JP2015213966A - Spindle base cooling tank - Google Patents

Spindle base cooling tank Download PDF

Info

Publication number
JP2015213966A
JP2015213966A JP2014096308A JP2014096308A JP2015213966A JP 2015213966 A JP2015213966 A JP 2015213966A JP 2014096308 A JP2014096308 A JP 2014096308A JP 2014096308 A JP2014096308 A JP 2014096308A JP 2015213966 A JP2015213966 A JP 2015213966A
Authority
JP
Japan
Prior art keywords
cooling tank
spindle
coolant
cooling
spindle pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014096308A
Other languages
Japanese (ja)
Other versions
JP5873526B2 (en
Inventor
直彦 鈴木
Naohiko Suzuki
直彦 鈴木
恵吾 山田
Keigo Yamada
恵吾 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takamatsu Machinery Co Ltd
Original Assignee
Takamatsu Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takamatsu Machinery Co Ltd filed Critical Takamatsu Machinery Co Ltd
Priority to JP2014096308A priority Critical patent/JP5873526B2/en
Publication of JP2015213966A publication Critical patent/JP2015213966A/en
Application granted granted Critical
Publication of JP5873526B2 publication Critical patent/JP5873526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a machine tool which suppresses influence of heat from a spindle part and is cooled with a simple structure.SOLUTION: A spindle base cooling tank 10 is installed in a spindle base of a bed body and includes a coolant inlet 20 and a coolant outlet 30 for circulating a coolant. The spindle base cooling tank 10 includes: a division plate 40 for dividing an interior part of the spindle base cooling tank 10; and a penetration part 50 for passing the coolant through the division plate 40.

Description

本発明は、主軸台座冷却槽の内部構造に関する。さらに言えば、工作機械のベッド本体の主軸台座内等に設置し、冷却槽内を流れる冷却液の挙動を制御することにより冷却効果を高めることができる主軸台座冷却槽の内部構造に関する。   The present invention relates to an internal structure of a spindle seat cooling tank. More specifically, the present invention relates to an internal structure of a spindle pedestal cooling tank that can be installed in a spindle pedestal or the like of a bed body of a machine tool and can enhance the cooling effect by controlling the behavior of a coolant flowing in the cooling tank.

工作機械の1つであるNC旋盤は、床面にベッド本体が設置されており、ベッド本体上に主軸部が設けられている。主軸部には、モータで回転する主軸が設置されている。NC旋盤では、加工時に主軸モータの高回転等によって、モータや主軸内部にある軸受部が発熱し、主軸部の発熱がベッド本体に伝導する。主軸部の発熱がベッド本体に伝導することで、ベッド本体が熱変形することにより寸法変化が発生し、安定した加工精度を出すことが難しくなり好ましく無い。   An NC lathe, which is one of machine tools, has a bed main body installed on a floor surface, and a main spindle is provided on the bed main body. The main shaft is provided with a main shaft that is rotated by a motor. In an NC lathe, due to high rotation of the spindle motor during machining, the motor and the bearing part inside the spindle generate heat, and the heat generated in the spindle part is conducted to the bed body. Since the heat generated in the main shaft portion is conducted to the bed main body, the bed main body is thermally deformed to cause a dimensional change, which makes it difficult to obtain a stable processing accuracy.

加工時の発熱によるベッド本体の熱変形を抑えるために、冷却槽をベッド本体内部に設置した工作機械が知られている(特許文献1)。即ち、「ベッド本体に設けられた冷却液溜め部と、冷却液溜め部の冷却液を循環させるための循環ポンプと、冷却液を冷却するための第1及び第2クーラ手段を備え、前記第1主軸部を冷却した冷却液は、冷却液溜め部における第2主軸部側の部位に戻され、第2主軸部を冷却した冷却液は、冷却液溜め部における第1主軸部側の部位に戻されることを特徴とする工作機械(特許文献1:請求項1より抜粋)」が知られている。   In order to suppress thermal deformation of the bed main body due to heat generation during processing, a machine tool in which a cooling tank is installed inside the bed main body is known (Patent Document 1). That is, “a coolant reservoir provided in the bed body, a circulation pump for circulating the coolant in the coolant reservoir, and first and second cooler means for cooling the coolant, The cooling liquid that has cooled the one main shaft portion is returned to the second main shaft portion side portion of the cooling liquid reservoir portion, and the cooling liquid that has cooled the second main shaft portion is returned to the first main shaft portion portion of the cooling liquid reservoir portion. A machine tool characterized by being returned (patent document 1: extracted from claim 1) is known.

特開2008−279531JP2008-279531

しかしながら、特許文献1のように、単に冷却液を循環させながら流しているだけでは、冷却効果が不十分であった。従って、冷却液を冷却するために、オイルコントローラ(工作機械とは別個に設置し、冷却液自体を冷却する装置)を併用していた。オイルコントローラを使用すれば、冷却液を冷却する効果は高いが、設置面積、及び消費電力が大きくなるといった問題があり、できれば使用を避けたかった。   However, as in Patent Document 1, the cooling effect is insufficient by simply circulating the coolant while circulating it. Therefore, in order to cool the coolant, an oil controller (a device that is installed separately from the machine tool and cools the coolant itself) is used in combination. If the oil controller is used, the effect of cooling the cooling liquid is high, but there is a problem that the installation area and the power consumption increase, and if possible, we wanted to avoid the use.

発明者らは鋭意研究を重ねた結果、真っ直ぐ流れてきた水の流れがカーブする際、外側の流速が速くなり、内側の流速が遅くなるという現象が起こることから、冷却槽全体に出入りする冷却液の流量を変えずに、冷却すべき部分(冷却槽の壁面側)を効果的に冷却するためには、冷却槽内における冷却液の流路を意図的に曲げて、冷却槽の壁面付近の流速を早くすること(その分、壁面から離れた部分の冷却速度が遅くなる)で可能になるという知見を得た。即ち、冷却槽内を流れる冷却液の挙動を制御することによる冷却効果に着目し、本発明に至ったのである。   As a result of intensive research, the inventors have found that when the flow of water flowing straightly curves, a phenomenon occurs in which the outer flow velocity increases and the inner flow velocity decreases. In order to effectively cool the part to be cooled (the wall side of the cooling tank) without changing the liquid flow rate, the coolant flow path in the cooling tank is intentionally bent and near the wall of the cooling tank. It has been found that this can be achieved by increasing the flow velocity of the material (the cooling rate of the part away from the wall is reduced accordingly). That is, the inventors have focused on the cooling effect by controlling the behavior of the coolant flowing in the cooling tank, and have reached the present invention.

本発明の目的は、ベッド本体の主軸台座内部に設置した冷却槽内の冷却液の流れに着目し、冷却液の挙動を制御することで、ベッド本体内部に設置した冷却槽の壁面を、効果的に冷却することにより、主軸部からベッド本体への熱の影響を無くし、ベッド本体自体の熱変形を抑えることができる主軸台座冷却槽を提供することである。   The purpose of the present invention is to pay attention to the flow of the cooling liquid in the cooling tank installed inside the spindle pedestal of the bed main body, and to control the behavior of the cooling liquid, so that the wall of the cooling tank installed inside the bed main body is effective. It is intended to provide a spindle pedestal cooling tank that can eliminate the influence of heat from the main shaft portion to the bed main body and suppress thermal deformation of the bed main body itself by cooling the main body.

上記課題を解決するために、本願請求項1に記載した発明は、ベッド本体の主軸台座内部に設置されており、冷却液を循環させるための冷却液入口と冷却液出口とを備えた主軸台座冷却槽であって、前記主軸台座冷却槽の内部を仕切るための仕切り板と、前記仕切り板に冷却液を通過させるための貫通部と、を備える主軸台座冷却槽であることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 1 of the present application is installed in the main spindle base of the bed body, and the main spindle base is provided with a cooling liquid inlet and a cooling liquid outlet for circulating the cooling liquid. A cooling tank, characterized in that it is a spindle pedestal cooling tank provided with a partition plate for partitioning the inside of the spindle pedestal cooling tank and a through portion for allowing a coolant to pass through the partition plate. It is.

上記課題を解決するために、本願請求項2に記載した発明は、ベッド本体の主軸台座内部に設置されており、冷却液を循環させるための冷却液入口と冷却液出口とを備えた主軸台座冷却槽であって、前記主軸台座冷却槽の内部を仕切るための複数の仕切り板と、前記複数の仕切り板の其々に冷却液を通過させるための貫通部と、を備える主軸台座冷却槽であることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 2 of the present application is installed in the main spindle base of the bed body, and the main spindle base is provided with a cooling liquid inlet and a cooling liquid outlet for circulating the cooling liquid. A spindle pedestal cooling tank comprising: a plurality of partition plates for partitioning the interior of the spindle pedestal cooling tank; and a through portion for allowing a coolant to pass through each of the plurality of partition plates. It is characterized by being.

上記課題を解決するために、本願請求項3に記載した発明は、請求項2に記載した発明であって、前記貫通部の断面積は、前記冷却液入口側から冷却液の流れに沿って、前記冷却液出口側に行くにつれて小さくなっていく主軸台座冷却槽であることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 3 of the present application is the invention described in claim 2, wherein a cross-sectional area of the through portion is along the flow of the coolant from the coolant inlet side. The spindle pedestal cooling tank becomes smaller as it goes to the coolant outlet side.

本発明の請求項1に係る主軸台座冷却槽によれば、主軸台座冷却槽の内部を仕切るための仕切り板と、仕切り板に冷却液を通過させるための貫通部を備えていることにより、冷却液入口から冷却槽に供給された冷却液は、仕切り板に設置した貫通部を通過し、冷却液出口から冷却槽外に排出される。この時、冷却液の流れは、冷却液入口から冷却液入口が設置されている壁面と反対側の壁面側に向かって流れ、貫通部に侵入するために曲がり、さらに、曲がって冷却液出口が設置されている壁面へと戻ってくる流れになる。   According to the spindle pedestal cooling tank of claim 1 of the present invention, the partition plate for partitioning the inside of the spindle pedestal cooling tank and the through-hole for allowing the coolant to pass through the partition plate are used for cooling. The cooling liquid supplied from the liquid inlet to the cooling tank passes through the through portion provided in the partition plate, and is discharged from the cooling liquid outlet to the outside of the cooling tank. At this time, the flow of the coolant flows from the coolant inlet toward the wall surface opposite to the wall where the coolant inlet is installed, and is bent to enter the penetration portion. The flow returns to the installed wall.

即ち、冷却液入口が設置されている壁面と反対側の壁面付近の冷却液の流路は、曲線となっているため、冷却槽の壁面側の流速は速くなり、冷却槽の壁面が冷却されやすくなる。さらに貫通部を設置することで、貫通部よりも壁面側の仕切り板の貫通部と隣接した部分は、冷却槽内の壁面に設置したリブとして作用し、壁面付近に乱流を発生させ、壁面側の流速を速める効果もある。仕切り板と、仕切り板に貫通部を設置することだけで、冷却槽内における冷却液の流路と流速を制御することができる。本発明は、ベッド主軸台座に設けた冷却槽内部の構造を少し工夫するだけで、より高い冷却効果が得られるものである。結果的に、ベッド本体内部に本発明に係る主軸台座冷却槽を設置したことによって、発熱した主軸部の熱を、ベッド本体全体に伝導するのを防止することができる。   In other words, since the flow path of the coolant near the wall opposite to the wall where the coolant inlet is installed is curved, the flow velocity on the wall surface of the cooling tank increases, and the wall of the cooling tank is cooled. It becomes easy. Furthermore, by installing the penetration part, the part adjacent to the penetration part of the partition plate closer to the wall surface than the penetration part acts as a rib installed on the wall surface in the cooling tank, generating turbulent flow near the wall surface, There is also an effect of increasing the flow velocity on the side. The flow path and flow velocity of the cooling liquid in the cooling tank can be controlled only by installing the partition plate and the through-hole in the partition plate. According to the present invention, a higher cooling effect can be obtained by slightly devising the structure inside the cooling tank provided on the bed spindle base. As a result, by installing the spindle pedestal cooling tank according to the present invention inside the bed main body, it is possible to prevent the heat generated from the main spindle portion from being conducted to the entire bed main body.

本発明の請求項2に係る主軸台座冷却槽によれば、主軸台座冷却槽の内部を仕切るための複数の仕切り板と、複数の仕切り板の其々に、冷却液を通過させるための貫通部を備えているため、冷却液の流れを、主軸台座冷却槽の壁面に沿うようなスパイラル状に近づけることができる。理想的には、図3(f)のようなイメージで主軸台座冷却槽内の冷却液の流れを、主軸台座冷却槽の壁面に沿うようにスパイラル状にすることにより、壁面付近の流速が速くなり、主軸台座冷却槽の壁面側の冷却効果が向上すると考えられる。   According to the spindle pedestal cooling tank according to claim 2 of the present invention, a plurality of partition plates for partitioning the inside of the spindle pedestal cooling tank, and a through portion for allowing the coolant to pass through each of the plurality of partition plates Therefore, the flow of the coolant can be brought close to a spiral shape along the wall surface of the spindle seat cooling tank. Ideally, the flow of the coolant in the spindle pedestal cooling tank is spiraled along the wall surface of the spindle pedestal cooling tank in the image as shown in FIG. Thus, it is considered that the cooling effect on the wall surface side of the spindle pedestal cooling tank is improved.

本発明の請求項3に係る主軸台座冷却槽によれば、貫通部の断面積は、冷却液入口側から冷却液の流れに沿って、冷却液出口側に行くにつれて小さくなっていくので、貫通部を通過する毎に、流速が速くなる。流速が速ければ速い程、冷却効果が向上するため、より冷却効果が上がることになる。   According to the spindle pedestal cooling tank according to claim 3 of the present invention, the cross-sectional area of the penetrating portion becomes smaller along the flow of the coolant from the coolant inlet side toward the coolant outlet side. Every time it passes through the section, the flow velocity becomes faster. The faster the flow rate, the better the cooling effect, and the more effective the cooling.

主軸台座冷却槽の全体図(請求項1)である。It is a whole figure (claim 1) of a spindle pedestal cooling tank. 主軸台座冷却槽の全体図(請求項2)、及び冷却液の挙動を説明するための上面図である。It is a top view for demonstrating the whole figure (Claim 2) of a spindle pedestal cooling tank, and the behavior of a cooling fluid. 主軸台座冷却槽の冷却基本原理を説明する図である。It is a figure explaining the basic cooling principle of a spindle pedestal cooling tank. 主軸台座冷却槽の使用状態を表す図である。It is a figure showing the use condition of a spindle pedestal cooling tank. 主軸台座冷却槽の変更例である。It is an example of a change of a spindle seat cooling tank.

<主軸台座冷却槽の構造>
以下、本発明に係る主軸台座冷却槽10について、図1〜図4を参照しつつ詳細に説明する。図1は、主軸台座冷却槽10の全体図(請求項1)である。本発明に係る主軸台座冷却槽10の基本的な形状である。循環ポンプから送られた冷却液は、冷却液入口20から主軸台座冷却槽10に供給され、仕切り板40に設置された貫通部50を通過して、冷却液出口30から排出され、循環ポンプに戻っていくようになっている。
<Structure of spindle pedestal cooling tank>
Hereinafter, the spindle seat cooling tank 10 according to the present invention will be described in detail with reference to FIGS. FIG. 1 is an overall view of a spindle pedestal cooling tank 10 (Claim 1). It is a basic shape of the spindle pedestal cooling tank 10 according to the present invention. The coolant sent from the circulation pump is supplied to the spindle pedestal cooling tank 10 from the coolant inlet 20, passes through the through portion 50 installed in the partition plate 40, is discharged from the coolant outlet 30, and is supplied to the circulation pump. It comes to return.

本発明の特徴である貫通部50は、仕切り板40の冷却したい面側(即ち、主軸台座冷却槽10の壁面側)に近くなるように設置する。詳細には、主軸台座冷却槽10の壁面の近傍(主軸台座冷却槽10の壁面寄り(壁面から貫通部50までの距離:10mm〜30mm)に位置している。主軸台座冷却槽10の形状寸法は、幅240mm×奥行160mm×高さ260mm程度の直方体であるが、直方体形状に限られず、一部が円筒形状であっても良い。   The penetrating portion 50, which is a feature of the present invention, is installed so as to be close to the surface side of the partition plate 40 to be cooled (that is, the wall surface side of the spindle seat cooling tank 10). In detail, it is located near the wall surface of the spindle pedestal cooling tank 10 (close to the wall surface of the spindle pedestal cooling tank 10 (distance from the wall surface to the penetrating portion 50: 10 mm to 30 mm). Is a rectangular parallelepiped having a width of 240 mm × depth of 160 mm × height of 260 mm, but is not limited to a rectangular parallelepiped shape, and a part thereof may be a cylindrical shape.

図2は、主軸台座冷却槽10の全体図(請求項2)、及び冷却液の挙動を説明するための上面図である。主軸台座冷却槽10内に設置する仕切り板40は、冷却すべき箇所に対応させて、色々なバリエーションを採用することができるが、図2のように、主軸台座冷却槽10の内部を上下に仕切るための仕切り板40と、主軸台座冷却槽10の内部を左右(冷却液入口20側を右側とする)に仕切るための仕切り板40と、主軸台座冷却槽10の内部を前後(冷却液入口20側を前側とする)に仕切るための仕切り板40とすることができる。   FIG. 2 is an overall view of the spindle pedestal cooling tank 10 (Claim 2) and a top view for explaining the behavior of the coolant. The partition plate 40 installed in the spindle pedestal cooling tank 10 can adopt various variations according to the location to be cooled. However, as shown in FIG. A partition plate 40 for partitioning, a partition plate 40 for partitioning the interior of the spindle pedestal cooling tank 10 to the left and right (the coolant inlet 20 side is the right side), and the interior of the spindle pedestal cooling tank 10 are front and rear (coolant inlet) It can be set as the partition plate 40 for partitioning into the front side 20 side.

其々の仕切り板40には、冷却液を通過させるための貫通部50が設置されている。其々の貫通部50は、主軸台座冷却槽10の壁面の近傍(主軸台座冷却槽10の壁面寄り(壁面から貫通部50までの距離:10mm〜30mm)に位置している:貫通部50の断面積は各区画を仕切る壁面の面積の2分の1以内、貫通部の長さ(高さ)は仕切り板40の50%〜80%))に設置しており、形状は略矩形となっている。   Each partition plate 40 is provided with a through portion 50 for allowing the coolant to pass therethrough. Each penetrating part 50 is located near the wall surface of the spindle pedestal cooling tank 10 (close to the wall surface of the spindle pedestal cooling tank 10 (distance from the wall surface to the penetrating part 50: 10 mm to 30 mm): The cross-sectional area is set within one half of the area of the wall that partitions each compartment, and the length (height) of the penetrating part is 50% to 80% of the partition plate 40). ing.

循環ポンプから送られてきた冷却液は、冷却液入口20から主軸台座冷却槽10に供給される。冷却液入口20から主軸台座冷却槽10に供給された冷却液は、其々の仕切り板40に設置された貫通部50を通過して、図2に記載したように、A→B→C→D→E→F→G→H(A、B、C、Dは下層、E、F、G、Hは上層)の経路で主軸台座冷却槽10内を通過し、冷却液出口30から排出され、循環ポンプに戻っていく。図2に記載したように冷却液は(図2の上面図に記載したように)主軸台座冷却槽10内をスパイラル状に流れている。主軸台座冷却槽10を上下前後左右に8区分し(8区画)、8区画其々の仕切り板40に貫通部50を設置して、冷却液が8区画全てを通過するようにすることで、主軸台座冷却槽10内を、スパイラル状に冷却液が流れるとともに、リブとしても作用する貫通部50を冷却液が流れることで、壁面付近の流れを乱流化させて流速を上げることができる。   The coolant sent from the circulation pump is supplied from the coolant inlet 20 to the spindle seat cooling tank 10. The coolant supplied from the coolant inlet 20 to the spindle pedestal cooling tank 10 passes through the through portions 50 installed in the respective partition plates 40, and as shown in FIG. 2, A → B → C → D → E → F → G → H (A, B, C, and D are lower layers, E, F, G, and H are upper layers) are passed through the spindle pedestal cooling tank 10 and discharged from the coolant outlet 30. Go back to the circulation pump. As described in FIG. 2, the coolant flows spirally in the spindle pedestal cooling tank 10 (as described in the top view of FIG. 2). By dividing the spindle pedestal cooling tank 10 up and down, front and rear, left and right (8 sections), by installing the penetrating part 50 in the partition plate 40 of each of the 8 sections, so that the coolant passes through all 8 sections, The coolant flows spirally in the spindle pedestal cooling tank 10, and the coolant flows through the penetrating portion 50 that also acts as a rib, whereby the flow near the wall surface can be turbulent and the flow velocity can be increased.

貫通部50の断面積は、冷却液入口20側から冷却液の流れ(A→B→C→D→E→F→G→Hの順に流れる)に沿って、冷却液出口30側に行くにつれて小さくなっているが、貫通部50の長さ(高さ)は、貫通部50を設置することにより、貫通部50よりも壁面側の仕切り板40の貫通部40と隣接した部分は、主軸台座冷却槽10内に設置したリブとしての効果を得やすいようにするため、一定で、貫通部50の幅を狭くすることで、貫通部50の断面積を冷却液入口20側から冷却液の流れ(A→B→C→D→E→F→G→Hの順に流れる)に沿って冷却液出口30側に行くにつれて小さくする。   The cross-sectional area of the penetrating portion 50 increases from the coolant inlet 20 side to the coolant outlet 30 side along the flow of the coolant (flowing in the order of A → B → C → D → E → F → G → H). Although the length (height) of the penetrating portion 50 is small, the portion adjacent to the penetrating portion 40 of the partition plate 40 on the wall surface side with respect to the penetrating portion 50 is the main shaft base. In order to make it easy to obtain the effect as a rib installed in the cooling tank 10, the cross-sectional area of the through portion 50 is reduced from the coolant inlet 20 side by reducing the width of the through portion 50 at a constant width. (A → B → C → D → E → F → G → H).

<主軸台座冷却槽の冷却基本原理>
図3は、本発明に係る主軸台座冷却槽10の冷却基本原理を説明する図である。本発明のポイントは、冷却槽内における冷却液の挙動(通過経路と流速)を制御すること、即ち、冷却液の流れを、できるだけ主軸台座冷却槽10の壁面に沿うようにスパイラル状にすることにより、壁面付近を流れる冷却液の流速を速くし、それにより壁面の冷却効果を向上させることにある。
<Basic cooling principle of spindle pedestal cooling tank>
FIG. 3 is a view for explaining the basic cooling principle of the spindle seat cooling tank 10 according to the present invention. The point of the present invention is to control the behavior (passage path and flow velocity) of the cooling liquid in the cooling tank, that is, to make the flow of the cooling liquid spiral along the wall surface of the spindle seat cooling tank 10 as much as possible. Thus, the flow rate of the coolant flowing in the vicinity of the wall surface is increased, thereby improving the cooling effect of the wall surface.

図3(a)に示すように、冷却液の流路が真直ぐな場合は、冷却液の流速は流路内を同じ速さで流れる(壁面近くは別であるが,その点については後で述べる)。これを図3(b)のように流路を曲線とすると、径の大きな側の流速が速くなることが知られている。壁面側の冷却液の流速を速くすることで、壁面との熱交換率が向上し、より高い冷却効果を得ることができる。この原理を利用して、径の大きな側の壁面を冷却面とすることで、冷却効果が向上する。   As shown in FIG. 3 (a), when the flow path of the coolant is straight, the flow rate of the coolant flows at the same speed in the flow path (although it is different near the wall surface, this point will be described later). Describe). It is known that when the flow path is curved as shown in FIG. 3B, the flow velocity on the larger diameter side becomes faster. By increasing the flow rate of the coolant on the wall surface side, the heat exchange rate with the wall surface is improved, and a higher cooling effect can be obtained. Utilizing this principle, the cooling effect is improved by using the wall surface on the larger diameter side as the cooling surface.

図3(c)は、壁面近くの流速分布を示す図である。水等の流れは、層流と乱流の2つに大きく分けられ、層流と比較して乱流の方が壁面に近い部分の流速が速くなることが知られている。層流よりも乱流の方が、壁面から摩擦の影響が少なく流速が速いため、壁面付近の流れを乱流にした方が、壁面での熱交換率が向上するものと考えられる。かかる原理を利用し、流路の壁面にリブ(本発明においては、貫通部50よりも壁面側の仕切り板40の貫通部50と隣接した部分は、主軸台座冷却槽10内に設置したリブとしても作用する)を図3(d)のように設けることで、壁面付近の冷却液の流れを乱流とし、壁面の冷却効果を向上させることができる。   FIG.3 (c) is a figure which shows the flow velocity distribution near a wall surface. It is known that the flow of water or the like is roughly divided into a laminar flow and a turbulent flow, and the turbulent flow has a higher flow velocity near the wall surface than the laminar flow. Since turbulent flow is less affected by friction from the wall surface and has a higher flow velocity than laminar flow, it is considered that the heat exchange rate at the wall surface is improved when the flow near the wall surface is made turbulent. Using this principle, ribs on the wall surface of the flow path (in the present invention, the portion adjacent to the through portion 50 of the partition plate 40 closer to the wall surface than the through portion 50 is a rib installed in the spindle pedestal cooling tank 10. 3) is provided as shown in FIG. 3D, the flow of the cooling liquid in the vicinity of the wall surface can be turbulent and the wall surface cooling effect can be improved.

これらの原理を組み合わせたのが図3(e)である。壁面付近の冷却液の流路を曲線にし、かつ、壁面にリブを設けることで、より流速が速くなり、かつ、流れが乱流とすることでさらに冷却効果が向上することが考えられる。   FIG. 3E shows a combination of these principles. It is conceivable that the flow rate of the coolant near the wall surface is curved, and ribs are provided on the wall surface, whereby the flow velocity is further increased and the flow is turbulent to further improve the cooling effect.

図3(f)に冷却槽内の冷却液の好ましい流れのイメージ図を示す。理想的には図3(f)のように冷却槽内の冷却液の流れをスパイラル状とすることで、冷却槽の壁面側の流速が速くなり冷却効果が上がる。また、壁面だけではなく、冷却槽の上面側(主軸接地面)の流れも速くなるため、さらなる冷却効果が得られるものと考える。   FIG. 3 (f) shows an image diagram of a preferable flow of the cooling liquid in the cooling tank. Ideally, as shown in FIG. 3F, the flow of the cooling liquid in the cooling tank is made spiral, so that the flow velocity on the wall surface side of the cooling tank is increased and the cooling effect is improved. Moreover, since the flow not only on the wall surface but also on the upper surface side (main shaft grounding surface) of the cooling tank becomes faster, it is considered that a further cooling effect can be obtained.

<主軸台座冷却槽の使用状態>
図4は、主軸台座冷却槽10の使用状態を表す図である。図4に記載したように、床面にベッド本体が設置されており、ベッド本体上に主軸部が設けられている。主軸部には、モータで回転する主軸が設置されている。NC旋盤等の工作機械本体は、一般的に鋳鉄製のベッドの主軸を取り付ける台座部内部に、主軸台座と一体化させた冷却槽を設置している。図4に記載したように、本発明に係る主軸台座冷却槽10は、熱による影響が出やすい位置である各主軸の直下部に設置することになる。工作機械の機種によっては、主軸が2個並べて搭載されているものもあり、1つのベッド内に2個の冷却槽を並べて設置することもある。
<Use condition of spindle pedestal cooling tank>
FIG. 4 is a diagram illustrating a use state of the spindle seat cooling tank 10. As described in FIG. 4, the bed main body is installed on the floor surface, and the main shaft portion is provided on the bed main body. The main shaft is provided with a main shaft that is rotated by a motor. Machine tool bodies such as NC lathes generally have a cooling tank integrated with a spindle pedestal inside a pedestal portion to which a spindle of a cast iron bed is attached. As shown in FIG. 4, the spindle pedestal cooling tank 10 according to the present invention is installed immediately below each spindle, which is a position where the influence of heat is likely to occur. Depending on the type of machine tool, two spindles are mounted side by side, and two cooling tanks may be installed side by side in one bed.

循環ポンプから送られてきた冷却液は、鋳鉄製のベッドの主軸を取り付ける台座内部に設置された、主軸台座冷却槽10に冷却液入口20から供給される。冷却液入口20から主軸台座冷却槽10に供給された冷却液は、其々の仕切り板40に設置された貫通部50を通過する。冷却液は、主軸台座冷却槽10の壁面(ベッドの主軸を取り付ける台座)との熱交換により、鋳鉄製のベッドの主軸を取り付ける台座を冷却しながら、主軸台座冷却槽10内を通過し、冷却液出口30から排出され、循環ポンプに戻っていく。   The coolant sent from the circulation pump is supplied from the coolant inlet 20 to the spindle pedestal cooling tank 10 installed inside the pedestal to which the spindle of the cast iron bed is attached. The coolant supplied from the coolant inlet 20 to the spindle pedestal cooling tank 10 passes through the through portions 50 installed in the respective partition plates 40. The cooling liquid passes through the spindle pedestal cooling tank 10 while cooling the pedestal to which the spindle of the cast iron bed is attached by heat exchange with the wall surface of the spindle pedestal cooling tank 10 (the pedestal to which the bed spindle is attached). It is discharged from the liquid outlet 30 and returns to the circulation pump.

<主軸台座冷却槽の効果>
本発明は、工作機械の熱変形に対する対策として、ベッド主軸台座内部に冷却槽を設け、冷却液の流路と流速を意図的に制御しつつ循環させることでベッド主軸台座の冷却を行うものである。主軸台座冷却槽10内に冷却液を循環させる際、冷却液の流れを、主軸台座冷却槽10の壁面に沿うようにスパイラル状となるように、仕切り板40や貫通部50を設置し、冷却液の流れを主軸台座冷却槽10の壁面に沿うように下側から上側へ向かうスパイラル状にすることにより、壁面側の流速を速くして冷却効果を向上させるものである。
<Effect of spindle pedestal cooling tank>
The present invention provides a cooling tank inside the bed spindle pedestal as a countermeasure against thermal deformation of the machine tool, and cools the bed spindle pedestal by circulating it while intentionally controlling the flow path and flow rate of the coolant. is there. When circulating the coolant in the spindle pedestal cooling tank 10, the partition plate 40 and the penetrating part 50 are installed so that the flow of the cooling liquid spirals along the wall surface of the spindle pedestal cooling tank 10, and cooling is performed. By making the flow of the liquid spiral along the wall surface of the spindle pedestal cooling tank 10 from the lower side to the upper side, the flow velocity on the wall surface side is increased and the cooling effect is improved.

本発明に係る主軸台座冷却槽10は、工作機械のベッド本体の主軸台座内部に設置した主軸台座冷却槽10であり、主軸台座冷却槽10の内部を仕切るための仕切り板40(仕切り板40の枚数は任意に選択できる)と、仕切り板40に設置した冷却液を通過させるための貫通部50(貫通部50は主軸台座冷却槽10内において、仕切り板40によって仕切られた区分毎に設置)を備えている。   A spindle pedestal cooling tank 10 according to the present invention is a spindle pedestal cooling tank 10 installed inside a spindle pedestal of a bed body of a machine tool, and a partition plate 40 (partition plate 40 for partitioning the interior of the spindle pedestal cooling tank 10). The number of sheets can be arbitrarily selected) and a through portion 50 for allowing the coolant installed in the partition plate 40 to pass through (the through portion 50 is installed in each section partitioned by the partition plate 40 in the spindle seat cooling tank 10) It has.

貫通部50を設置することで、貫通部50よりも壁面側の仕切り板40の貫通部40と隣接した部分は、主軸台座冷却槽10内に設置したリブとしても作用し、冷却液の壁面付近の流れを積極的に乱流化させることで、壁面の冷却効果を向上させることができる。さらに、貫通部50の断面積は、冷却液入口20側から冷却液の流れに沿って、冷却液出口30側に行くにつれて小さくなっていくように設置している。従って、貫通部50を通過する毎に流速が速くなるため、熱の発生量が多く、より冷却が必要な、発熱した主軸に近い主軸台座冷却槽10の壁面の上側部分、及び主軸台座冷却槽10上面側の冷却効果を優先的に向上させることになる。   By installing the penetrating part 50, the part adjacent to the penetrating part 40 of the partition plate 40 on the wall surface side from the penetrating part 50 also acts as a rib installed in the spindle pedestal cooling tank 10, and near the wall surface of the coolant. The wall cooling effect can be improved by positively turbulent flow. Further, the cross-sectional area of the penetrating portion 50 is installed so as to decrease from the coolant inlet 20 side along the coolant flow toward the coolant outlet 30 side. Therefore, since the flow rate increases each time the through-portion 50 is passed, the upper portion of the wall surface of the spindle pedestal cooling tank 10 close to the main spindle that generates heat and the amount of heat generated is larger and the cooling is necessary, and the spindle pedestal cooling tank 10 The cooling effect on the upper surface side is preferentially improved.

本発明に係る主軸台座冷却槽10により、発熱した主軸の熱をベッド全体に伝わるのを防ぐ効果が得られる。特に発熱体である主軸モータ、主軸の取り付け面の壁面側に流れの曲径が大きくなるように仕切り板40及び貫通部50等を設計している。このように、ベッド主軸台座に設けた主軸台座冷却槽10の冷却液入口20、冷却液出口30と主軸台座冷却槽10の内部構造を少し工夫するだけで冷却効果を向上させることができる。   With the spindle pedestal cooling tank 10 according to the present invention, an effect of preventing the heat of the generated spindle from being transmitted to the entire bed can be obtained. In particular, the partition plate 40, the penetrating portion 50, and the like are designed so that the curved diameter of the flow is increased on the wall surface side of the spindle motor that is a heating element and the mounting surface of the spindle. As described above, the cooling effect can be improved by only slightly devising the cooling liquid inlet 20, the cooling liquid outlet 30 and the internal structure of the spindle pedestal cooling tank 10 of the spindle pedestal cooling tank 10 provided on the bed spindle pedestal.

<主軸台座冷却槽渦の変更例>
本発明に係る主軸台座冷却槽10の構成は、上記実施形態の態様に何ら限定されるものではなく、冷却液入口20、冷却液出口30、仕切り板40、貫通部50等の構成を、本発明の趣旨を逸脱しない範囲で、必要に応じて適宜変更することができる。例えば、主軸台座冷却槽10を上段、中段、下段の3層構造にし、さらに、冷却液入口20及び冷却液出口30を、上段、中段、下段、それぞれの層毎に複数個設置しても良い。
<Example of change of spindle pedestal cooling tank vortex>
The configuration of the spindle pedestal cooling tank 10 according to the present invention is not limited to the aspect of the above-described embodiment, and the configuration of the coolant inlet 20, the coolant outlet 30, the partition plate 40, the penetrating portion 50, etc. The present invention can be changed as needed without departing from the spirit of the invention. For example, the spindle pedestal cooling tank 10 may have a three-layer structure of an upper stage, a middle stage, and a lower stage, and a plurality of cooling liquid inlets 20 and cooling liquid outlets 30 may be provided for each of the upper, middle, and lower stages. .

図5は、主軸台座冷却槽10の変更例である。主軸台座冷却槽10内の冷却液の好ましい流れのイメージは、図3(f)のように主軸台座冷却槽10内の冷却液の流れをスパイラル状とすることである。従って、図5のように、主軸台座冷却槽10内に螺旋状の柱を設置し、さらに、この設置した主軸台座冷却槽10内部に螺旋状の柱を回転させるような機構であっても良い。さらに言えば、主軸台座冷却槽10内にスクリューを設置し、スクリューを回転させることで主軸台座冷却槽10内の流れをスパイラル状にするような機構であっても良い。   FIG. 5 is a modified example of the spindle pedestal cooling tank 10. An image of a preferable flow of the coolant in the spindle pedestal cooling tank 10 is that the flow of the coolant in the spindle pedestal cooling tank 10 is spiral as shown in FIG. Therefore, as shown in FIG. 5, a mechanism may be employed in which a spiral column is installed in the spindle pedestal cooling tank 10 and the spiral column is further rotated inside the installed spindle pedestal cooling tank 10. . Furthermore, a mechanism may be used in which a screw is installed in the spindle pedestal cooling tank 10 and the flow in the spindle pedestal cooling tank 10 is spiraled by rotating the screw.

本発明に係る主軸台座冷却槽は、上記の如く優れた効果を奏するものであるので、NC旋盤等の工作機械のベッド本体を、効果的に冷却するための主軸台座冷却槽に関する分野で好適に用いることができる。さらに言えば、NC旋盤等の工作機械のベッド本体を、効果的に冷却するための主軸台座冷却槽以外の分野であっても、冷却を必要とする箇所を効果的に冷却するための冷却槽としても好適に用いることができる。   Since the spindle pedestal cooling tank according to the present invention has excellent effects as described above, it is preferably used in the field related to the spindle pedestal cooling tank for effectively cooling the bed body of a machine tool such as an NC lathe. Can be used. Furthermore, even if it is a field other than the spindle pedestal cooling tank for effectively cooling the bed body of a machine tool such as an NC lathe, a cooling tank for effectively cooling a portion requiring cooling. Can also be suitably used.

10・・主軸台座冷却槽
20・・冷却液入口
30・・冷却液出口
40・・仕切り板
50・・貫通部
10. Spindle pedestal cooling bath 20. Coolant inlet 30 ... Coolant outlet 40 ... Partition 50 ... Penetrating part

Claims (3)

ベッド本体の主軸台座内部に設置されており、冷却液を循環させるための冷却液入口と冷却液出口とを備えた主軸台座冷却槽であって、
前記主軸台座冷却槽の内部を仕切るための仕切り板と、
前記仕切り板に冷却液を通過させるための貫通部と、を備えることを特徴とする主軸台座冷却槽。
A spindle pedestal cooling tank that is installed inside the spindle pedestal of the bed body and has a cooling liquid inlet and a cooling liquid outlet for circulating the cooling liquid,
A partition plate for partitioning the inside of the spindle pedestal cooling tank;
A spindle pedestal cooling tank, comprising: a penetrating portion for allowing the coolant to pass through the partition plate.
ベッド本体の主軸台座内部に設置されており、冷却液を循環させるための冷却液入口と冷却液出口とを備えた主軸台座冷却槽であって、
前記主軸台座冷却槽の内部を仕切るための複数の仕切り板と、
前記複数の仕切り板の其々に冷却液を通過させるための貫通部と、を備えることを特徴とする主軸台座冷却槽。
A spindle pedestal cooling tank that is installed inside the spindle pedestal of the bed body and has a cooling liquid inlet and a cooling liquid outlet for circulating the cooling liquid,
A plurality of partition plates for partitioning the inside of the spindle pedestal cooling tank;
A spindle pedestal cooling tank, comprising: a through portion for allowing a coolant to pass through each of the plurality of partition plates.
前記貫通部の断面積は、前記冷却液入口側から冷却液の流れに沿って、前記冷却液出口側に行くにつれて小さくなっていくことを特徴とする請求項2に記載した主軸台座冷却槽。   The spindle pedestal cooling tank according to claim 2, wherein a cross-sectional area of the penetrating portion decreases from the coolant inlet side along the flow of the coolant toward the coolant outlet side.
JP2014096308A 2014-05-07 2014-05-07 Spindle base cooling tank Active JP5873526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014096308A JP5873526B2 (en) 2014-05-07 2014-05-07 Spindle base cooling tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014096308A JP5873526B2 (en) 2014-05-07 2014-05-07 Spindle base cooling tank

Publications (2)

Publication Number Publication Date
JP2015213966A true JP2015213966A (en) 2015-12-03
JP5873526B2 JP5873526B2 (en) 2016-03-01

Family

ID=54751375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014096308A Active JP5873526B2 (en) 2014-05-07 2014-05-07 Spindle base cooling tank

Country Status (1)

Country Link
JP (1) JP5873526B2 (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058147A (en) * 1991-06-28 1993-01-19 Kitamura Mach Co Ltd Machine tool
JPH0525178U (en) * 1991-09-09 1993-04-02 大同紙工業株式会社 Heat exchange type ventilator
US5458770A (en) * 1994-03-31 1995-10-17 The United States Of America As Represented By The Secretary Of The Navy Oil/coolant separator
JP2751657B2 (en) * 1991-04-25 1998-05-18 株式会社日立製作所 Stacked heat exchanger
JPH1148087A (en) * 1997-08-05 1999-02-23 Hitachi Seiki Co Ltd Machine tool with built-in motor headstock
JP3224059B2 (en) * 1993-11-11 2001-10-29 オークマ株式会社 Airframe temperature control method and device
JP2003110266A (en) * 2001-10-02 2003-04-11 Fujikura Ltd Containing box of electronic unit
JP2003185363A (en) * 2001-12-25 2003-07-03 Honda Motor Co Ltd Heat exchanger
JP2003278601A (en) * 2002-03-22 2003-10-02 Mitsubishi Heavy Ind Ltd Cooling structure for diffusion cylinder
JP2004066437A (en) * 2002-08-09 2004-03-04 Makino Milling Mach Co Ltd Machine tool capable of preventing thermal deformation
JP2005524821A (en) * 2002-05-07 2005-08-18 ヴァレオ インコーポレイテッド Heat exchanger
JP2008075967A (en) * 2006-09-21 2008-04-03 Nippon Spindle Mfg Co Ltd Water-cooled duct
JP2008190816A (en) * 2007-02-07 2008-08-21 Techno Frontier:Kk Sensible heat exchange element
JP2008279531A (en) * 2007-05-09 2008-11-20 Takamatsu Machinery Co Ltd Machine tool
JP2013002755A (en) * 2011-06-17 2013-01-07 T Rad Co Ltd Double pipe type heat transfer device having partition wall
JP2013169641A (en) * 2012-02-23 2013-09-02 Toshiba Mach Co Ltd Precision machine tool
JP2013208665A (en) * 2012-03-30 2013-10-10 Citizen Holdings Co Ltd Holder device for cooling main spindle and cooling device for main spindle

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2751657B2 (en) * 1991-04-25 1998-05-18 株式会社日立製作所 Stacked heat exchanger
JPH058147A (en) * 1991-06-28 1993-01-19 Kitamura Mach Co Ltd Machine tool
JPH0525178U (en) * 1991-09-09 1993-04-02 大同紙工業株式会社 Heat exchange type ventilator
JP3224059B2 (en) * 1993-11-11 2001-10-29 オークマ株式会社 Airframe temperature control method and device
US5458770A (en) * 1994-03-31 1995-10-17 The United States Of America As Represented By The Secretary Of The Navy Oil/coolant separator
JPH1148087A (en) * 1997-08-05 1999-02-23 Hitachi Seiki Co Ltd Machine tool with built-in motor headstock
JP2003110266A (en) * 2001-10-02 2003-04-11 Fujikura Ltd Containing box of electronic unit
JP2003185363A (en) * 2001-12-25 2003-07-03 Honda Motor Co Ltd Heat exchanger
JP2003278601A (en) * 2002-03-22 2003-10-02 Mitsubishi Heavy Ind Ltd Cooling structure for diffusion cylinder
JP2005524821A (en) * 2002-05-07 2005-08-18 ヴァレオ インコーポレイテッド Heat exchanger
JP2004066437A (en) * 2002-08-09 2004-03-04 Makino Milling Mach Co Ltd Machine tool capable of preventing thermal deformation
JP2008075967A (en) * 2006-09-21 2008-04-03 Nippon Spindle Mfg Co Ltd Water-cooled duct
JP2008190816A (en) * 2007-02-07 2008-08-21 Techno Frontier:Kk Sensible heat exchange element
JP2008279531A (en) * 2007-05-09 2008-11-20 Takamatsu Machinery Co Ltd Machine tool
JP2013002755A (en) * 2011-06-17 2013-01-07 T Rad Co Ltd Double pipe type heat transfer device having partition wall
JP2013169641A (en) * 2012-02-23 2013-09-02 Toshiba Mach Co Ltd Precision machine tool
JP2013208665A (en) * 2012-03-30 2013-10-10 Citizen Holdings Co Ltd Holder device for cooling main spindle and cooling device for main spindle

Also Published As

Publication number Publication date
JP5873526B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6098136B2 (en) Rotating electric machine
JP5739566B2 (en) Electric machine with cooling rotor shaft
JP6626325B2 (en) Coolant tank
JP5103151B2 (en) Cutting fluid supply device
JP2018011001A (en) Immersion tank of electronic apparatus
TW201839343A (en) Liquid cooling systems for heat generating devices
JP2010221360A (en) Machine tool
WO2017029969A1 (en) Vertical bearing device
JP6297627B2 (en) Liquid discharge pipe structure
JP5873526B2 (en) Spindle base cooling tank
JP2014220960A (en) Drive device
JP5287666B2 (en) Cooling device for rotating electrical machine
JP2008177599A (en) Radiator
JP2000042864A (en) Machine tool
TW201843912A (en) Liquid-cooled cooling device with channel
JP6448115B2 (en) Cooling system
JP3208964U (en) Water cooling heat dissipation unit and its water cooling module
CN107623391B (en) Motor cooling pipeline and forced air cooling motor
US1934278A (en) Water cooled oiling system for ball bearings
JP2014003817A (en) Main electric motor for vehicle
JP2019079908A (en) Cooling device and semiconductor module including the same
JP5262805B2 (en) Ball screw device
JP2014036193A (en) Cooling plate and cooling device
CN103705254B (en) The refrigerating unit of computer X-ray computed tomography scanning instrument stand
JP2015186829A (en) Cooling structure of machine tool

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160115

R150 Certificate of patent or registration of utility model

Ref document number: 5873526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250