the results of the superconducting coil 50 formed by winding the superconducting tape wire 10 provided with the separation portion 13. It was confirmed that the results were obtained.

具体的に説明すれば、補強テープ線(銅テープ線)11の厚さが0.010mmとなるコイル番号#15の超電導コイルでは、電流密度は99.2%と95%以上を確保できているものの、n値は6.25と20.00未満となっているため、超電導コイルの劣化が生じていると判断できる。   Specifically, in the superconducting coil of coil number # 15 in which the thickness of the reinforcing tape wire (copper tape wire) 11 is 0.010 mm, the current density can be secured at 99.2%, which is 95% or more. However, since the n value is 6.25 and less than 20.00, it can be determined that the superconducting coil is deteriorated.

また、補強テープ線(銅テープ線)11の厚さが0.020mm〜0.065mmとなるコイル番号#16〜#19の超電導コイルでは、n値は、それぞれ、24.60,30.80,27.50,29.00と、何れも20.00以上であり、電流密度についても、それぞれ、98.5,97.4,96.3,95.2と、何れも95%以上となっている。従って、補強テープ線(銅テープ線)11の厚さが0.020mm〜0.065mmの範囲内では、電流密度の減少を最小限に抑えつつ、超電導線の各層に生じる負荷応力に起因するコイル劣化についても抑えられているという結果が得られた。   In the superconducting coils of coil numbers # 16 to # 19 in which the thickness of the reinforcing tape wire (copper tape wire) 11 is 0.020 mm to 0.065 mm, the n values are 24.60, 30.80, 27.50 and 29.00, both of which are 20.00 or more, and the current densities are 98.5, 97.4, 96.3, 95.2, both of which are 95% or more. Yes. Therefore, when the thickness of the reinforcing tape wire (copper tape wire) 11 is in the range of 0.020 mm to 0.065 mm, the coil caused by the load stress generated in each layer of the superconducting wire while minimizing the decrease in current density. The result that the deterioration was also suppressed was obtained.

さらに、補強テープ線(銅テープ線)11の厚さが0.070mm,0.080mmとなるコイル番号#20,#21の超電導コイルでは、n値は、それぞれ、28.20,25.10と、何れも20.00以上であるものの、電流密度は、それぞれ、94.9,94.2%と、何れも95%未満となっている。従って、銅テープ線の厚さが0.070mm以上(0.080mm以下)となる範囲では、超電導線(薄膜超電導線1)の各層に生じる負荷応力に起因するコイル劣化を抑制すること(n値20以上を確保)できる一方で、電流密度については減少が大きくなってしまい、電流密度の減少を最小限に抑える(電流密度95%以上を確保する)ことができないという結果が得られた。   Furthermore, in the superconducting coils of coil numbers # 20 and # 21 in which the thickness of the reinforcing tape wire (copper tape wire) 11 is 0.070 mm and 0.080 mm, the n values are 28.20 and 25.10, respectively. Although both are 20.00 or more, the current densities are 94.9 and 94.2%, respectively, and both are less than 95%. Therefore, in the range where the thickness of the copper tape wire is 0.070 mm or more (0.080 mm or less), coil deterioration caused by load stress generated in each layer of the superconducting wire (thin film superconducting wire 1) is suppressed (n value). On the other hand, the current density is greatly reduced, and the decrease in current density cannot be minimized (a current density of 95% or more cannot be secured).

以上の結果をまとめると、超電導テープ線10(図2,3)を巻回して形成される超電導コイル50(図3)について、電流密度の減少を最小限に止めつつ、従来よりも薄膜超電導線1(図1,2)の各層に生じる負荷応力に起因する超電導コイル50の劣化を防止するためには、補強テープ線(銅テープ線)11の厚さは0.020mm超0.068mm以下が好ましく、0.035mm以上0.065mm以下がより好ましい。   Summarizing the above results, the superconducting coil 50 (FIG. 3) formed by winding the superconducting tape wire 10 (FIGS. 2 and 3) is thinner than the conventional one while minimizing the decrease in current density. 1 (FIGS. 1 and 2), in order to prevent deterioration of the superconducting coil 50 due to the load stress generated in each layer, the thickness of the reinforcing tape wire (copper tape wire) 11 should be more than 0.020 mm and not more than 0.068 mm. Preferably, it is 0.035 mm or more and 0.065 mm or less.

また、電流密度の減少を最小限に止めつつ、従来よりも薄膜超電導線1(図2)の各層に生じる負荷応力に起因する超電導コイル50(図3)の劣化防止に有益となる補強テープ線11(図2)の厚さ範囲に関しては、超電導テープ線10に隔離部13が設けられるか否か(隔離部13の有無)によって、(渦電流に関する効果に差異が生じるとしても)実質的な差異はなく、補強テープ線(銅テープ線)11の厚さは0.020mm超0.068mm以下が好ましく、0.035mm以上0.065mm以下がより好ましいことが知見された。   Further, a reinforced tape wire that is more useful in preventing deterioration of the superconducting coil 50 (FIG. 3) due to load stress generated in each layer of the thin film superconducting wire 1 (FIG. 2) than in the past while minimizing the decrease in current density. 11 (FIG. 2), the thickness of the superconducting tape wire 10 is substantially different (even if there is a difference in the effect on the eddy current) depending on whether or not the separator 13 is provided in the superconducting tape wire 10 (the presence or absence of the separator 13). There was no difference, and it was found that the thickness of the reinforcing tape wire (copper tape wire) 11 is preferably more than 0.020 mm and 0.068 mm or less, more preferably 0.035 mm or more and 0.065 mm or less.

図5は、図4に示される評価結果をまとめた説明図であり、より具体的には、本発明の実施形態に係る超電導コイルの実施例および比較例(補強部を備えない超電導テープ線(薄膜超電導線1に相当)を巻回して作成したコイル番号#1、および超電導テープ線10を巻回して作成したコイル番号#2〜#14)についての補強テープ線厚さに対するn値および電流密度の関係を示す説明図である。   FIG. 5 is an explanatory diagram summarizing the evaluation results shown in FIG. 4, and more specifically, examples of superconducting coils according to the embodiment of the present invention and comparative examples (superconducting tape wires without reinforcing portions ( N value and current density with respect to reinforcing tape wire thickness for coil number # 1 created by winding thin film superconducting wire 1) and coil numbers # 2- # 14 created by winding superconducting tape wire 10) It is explanatory drawing which shows these relationships.

図5において、横軸は補強テープ線厚さ[mm]、左側の縦軸がn値、右側の縦軸が電流密度(補強テープ線の厚さ0mm(補強テープ線が無い)時を基準(100%)とした場合の相対値)[%]である。   In FIG. 5, the horizontal axis is the reinforcing tape wire thickness [mm], the left vertical axis is the n value, and the right vertical axis is the current density (the thickness of the reinforcing tape wire is 0 mm (no reinforcing tape wire) as a reference). 100%) relative value) [%].

また、領域R1、領域R2、および領域R3は、それぞれ、超電導コイルの形状から理論的に導出される電流密度95%を達成している範囲、n値20以上を達成している範囲、および電流密度95%、かつn値20以上を達成している範囲(領域R1,R2の積集合)である。さらに符号L1,Pは、それぞれ、補強テープ線厚さに対する電流密度の関係を示す関数、および補強テープ線厚さに対するn値を示す点(図5において黒菱形)である。   In addition, the region R1, the region R2, and the region R3 are respectively a range that achieves a current density of 95% theoretically derived from the shape of the superconducting coil, a range that achieves an n value of 20 or more, and a current. This is a range (product set of the regions R1 and R2) in which the density is 95% and the n value is 20 or more. Further, symbols L1 and P are a function indicating the relationship of the current density with respect to the reinforcing tape wire thickness and a point indicating the n value with respect to the reinforcing tape wire thickness (black diamond in FIG. 5).

図5において、電流密度の減少を最小限に抑える(電流密度95%以上を確保する)ことができ(領域R1)、かつ超電導線(薄膜超電導線1)の各層に生じる負荷応力に起因するコイル劣化を抑制することができる範囲(領域R2)は、領域R3の範囲になる。すなわち、補強テープ線(銅テープ線)11の厚さが0.020mm超0.068mm以下であれば良い。また、上述した実施例および比較例を考慮すれば、補強テープ線(銅テープ線)11の厚さは、0.035mm以上0.065mm以下がより好ましい。   In FIG. 5, it is possible to suppress a decrease in current density to a minimum (a current density of 95% or more is ensured) (region R1) and a coil caused by load stress generated in each layer of the superconducting wire (thin film superconducting wire 1). The range in which deterioration can be suppressed (region R2) is the range of region R3. That is, the thickness of the reinforcing tape wire (copper tape wire) 11 may be more than 0.020 mm and 0.068 mm or less. Moreover, if the Example and comparative example mentioned above are considered, as for the thickness of the reinforcement tape wire (copper tape wire) 11, 0.035 mm or more and 0.065 mm or less are more preferable.

以上、超電導テープ線10および当該超電導テープ線10を用いた超電導コイル50によれば、電流密度の減少を最小限に止めつつ、超電導部14(各薄膜超電導線材1の各層)に生じる負荷応力に起因するコイル劣化、および交流通電時に発生する渦電流を、従来よりも低減することができる。   As described above, according to the superconducting tape wire 10 and the superconducting coil 50 using the superconducting tape wire 10, the load stress generated in the superconducting portion 14 (each layer of each thin film superconducting wire 1) is suppressed while minimizing the decrease in current density. The resulting coil deterioration and eddy currents generated during AC energization can be reduced as compared with the conventional case.

また、薄膜超電導線1の内部において超電導層を分断する間隙を設けることなく、より幅の狭い薄膜超電導線1を複数本用いることで、渦電流の抑制効果を得るために、超電導テープ線10の強度が損なわれることはない。   Further, in order to obtain an effect of suppressing eddy current by using a plurality of narrower thin film superconducting wires 1 without providing a gap for dividing the superconducting layer inside the thin film superconducting wire 1, The strength is not impaired.

さらに、超電導コイルの巻線部において超電導特性を示す幅方向の長さが長くなると交流通電した際に渦電流が生じやすくなるが、超電導テープ線10を巻回して形成される超電導コイル50(図3)の巻線部52では、より幅の狭い薄膜超電導線1(図2)を複数本並列に配置し、超電導層側4の端面を1本の幅広な補強テープ線11と固着させているため、超電導特性を示す超電導部14(図2)の幅方向の長さを短くすることができ、交流通電した際に生じる渦電流を低減できる。さらにまた、補強テープ線11と固着させることから、超電導テープ線10および超電導コイル50を薄膜超電導線1の各層に生じる負荷応力に強い構成とすることができる。   Further, if the length in the width direction showing the superconducting characteristics is increased in the winding portion of the superconducting coil, an eddy current is likely to be generated when alternating current is applied, but the superconducting coil 50 formed by winding the superconducting tape wire 10 (FIG. In the winding part 52 of 3), a plurality of narrower thin film superconducting wires 1 (FIG. 2) are arranged in parallel, and the end surface on the superconducting layer side 4 is fixed to one wide reinforcing tape wire 11. Therefore, the length in the width direction of the superconducting portion 14 (FIG. 2) showing the superconducting characteristics can be shortened, and the eddy current generated when alternating current is applied can be reduced. Furthermore, since the reinforcing tape wire 11 is fixed, the superconducting tape wire 10 and the superconducting coil 50 can be configured to withstand load stress generated in each layer of the thin film superconducting wire 1.

さらに、超電導テープ線10および当該超電導テープ線10を用いた超電導コイル50によれば、補強部としての補強テープ線11の厚さを適切(0.020mm超0.068mm以下、より好ましくは0.350mm以上0.065mm以下)に設定することで、従来よりも効果的に薄膜超電導線1の各層に生じる負荷応力に起因する超電導コイル50の劣化を低減することができる。すなわち、電流密度の減少を最小限に止めつつ、薄膜超電導線1の各層に生じる負荷応力に起因する剥離、変形、クラック等の発生を抑制することができる。   Furthermore, according to the superconducting tape wire 10 and the superconducting coil 50 using the superconducting tape wire 10, the thickness of the reinforcing tape wire 11 as a reinforcing portion is appropriately set (over 0.020 mm to 0.068 mm or less, more preferably 0.8 mm). By setting to 350 mm or more and 0.065 mm or less, deterioration of the superconducting coil 50 due to the load stress generated in each layer of the thin film superconducting wire 1 can be reduced more effectively than before. That is, it is possible to suppress the occurrence of peeling, deformation, cracks, and the like due to the load stress generated in each layer of the thin film superconducting wire 1 while minimizing the decrease in current density.

なお、本明細書において、幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、本発明は上記実施形態そのままに限定されるものではない。すなわち、実施段階では、上述した実施例以外にも様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, although several embodiment was described in this specification, these embodiment is shown as an example and this invention is not limited to the said embodiment as it is. That is, in the implementation stage, it is possible to implement in various forms other than the above-described embodiments, and various omissions, additions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 薄膜超電導線材(従来の超電導テープ線)
2 テープ基板
3 中間層
4 超電導層
5 保護層
6 安定化層
10 超電導テープ線
11 補強テープ線
12 ろう材
13 隔離部
15 絶縁テープ線
50 超電導コイル
51 巻枠
52 巻線部
1 Thin film superconducting wire (conventional superconducting tape wire)
2 Tape substrate 3 Intermediate layer 4 Superconducting layer 5 Protective layer 6 Stabilizing layer 10 Superconducting tape wire 11 Reinforcing tape wire 12 Brazing material 13 Separating part 15 Insulating tape wire 50 Superconducting coil 51 Winding frame 52 Winding part

Claims (9)

外周が良導電性の金属層で覆われた超電導線材で形成される超電導部と、
前記超電導部を形成する前記超電導線材の超電導層側の外表面に固着される、補強テープ線で形成される補強部とを備え、
前記超電導部に、前記超電導部を前記超電導線材の幅方向に対して複数個に区切り、前記超電導部の各区分間の超電導的な接続を分断する隔離部を設けたことを特徴とする超電導テープ線。
A superconducting portion formed of a superconducting wire whose outer periphery is covered with a highly conductive metal layer;
The superconducting wire that forms the superconducting part is fixed to the outer surface on the superconducting layer side of the superconducting wire.
A superconducting tape wire characterized in that the superconducting portion is provided with a separating portion that divides the superconducting portion into a plurality in the width direction of the superconducting wire and divides the superconducting connection between the sections of the superconducting portion. .
前記超電導部は、複数の超電導線材を前記超電導線材の幅方向に、同じ方向で並列に配置される構成であり、
前記補強部は、前記並列に配置される前記超電導線材の前記超電導層側の外表面の各々と固着され、
前記隔離部は、前記超電導線材間の界面および間隙の何れか一方であることを特徴とする請求項1記載の超電導テープ線。
The superconducting part is a configuration in which a plurality of superconducting wires are arranged in parallel in the same direction in the width direction of the superconducting wires,
The reinforcing portion is fixed to each of the outer surfaces on the superconducting layer side of the superconducting wires arranged in parallel,
2. The superconducting tape wire according to claim 1, wherein the separating portion is one of an interface and a gap between the superconducting wires.
前記超電導線材の超電導層側の外表面と前記補強部との固着は、ろう材を用いたろう付けによる固着であることを特徴とする請求項1または2に記載の超電導テープ線。 The superconducting tape wire according to claim 1, wherein the outer surface of the superconducting wire on the superconducting layer side and the reinforcing portion are fixed by brazing using a brazing material. 前記補強テープ線は、ステンレス鋼、銅−ベリリウム合金、アルミニウム、銅、ニッケル、および銅−ニッケル合金の少なくとも1種類から成る材料から選択されることを特徴とする請求項1から3の何れか1項に記載の超電導テープ線。 The reinforcing tape wire is selected from materials consisting of at least one of stainless steel, copper-beryllium alloy, aluminum, copper, nickel, and copper-nickel alloy. The superconducting tape wire according to the item. 前記補強テープ線の厚さは、0.020mm超0.068mm以下であることを特徴とする請求項1から4の何れか1項に記載の超電導テープ線。 5. The superconducting tape wire according to claim 1, wherein a thickness of the reinforcing tape wire is more than 0.020 mm and 0.068 mm or less. 前記補強テープ線の厚さは、0.350mm以上0.065mm以下であることを特徴とする請求項5記載の超電導テープ線。 6. The superconducting tape wire according to claim 5, wherein a thickness of the reinforcing tape wire is not less than 0.350 mm and not more than 0.065 mm. 外周が良導電性の金属層で覆われた超電導線材で形成される超電導部と、前記超電導部を形成する前記超電導線材の超電導層側の外表面に固着される、補強テープ線で形成される補強部とを備え、
前記補強テープ線の厚さは、0.020mm超0.068mm以下であることを特徴とする超電導テープ線。
A superconducting portion formed of a superconducting wire whose outer periphery is covered with a highly conductive metal layer, and a reinforcing tape wire fixed to the outer surface of the superconducting wire forming the superconducting portion on the superconducting layer side. With a reinforcing part,
The thickness of the said reinforcement tape wire is more than 0.020mm and 0.068mm or less, The superconducting tape wire characterized by the above-mentioned.
前記補強テープ線の厚さは、0.350mm以上0.065mm以下であることを特徴とする請求項5記載の超電導テープ線。 6. The superconducting tape wire according to claim 5, wherein a thickness of the reinforcing tape wire is not less than 0.350 mm and not more than 0.065 mm. 請求項1から8の何れか1項に記載の超電導テープ線を巻き回して形成されることを特徴とする超電導コイル。 A superconducting coil formed by winding the superconducting tape wire according to any one of claims 1 to 8.
JP2014107443A 2014-05-23 2014-05-23 Superconducting tape wire and superconducting coil Active JP6522891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014107443A JP6522891B2 (en) 2014-05-23 2014-05-23 Superconducting tape wire and superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014107443A JP6522891B2 (en) 2014-05-23 2014-05-23 Superconducting tape wire and superconducting coil

Publications (3)

Publication Number Publication Date
JP2015222700A true JP2015222700A (en) 2015-12-10
JP2015222700A5 JP2015222700A5 (en) 2017-06-22
JP6522891B2 JP6522891B2 (en) 2019-05-29

Family

ID=54785603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014107443A Active JP6522891B2 (en) 2014-05-23 2014-05-23 Superconducting tape wire and superconducting coil

Country Status (1)

Country Link
JP (1) JP6522891B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210061922A (en) * 2019-11-20 2021-05-28 주식회사 서남 Flexible high temperature superconductor wire and manufacturing method thereof
JPWO2020067335A1 (en) * 2018-09-28 2021-09-30 株式会社フジクラ Oxide superconducting coil and its manufacturing method
WO2024037749A1 (en) * 2022-08-19 2024-02-22 Subra A/S Tape comprising superconducting elements distributed longitudinally

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021101086A1 (en) * 2019-11-20 2021-05-27 주식회사 서남 Flexible wire rod and processing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237529A (en) * 1996-02-27 1997-09-09 Furukawa Electric Co Ltd:The High temperature superconductive cable conductor and manufacture thereof
JP2009048792A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting cable
JP2009151993A (en) * 2007-12-19 2009-07-09 Sumitomo Electric Ind Ltd Superconducting wire, superconducting wire manufacturing method, superconductor manufacturing method, superconducting equipment manufacturing method and superconducting wire manufacturing device
JP2011040176A (en) * 2009-08-06 2011-02-24 Toshiba Corp Superconducting tape wire and superconducting coil using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237529A (en) * 1996-02-27 1997-09-09 Furukawa Electric Co Ltd:The High temperature superconductive cable conductor and manufacture thereof
JP2009048792A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting cable
JP2009151993A (en) * 2007-12-19 2009-07-09 Sumitomo Electric Ind Ltd Superconducting wire, superconducting wire manufacturing method, superconductor manufacturing method, superconducting equipment manufacturing method and superconducting wire manufacturing device
JP2011040176A (en) * 2009-08-06 2011-02-24 Toshiba Corp Superconducting tape wire and superconducting coil using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020067335A1 (en) * 2018-09-28 2021-09-30 株式会社フジクラ Oxide superconducting coil and its manufacturing method
KR20210061922A (en) * 2019-11-20 2021-05-28 주식회사 서남 Flexible high temperature superconductor wire and manufacturing method thereof
KR102440393B1 (en) 2019-11-20 2022-09-06 주식회사 서남 Flexible high temperature superconductor wire and manufacturing method thereof
WO2024037749A1 (en) * 2022-08-19 2024-02-22 Subra A/S Tape comprising superconducting elements distributed longitudinally

Also Published As

Publication number Publication date
JP6522891B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP2015222700A (en) Superconductive tape wire and superconductive coil
US10490321B2 (en) Superconducting wire and superconducting coil
US9691532B2 (en) Connection structure of high-temperature superconducting wire piece, high-temperature superconducting wire using connection structure, and high-temperature superconducting coil using connection structure
JP2013235722A (en) Power cable
JP2019075906A (en) Segment coil split conductor and manufacturing method for the same
JP6256244B2 (en) Superconducting wire
JP6548916B2 (en) High temperature superconducting coil
KR101624031B1 (en) Superconductive wire material, joint method thereof, and superconducting coil using same
JP2011040176A (en) Superconducting tape wire and superconducting coil using the same
JP6069269B2 (en) Oxide superconducting wire, superconducting equipment, and oxide superconducting wire manufacturing method
JP2020113509A (en) Oxide superconducting wire and superconducting coil
JP2013246881A (en) Insulation coating structure of superconducting wire rod
JP6465217B2 (en) Superconducting wire
JP6356048B2 (en) Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method
CN110268484B (en) Superconducting wire and superconducting coil
KR101592096B1 (en) Superconductive wire material
JP7234080B2 (en) High temperature superconducting coil
JP7438830B2 (en) Bundle-wound high-temperature superconducting coil device
JP2016033883A (en) Superconducting wire rod
JP2023074692A (en) Oxide superconducting wire, superconducting coil, and manufacturing method of oxide superconducting wire
CN110291597B (en) Superconducting wire and superconducting coil
JP6484658B2 (en) Oxide superconducting wire and superconducting coil
WO2016185751A1 (en) Superconducting wire rod
JP6327794B2 (en) Superconducting coil device
JP2021132062A (en) Electrode structure of bundle type superconducting coil and bundle type superconducting coil

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6522891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150