JP2015216280A - Thermoelectric conversion material - Google Patents

Thermoelectric conversion material Download PDF

Info

Publication number
JP2015216280A
JP2015216280A JP2014099117A JP2014099117A JP2015216280A JP 2015216280 A JP2015216280 A JP 2015216280A JP 2014099117 A JP2014099117 A JP 2014099117A JP 2014099117 A JP2014099117 A JP 2014099117A JP 2015216280 A JP2015216280 A JP 2015216280A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
type
seebeck coefficient
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014099117A
Other languages
Japanese (ja)
Other versions
JP6319795B2 (en
Inventor
西野 洋一
Yoichi Nishino
洋一 西野
秀俊 宮崎
Hidetoshi Miyazaki
秀俊 宮崎
友一郎 山田
Yuichiro Yamada
友一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2014099117A priority Critical patent/JP6319795B2/en
Publication of JP2015216280A publication Critical patent/JP2015216280A/en
Application granted granted Critical
Publication of JP6319795B2 publication Critical patent/JP6319795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To put a thermoelectric conversion material into practical use in a temperature region of 300-600 K; and to provide a thermoelectric conversion material which has a large Seebeck coefficient in the temperature region.SOLUTION: A thermoelectric conversion material has a Heusler alloy crystal structure, and comprises, in regard to a basic structure of FeVAl of which the total number of valence electrons per chemical formula is 24, a composition satisfying the following general formula: FeVTaAl, provided that the thermoelectric conversion material is controlled to be p-type when -0.10≤x≤-0.03 and 0.08≤y≤0.12, and n-type when 0.03≤x≤0.10 and 0.08≤y≤0.12.

Description

本発明は、熱電変換材料に関する。   The present invention relates to a thermoelectric conversion material.

熱エネルギーと電気エネルギーとの相互変換が可能な熱電変換素子が知られている。熱電変換素子は、p型およびn型の二種類の熱電変換材料から構成されており、この二種類の熱電変換材料を電気的に直列に接続し、熱的に並列に配置した構成とされる。熱電変換素子は、両端子間に電圧を印加すれば、正孔および電子の移動が起こり両面間に温度差が発生する(ペルチェ効果)。一方、熱電変換素子は、両面間に温度差を与えれば、同じく正孔および電子の移動が起こり、両端子間に起電力が発生する(ゼーベック効果)。このため、熱電変換素子を冷蔵庫やカーエアコン等の冷却用の素子として用いており、またごみ焼却炉から生ずる排熱を利用した発電用の素子として使用されている。   Thermoelectric conversion elements capable of mutual conversion between thermal energy and electrical energy are known. The thermoelectric conversion element is composed of two types of p-type and n-type thermoelectric conversion materials, and the two types of thermoelectric conversion materials are electrically connected in series, and are configured to be thermally arranged in parallel. . When a voltage is applied between both terminals of the thermoelectric conversion element, movement of holes and electrons occurs and a temperature difference occurs between both surfaces (Peltier effect). On the other hand, if a temperature difference is given between both surfaces of the thermoelectric conversion element, the movement of holes and electrons similarly occurs, and an electromotive force is generated between both terminals (Seebeck effect). For this reason, the thermoelectric conversion element is used as an element for cooling such as a refrigerator or a car air conditioner, and is also used as an element for power generation utilizing exhaust heat generated from a waste incinerator.

従来、熱電変換素子を構成する熱電変換材料として、金属間化合物が知られ、その中でもBiTeを主成分とする熱電変換材料が大きなゼーベック係数を有することにより古くから知られているが、難加工性であること、また高い原材料コストという欠点を有している。そのため、これら欠点を補うため、ホイスラー合金型結晶構造を有するFeVAl系の金属間化合物の開発が行われている。このFeVAl系熱電変換材料に関して、FeVAlを構成する一元素の少なくとも一部を他元素で置換することにより、室温あるいは室温よりやや高い、300〜400Kでのゼーベック係数の絶対値が大きくなることが開示されている(特許文献1)。 Conventionally, as a thermoelectric conversion material constituting a thermoelectric conversion element, an intermetallic compound is known, and among them, a thermoelectric conversion material mainly composed of Bi 2 Te 3 has been known for a long time because it has a large Seebeck coefficient. It has the disadvantages of being difficult to process and high raw material costs. Therefore, in order to compensate for these drawbacks, development of Fe 2 VAl-based intermetallic compounds having a Heusler alloy type crystal structure has been performed. Regarding this Fe 2 VAl-based thermoelectric conversion material, the absolute value of the Seebeck coefficient at 300 to 400 K, which is slightly higher than room temperature or slightly higher than room temperature, is large by substituting at least a part of one element constituting Fe 2 VAl with another element. (Patent Document 1).

そして、被置換元素と置換元素の組み合わせにより総価電子数を変化させ、ゼーベック係数の符号を変える、すなわち、p型またはn型に制御することができるとしている。また、数多くの被置換元素と置換元素の組み合わせが可能であり、具体的には、FeをPtあるいはCoで置換、VをMoあるいはTiで置換、AlをSi,Ge、あるいはSnで置換することが開示されている。より具体的には、AlをSiあるいはGeにて置換してゼーベック係数が正から負に変化し、その絶対値が大きくなっている。また、VをTiで置換しても、ゼーベック係数は正のままであるが、Moで置換するとゼーベック係数は正から負に変化し、その絶対値は大きくなっている。 The total valence electron number is changed by the combination of the element to be substituted and the element to be substituted, and the sign of the Seebeck coefficient is changed, that is, it can be controlled to be p-type or n-type. Many combinations of elements to be substituted and substitution elements are possible. Specifically, Fe is substituted with Pt or Co, V is substituted with Mo or Ti, and Al is substituted with Si, Ge, or Sn. Is disclosed. More specifically, Al is replaced by Si or Ge, the Seebeck coefficient changes from positive to negative, and the absolute value is increased. Further, when V is replaced with Ti, the Seebeck coefficient remains positive, but when it is replaced with Mo, the Seebeck coefficient changes from positive to negative, and its absolute value is increased.

さらに、FeVAl系において、前記特許文献1と同様な元素置換により、熱電性能指数を決めるゼーベック係数以外の因子である熱伝導率あるいは電気抵抗率を室温で測定している。元素置換により熱伝導率および電気抵抗率が小さくなり、結果として室温付近での性能指数が大きくなることが開示されている(特許文献2)。 Further, in the Fe 2 VAl system, the thermal conductivity or electrical resistivity, which is a factor other than the Seebeck coefficient that determines the thermoelectric performance index, is measured at room temperature by the same element substitution as in Patent Document 1. It is disclosed that thermal conductivity and electric resistivity are reduced by element substitution, and as a result, a figure of merit near room temperature is increased (Patent Document 2).

一方、同じくFeVAl系において、AlをGaあるいはBで置換し、さらに化学量論組成からシフトさせた実施例につき、室温付近でのゼーベック係数、熱伝導率を開示している(特許文献3)。 On the other hand, in the same Fe 2 VAl system, Seebeck coefficient and thermal conductivity near room temperature are disclosed for an example in which Al is substituted with Ga or B and further shifted from the stoichiometric composition (Patent Document 3). ).

しかし、上記特許文献1〜3では、室温より高い、すなわち300〜600Kの中高温度域でのゼーベック係数、電気抵抗率等は開示されていない。そして、室温より高い温度で測定がなされている文献1においても、ゼーベック係数のピークは300〜400Kであり、またピーク温度が高くなる可能性があるものの絶対値は小さい。以上より、300〜600Kの温度域で大きなゼーベック係数を得ることが困難であった。 However, Patent Documents 1 to 3 do not disclose Seebeck coefficient, electrical resistivity, or the like that is higher than room temperature, that is, a medium to high temperature range of 300 to 600K. And also in the literature 1 measured at a temperature higher than room temperature, the peak of the Seebeck coefficient is 300 to 400 K, and the absolute value is small although the peak temperature may be high. From the above, it was difficult to obtain a large Seebeck coefficient in the temperature range of 300 to 600K.

特許第4035572号公報Japanese Patent No. 4035572 特開2004−253618公報JP 2004-253618 A 特開2004−119647公報JP 2004-119647 A

本発明の課題は、300〜600Kの温度域で熱電変換材料を実用化することを目的とし、その温度域でゼーベック係数の大きく、かつ電気抵抗率の小さい熱電変換材料を提供することである。   An object of the present invention is to provide a thermoelectric conversion material having a large Seebeck coefficient and a low electrical resistivity in the temperature range, with the objective of putting the thermoelectric conversion material to practical use in a temperature range of 300 to 600K.

本発明者らは、基本組成FeVAl系の熱電変換材料において、Feに対するVとAlの配合率を化学量論組成からシフトさせ、かつ少なくともVの一部をTaにて置換することにより、上記課題を解決しうることを見出した。すなわち、本発明によれば、以下の熱電変換材料が提供される。 In the thermoelectric conversion material of the basic composition Fe 2 VAl system, the inventors shifted the compounding ratio of V and Al with respect to Fe from the stoichiometric composition and substituted at least part of V with Ta. It has been found that the above problems can be solved. That is, according to the present invention, the following thermoelectric conversion materials are provided.

[1] ホイスラー合金型の結晶構造をもち、化学式当たりの総価電子数が24であるFe2VAlの基本構造に対し、一般式Fe21+x-yTaAl1-xを満たす熱電変換材料であって、−0.10≦x≦−0.03、0.08≦y≦0.12であり、p型に制御された熱電変換材料。 [1] The general structure of Fe 2 V 1 + xy Ta y Al 1-x is satisfied with respect to the basic structure of Fe 2 VAl having a Heusler alloy type crystal structure and a total number of valence electrons of 24 per chemical formula A thermoelectric conversion material that is -0.10 ≦ x ≦ −0.03, 0.08 ≦ y ≦ 0.12, and is controlled to be p-type.

[2] 前記xとyがそれぞれ、−0.05≦x≦−0.03、0.10≦y≦0.12である、前記[1]に記載の熱電変換材料。 [2] The thermoelectric conversion material according to [1], wherein x and y are −0.05 ≦ x ≦ −0.03 and 0.10 ≦ y ≦ 0.12, respectively.

[3] ゼーベック係数の絶対値がピークとなる温度が400K以上である前記[1]または[2]に記載された熱電変換材料。 [3] The thermoelectric conversion material according to [1] or [2], wherein the temperature at which the absolute value of the Seebeck coefficient reaches a peak is 400K or higher.

[4] ホイスラー合金型の結晶構造をもち、化学式当たりの総価電子数が24であるFe2VAlの基本構造に対し、一般式Fe21+x-yTaAl1-xを満たす熱電変換材料であって、0.03≦x≦0.10、0.08≦y≦0.12であり、n型に制御された熱電変換材料。 [4] The general structure of Fe 2 V 1 + xy Ta y Al 1-x is satisfied with respect to the basic structure of Fe 2 VAl having a Heusler alloy type crystal structure and a total number of valence electrons of 24 per chemical formula Thermoelectric conversion material, 0.03 ≦ x ≦ 0.10, 0.08 ≦ y ≦ 0.12, and controlled to n-type.

[5]前記xとyがそれぞれ、0.03≦x≦0.05、0.10≦y≦0.12である、前記[4]に記載の熱電変換材料。 [5] The thermoelectric conversion material according to [4], wherein x and y are 0.03 ≦ x ≦ 0.05 and 0.10 ≦ y ≦ 0.12, respectively.

[6]ゼーベック係数の絶対値がピークとなる温度が360K以上である前記[4]または[5]に記載の熱電変換材料。
[6] The thermoelectric conversion material according to [4] or [5], wherein the temperature at which the absolute value of the Seebeck coefficient reaches a peak is 360K or higher.

本発明の熱電変換材料の製造フローを示す図である。It is a figure which shows the manufacture flow of the thermoelectric conversion material of this invention. 本発明のp型およびn型の熱電変換材料の各X線回折パターンと各格子定数の組成依存性を示す図である。It is a figure which shows the composition dependence of each X-ray-diffraction pattern and each lattice constant of the p-type and n-type thermoelectric conversion material of this invention. 本発明のp型およびn型の熱電変換材料の各電気抵抗率の温度依存性を示す図である。It is a figure which shows the temperature dependence of each electrical resistivity of the p-type and n-type thermoelectric conversion material of this invention. 本発明のp型およびn型の熱電変換材料の各ゼーベック係数の温度依存性を示す図である。It is a figure which shows the temperature dependence of each Seebeck coefficient of the p-type and n-type thermoelectric conversion material of this invention. 本発明のp型およびn型の熱電変換材料の各熱伝導率の温度依存性を示す図である。It is a figure which shows the temperature dependence of each heat conductivity of the p-type and n-type thermoelectric conversion material of this invention. 本発明のp型およびn型の熱電変換材料の各性能指数の温度依存性を示す図である。It is a figure which shows the temperature dependence of each figure of merit of the p-type and n-type thermoelectric conversion material of this invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明の熱電変換材料は以下のようにして製造される。この製造方法は、上記熱電変換材料を製造可能な元素構成比率を有する原料混合物を用意する第1工程と、該原料混合物を真空中又は不活性ガス中にて溶融または気化した後、固化して熱電変換材料を得る第2工程とを有する。   The thermoelectric conversion material of the present invention is produced as follows. In this production method, a first step of preparing a raw material mixture having an elemental composition ratio capable of producing the thermoelectric conversion material, and the raw material mixture is melted or vaporized in a vacuum or an inert gas, and then solidified. A second step of obtaining a thermoelectric conversion material.

第2工程としては、例えば、原料混合物を真空中あるいは不活性ガス中においてアーク溶融または鋳造法等により溶融し、固化することによりインゴットを作成する。このインゴットのまま熱電変換材料とすることもできるが、このインゴットを不活性ガスあるいは窒素ガス雰囲気中で機械的に粉砕する方法、溶湯アトマイズあるいはガスアトマイズによる方法、さらにはメカニカルアロイングという不活性ガスあるいは窒素ガス雰囲気中で原料混合物の圧着と破断を繰り返す方法等により、ほぼ均一粒径の紛体を得る。そして、このようにして得られた紛体をホットプレス法、HIP法(熱間静水圧成形法)、放電プラズマ焼結法、あるいはパルス通電法等により、焼結することができる。例えば、HIP法により紛体を焼結する場合、例えば、800℃で150MPaのアルゴンガス雰囲気にて圧縮成形と焼結を同時に進行させ、ほぼ真密度で固化を行うことができる。また、p型あるいはn型の熱電変換材料を可及的に小さな結晶粒とするために、熱間圧延等の歪加工を行う、あるいは溶融した原料を急冷すること、等の方法が適宜採用される。   In the second step, for example, the ingot is prepared by melting and solidifying the raw material mixture in a vacuum or in an inert gas by arc melting or casting. Although this ingot can be used as a thermoelectric conversion material, a method of mechanically pulverizing the ingot in an inert gas or nitrogen gas atmosphere, a method using molten metal atomization or gas atomization, and an inert gas such as mechanical alloying or A powder having a substantially uniform particle diameter is obtained by a method of repeatedly pressing and breaking the raw material mixture in a nitrogen gas atmosphere. The powder thus obtained can be sintered by a hot press method, a HIP method (hot isostatic pressing method), a discharge plasma sintering method, a pulse current method, or the like. For example, when a powder is sintered by the HIP method, for example, compression molding and sintering can be simultaneously performed in an argon gas atmosphere at 800 ° C. and 150 MPa, and solidification can be performed at substantially true density. In addition, in order to make the p-type or n-type thermoelectric conversion material as small as possible, a method such as performing strain processing such as hot rolling or quenching the molten raw material is appropriately employed. The

そして、原料混合物を溶融固化した後、粉砕して得られた粉末をX線回折法によりX線回折測定を行う。一方、前記粉砕して得られた粉末をHIP法等により焼結し、さらに切断等を行い、電気抵抗率の測定、ゼーベック係数の測定、熱伝導率の測定を各々所定のサイズにて行う。   And after melt-solidifying a raw material mixture, the X-ray-diffraction measurement is performed by the X-ray-diffraction method for the powder obtained by grinding | pulverizing. On the other hand, the powder obtained by the pulverization is sintered by the HIP method or the like, further cut, etc., and the electrical resistivity, the Seebeck coefficient, and the thermal conductivity are each measured at a predetermined size.

本発明のFeVAl系の熱電変換材料は、Feに対するVとAlの配合率を化学量論組成からシフトさせ、かつVの一部をTaにて置換した一般式Fe21+x-yTaAl1-xを満たす熱電変換材料であって、−0.10≦x≦−0.03、0.08≦y≦0.12であり、p型に制御された熱電変換材料であることが好ましい。前記xとyがそれぞれ、−0.05≦x≦−0.03、0.10≦y≦0.12であることがより好ましい。さらに、本発明のp型に制御された熱電変換材料はそのゼーベック係数の絶対値がピークとなる温度は400K以上であることが好ましい。本発明のp型に制御された熱電変換材料では化学式あたりの総価電子数が23.7以上24.0未満である。 The Fe 2 VAl-based thermoelectric conversion material of the present invention has the general formula Fe 2 V 1 + x − in which the compounding ratio of V and Al to Fe is shifted from the stoichiometric composition and a part of V is substituted with Ta. a thermoelectric conversion material satisfying y Ta y Al 1-x , wherein −0.10 ≦ x ≦ −0.03, 0.08 ≦ y ≦ 0.12, and a p-type thermoelectric conversion material Preferably there is. More preferably, x and y are −0.05 ≦ x ≦ −0.03 and 0.10 ≦ y ≦ 0.12, respectively. Furthermore, the p-type thermoelectric conversion material of the present invention preferably has a temperature at which the absolute value of its Seebeck coefficient peaks is 400K or higher. In the thermoelectric conversion material controlled to be p-type of the present invention, the total number of valence electrons per chemical formula is 23.7 or more and less than 24.0.

また、本発明のFeVAl系の熱電変換材料は、Feに対するVとAlの配合率を化学量論組成からシフトさせ、かつVの一部をTaにて置換した一般式Fe21+x-yTaAl1-xを満たす熱電変換材料であって、0.03≦x≦0.10、0.08≦y≦0.12であり、n型に制御された熱電変換材料であることが好ましい。前記xとyがそれぞれ、0.03≦x≦0.05、0.10≦y≦0.12であることがより好ましい。さらに本発明のn型に制御された熱電変換材料はそのゼーベック係数の絶対値がピークとなる温度は310K以上である ことが好ましい。本発明のn型に制御された熱電変換材料では化学式あたりの総価電子数が24.0超24.2以下である。 The Fe 2 VAl-based thermoelectric conversion material of the present invention has a general formula Fe 2 V 1+ in which the mixing ratio of V and Al to Fe is shifted from the stoichiometric composition, and a part of V is substituted with Ta. A thermoelectric conversion material satisfying xy Ta y Al 1-x , wherein 0.03 ≦ x ≦ 0.10, 0.08 ≦ y ≦ 0.12, and a thermoelectric conversion material controlled to be n-type Preferably there is. More preferably, x and y are 0.03 ≦ x ≦ 0.05 and 0.10 ≦ y ≦ 0.12, respectively. Further, the n-type thermoelectric conversion material of the present invention preferably has a temperature at which the absolute value of its Seebeck coefficient peaks is 310K or higher. In the n-type thermoelectric conversion material of the present invention, the total number of valence electrons per chemical formula is more than 24.0 and not more than 24.2.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例)
p型の組成Fe0。88-aTa0。12Al1+aにおいて、a=0.03、0.05、0.08とした材料の熱電変換特性に影響する因子の特性を調べた。純度99,99質量%の鉄(Fe)、同99.99質量%のアルミニウム(Al)、同99.9質量%のバナジウム(V)、そして同99.9%のTaを前記組成になるように計量し、さらに混合して原料混合物を得た。一方、n型の組成Fe0。90+aTa0。10Al1−aについてもa=0.03、0.05、0.08とした材料の混合物を得た。
(Example)
In the p-type composition Fe 2 V 0.88-a Ta 0.12 Al 1 + a , the characteristics of factors affecting the thermoelectric conversion characteristics of materials having a = 0.03, 0.05, and 0.08 were examined. 99,99% by mass of iron (Fe), 99.99% by mass of aluminum (Al), 99.9% by mass of vanadium (V), and 99.9% of Ta by the same composition. Were further mixed to obtain a raw material mixture. On the other hand, for n-type composition Fe 2 V 0.90 + a Ta 0.10 Al 1-a , a mixture of materials having a = 0.03, 0.05, 0.08 was obtained.

次に、図1に示す製造フローに従い、この原料混合物をアルゴン雰囲気下でアーク溶解してボタン状のインゴットを作成した。均質なインゴットを得るため、前記インゴットを再溶解し、均質なインゴットを得た。溶解前後での質量変化は0.1%以下であり、溶解による質量変化は無視できる程度と仮定した。   Next, according to the manufacturing flow shown in FIG. 1, this raw material mixture was arc-melted in an argon atmosphere to form a button-like ingot. In order to obtain a homogeneous ingot, the ingot was redissolved to obtain a homogeneous ingot. The mass change before and after dissolution was 0.1% or less, and the mass change due to dissolution was assumed to be negligible.

その後、このインゴットを5×10−3Pa以下の高真空中において、1273Kで48時間の均質化処理を行った後、短冊状、粉末、およびブロック形状の各測定形状に加工した。その後、真空中で1273K×1Hrの歪除去処理と673K×4Hrの規則化処理を行った。このようにして熱電変換材料を得た。 Thereafter, this ingot was homogenized for 48 hours at 1273 K in a high vacuum of 5 × 10 −3 Pa or less, and then processed into strips, powders, and block shapes. After that, 1273K × 1Hr strain removal processing and 673K × 4Hr ordering processing were performed in vacuum. In this way, a thermoelectric conversion material was obtained.

<評価>
・ X線回折測定
得られた実施例の熱電変換材料を紛末とし、粉末X線回折法によってX線回折測定を行った。この結果を図2に示す。XRDパターンより、DO(L2)単相により構成され、ホイスラー合金型の結晶構造を有していることを確認した。また、格子定数の組成依存性から、V/Al量が連続的に変化していることを確認した。さらに、蛍光X線分析から、不純物が存在せず、ほぼ目的組成であることも確認した。
<Evaluation>
X-ray diffraction measurement Using the obtained thermoelectric conversion material of the example as powder, X-ray diffraction measurement was performed by a powder X-ray diffraction method. The result is shown in FIG. From the XRD pattern, it was confirmed that it was composed of a DO 3 (L2 1 ) single phase and had a Heusler alloy type crystal structure. Moreover, it confirmed that the amount of V / Al changed continuously from the composition dependence of a lattice constant. Furthermore, from X-ray fluorescence analysis, it was confirmed that there was no impurity and the target composition was almost the same.

・ 電気抵抗率(比抵抗)の測定
実施例の熱電変換材料のインゴットをダイシングソーにて切断し、1.0mm×1.0mm×15mmの短冊状の試験片を得た。この試験片を直流四端子法にて、温度4.2〜600Kで電気抵抗率を測定した。p型材料およびn型材料の電気抵抗率の温度変化を各々図3(a)および図3(b)に示す。p型材料の電気抵抗率はいずれも500K超でピークを有した。一方、n型材料の電気抵抗率のピークは250K〜500Kであったが、aが大きくなるほどピークが高温側にシフトした。
-Measurement of electrical resistivity (specific resistance) The ingot of the thermoelectric conversion material of the example was cut with a dicing saw to obtain a strip-shaped test piece of 1.0 mm x 1.0 mm x 15 mm. The electrical resistivity of this test piece was measured at a temperature of 4.2 to 600 K by a direct current four-terminal method. The temperature change of the electrical resistivity of the p-type material and the n-type material is shown in FIGS. 3 (a) and 3 (b), respectively. The electrical resistivity of the p-type material had a peak at over 500K. On the other hand, the peak of the electrical resistivity of the n-type material was 250K to 500K, but the peak shifted to the higher temperature side as a increased.

・ ゼーベック係数の測定
実施例の熱電変換材料のインゴットをダイシングソーにて切断し、0.5mm×0.5mm×5.0mmの短冊状の試験片を得た。そして、MMR−Technologies社製「SB100」を用いてゼーベック係数を100K〜600Kで測定した。p型材料およびn型材料のゼーベック係数の温度変化を図4(a)および図4(b)に示す。p型材料は400K以上で正のピークを示した、一方n型材料は250K〜500K付近で負のピークを示した。
-Measurement of Seebeck coefficient The ingot of the thermoelectric conversion material of the example was cut with a dicing saw to obtain a strip-shaped test piece of 0.5 mm x 0.5 mm x 5.0 mm. And the Seebeck coefficient was measured by 100K-600K using "SB100" by MMR-Technologies. The temperature change of the Seebeck coefficient of the p-type material and the n-type material is shown in FIGS. 4 (a) and 4 (b). The p-type material showed a positive peak above 400K, while the n-type material showed a negative peak around 250K-500K.

(4)熱伝導率の測定
実施例のp型およびn型の熱電変換材料のインゴットをダイシングソーにて切断し、3.5mm×3.5mm×4mmのブロック形状の試験片を得た。そして、4×10−4Paの真空中において、熱流法による定常比較測定法を用いて熱伝導率を測定した。その結果を各々図5(a)および図5(b)に示す。p型、n型ともに、400K〜600Kで約8〜10(W/mK)であった。
(4) Measurement of thermal conductivity The ingots of the p-type and n-type thermoelectric conversion materials of the examples were cut with a dicing saw to obtain 3.5 mm × 3.5 mm × 4 mm block-shaped test pieces. Then, in a vacuum of 4 × 10 −4 Pa, the thermal conductivity was measured using a stationary comparative measurement method using a heat flow method. The results are shown in FIGS. 5 (a) and 5 (b), respectively. Both p-type and n-type were about 8 to 10 (W / mK) at 400K to 600K.

以上の電気抵抗率測定、ゼーベック係数測定、および熱伝導率測定より、無次元熱電性能指数((ゼーベック係数)×温度/電気抵抗率×熱伝導率)を求めた結果を図6に示す。この結果より、少なくとも室温において、VをTaで置換せずに、単にVとAlとを相補的に化学量論組成からシフトさせた材料よりも、本発明のp型材料およびn型材料ともに性能指数が優れていることが判る。また、電気抵抗率およびゼーベック係数の温度依存性では単にVとAlとを相補的に化学量論組成からシフトさせた材料と本発明のp型材料およびn型材料とはあまり違いはないが,熱伝導率では大幅に低減していることから300K〜600Kにおいてもp型材料およびn型材料ともに性能指数が優れていることが推測できる。 FIG. 6 shows the result of determining the dimensionless thermoelectric performance index ((Seebeck coefficient) 2 × temperature / electric resistivity × thermal conductivity) from the above electrical resistivity measurement, Seebeck coefficient measurement, and thermal conductivity measurement. From this result, at least at room temperature, both the p-type material and the n-type material of the present invention perform better than materials in which V and Al are complementarily shifted from the stoichiometric composition without replacing V with Ta. It can be seen that the index is excellent. In addition, in the temperature dependence of the electrical resistivity and Seebeck coefficient, there is not much difference between a material in which V and Al are complementarily shifted from the stoichiometric composition and the p-type material and n-type material of the present invention. Since the thermal conductivity is greatly reduced, it can be inferred that the performance index is excellent for both the p-type material and the n-type material even at 300K to 600K.

以上の結果より、本発明のTa置換の性能指数が大きい理由は定かではないが、単にVとAlとを相補的に化学量論組成からシフトさせた材料では、非化学量論組成による熱伝導率低減しか見込めないのに対して,Ta置換では重元素置換と非化学量論組成の複合効果により熱伝導率が大幅に低減していることに起因していると推察する。   From the above results, the reason why the performance index of Ta substitution of the present invention is large is not certain, but in a material in which V and Al are simply shifted from the stoichiometric composition in a complementary manner, the heat conduction by the non-stoichiometric composition While only a reduction in the rate can be expected, it can be inferred that the Ta substitution is due to a significant reduction in thermal conductivity due to the combined effect of heavy element substitution and non-stoichiometric composition.

本発明の材料は、熱電変換素子、特に300K〜600Kの温度域で排熱を利用して発電する発電素子に利用することができる。
The material of the present invention can be used for a thermoelectric conversion element, particularly a power generation element that generates power using exhaust heat in a temperature range of 300K to 600K.

Claims (6)

ホイスラー合金型の結晶構造をもち、化学式当たりの総価電子数が24であるFe2VAlの基本構造に対し、一般式Fe21+x-yTaAl1-xを満たす熱電変換材料であって、−0.10≦x≦−0.03、0.08≦y≦0.12であり、p型に制御された熱電変換材料。 Thermoelectric conversion material satisfying the general formula Fe 2 V 1 + xy Ta y Al 1-x with respect to the basic structure of Fe 2 VAl having a Heusler alloy type crystal structure and a total number of valence electrons of 24 per chemical formula A thermoelectric conversion material in which −0.10 ≦ x ≦ −0.03 and 0.08 ≦ y ≦ 0.12 is controlled to be p-type. 前記xとyがそれぞれ、−0.05≦x≦−0.03、0.10≦y≦0.12である、請求項1に記載の熱電変換材料。 2. The thermoelectric conversion material according to claim 1, wherein x and y satisfy −0.05 ≦ x ≦ −0.03 and 0.10 ≦ y ≦ 0.12, respectively. ゼーベック係数の絶対値がピークとなる温度が400K以上である請求項1または2に記載された熱電変換材料。 The thermoelectric conversion material according to claim 1 or 2, wherein the temperature at which the absolute value of the Seebeck coefficient reaches a peak is 400K or higher. ホイスラー合金型の結晶構造をもち、化学式当たりの総価電子数が24であるFe2VAlの基本構造に対し、一般式Fe21+x-yTaAl1-xを満たす熱電変換材料であって、0.03≦x≦0.10、0.08≦y≦0.12であり、n型に制御された熱電変換材料。 Thermoelectric conversion material satisfying the general formula Fe 2 V 1 + xy Ta y Al 1-x with respect to the basic structure of Fe 2 VAl having a Heusler alloy type crystal structure and a total number of valence electrons of 24 per chemical formula A thermoelectric conversion material that is 0.03 ≦ x ≦ 0.10 and 0.08 ≦ y ≦ 0.12 and is controlled to be n-type. 前記xとyがそれぞれ、0.03≦x≦0.05、0.10≦y≦0.12である、請求項4に記載の熱電変換材料。 The thermoelectric conversion material according to claim 4, wherein x and y are 0.03 ≦ x ≦ 0.05 and 0.10 ≦ y ≦ 0.12, respectively. ゼーベック係数の絶対値がピークとなる温度が360K以上である請求項4または5に記載の熱電変換材料。
The thermoelectric conversion material according to claim 4 or 5, wherein the temperature at which the absolute value of the Seebeck coefficient reaches a peak is 360K or higher.
JP2014099117A 2014-05-13 2014-05-13 Thermoelectric conversion material Active JP6319795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099117A JP6319795B2 (en) 2014-05-13 2014-05-13 Thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099117A JP6319795B2 (en) 2014-05-13 2014-05-13 Thermoelectric conversion material

Publications (2)

Publication Number Publication Date
JP2015216280A true JP2015216280A (en) 2015-12-03
JP6319795B2 JP6319795B2 (en) 2018-05-09

Family

ID=54752905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099117A Active JP6319795B2 (en) 2014-05-13 2014-05-13 Thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP6319795B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102629A (en) * 2017-12-01 2019-06-24 日立金属株式会社 P-type thermoelectric conversion material, thermoelectric conversion module and production method of p-type thermoelectric conversion material
CN113812010A (en) * 2019-09-09 2021-12-17 松下知识产权经营株式会社 Thermoelectric conversion material, thermoelectric conversion element, method for obtaining electricity using thermoelectric conversion material, and method for transporting heat

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019681A1 (en) * 2001-08-23 2003-03-06 Nagoya Industrial Science Research Institute Thermoelectric transducing material, method for preparation thereof and thermoelectric transducer
WO2012033116A1 (en) * 2010-09-09 2012-03-15 国立大学法人名古屋工業大学 Thermoelectric conversion material
JP2013008902A (en) * 2011-06-27 2013-01-10 Nagoya Institute Of Technology Thermoelectric conversion material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019681A1 (en) * 2001-08-23 2003-03-06 Nagoya Industrial Science Research Institute Thermoelectric transducing material, method for preparation thereof and thermoelectric transducer
WO2012033116A1 (en) * 2010-09-09 2012-03-15 国立大学法人名古屋工業大学 Thermoelectric conversion material
JP2013008902A (en) * 2011-06-27 2013-01-10 Nagoya Institute Of Technology Thermoelectric conversion material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KRYSTEL RENARD, ARINORI MORI, YUICHIRO YAMADA, SUGURU TANAKA, HIDETOSHI MIYAZAKI, AND YOICHI NISHINO: "Thermoelectric properties of the Heusler-type Fe2VTaxAl1-x alloys", JOURNAL OF APPLIED PHYSICS, vol. Volume 115, Issue 3, JPN7017003944, January 2014 (2014-01-01), US, pages 033707, ISSN: 0003690089 *
森知之,井手直樹,西野洋一: "p型Fe2(V1-x-y)TixTay)Al合金の熱電特性", 日本金属学会誌, vol. 72, no. 8, JPN6017045541, 2008, JP, pages 593 - 598, ISSN: 0003690090 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102629A (en) * 2017-12-01 2019-06-24 日立金属株式会社 P-type thermoelectric conversion material, thermoelectric conversion module and production method of p-type thermoelectric conversion material
JP7087362B2 (en) 2017-12-01 2022-06-21 日立金属株式会社 Manufacturing method of p-type thermoelectric conversion material, thermoelectric conversion module and p-type thermoelectric conversion material
CN113812010A (en) * 2019-09-09 2021-12-17 松下知识产权经营株式会社 Thermoelectric conversion material, thermoelectric conversion element, method for obtaining electricity using thermoelectric conversion material, and method for transporting heat

Also Published As

Publication number Publication date
JP6319795B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP4976566B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
JP5157269B2 (en) Thermoelectric material and manufacturing method thereof
JP5641474B2 (en) Method for producing thermoelectric material comprising Mg2Si based compound
JP2004253618A (en) Thermoelectric conversion material
JP6319795B2 (en) Thermoelectric conversion material
JP5688815B2 (en) Thermoelectric conversion material and power generation method
JP5303721B2 (en) Thermoelectric conversion material
JP6082663B2 (en) Thermoelectric conversion material and method for producing the same
JP2012256759A (en) Clathrate compound and thermoelectric conversion material and production method of thermoelectric conversion material
JP6560061B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP5773483B2 (en) Thermoelectric conversion material
JP6082617B2 (en) Thermoelectric conversion material and method for producing the same
KR20120035793A (en) Magnesium silicide based thermoelectric material and manufacturing method for the same
JP6155141B2 (en) Thermoelectric conversion material and method for producing the same
JP5448942B2 (en) Thermoelectric conversion material
JP6826925B2 (en) Thermoelectric conversion materials, thermoelectric conversion elements, thermoelectric conversion modules, and mobiles
JP2016063034A (en) Thermoelectric material and thermoelectric module
JP5705640B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
JP4296272B2 (en) Method for manufacturing thermoelectric material
JP2022143990A (en) thermoelectric conversion material
JP6858044B2 (en) Thermoelectric conversion materials and their manufacturing methods, as well as thermoelectric conversion elements, thermoelectric conversion modules, mobile objects
JP5653654B2 (en) Method for manufacturing thermoelectric material
JP5070546B2 (en) Thermoelectric conversion material
JP2013089882A (en) Thermoelectric conversion material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180329

R150 Certificate of patent or registration of utility model

Ref document number: 6319795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150