JP5773483B2 - Thermoelectric conversion material - Google Patents

Thermoelectric conversion material Download PDF

Info

Publication number
JP5773483B2
JP5773483B2 JP2011141656A JP2011141656A JP5773483B2 JP 5773483 B2 JP5773483 B2 JP 5773483B2 JP 2011141656 A JP2011141656 A JP 2011141656A JP 2011141656 A JP2011141656 A JP 2011141656A JP 5773483 B2 JP5773483 B2 JP 5773483B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
seebeck coefficient
conversion material
val
substitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011141656A
Other languages
Japanese (ja)
Other versions
JP2013008902A (en
Inventor
西野 洋一
洋一 西野
秀俊 宮崎
秀俊 宮崎
優 田中
優 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2011141656A priority Critical patent/JP5773483B2/en
Publication of JP2013008902A publication Critical patent/JP2013008902A/en
Application granted granted Critical
Publication of JP5773483B2 publication Critical patent/JP5773483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、熱電変換材料に関する。   The present invention relates to a thermoelectric conversion material.

熱エネルギーと電気エネルギーとの相互変換が可能な熱電変換素子が知られている。この熱電変換素子は、p型およびn型の二種類の熱電変換材料から構成されており、この二種類の熱電変換材料を電気的に直列に接続し、熱的に並列に配置した構成とされている。この熱電変換素子は、両端子間に電圧を印加すれば、正孔および電子の移動が起こり両面間に温度差が発生する(ペルチェ効果)。一方、この熱電変換素子は、両面間に温度差を与えれば、同じく正孔および電子の移動が起こり、両端子間に起電力が発生する(ゼーベック効果)。このため、熱電変換素子を冷蔵庫やカーエアコン等の冷却用の素子として用いたり、ごみ焼却炉から生ずる排熱を利用した発電用の素子として使用することが検討されている。   Thermoelectric conversion elements capable of mutual conversion between thermal energy and electrical energy are known. This thermoelectric conversion element is composed of two types of p-type and n-type thermoelectric conversion materials, and the two types of thermoelectric conversion materials are electrically connected in series, and are arranged in thermal parallel. ing. In this thermoelectric conversion element, when a voltage is applied between both terminals, movement of holes and electrons occurs and a temperature difference occurs between both surfaces (Peltier effect). On the other hand, if this thermoelectric conversion element gives a temperature difference between both surfaces, the movement of holes and electrons also occurs, and an electromotive force is generated between both terminals (Seebeck effect). For this reason, using a thermoelectric conversion element as an element for cooling, such as a refrigerator and a car air conditioner, or using it as an element for electric power generation using exhaust heat generated from a garbage incinerator is examined.

従来、熱電変換素子を構成する熱電変換材料として、金属間化合物が知られ、その中でもBiTeを主成分とする熱電変換材料が大きなゼーベック係数を有することにより古くから知られているが、一方、最近、BiTe系材料の難加工性あるいは高い原材料コストという欠点を補うため、ホイスラー合金型結晶構造を有するFeVAl系の金属間化合物の開発が行われるようになってきた。このFeVAl系熱電変換材料に関して、FeVAlを構成する一元素の少なくとも一部を他元素で置換することにより、室温あるいは室温よりやや高い、300〜400Kでのゼーベック係数の絶対値が大きくなることが開示されている(特許文献1)。 Conventionally, as a thermoelectric conversion material constituting a thermoelectric conversion element, an intermetallic compound is known, and among them, a thermoelectric conversion material mainly composed of Bi 2 Te 3 has been known for a long time because it has a large Seebeck coefficient. On the other hand, recently, in order to compensate for the disadvantages of Bi 2 Te 3 -based materials such as difficulty of processing or high raw material costs, development of Fe 2 VAl-based intermetallic compounds having a Heusler alloy type crystal structure has been carried out. Regarding this Fe 2 VAl-based thermoelectric conversion material, the absolute value of the Seebeck coefficient at 300 to 400 K, which is slightly higher than room temperature or slightly higher than room temperature, is large by substituting at least a part of one element constituting Fe 2 VAl with another element. (Patent Document 1).

そして、被置換元素と置換元素の組み合わせにより総価電子数を変化させ、ゼーベック係数の符号を変える、すなわち、p型からn型に、あるいはn型からp型にすることができるとしている。そしてその表1には、数多くの被置換元素と置換元素の組み合わせが記載されている。具体的には、FeをPtあるいはCoで置換、VをMoあるいはTiで置換、AlをSi,Ge、あるいはSnで置換することが開示されている。より具体的には、AlをSiあるいはGeにて置換してゼーベック係数が正から負に変化し、その絶対値が大きくなっている。また、VをTiで置換しても、ゼーベック係数は正のままであるが、Moで置換するとゼーベック係数は正から負に変化し、その絶対値は大きくなっている。 Then, the total valence electron number is changed by the combination of the element to be substituted and the element to be substituted, and the sign of the Seebeck coefficient is changed, that is, from p-type to n-type, or from n-type to p-type. Table 1 lists a number of combinations of elements to be substituted and substitution elements. Specifically, it is disclosed that Fe is replaced with Pt or Co, V is replaced with Mo or Ti, and Al is replaced with Si, Ge, or Sn. More specifically, Al is replaced by Si or Ge, the Seebeck coefficient changes from positive to negative, and the absolute value is increased. Further, when V is replaced with Ti, the Seebeck coefficient remains positive, but when it is replaced with Mo, the Seebeck coefficient changes from positive to negative, and its absolute value is increased.

さらに、FeVAl系において、前記特許文献1と同様な元素置換により、熱電変換性能指数を決めるゼーベック係数以外の因子である熱伝導率あるいは電気抵抗率を室温で測定している。元素置換により熱伝導率および電気抵抗率が小さくなり、結果として室温付近での性能指数が大きくなることが開示されている(特許文献2)。 Furthermore, in the Fe 2 VAl system, the thermal conductivity or electrical resistivity, which is a factor other than the Seebeck coefficient that determines the thermoelectric conversion performance index, is measured at room temperature by element substitution similar to that of Patent Document 1. It is disclosed that thermal conductivity and electric resistivity are reduced by element substitution, and as a result, a figure of merit near room temperature is increased (Patent Document 2).

一方、同じくFeVAl系において、AlをGaあるいはBで置換し、さらに化学量論組成からシフトさせた実施例につき、室温付近でのゼーベック係数、熱伝導率を開示している(特許文献3)。 On the other hand, in the same Fe 2 VAl system, Seebeck coefficient and thermal conductivity near room temperature are disclosed for an example in which Al is substituted with Ga or B and further shifted from the stoichiometric composition (Patent Document 3). ).

しかし、上記特許文献1〜3では、室温より高い、すなわち400〜700Kの中高温度域でのゼーベック係数、電気抵抗率等は開示されていない。そして、室温より高い温度で測定がなされている文献1においても、ゼーベック係数のピークは300〜400Kであり、またピーク温度が高くなる可能性があるものの絶対値は小さい。以上より、500〜700Kの温度域で大きなゼーベック係数を得ることが困難であった。 However, Patent Documents 1 to 3 do not disclose Seebeck coefficient, electrical resistivity, or the like that is higher than room temperature, that is, in the middle to high temperature range of 400 to 700K. And also in the literature 1 measured at a temperature higher than room temperature, the peak of the Seebeck coefficient is 300 to 400 K, and the absolute value is small although the peak temperature may be high. From the above, it was difficult to obtain a large Seebeck coefficient in the temperature range of 500 to 700K.

特許第4035572号公報Japanese Patent No. 4035572 特開2004−253618公報JP 2004-253618 A 特開2004−119647公報JP 2004-119647 A

本発明の課題は、300〜700Kの温度域で熱電変換材料を実用化することを目的とし、その温度域でゼーベック係数の大きく、かつ電気抵抗率の小さい熱電変換材料を提供することを課題とする。   An object of the present invention is to put a thermoelectric conversion material into practical use in a temperature range of 300 to 700 K, and to provide a thermoelectric conversion material having a large Seebeck coefficient and a low electrical resistivity in the temperature range. To do.

本発明者らは、FeVAl系の熱電変換材料において、Alの一部をTaにて置換することにより、上記課題を解決しうることを見出した。すなわち、本発明によれば、以下の熱電変換材料が提供される。 The present inventors have found that the above-described problems can be solved by substituting a part of Al with Ta in the Fe 2 VAl-based thermoelectric conversion material. That is, according to the present invention, the following thermoelectric conversion materials are provided.

[1]ホイスラー合金型結晶構造を有するFeVAl系の熱電変換材料において、Alの一部をTaにて置換したFe V(Al 1−α Ta α であって、0.03≦α≦0.15なる熱電変換材料。 [1] Fe 2 VAl-based thermoelectric conversion material having a Heusler alloy type crystal structure, Fe 2 V (Al 1−α Ta α ) in which a part of Al is substituted with Ta , and 0.03 ≦ α ≦ 0.15 thermoelectric conversion material.

[2] 温度300K〜600Kにおいて、ゼーベック係数が負であって、ゼーベック係数がピークとなる温度での絶対値が100(μV/K)以上である前記[1]に記載の熱電変換材料。 [2] The thermoelectric conversion material according to [1] , wherein the Seebeck coefficient is negative at a temperature of 300 K to 600 K, and the absolute value at a temperature at which the Seebeck coefficient reaches a peak is 100 (μV / K) or more.

本発明によれば、300〜700Kの温度域でゼーベック係数が大きく、かつ電気抵抗率が小さい熱電変換材料を提供することができる。これにより、特に700K以下の排熱を利用した発電用の熱電変換素子を提供することができる。   According to the present invention, it is possible to provide a thermoelectric conversion material having a large Seebeck coefficient and a small electrical resistivity in a temperature range of 300 to 700K. Thereby, the thermoelectric conversion element for electric power generation using especially the exhaust heat of 700K or less can be provided.

本発明実施例1〜4の電気抵抗率の温度依存性を示す図である。It is a figure which shows the temperature dependence of the electrical resistivity of this invention Examples 1-4. 本発明実施例1〜4のゼーベック係数の温度依存性を示す図である。It is a figure which shows the temperature dependence of the Seebeck coefficient of this invention Examples 1-4. 本発明実施例1〜4、および比較例1〜3の室温での熱伝導率の元素置換量依存性を示す図であるIt is a figure which shows the element substitution amount dependence of the thermal conductivity in room temperature of this invention Examples 1-4 and Comparative Examples 1-3. 本発明実施例1〜4、および比較例1〜3の室温での熱電変換性能指数の元素置換量依存性を示す図である。It is a figure which shows the element substitution amount dependence of the thermoelectric conversion performance index at room temperature of this invention Examples 1-4 and Comparative Examples 1-3. 比較例1〜3の電気抵抗率の温度依存性を示す図である。It is a figure which shows the temperature dependence of the electrical resistivity of Comparative Examples 1-3. 比較例1〜3のゼーベック係数の温度依存性を示す図である。It is a figure which shows the temperature dependence of the Seebeck coefficient of Comparative Examples 1-3.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明の熱電変換材料は以下のようにして製造される。この製造方法は、上記熱電変換材料を製造可能な元素構成比率を有する原料混合物を用意する第1工程と、該原料混合物を真空中又は不活性ガス中にて溶融または気化した後、固化して熱電変換材料を得る第2工程とを有する。   The thermoelectric conversion material of the present invention is produced as follows. In this production method, a first step of preparing a raw material mixture having an elemental composition ratio capable of producing the thermoelectric conversion material, and the raw material mixture is melted or vaporized in a vacuum or an inert gas, and then solidified. A second step of obtaining a thermoelectric conversion material.

第2工程としては、例えば、原料混合物を真空中あるいは不活性ガス中においてアーク溶融等により溶融し、固化することによりインゴットを作成する。このインゴットを不活性ガスあるいは窒素ガス雰囲気中で機械的に粉砕する方法、溶湯アトマイズあるいはガスアトマイズによる方法、さらにはメカニカルアロイングという不活性ガスあるいは窒素ガス雰囲気中で原料混合物の圧着と破断を繰り返す方法等により、ほぼ均一粒径の紛体を得る。そして、このようにして得られた紛体をホットプレス法、HIP法(熱間静水圧成形法)、放電プラズマ焼結法、パルス通電法等により、焼結することができる。HIP法により紛体を焼結する場合、例えば、800℃で150MPaのアルゴンガスにて圧縮成形と焼結を同時に進行させ、ほぼ真密度で固化を行うことができる。また、p型あるいはn型の熱電変換材料を可及的に小さな結晶粒とするために、熱間圧延等の歪加工を行ったり、溶融した原料を急冷すること、等の方法が適宜採用される。   In the second step, for example, the ingot is prepared by melting and solidifying the raw material mixture in a vacuum or in an inert gas by arc melting or the like. A method of mechanically pulverizing the ingot in an inert gas or nitrogen gas atmosphere, a method using molten metal atomization or gas atomization, and a method of repeatedly pressing and breaking a raw material mixture in an inert gas or nitrogen gas atmosphere called mechanical alloying Etc. to obtain a powder having a substantially uniform particle diameter. The powder thus obtained can be sintered by a hot press method, a HIP method (hot isostatic pressing method), a discharge plasma sintering method, a pulse current method, or the like. In the case of sintering the powder by the HIP method, for example, compression molding and sintering can be simultaneously performed with an argon gas of 150 MPa at 800 ° C., and solidification can be performed at substantially true density. In addition, in order to make the p-type or n-type thermoelectric conversion material as small as possible, a method such as straining such as hot rolling or quenching the melted raw material is appropriately employed. The

そして、原料混合物を溶融固化した後、粉砕して得られた粉末をX線回折法によりX線回折測定を行う。一方、前記粉砕して得られた粉末をHIP法により焼結し、さらに切断等を行い、電気抵抗率の測定、ゼーベック係数の測定、熱伝導率の測定を各々所定のサイズにて行う。   And after melt-solidifying a raw material mixture, the X-ray-diffraction measurement is performed by the X-ray-diffraction method for the powder obtained by grinding | pulverizing. On the other hand, the powder obtained by the pulverization is sintered by the HIP method, further cut and the like, and the electrical resistivity, the Seebeck coefficient, and the thermal conductivity are each measured at a predetermined size.

本発明のFeVAl系の熱電変換材料は、Alの一部をTaにて置換したFe2+x1+y(Al1−αTaα1+zであって、−1<x<1、−1<y<1、−1<z<1、0<α<1なる熱電変換材料である。電気抵抗率を小さく、熱伝導率を小さく、またゼーベック係数を大きくする観点から、αは0.01≦α≦0.15であることがより好ましく、0.03≦α≦0.12であることがさらに好ましい。 The Fe 2 VAl-based thermoelectric conversion material of the present invention is Fe 2 + x V 1 + y (Al 1−α Ta α ) 1 + z in which a part of Al is substituted with Ta, and −1 <x <1, −1 < It is a thermoelectric conversion material with y <1, −1 <z <1, 0 <α <1. From the viewpoint of decreasing the electrical resistivity, decreasing the thermal conductivity, and increasing the Seebeck coefficient, α is more preferably 0.01 ≦ α ≦ 0.15, and 0.03 ≦ α ≦ 0.12. More preferably.

また、本発明のFeVAl系の熱電変換材料は、Fe2+x1+y(Al1−αTaα1+zにおいて、−0.2≦x≦0.2、−0.2≦y≦0.2、−0.2≦z≦0.2であることがより好ましい。さらに、化学式当たりの総価電子数が23.2〜24.8であることが好ましい(化学量論組成では総価電子数は24である)。 In addition, the Fe 2 VAl-based thermoelectric conversion material of the present invention has −0.2 ≦ x ≦ 0.2, −0.2 ≦ y ≦ 0, in Fe 2 + x V 1 + y (Al 1−α Ta α ) 1 + z . More preferably, −0.2 ≦ z ≦ 0.2. Further, the total number of valence electrons per chemical formula is preferably 23.2 to 24.8 (the total number of valence electrons is 24 in the stoichiometric composition).

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1)
化学量論組成FeVAlのAlの一部をTaにて置換することによる熱電変換特性に影響する因子の特性を調べた。純度99,99質量%の鉄(Fe)、同99.99質量%のアルミニウム(Al)、同99.9質量%のバナジウム(V)、そして同99.9%のTaをFeVAl0.97Ta0.03になるように計量し、さらに混合して原料混合物を得た。
Example 1
The characteristics of factors affecting the thermoelectric conversion characteristics by substituting part of Al in the stoichiometric composition Fe 2 VAl with Ta were investigated. Iron (Fe) with a purity of 99,99% by mass, 99.99% by mass of aluminum (Al), 99.9% by mass of vanadium (V), and 99.9% of Ta with Fe 2 VAl 0. 97 Ta 0.03 was weighed and further mixed to obtain a raw material mixture.

次に、この原料混合物をアルゴン雰囲気下でアーク溶解してボタン状のインゴットを作成した。均質なインゴットを得るため、前記インゴットを再溶解し、均質なインゴットを得た。溶解前後での質量変化は0.1%以下であり、溶解による質量変化は無視できる程度と仮定した。   Next, this raw material mixture was arc-melted under an argon atmosphere to form a button-like ingot. In order to obtain a homogeneous ingot, the ingot was redissolved to obtain a homogeneous ingot. The mass change before and after dissolution was 0.1% or less, and the mass change due to dissolution was assumed to be negligible.

その後、このインゴットを5×10−3Pa以下の高真空中において、1273Kで48時間の均質化処理を行った後、短冊状、粉末、およびブロック形状の各測定形状に加工した。その後、真空中で1273K×1Hrの歪除去処理と673K×4Hrの規則化処理を行った。このようにして熱電変換材料を得た。 Thereafter, this ingot was homogenized for 48 hours at 1273 K in a high vacuum of 5 × 10 −3 Pa or less, and then processed into strips, powders, and block shapes. After that, 1273K × 1Hr strain removal processing and 673K × 4Hr ordering processing were performed in vacuum. In this way, a thermoelectric conversion material was obtained.

<評価>
・ X線回折測定
得られた実施例1の熱電変換材料を紛末とし、粉末X線回折法によってX線回折測定を行った。この結果、実施例1の熱電変換材料はDO(L2)単相により構成されており、ホイスラー合金型の結晶構造を有していた。
<Evaluation>
X-ray diffraction measurement Using the obtained thermoelectric conversion material of Example 1 as powder, X-ray diffraction measurement was performed by a powder X-ray diffraction method. As a result, the thermoelectric conversion material of Example 1 was composed of a DO 3 (L2 1 ) single phase and had a Heusler alloy type crystal structure.

・ 電気抵抗率(比抵抗)の測定
実施例1の熱電変換材料のインゴットをダイシングソーにて切断し、1.0mm×1.0mm×15mmの短冊状の試験片を得た。この試験片を直流四端子法にて、温度4.2〜1000Kで電気抵抗率を測定した。
-Measurement of electrical resistivity (specific resistance) The ingot of the thermoelectric conversion material of Example 1 was cut with a dicing saw to obtain a strip-shaped test piece of 1.0 mm x 1.0 mm x 15 mm. The electrical resistivity of this test piece was measured at a temperature of 4.2 to 1000 K by the DC four-terminal method.

測定の結果、電気抵抗率は400K付近でピークを有し、約500μΩcmであった。   As a result of the measurement, the electric resistivity had a peak at around 400K and was about 500 μΩcm.

・ ゼーベック係数の測定
実施例1の熱電変換材料のインゴットをダイシングソーにて切断し、0.5mm×0.5mm×5.0mmの短冊状の試験片を得た。そして、MMR−Technologies社製「SB100」を用いてゼーベック係数を100〜700Kで測定した。
-Measurement of Seebeck coefficient The ingot of the thermoelectric conversion material of Example 1 was cut with a dicing saw to obtain a strip-shaped test piece of 0.5 mm x 0.5 mm x 5.0 mm. And the Seebeck coefficient was measured at 100-700K using "SB100" by MMR-Technologies.

測定温度とゼーベック係数の関係を図2に示す。ゼーベック係数は負であり、350K付近でピークを有し、約170μV/Kであった。 The relationship between the measured temperature and Seebeck coefficient is shown in FIG. The Seebeck coefficient was negative, had a peak around 350K, and was about 170 μV / K.

(4)熱伝導率の測定
実施例1の熱電変換材料のインゴットをダイシングソーにて切断し、3.5mm×3.5mm×4mmのブロック形状の試験片を得た。そして、4×10−4Paの真空中において、熱流法による定常比較測定法を用いて熱伝導率を測定した。300Kにおける熱伝導率は12(W/mK)であった。
(4) Measurement of thermal conductivity The ingot of the thermoelectric conversion material of Example 1 was cut with a dicing saw to obtain a 3.5 mm × 3.5 mm × 4 mm block-shaped test piece. Then, in a vacuum of 4 × 10 −4 Pa, the thermal conductivity was measured using a stationary comparative measurement method using a heat flow method. The thermal conductivity at 300K was 12 (W / mK).

(実施例2〜4)
実施例1と同様に、純度99,99質量%の鉄(Fe)、同99.99質量%のアルミニウム(Al)、同99.9質量%のバナジウム(V)および同99.9%のTaを、FeVAl0.95Ta0.05(実施例2)、FeVAl0.92Ta0.08(実施例3)、およびFeVAl0.88Ta0.12(実施例4)になるように計量して、各々原料混合物を得た。
(Examples 2 to 4)
Similar to Example 1, iron (Fe) having a purity of 99,99% by mass, aluminum (Al) of 99.99% by mass, vanadium (V) of 99.9% by mass, and Ta of 99.9% by mass. Fe 2 VAl 0.95 Ta 0.05 (Example 2), Fe 2 VAl 0.92 Ta 0.08 (Example 3), and Fe 2 VAl 0.88 Ta 0.12 (Example 4). The raw material mixture was obtained.

原料混合物の溶解および焼鈍は実施例1と同じ条件で行った。X線回折測定、電気抵抗率測定、ゼーベック係数測定、および熱伝導率測定は、実施例1と同じ大きさの試験片を得て、同一条件にて測定を行った。   The raw material mixture was melted and annealed under the same conditions as in Example 1. In X-ray diffraction measurement, electrical resistivity measurement, Seebeck coefficient measurement, and thermal conductivity measurement, a test piece having the same size as that of Example 1 was obtained and measured under the same conditions.

実施例1〜4の試験片の、電気抵抗率の温度依存性、ゼーベック係数の温度依存性、熱伝導率(室温)でのTa置換量依存性を、それぞれ、図1、図2、および図3に示す。   The temperature dependence of the electrical resistivity, the temperature dependence of the Seebeck coefficient, and the Ta substitution amount dependence at the thermal conductivity (room temperature) of the test pieces of Examples 1 to 4 are shown in FIG. 1, FIG. 2, and FIG. 3 shows.

(比較例1〜3)
比較例として、化学量論組成FeVAlにおいて、Alの一部をSiにて置換した試料片を得て実施例1と同様の特性を測定した。FeVAl0.97Si0.03(比較例1)、FeVAl0.95Si0.05(比較例2)、およびFeVAl0.90Si0.10(比較例3)の3種類の組成の試験片を実施例1〜4と同様に作成し、測定した。電気抵抗率測定結果は図5に、ゼーベック係数測定結果は図6に、熱伝導率(室温)でのSi置換量依存性を図3にTa置換と併せて示す。
(Comparative Examples 1-3)
As a comparative example, in the stoichiometric composition Fe 2 VAl, a sample piece in which a part of Al was substituted with Si was obtained, and the same characteristics as in Example 1 were measured. Fe 2 VAl 0.97 Si 0.03 (Comparative Example 1), Fe 2 VAl 0.95 Si 0.05 (Comparative Example 2), and Fe 2 VAl 0.90 Si 0.10 (Comparative Example 3) Test pieces having different compositions were prepared and measured in the same manner as in Examples 1 to 4. The electrical resistivity measurement result is shown in FIG. 5, the Seebeck coefficient measurement result is shown in FIG. 6, and the Si substitution amount dependency in thermal conductivity (room temperature) is shown in FIG. 3 together with Ta substitution.

以上の電気抵抗率測定、ゼーベック係数測定、および熱伝導率測定より、熱電変換性能指数(室温)を求めた結果を図4に示す。この結果より、化学量論組成FeVAlにおいて、Alの一部をTaにて置換する場合(Ta置換)は、Alの一部をSiにて置換する場合(Si置換)に比して、室温において少なくとも置換量が0.03〜0.1では性能指数が優れていることが判る。そして300K(室温)〜600Kにおいて、Si置換のゼーベック係数に比してTa置換のゼーベック係数の絶対値が大きいこと、かつSi置換の熱伝導率に比してTa置換の熱伝導率が小さいことにより、Ta置換の性能指数がより大きいと言える。 FIG. 4 shows the result of obtaining the thermoelectric conversion performance index (room temperature) from the above electrical resistivity measurement, Seebeck coefficient measurement, and thermal conductivity measurement. From this result, in the stoichiometric composition Fe 2 VAl, when a part of Al is substituted with Ta (Ta substitution), compared with a case where a part of Al is substituted with Si (Si substitution), It can be seen that the figure of merit is excellent when the substitution amount is at least 0.03 to 0.1 at room temperature. From 300K (room temperature) to 600K, the absolute value of the Ta substitution Seebeck coefficient is larger than the Si substitution Seebeck coefficient, and the thermal conductivity of Ta substitution is smaller than the thermal conductivity of Si substitution. Therefore, it can be said that the performance index of Ta substitution is larger.

Si置換のゼーベック係数に比してTa置換のゼーベック係数が大きい理由は定かではないが、Si置換では自由電子的な3p電子をドープしていることから電子構造は大きく変化していないのに対し、Ta置換では局在的な5d電子をドープしていることから僅かに電子構造が変化していることに起因していると推察する。   The reason why the Ta substitution Seebeck coefficient is larger than the Si substitution Seebeck coefficient is not clear, but the Si structure does not significantly change the electronic structure because it is doped with free-electron 3p electrons. It is presumed that the Ta substitution is caused by a slight change in the electronic structure because it is doped with localized 5d electrons.

Si置換の熱伝導率に比してTa置換の熱伝導率が小さい理由は、原子番号が14であるSiに比べ、原子番号が73と平均原子量が大きなTaを用いることによる格子の熱伝導率の低下に起因すると推察する。   The reason why the thermal conductivity of Ta substitution is smaller than that of Si substitution is that the thermal conductivity of the lattice by using Ta having an atomic number of 73 and a large average atomic weight as compared with Si having an atomic number of 14 It is presumed to be caused by the decline in

本発明の材料は、熱電変換素子、特に300〜700Kの温度域で排熱を利用して発電する発電素子に利用することができる。
The material of the present invention can be used for thermoelectric conversion elements, particularly power generation elements that generate power using exhaust heat in a temperature range of 300 to 700K.

Claims (2)

ホイスラー合金型結晶構造を有するFeVAl系の熱電変換材料において、Alの一部をTaにて置換したFe V(Al 1−α Ta α であって、0.03≦α≦0.15なる熱電変換材料。 In an Fe 2 VAl-based thermoelectric conversion material having a Heusler alloy type crystal structure, Fe 2 V (Al 1−α Ta α ) in which a part of Al is substituted with Ta , and 0.03 ≦ α ≦ 0.0. 15 thermoelectric conversion material. 温度300K〜600Kにおいて、ゼーベック係数が負であって、ゼーベック係数がピークとなる温度での絶対値が100(μV/K)以上である請求項に記載の熱電変換材料。 The thermoelectric conversion material according to claim 1 , wherein the Seebeck coefficient is negative at a temperature of 300K to 600K, and the absolute value at a temperature at which the Seebeck coefficient reaches a peak is 100 (μV / K) or more.
JP2011141656A 2011-06-27 2011-06-27 Thermoelectric conversion material Active JP5773483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011141656A JP5773483B2 (en) 2011-06-27 2011-06-27 Thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011141656A JP5773483B2 (en) 2011-06-27 2011-06-27 Thermoelectric conversion material

Publications (2)

Publication Number Publication Date
JP2013008902A JP2013008902A (en) 2013-01-10
JP5773483B2 true JP5773483B2 (en) 2015-09-02

Family

ID=47675986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011141656A Active JP5773483B2 (en) 2011-06-27 2011-06-27 Thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP5773483B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319795B2 (en) * 2014-05-13 2018-05-09 国立大学法人 名古屋工業大学 Thermoelectric conversion material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035572B2 (en) * 2001-08-23 2008-01-23 国立大学法人 名古屋工業大学 Thermoelectric conversion material, method for producing the same, and thermoelectric conversion element
JP2004119648A (en) * 2002-09-26 2004-04-15 Toshiba Corp p-TYPE THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT USING IT
JP5303721B2 (en) * 2006-03-17 2013-10-02 国立大学法人 名古屋工業大学 Thermoelectric conversion material
JP5157269B2 (en) * 2006-06-15 2013-03-06 株式会社豊田中央研究所 Thermoelectric material and manufacturing method thereof
JP2008300465A (en) * 2007-05-30 2008-12-11 Showa Denko Kk Bonding method of thermoelectric element and electrode and manufacturing method of thermoelectric module

Also Published As

Publication number Publication date
JP2013008902A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
EP1523048B1 (en) Thermoelectric material and thermoelectric module using the thermoelectric material
JP2006203186A (en) Method of producing thermoelectric semiconductor alloy, thermoelectric conversion module, and thermoelectric power generation device
JP5641474B2 (en) Method for producing thermoelectric material comprising Mg2Si based compound
JP4035572B2 (en) Thermoelectric conversion material, method for producing the same, and thermoelectric conversion element
JP5157269B2 (en) Thermoelectric material and manufacturing method thereof
US20070125416A1 (en) Thermoelectric material and thermoelectric conversion device using same
JP4976566B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
JP4750349B2 (en) Method for producing thermoelectric conversion material
JP5099976B2 (en) Method for producing thermoelectric conversion material
JP4497981B2 (en) Thermoelectric material and thermoelectric conversion element
JP5303721B2 (en) Thermoelectric conversion material
JP5688815B2 (en) Thermoelectric conversion material and power generation method
JP6319795B2 (en) Thermoelectric conversion material
JP5773483B2 (en) Thermoelectric conversion material
EP2894681B1 (en) METAL MATERIAL HAVING n-TYPE THERMOELECTRIC CONVERSION PERFORMANCE
JP6560061B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
JP2012256759A (en) Clathrate compound and thermoelectric conversion material and production method of thermoelectric conversion material
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP6082617B2 (en) Thermoelectric conversion material and method for producing the same
JP5448942B2 (en) Thermoelectric conversion material
JP6826925B2 (en) Thermoelectric conversion materials, thermoelectric conversion elements, thermoelectric conversion modules, and mobiles
JP6155141B2 (en) Thermoelectric conversion material and method for producing the same
JP2022143990A (en) thermoelectric conversion material
JP5070546B2 (en) Thermoelectric conversion material
JP2012256901A (en) Thermoelectric conversion material and thermoelectric conversion module using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150626

R150 Certificate of patent or registration of utility model

Ref document number: 5773483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250