JP2015221868A - Material accumulation type production facility for biomass pellet - Google Patents

Material accumulation type production facility for biomass pellet Download PDF

Info

Publication number
JP2015221868A
JP2015221868A JP2014106849A JP2014106849A JP2015221868A JP 2015221868 A JP2015221868 A JP 2015221868A JP 2014106849 A JP2014106849 A JP 2014106849A JP 2014106849 A JP2014106849 A JP 2014106849A JP 2015221868 A JP2015221868 A JP 2015221868A
Authority
JP
Japan
Prior art keywords
wood
drying
biomass
pellets
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014106849A
Other languages
Japanese (ja)
Inventor
義則 西野
Yoshinori Nishino
義則 西野
斌 余
Bin Yu
斌 余
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NBL TECHNOVATOR CO Ltd
Original Assignee
NBL TECHNOVATOR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NBL TECHNOVATOR CO Ltd filed Critical NBL TECHNOVATOR CO Ltd
Priority to JP2014106849A priority Critical patent/JP2015221868A/en
Publication of JP2015221868A publication Critical patent/JP2015221868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Drying Of Solid Materials (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of biomass pellets which uses thinned wood and waste wood as raw materials, avoids the risk of self-ignition combustion while increasing the moisture drying limit, achieves water resistance and improves the production efficiency by reducing energy and time necessary for production.SOLUTION: A production method of biomass pellets comprises charging crushed wood into an oven which has vertically a heating reduction drier for drying wood and a cooling tower for heat recovery of biomass pellets and guides waste heat-recovered heating air sucked from a connection part between the heating reduction drier and the cooling tower to the oven for combustion of raw material chips and product refuse to generate a heating reduction dry gas and blow to the heating reduction drier, drawing out dried wood from the lower part of the heating reduction drier, pelletizing by a compression pressurization machine, transferring to the cooling tower to recover waste heat for energy saving.

Description

間伐材や廃木材などを原料とする素材集積型のバイオマスペレット製造設備に関する。    The present invention relates to a material-integrated biomass pellet manufacturing facility using thinned wood or waste wood.

古くは、戦後復興時に家庭用の石炭燃料不足を補うため、製材時に発生する木材のおがくずを再生して燃料とする通称“オガライト”と呼ばれるレンコン状の燃焼しやすくした形状で焚き木同様の形態で、物流できるようにおがくずを加熱乾燥して、圧縮することで木材油脂分の炭化による固化原理でオガライトと呼ぶバイオマス燃料が作られていた。しかし、当時は焚き木や石炭代替燃料であったため用途から自動化された燃焼用の燃料形態を必要としていなかった。
現在のバイオマス燃料の目的は、化石燃料である石炭や石油の代替燃料であり、発電所などの燃焼設備に適用する形態とすることが要求される。すなわち、重油などと同様の短時間燃焼(燃焼コントロールが簡単な燃料形態)と灰分が少ないこと、さらに混焼が可能であることなどが必要であり、過去に実証された技術が適用できない。
In the old days, in order to make up for the shortage of household coal fuel during post-war reconstruction, the form of a lotus root-like firewood that is called “Ogarite” that regenerates wood sawdust generated during sawing and uses it as fuel. Then, biomass fuel called ogarite was made on the principle of solidification by carbonization of wood fats and oils by drying and compressing sawdust so that it can be distributed. However, at that time, it was an alternative to wood and coal, so it did not require an automated form of fuel for combustion.
The purpose of the present biomass fuel is a substitute fuel for coal and oil, which are fossil fuels, and is required to be applied to combustion facilities such as power plants. That is, it requires short-time combustion similar to heavy oil (a fuel form with easy combustion control), low ash content, and capable of co-firing, and the technology proven in the past cannot be applied.

一方、木材の炭化によるバイオマス燃料には、長い歴史の炭がある。炭を作るには木材を還元炉で通称“炭焼き”することで、純度の高い個形炭素化を達成することができる。さらに、作られた炭は簡単に粉砕することができるので、技術的には必要な仕様に適合する。しかし、天然の木材には、炭素以外に多量に水素も含まれる。単に水分を除去して、炭化により固化し、燃焼前に簡単に粉砕できれば理想であるが、結果として木炭生産には大量のエネルギーを必要とし炭素のみが残る燃料生成のエネルギー効率から、実用性に乏しいことから、バイオマスペレット生産には適用しない。    On the other hand, biomass fuel made from wood carbonization has a long history of charcoal. In order to make charcoal, high-purity individual carbonization can be achieved by commonly known “charcoal baking” of wood in a reduction furnace. Furthermore, the charcoal produced can be easily crushed, so that it meets the technical requirements. However, natural wood contains a large amount of hydrogen in addition to carbon. Ideally, it would be ideal to simply remove the water, solidify by carbonization, and be easily pulverized before combustion, but as a result, the production of charcoal requires a large amount of energy, leaving only carbon, making it practical. Because it is scarce, it does not apply to biomass pellet production.

このようなことから、燃焼エネルギー効率を最大にする方法として、木材を乾燥して、ロータリキルンなどで140℃程度に加熱、その後に回転式加圧ローラ打ち抜き法による約1MPaの圧縮で含有油脂分の初期炭化原理を用いたバイオマスペレットが生まれた。現在の主流となったバイオマスペレットの製法であるが、大きな欠点を持つ。
初期炭化による固化でのバイオマスペレットは、乾燥されているが環境水分を吸収する機能が天然木材より優れている。すなわち、露天での保管・移動ができない。さらに、空気中の水分も吸収する。水分吸収はバクテリアを繁殖させ、悪臭発生を誘発して、物流と管理の問題がある。
For this reason, as a method for maximizing combustion energy efficiency, the wood is dried and heated to about 140 ° C. with a rotary kiln, etc., and then the content of fats and oils is reduced by compression of about 1 MPa by a rotary pressure roller punching method. Biomass pellets using the initial carbonization principle were born. This is the mainstream method for producing biomass pellets, but it has major drawbacks.
Biomass pellets in solidification by initial carbonization are dried, but have a better function of absorbing environmental moisture than natural wood. That is, it cannot be stored or moved on the street. Furthermore, it absorbs moisture in the air. Moisture absorption causes bacteria to grow and induces the generation of malodours, causing logistics and management problems.

この問題を解決するために、日本で近年発明されたのが“バイオマスコークス”と呼ばれるものである。 これは、木材チップをロータリキルンなどで約200〜220℃の高温乾燥空気(高温酸化乾燥炉)による乾燥と、約10MPaのピストン複動加圧保持条件で温度180〜200℃で固化、大きさが約2kg個体で、表面積を少なくし、木材の自己着火しない限度まで加熱炭化温度を高めて炭化させた、コークスに近い燃焼性能を持つビット状バイオマスコークスである。この技術は、間伐材を用いた再生燃料を得ることが目的で開発されたため、従来問題であった耐水性に弱いバイオマスペレットの欠点を克服して、間伐材を粉砕した原料でバイオマスコークスを作った、さらに多くないエネルギーで生産を可能とした特徴がある。
しかし、間伐材の再生目的と耐水性問題を解決しバイオマス燃料として、コークス炉には使用できるが、用途条件の重油混焼などに必要な粉砕加工が難しい。それは耐水性を向上させるために、密度を高めて表面積を少なくして強固な個体が必要なため、粉砕加工が困難となる。
In order to solve this problem, what was recently invented in Japan is called “biomass coke”. This is because the wood chips are solidified at a temperature of 180-200 ° C under conditions of about 200-220 ° C high-temperature dry air (high-temperature oxidation drying furnace) with a rotary kiln, etc., and a piston double-acting pressure holding condition of about 10 MPa. Is a bit-like biomass coke with a combustion performance close to that of coke, with a surface area of about 2 kg and carbonization by raising the heating carbonization temperature to the limit where it does not self-ignite wood. This technology was developed for the purpose of obtaining regenerated fuel using thinned wood, so that it overcomes the disadvantages of water pellets that are weak in water resistance, which was a problem in the past, and makes biomass coke from raw materials obtained by grinding thinned wood. In addition, there is a feature that enables production with less energy.
However, it can be used in coke ovens as a biomass fuel by solving the purpose of regeneration of thinned wood and water resistance, but it is difficult to grind necessary for heavy oil co-firing in application conditions. In order to improve water resistance, it requires a solid body with a high density and a small surface area, which makes pulverization difficult.

森林王国と環境重視国であるアメリカやEUで発明された通称“ブラックペレット”と呼ばれるバイオマスペレットは、バイオマスコークスと同様の技術手法を用いて製造されるが、ペレットの生産が目的であるため、加圧容器がφ6〜8mmと小さい。しかし、加熱条件が同じのロータリキルンを採用した木材の自己発火の限界温度での乾燥、180〜200℃と加熱する必要から短時間で目的温度に達するには高温の熱風を必要とする。さらに加圧固化も同じであり、生産時間と消費エネルギーが多く必要となる。 結果は製品の色が黒ずむ(焦げ茶色)ところまで炭化が進み、耐水性は雨季であっても数週間程度の屋外貯蔵(水中で約1週間程度なら膨潤が少ない)など可能な性能を持つにいたる。この炭化を進めて黒くなったペレットすなわち“ブラックペレット”は、耐水性問題を解決するに至った。
しかし、この発明には、更なる問題点の解決が必要となった。酸化炉による加熱乾燥を採用するため、水分の乾燥限界が高く取れないことから、自己燃焼直前の炭化まで時間をかけて乾燥する必要があり、乾燥エネルギーを多く必要とする。さらに木材に含まれる油脂分を抽出して固化する時間も長く必要とする。すなわち生産効率が低いことと、更なる耐水性の向上が求められる。なお、ブラックペレットは石炭炉には問題ないが、微粉砕が必要な重油混焼炉には、バイオマスコークス同様の粉砕が困難であることも解決を必要とした。
Biomass pellets, commonly called “black pellets”, invented in the forest kingdom and the eco-friendly countries of the United States and the EU, are manufactured using the same technique as biomass coke, but for the purpose of producing pellets, The pressurized container is as small as 6 to 8 mm. However, high temperature hot air is required to reach the target temperature in a short time because it is necessary to dry the wood using a rotary kiln with the same heating conditions at the limit temperature of self-ignition and to heat it at 180 to 200 ° C. Furthermore, pressure solidification is the same, requiring a lot of production time and energy consumption. As a result, carbonization progresses to the point where the color of the product is darkened (dark brown), and the water resistance is such that it can be stored outdoors for a few weeks even in the rainy season (swelling is less if it is about 1 week in water). It ’s all over. The pellets that have been blackened by this carbonization, ie, “black pellets”, have solved the water resistance problem.
However, this invention requires further solutions to the problems. Since heat drying using an oxidation furnace is adopted, the moisture drying limit cannot be made high. Therefore, it is necessary to dry over a period of time until carbonization immediately before self-combustion, and much drying energy is required. Furthermore, it takes a long time to extract and solidify the fat and oil contained in the wood. That is, low production efficiency and further improvement in water resistance are required. Although black pellets are not a problem in a coal furnace, a heavy oil mixed-fired furnace that requires fine pulverization also needs to be solved because pulverization is difficult as in biomass coke.

一方、バイオマスペレットの原料となる木材の栽培は、乾燥地帯には柳の種、温帯市域には松の種、熱帯地域にはユウカリの種が最も発育が早く適合する。いずれの種も植林後、毎年刈込して原料として栽培調達できる。また、それらの発育栽培量は平方メートルあたり、年間1〜3kg程度で、地球上で食糧栽培に向かない土地利用に適する。さらに、石油・石炭の化石燃料価格が高価であれば、大量のバイオマスエネルギー供給も経済的に可能になる。ここで、バイオマスペレットの原料木材は、日本においては松材が栽培効率が高く、中国の砂漠地区は柳、東南アジアがユウカリの栽培となることから、実施例は松種の材料を用いた成果を説明する。なお、他の材料も基本的には同じである。    On the other hand, cultivation of wood, which is a raw material for biomass pellets, is the fastest growing species of willow seeds in dry areas, pine seeds in temperate cities, and eucalyptus seeds in tropical areas. All species can be harvested every year after planting and cultivated as raw materials. Moreover, the growth cultivation amount is about 1 to 3 kg per square meter per year, which is suitable for land use that is not suitable for food cultivation on the earth. Furthermore, if the price of fossil fuels for oil and coal is high, a large amount of biomass energy can be supplied economically. Here, as the raw material wood for biomass pellets, pine wood is highly cultivated in Japan, willow cultivation in desert areas in China, and eucalyptus cultivation in Southeast Asia. explain. The other materials are basically the same.

武田諒、下左近峻志、岩谷俊治、西野義則、田村進一著 「バイオマスによる廃材の再利用に関する提案」グローバル経営学会シンポジウム グローバル経営2011 pp.109−112 2011年Satoshi Takeda, Shunji Shimonaka, Toshiharu Iwatani, Yoshinori Nishino, Shinichi Tamura “Proposal on Reuse of Waste Waste by Biomass” Global Management Society Symposium Global Management 2011 pp. 109-112 2011

武田諒、下左近峻志、岩谷俊治、西野義則、田村進一他著 「バイオマスペレット化による廃材の再利用」グローバル経営学会誌Vol.2 2014年3月Satoshi Takeda, Shunji Shimonaka, Toshiharu Iwatani, Yoshinori Nishino, Shinichi Tamura et al. “Reuse of Waste Materials by Biomass Pelletization” Journal of Global Management Society Vol. 2 March 2014

図1は、本発明の原点を構成する日本など温帯地域に栽培が優位な松材の粉砕木片を例にした、目的の耐水性に優れたバイオマスペレットに加工するための、素材と最終製品の物性と炭化による固化の論理概略を示す。天然原木・間伐材・建築廃材であっても、水分が約10〜35%と異なるが構成素材は同じであり、加工に適用する最大粒子20〜50mm、小粒子2〜3mmに粉砕された木片(原料)には、左側にモデル図示する常温常圧の加工前には水分と油脂分を含有する。
原料を燃料にするためには、不燃材である水分を除去する必要がある。水分除去には加熱することで可能である。一方、含有する油脂類を乾燥木材の圧縮接着材として使用するために油脂材の溶解が必要であり、温度が高いほど溶融性と接着加工効果が大きくなる。 しかし、木材の着火温度は約230℃であるため、水分がなくなり約230℃に至ると木材は自己燃焼を開始する。この自己燃焼は水素など炭素に比べて酸化が容易な物質から始まり、酸化燃焼が発生する。すなわち連鎖的に燃焼が始まると炭素も酸化燃焼する。したがって、酸化燃焼をさせない限度の乾燥条件、高温乾燥温度が加熱限界で約180〜200℃であった。
本発明はこの温度を200〜230℃に高める加工法を発明した。その結果、右側にモデル図示する密度約1.17、水分1%以下の見かけ体積1/8となるバイオマスペレットを得た。得られたペレットは、耐水性でブラックペレットやバイオマスコークス以上の性能を持つことが判明した。その発明原理は、従来の乾燥加熱がロータリキルンなどを用いた、酸化炉の乾燥であったため、乾燥時に酸化促進(燃焼着火促進)を行っていたことから、180〜200℃が限界であった。さらに、限界温度まで向上させたことで、炭化が進み、黒色化に至っていた。
FIG. 1 shows an example of raw material and final product for processing into a desired pellet with excellent water resistance, taking as an example a crushed piece of pine wood that is predominantly cultivated in temperate regions such as Japan, which constitutes the origin of the present invention. The logical outline of solidification by physical properties and carbonization is shown. Even if it is natural raw wood, thinned wood, and construction waste, the wood is crushed to a maximum particle size of 20 to 50mm and small particle size of 2 to 3mm, although the moisture content is about 10 to 35%, but the constituent materials are the same. The (raw material) contains moisture and fats and oils before processing at room temperature and normal pressure as shown in the model on the left side.
In order to use the raw material as fuel, it is necessary to remove moisture which is a non-combustible material. Water can be removed by heating. On the other hand, in order to use the contained fats and oils as a compression adhesive for dry wood, it is necessary to dissolve the fats and oils, and the higher the temperature, the greater the meltability and the adhesive processing effect. However, since the ignition temperature of the wood is about 230 ° C., the wood starts self-combustion when the moisture is lost and the temperature reaches about 230 ° C. This self-combustion starts from a material that is easier to oxidize than carbon, such as hydrogen, and oxidative combustion occurs. That is, when combustion starts in a chain, carbon also oxidizes and burns. Therefore, the drying conditions and the high-temperature drying temperature were such that the oxidation combustion did not occur, and the heating limit was about 180 to 200 ° C.
The present invention has invented a processing method for increasing this temperature to 200-230 ° C. As a result, biomass pellets having a density of about 1.17 and an apparent volume of 1/8 with a moisture content of 1% or less shown on the right side were obtained. The resulting pellets were found to be water resistant and outperform black pellets and biomass coke. The principle of the invention was that the conventional drying and heating was the drying of an oxidation furnace using a rotary kiln, etc., and because oxidation was promoted (acceleration of combustion ignition) at the time of drying, the limit was 180 to 200 ° C. . Furthermore, carbonization progressed by raising to the limit temperature, leading to blackening.

図2は、本発明の構成を示す。原木粉砕原料製造機器(1)から送られた原料を自立型垂直固定の水分除去塔槽に堆積する粉砕木材の空隙を〜230℃の加熱還元ガスを通過させる構造の加熱還元乾燥機(2)と、垂直に連結する(1)と同様の構造を持つ固化されたバイオマスペレットが持つ約200℃の排熱回収を行う垂直固定の冷却塔を有して、連結部に加熱された乾燥木材に圧縮加圧する機械(3)を設置連結して、下部から製品を取り出し、上部から原料を入れる構造の中心部に圧縮機械を配置することで、高温処理を可能としたことでペレット耐水性能を必要十分にまで引き上げる技術を確立、さらに熱回収機構を可能にすることで高温での熱ロスを防止することに成功するとともに、従来法より優れた熱効率の省エネバイオマスペレット製造を可能にする。    FIG. 2 shows the configuration of the present invention. Heat reduction dryer (2) with a structure that allows the heat reduction gas of ~ 230 ° C to pass through the gaps in the pulverized wood that accumulates the raw material sent from the raw wood pulverized raw material manufacturing equipment (1) in the self-supporting vertical fixed moisture removal tower And a vertically fixed cooling tower that recovers about 200 ° C waste heat of the solidified biomass pellets that have the same structure as (1) connected vertically, to dry wood that is heated at the connection The machine to compress and press (3) is installed and connected, the product is taken out from the lower part, and the compression machine is placed in the center of the structure where the raw material is put in from the upper part. Establishing a technology that raises the temperature to a sufficient level and enabling a heat recovery mechanism to succeed in preventing heat loss at high temperatures, and making it possible to produce energy-saving biomass pellets with better thermal efficiency than conventional methods.

従来発明のバイオマスコークスやブラックペレットは、酸化炉による加熱乾燥を採用するため、水分の乾燥限界が高く取れないこと、乾燥時に自己着火燃焼の危険性を持ち、耐水性を得るには着火直前の高温加熱が必要であり、炭化直前まで時間をかけて乾燥する必要から、乾燥エネルギーを多く必要とする。さらに木材に含まれる油脂分を高温抽出できないため、固化する圧力と時間を長く必要とする。すなわち生産効率が低くなる。そして長期間の屋外保管には更なる耐水性向上が求められる。さらに、ブラックペレットは石炭炉には適用するが、微粉砕が必要な重油混焼炉、自動化された炉に必要な微粉末化には、バイオマスコークス同様の困難性がある。これらの解決が必要。    Biomass coke and black pellets of the present invention employ heat drying in an oxidation furnace, so that the drying limit of moisture cannot be taken high, there is a risk of self-ignition combustion at the time of drying, and water resistance is obtained just before ignition. Heating at a high temperature is necessary, and it takes a long time to dry until just before carbonization, which requires a lot of drying energy. Furthermore, since the oil and fat contained in the wood cannot be extracted at a high temperature, it requires a long pressure and time for solidification. That is, the production efficiency is lowered. Further, further improvement in water resistance is required for long-term outdoor storage. Further, although black pellets are applied to a coal furnace, there is a difficulty similar to that of biomass coke in pulverization required for a heavy oil mixed firing furnace that requires fine pulverization and an automated furnace. These solutions are necessary.

図1、2に示す木材の加熱乾燥には、酸素を十分に供給せずして燃焼ガスを作り、乾燥木材片を約5〜10m程度高く積み、下部から燃焼ガス約230℃を秒速約0.3〜1mで挿入することで、小粒子木材ならば約1分、大粒子で10分間で絶乾の約200〜230℃に自己着火を防止して接合油脂を抽出、さらに約2〜最大20MPaと低圧で短時間で固化して、耐水性がブラックペレットより優れたバイオマスペレットを省エネ・大量生産が可能とした。    In the heat drying of wood shown in Figs. 1 and 2, combustion gas is made without supplying oxygen sufficiently, the dry wood pieces are stacked about 5-10m high, and about 230 ° C of combustion gas from the bottom is about 0.3 per second. By inserting it at ~ 1m, it will extract self-ignition to about 200-230 ° C, which is completely dry in about 1 minute for small particle wood and 10 minutes for large particle, and extract the joining oil and fat, and about 2 to maximum 20MPa Solidified at low pressure in a short time, energy-saving and mass production of biomass pellets with better water resistance than black pellets became possible.

図3に示す生産設備は、垂直固定の水分除去塔槽〜230℃の加熱還元ガスを通過される構造の加熱還元乾燥機と、垂直に連結する同様の構造を持つ固化されたバイオマスペレットの約200℃熱回収を行う垂直固定の冷却塔を有して、連結部から吸引する排熱回収加熱空気を原料屑や製品ゴミを還元炉燃焼させるろから導かれた加熱乾燥ガスを乾燥塔槽上部に送風、還元可決乾燥された乾燥木材を圧縮加圧機械に引き込み、ペレットを生産して熱回収塔槽に再び戻して、最下部より冷却空気を挿入して排熱熱回収を行うことにより、省エネ設備を得る。    The production facility shown in FIG. 3 includes a vertically fixed moisture removing tower tank to a heating / reduction dryer having a structure through which a heating / reducing gas at 230 ° C. is passed and a solidified biomass pellet having a similar structure connected vertically. It has a vertically fixed cooling tower that performs heat recovery at 200 ° C, and heat drying gas drawn from the waste heat recovery heated air sucked from the connecting part is used to burn raw material waste and product waste in a reduction furnace, and the upper part of the drying tower tank By blowing dry wood that has been blown and reduced to a compression and pressurization machine, producing pellets and returning them back to the heat recovery tower, inserting cooling air from the bottom to recover exhaust heat heat, Get energy saving equipment.

自己着火を防止した還元炉応用の高温処理を可能としたことで、木材の油脂分の抽出を増加させた結果、ペレット耐水性能はブラックペレットの数倍の性能となることが判明、必要十分な耐水性と実用に十分な省エネと高速生産、量産性が得られた。さらに、混焼用途のペレットには、原料粒子径を約1mm以下にしたものを使用して、ペレット成形圧力と時間を調整することで壊れやすく成形したペレットを作り、混焼にはペレット送風用の特別な高速吸引粉砕ファンを用いることによりペレットの衝突粉砕で重油燃焼同様の瞬間燃焼が得られる。    As a result of increasing the extraction of oils and fats in wood by enabling high-temperature treatment for reduction furnace applications that prevented self-ignition, it was found that the water resistance of pellets is several times that of black pellets. Water resistance, energy saving sufficient for practical use, high-speed production, and mass productivity were obtained. In addition, pellets for mixed-firing applications use pellets with a raw material particle size of about 1 mm or less to make pellets that are fragile by adjusting the pellet molding pressure and time. By using a high-speed suction pulverization fan, instantaneous combustion similar to heavy oil combustion can be obtained by collision pulverization of pellets.

図1はバイオマスペレット原料(木片)の必要加工の説明図。(実施例1)FIG. 1 is an explanatory diagram of necessary processing of a biomass pellet raw material (wood piece). (Example 1) 図2は本発明の基本構成の説明図。(実施例2)FIG. 2 is an explanatory diagram of the basic configuration of the present invention. (Example 2) 図3は本発明を構成する設備機器の説明図。(実施例3)FIG. 3 is an explanatory diagram of equipment that constitutes the present invention. (Example 3) 図4は垂直配置の熱回収乾燥機の説明図。(実施例4)FIG. 4 is an explanatory view of a vertically arranged heat recovery dryer. (Example 4)

図3に示す、材料は粉砕された形態でホッパーに入荷、密閉のコンベアーで乾燥塔槽上部に投入、乾燥炉最上部から水蒸気排出と最下部から製品排熱回収の冷却空気を注入させ、中央部で排熱回収空気を引き出して、バイオマスの屑など還元燃焼させた約230℃の高温乾燥ガスを作り、乾燥塔槽に再度戻し、中央部から十分に加熱乾燥された木材粒子を引き出して、機械的にスクリュウ回転による連続加圧またはプランジャーの圧縮加圧など加圧手段を経て、ペレット状に固化して、排熱回収塔槽に返却、木材水分蒸発エネルギーと加圧エネルギーのみで従来のブラックペレット以上の製品を約1/10程度のエネルギーで生産が可能となった。さらに還元炉に自家発電機能を持たすことにより、すべての生産のためのエネルギー・電気も不要な生産を可能にできた。    The material shown in Fig. 3 is delivered to the hopper in a pulverized form, charged into the upper part of the drying tower tank with a closed conveyor, steam discharged from the top of the drying furnace, and cooling air for product exhaust heat recovery from the bottom is injected into the center. Pull out the exhaust heat recovery air at the part, make a high-temperature dry gas of about 230 ° C. reduced and burned such as biomass scrap, return it to the drying tower again, pull out the wood particles that have been sufficiently heated and dried from the center part, Mechanically pressurizing means such as continuous rotation by rotating the screw or compressing and compressing the plunger, solidify into pellets, return to the waste heat recovery tower, and use conventional wood moisture evaporation energy and pressure energy alone. Products over black pellets can be produced with about 1/10 energy. Furthermore, by providing the reduction furnace with an in-house power generation function, it was possible to produce energy and electricity unnecessary for all production.

図1の実施例には、バイオマスペレットの原料は、主に大きさが2〜3mmの粉末化された水分約35%原木から水分約14%の乾燥木材片を用いる。ペレット加工には木材内在の油脂部材を抽出して、水分数%以下に乾燥した状態で加圧して木片間を接合、気泡を排出して、個体とする炭化体のバイオマスペレットを形成する。    In the embodiment of FIG. 1, the raw material of the biomass pellet is mainly a dry wood piece having a moisture content of about 14% from a powdered moisture of about 35% raw wood having a size of 2 to 3 mm. For pellet processing, oil and fat members contained in wood are extracted, pressed in a state of moisture content of several percent or less, joined between pieces of wood, and air bubbles are discharged to form a carbonized biomass pellet.

図2の実施例は、(1)粉砕原料に素材加工された原木から、(2)熱回収された高温空気を製品ゴミなど燃焼させて、空気中の酸素量減少させた“還元加熱空気”による乾燥を行い、乾燥後に、(3)連続押し出し加圧を行って、(4)固化した後、製品の冷却、熱回収を空気冷却して冷却空気を用いて燃焼加熱して、乾燥する。    The embodiment of FIG. 2 is: (1) “reduced heating air” in which high-temperature air recovered from heat is burned from raw wood that has been processed into crushed raw materials to reduce the amount of oxygen in the air. After drying, (3) continuous extrusion pressurization is performed, and (4) after solidification, the product is cooled and heat recovery is air-cooled, heated by combustion using cooling air, and dried.

図3の実施例は、自立型の加熱乾燥タンクに供給する密閉型材料供給コンベアー、不要木片焼却ボイラーの排熱(還元加熱空気)を引き込み、乾燥材を取り出して連続加圧して固化、製品排出後に製品から排熱回収、さらに密閉製品貯蔵タンクから加圧空気を注入して、一連の必要熱を供給し、さらに熱交換回収と木材乾燥を行い、最終排気空気はほとんど常温で大量の水分を排出させる密閉構造の熱効率を最大にした設備。    The embodiment of FIG. 3 draws the exhaust heat (reduced heating air) of a closed material supply conveyor and an unnecessary wood piece incineration boiler supplied to a self-supporting heating and drying tank, takes out the desiccant, and continuously pressurizes to solidify and discharge the product. Later, exhaust heat is recovered from the product, pressurized air is injected from the sealed product storage tank, a series of necessary heat is supplied, heat exchange recovery and wood drying are performed, and the final exhaust air contains a large amount of moisture at almost normal temperature. Equipment that maximizes the thermal efficiency of the sealed structure to be discharged.

図4の実施例は、排熱回収を下部中部にかけて下から上に向かって行い、回収熱風に木片や必要なら油など燃焼させて、酸素量が減少した還元加熱空気を作り、垂直式の乾燥タンクの中部に加熱空気を送り込み、乾燥木材に着火と急速な炭化の防止を図り、下部から上部にかけて、乾燥と必要加熱、排熱回収冷却を材料の自然落下を利用した垂直式の熱交換乾燥機。    In the embodiment of FIG. 4, exhaust heat recovery is performed from bottom to top over the lower middle part, and the recovered hot air is burned with wood chips or oil, if necessary, to produce reduced heated air with reduced oxygen content. Heated air is sent into the middle of the tank to ignite dry carbon and prevent rapid carbonization. From the bottom to the top, drying, necessary heating, and exhaust heat recovery cooling is a vertical heat exchange drying that uses natural fall of the material. Machine.

また図4に示す、乾燥と熱回収条件は、下部の冷却空気温度と排出水蒸気温度はおおむね同じの外気温の10〜20℃ UPであり、塔槽内の温度は中央部が200〜230℃で上下順に低下する。乾燥冷却空気速度は約0.3〜0.5m/秒で、1〜2mm粒子系の生原木で水分35%の木材であっても、約1分で200℃とできるため、塔槽の必要高さと乾燥空気速度は、原料水分量と大きさによって定められる。一般的には約10mの塔槽高さが適当である。ただし、還元炉としての必要性能からすべて密封が必要。    Also, the drying and heat recovery conditions shown in FIG. 4 are that the lower cooling air temperature and exhaust steam temperature are about the same outside air temperature of 10-20 ° C. UP, and the temperature inside the tower is 200-230 ° C. in the center. Decreases in order from top to bottom. The drying cooling air speed is about 0.3-0.5m / sec, and even raw wood with a particle size of 1-2mm and moisture of 35% can reach 200 ° C in about 1 minute. The air velocity is determined by the raw material moisture content and size. Generally, a tower height of about 10 m is appropriate. However, all sealing is necessary due to the required performance as a reduction furnace.

これらのバイオマスペレットの工場立地と用途は、原木栽培産地に設置する場合が最適である。さらに、消費地近郊の森林を対象にして生産する場合と遠く離れた国際栽培地区での生産の場合は、耐水性が十分あれば輸送費・保管費が下がり、国際運賃の負担が消費地の高価な間伐材利用と相殺されて、同じ競争力となる。すなわち、労働力の効果地区では、原料の伐採チップ設備効率が重要なコスト競争力に影響する。    The plant location and use of these biomass pellets is optimal when they are installed in the log production area. In addition, when producing for forests near the consumption area and for production in a remote international cultivation area, if water resistance is sufficient, transportation and storage costs will be reduced, and the burden of international freight will be reduced. The same competitiveness will be offset by the costly use of thinned wood. In other words, in the area where labor force is effective, the efficiency of raw material cutting chip equipment affects important cost competitiveness.

℃ 摂氏、温度を表す。
° 温度を表す。
MPa メガパスカル(圧力単位)
真密度 水分を除いた粉砕木材の見かけ体積に対する見かけ密度を示す。
水分率 木材に含まれる水分含有率(wt%)を示す。
密度 木材の水分を除去した密度を示す。(水は1.0)
圧縮率 見かけ体積を圧縮して収縮体積とする倍率を示す。
℃ Celsius, represents temperature.
° Represents temperature.
MPa Megapascal (pressure unit)
True density Shows the apparent density relative to the apparent volume of crushed wood excluding moisture.
Moisture content Shows the moisture content (wt%) contained in wood.
Density Indicates the density after removing moisture from the wood. (Water is 1.0)
Compressibility Indicates the magnification at which the apparent volume is compressed to the contraction volume.

Claims (4)

バイオマスペレットの製造法において、木材乾燥を燃焼排ガスなど還元加熱乾燥ガスや空気を用いて、木材原料を乾燥による自己燃焼(酸化燃焼)を防止して、着火温度を少なくとも220℃以上にすることで、200℃以上の乾燥木材圧縮、バイオマスペレットを作り防水性を向上させることを目的とする還元乾燥法を用いたバイオマスペレットの製造法。    In the manufacturing method of biomass pellets, by using reduced heating dry gas such as combustion exhaust gas or air, the wood raw material is prevented from self-combustion (oxidation combustion) due to drying, and the ignition temperature is set to at least 220 ° C or higher. A method for producing biomass pellets using a reduced drying method that aims to improve dryness by compressing dry wood at 200 ° C or higher and making biomass pellets. 上項発明において、粉砕木材を密封乾燥容器上部から投入して中間部から乾燥された木材を導き、加圧・加熱して中間部の下に排出、排出された高温ペレットを堆積する密封容器下部から、冷却ガスや空気を圧送することで、排出された高温ペレットの冷却と上部より投入される水分を含む木片原料を還元加熱乾燥させる目的を持ち、省エネ効果を得るため3つの機能を連結した特徴構造を持つバイオマスペレット製造法。    In the above-mentioned invention, the lower part of the sealed container in which the pulverized wood is introduced from the upper part of the sealed dry container, the dried wood is guided from the intermediate part, is pressed and heated and discharged under the intermediate part, and the discharged high temperature pellets are deposited. In order to obtain energy-saving effect, the three functions are connected with the purpose of cooling the exhausted high temperature pellets and reducing and drying the wood chip material containing moisture from the top by pumping cooling gas and air. Biomass pellet manufacturing method with characteristic structure. 上項発明実施する設備にあって、材料投入口から密封されたコンベアーで垂直に配置する密封の加熱乾燥炉上部より材料投入、最上部から開口水分蒸気排出口を持つ炉内に堆積する木片下部から、熱回収された加熱空気を引き込み、木片屑などや重油・LPGガスなどを燃焼させて、燃焼ガスを乾燥木材下部に挿入して還元加熱、挿入の下部から乾燥木片を引き出して、少なくとも5MPa〜40MPaの加圧と少なくとも1分間以上の圧力保持をして、乾燥炉の下部に接続されている密閉容器内に排出堆積、容器内下部製品を取り出し、さらに冷却空気を挿入してペレットの熱回収を行う。 必要な場合、より熱効率UPのため製品取り出し保管密閉タンク下部まで連結して送風冷却することができる、バイオマスペレット製造設備。    In the equipment to implement the above-mentioned invention, the material is charged from the upper part of the sealed heating and drying furnace arranged vertically by the conveyor sealed from the material charging port, and the lower part of the wood pieces deposited in the furnace having the open moisture vapor discharge port from the top. Then, the heated heated air is drawn in, burns wood chips, heavy oil, LPG gas, etc., inserts the combustion gas into the lower part of the dry wood, reduces the heat, pulls out the dry wood piece from the lower part of the insert, and at least 5MPa Pressurize ~ 40MPa and hold pressure for at least 1 minute, discharge and accumulate in a closed container connected to the lower part of the drying furnace, take out the lower product in the container, and insert cooling air to heat the pellet Collect. Biomass pellet manufacturing equipment that can be connected to the bottom of the product take-out and storage sealed tank for cooling and cooling when necessary. 上記発明実施する設備にあって、垂直に設置する乾燥塔槽上部から水分を有する材料を投入堆積して下部より還元熱風の加熱により下から乾燥、必要十分に乾燥加熱された材料を加圧固化、冷却塔槽に排出し、必要な乾燥エネルギーを熱回収塔槽に堆積された加熱固化製品に最下部から冷却空気を挿入して回収し、さらに回収熱で加熱された空気を中間部より吸引して、原料の木材水分乾燥に必要な追加エネルギーと必要によっては、加圧に必要な電力をも供給するための発電と、主目的の木材乾燥用排ガスを得るために生産に伴う廃棄物や原料屑を燃焼するボイラー設備を設けて、必要によっては排熱回収自家発電機能を有するバイオマスペレット製造設備。    In the equipment for carrying out the above invention, a material having moisture is charged and deposited from the upper part of the drying tower tank installed vertically, dried from the bottom by heating with reducing hot air from the lower part, and the material heated and dried sufficiently is pressurized and solidified. The cooling air is discharged to the cooling tower tank, and the necessary drying energy is recovered by inserting cooling air into the heated solidified product deposited in the heat recovery tower tank from the bottom and sucking the air heated by the recovered heat from the middle part In addition, the additional energy necessary for drying the wood moisture of the raw material and, if necessary, the power generation to supply the power necessary for pressurization and the waste and A biomass pellet manufacturing facility that has a boiler facility that burns raw material scraps and, if necessary, has an exhaust heat recovery in-house power generation function.
JP2014106849A 2014-05-23 2014-05-23 Material accumulation type production facility for biomass pellet Pending JP2015221868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014106849A JP2015221868A (en) 2014-05-23 2014-05-23 Material accumulation type production facility for biomass pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014106849A JP2015221868A (en) 2014-05-23 2014-05-23 Material accumulation type production facility for biomass pellet

Publications (1)

Publication Number Publication Date
JP2015221868A true JP2015221868A (en) 2015-12-10

Family

ID=54785067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014106849A Pending JP2015221868A (en) 2014-05-23 2014-05-23 Material accumulation type production facility for biomass pellet

Country Status (1)

Country Link
JP (1) JP2015221868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111678183A (en) * 2020-04-27 2020-09-18 长春鸿鑫热能有限公司 Biomass fuel drying and heat supply coupling system
CN112548118A (en) * 2020-11-16 2021-03-26 山东国铭球墨铸管科技有限公司 Method for rapidly forming metallurgical auxiliary prefabricated part by adopting 3D printing mode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111678183A (en) * 2020-04-27 2020-09-18 长春鸿鑫热能有限公司 Biomass fuel drying and heat supply coupling system
CN112548118A (en) * 2020-11-16 2021-03-26 山东国铭球墨铸管科技有限公司 Method for rapidly forming metallurgical auxiliary prefabricated part by adopting 3D printing mode
CN112548118B (en) * 2020-11-16 2023-02-17 国铭铸管股份有限公司 Method for rapidly forming metallurgical auxiliary prefabricated part by adopting 3D printing mode

Similar Documents

Publication Publication Date Title
CA2909407A1 (en) Torrefaction process
CN102153079A (en) Method and system for preparing active carbon from industrial coal by using oxygen carbonization method
CN104629782A (en) Production process of machine-made charcoal
CN103224802B (en) Biomass drying and carbonization system and application thereof
CN204400939U (en) A kind of total system of draft dregs of a decoction biomass fuel
CN104629850A (en) Biomass generating device and method
CN104164268A (en) Biomass fuel for quick thermal cracking gasification machine and preparation method of biomass fuel
CN106350116A (en) Traditional Chinese medicine residue gasification combustion heat supply device and method
JP2015221868A (en) Material accumulation type production facility for biomass pellet
KR101308397B1 (en) Preparation method of wood solid-fuel having high heating value by semi-carbonization at low temperature
CN101824348B (en) Method for preparing biomass compact fuel with rubber seed hull
CN103773538A (en) Method of manufacturing powdered coal for low absorbent fuel using coffee waste
CN203295433U (en) Vehicle-mounted straw processing system
CN111019731A (en) Biomass briquette fuel combined with various agricultural and forestry residues and preparation method thereof
US8201408B1 (en) Biomass (woodfuel) cogeneration powerplant
CN102827659B (en) Brown coal dust forming and quality improving method
CN106363008B (en) A kind of conurbation Biohazard Waste Disposal
JP2019196859A (en) Method of drying plant biomass fuel, and biomass power generation facility
JP2008274111A (en) Method for producing biocoke and the production product
CN204529746U (en) A kind of cotton stalk dry distillation charring system
CN204661633U (en) A kind of biomass generator
CN104087359B (en) The material integrated-type manufacture method of biological particles
CN102358852A (en) Production method for preparing agriculture and forestry plant wastes into biomass fuel lumps used for gas supply system through gasification
CN202658126U (en) Continuous high-temperature carbonization furnace
CN203687548U (en) Biomass fuel raw material rotary drum type drying device