JP2015213714A - 心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び撮像装置 - Google Patents

心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び撮像装置 Download PDF

Info

Publication number
JP2015213714A
JP2015213714A JP2014099914A JP2014099914A JP2015213714A JP 2015213714 A JP2015213714 A JP 2015213714A JP 2014099914 A JP2014099914 A JP 2014099914A JP 2014099914 A JP2014099914 A JP 2014099914A JP 2015213714 A JP2015213714 A JP 2015213714A
Authority
JP
Japan
Prior art keywords
signal
template
ecg
unit
ecg signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014099914A
Other languages
English (en)
Other versions
JP6430144B2 (ja
Inventor
竹島 秀則
Hidenori Takeshima
秀則 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2014099914A priority Critical patent/JP6430144B2/ja
Priority to PCT/JP2015/062245 priority patent/WO2015163369A1/ja
Publication of JP2015213714A publication Critical patent/JP2015213714A/ja
Priority to US14/978,284 priority patent/US9968273B2/en
Priority to US15/946,450 priority patent/US10219712B2/en
Application granted granted Critical
Publication of JP6430144B2 publication Critical patent/JP6430144B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

【課題】検出対象外の波形の誤検出を低減することができる心電波形検出装置を提供する。
【解決手段】実施形態の心電波形検出装置は、被検体から取得した少なくとも1つの第1のECG信号を高域強調し、第2のECG信号を生成する強調部と、特定の検出対象波形に対応するテンプレートと、前記第2のECG信号とを照合して評価値を算出する算出部と、前記評価値に基づいて前記検出対象波形を検出する検出部と、を備える。
【選択図】 図2

Description

本発明の実施形態は、心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び撮像装置に関する。
心電計は、生体に電極を取り付け、電極間の電位差を計測する装置である。心電計によって計測された情報は心電図(ECG:Electrocardiogram)と呼ばれ、医療分野で広く用いられている。心電図から得られる情報としては、例えば、P波(P-wave)、R波(R-wave)、QRS複合波(QRS complex)、T波(T-wave)などがある。これらの波形は、各種の心疾患の診断に用いられる他、心電同期撮像が可能な医療診断装置の同期信号に利用されるため、波形の自動検出は産業応用上重要である。
A. Ruha et al., "A Real-time Microprocessor QRS Detector System with a 1-ms Timing Accuracy for the Measurement of Ambulatory HRV", IEEE Transactions on Biomedical Engineering, 1997; 44: 159-167
検出対象外の波形がECG信号に重畳された場合であっても、検出対象外の波形の誤検出を低減することができる心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び撮像装置が要望されている。
実施形態の心電波形検出装置は、被検体から取得した少なくとも1つの第1のECG信号を高域強調し、第2のECG信号を生成する強調部と、特定の検出対象波形に対応するテンプレートと、前記第2のECG信号とを照合して評価値を算出する算出部と、前記評価値に基づいて前記検出対象波形を検出する検出部と、を備える。
ECG信号を模式的に示す図。 第1の実施形態の心電波形検出装置を示す図。 心電波形検出装置のハードウェア構成を示す図。 高域強調処理無しの場合と有りの場合におけるR波と外乱信号の波形を模式的に示す図。 心電波形検出装置の処理例を示すフローチャート。 ECG信号と高域強調ECG信号とを例示する図。 高域強調部のFIRフィルタの構成例を示す図。 高域強調テンプレートの生成方法の一例を説明する図。 高域強調ECG信号と高域強調テンプレートとの照合処理の概念を示す図。 検出部の動作概念を説明する図。 心電波形検出装置の有効性を確認するための評価結果の一例を示す図。 第2の実施形態の心電波形検出装置を示す図。 第3の実施形態の心電波形検出装置を示す図。 第4の実施形態の心電波形検出装置を示す図。 心電同期撮像装置を示す図。 心電波形検出装置の構成例を示す図。 心電波形検出装置の構成例を示す図。 心電波形検出装置の構成例を示す図。
実施形態に係る心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び心電同期撮像装置の実施形態について、添付図面を参照して説明する。なお、以下の実施形態では、同一の参照符号を付した部分は同様の動作をするものとして、重複する説明を適宜省略する。
(第1の実施形態)
図1は、本実施形態に係る心電波形検出装置1の検出対象であるECG信号(心電図の形状に対応する信号を、ECG信号と呼ぶ)を模式的に示す図である。図1に示すように、ECG信号は、P波、R波、QRS複合波(Q波、R波及びS波の複合波)、T波等の特定の波形を有している。
以下の各実施形態では、特定の波形のうち、R波を検出する例を説明する。R波を検出する例は、一例であり、実施形態の心電波形検出装置1は、R波以外の波形(例えば、P波、QRS複合波、T波等)を検出することが可能である。
心電波形検出装置1がR波を検出すると、心電波形検出装置1は心拍同期信号(同期信号)を心電同期撮像装置(撮像装置)200に出力する。心拍と同期して撮像することができる心電同期撮像装置200としては、例えばCT(Computed Tomography)装置や、MRI(Magnetic Resonance Imaging)装置等がある。例えば、心電同期撮像装置200は、R波の発生位置を基準としてデータ収集の開始タイミングを決定する撮像法(心電同期撮像法)を用いる。心電同期撮像装置200は、R波の位置に対応する心拍同期信号を取得し、取得した心拍同期信号を基準としてデータ収集の開始タイミングを決定する。
例えば、MRI装置の場合を例に挙げて説明すると、MRI装置では、FBI(Fresh Blood Imaging)法や、Time−SLIP(Time−Spatial Labeling Inversion Pulse)法等、各種の非造影MRA(Magnetic Resonance Angiography)の手法が用いられる。MRI装置は、FBI法によるデータ収集において、例えば、心拍同期信号を基準としてデータ収集のタイミングを制御することで拡張期画像及び収縮期画像を収集し、これらの差分画像を算出することにより、動脈が描出された血管像を得ることができる。
また、MRI装置は、Time−SLIP法によるデータ収集において、例えば、心拍同期信号を基準として標識化パルスを印加するタイミングやデータ収集のタイミングを制御することで、血流の画像を得ることができる。このように、MRI装置は、ECG信号から生成された心拍同期信号を基準として、データ収集のタイミングや各種パルスの印加タイミングの制御を行っている。この他、心臓等を対象とした各種撮像や、造影剤を用いた撮像等、MRI装置は、他の撮像においても心拍同期信号を基準とした撮像を行う。
例えば、セグメンティド法を用いて心臓をシネ撮像する場合や、特定の心時相における心臓を撮像する場合にも心拍同期信号を用いる。また、心拍同期信号に同期して、例えば拡張期に、心臓の基本断面像(例えば、左室短軸像)のデータを収集する場合にも心拍同期信号を用いる。また、心拍同期信号に同期して、例えば拡張期に、心臓全体を含むボリュームデータを収集する。そして、収集したボリュームデータに対して、ボリュームレンダリングやMIP等の画像処理を行う。
また、CT装置においても、心拍同期信号に同期した撮像が行われる。例えば、心拍同期信号から心臓の大きさの変動の大きい心時相期間を求め、この変動の大きい心時相期間にX線照射を停止することにより、被曝線量を低減する撮像法が知られている。
図2は、第1の実施形態の心電波形検出装置1の構成と、心電波形検出装置1に接続される装置の構成を示すブロック図である。心電計100は、ECG信号を生成し、心電波形検出装置1に送る。脈波計400は、脈波信号を生成し、心電波形検出装置1に送る。心電波形検出装置1は、ECG信号から心拍同期信号を生成し、心電同期撮像装置200に送る。
心電計100は、電極101a、101b、増幅器110、及びAD変換器120を備える。電極101a、101bは人体に取り付けられる。増幅器110は、電極101a、101b間の微弱な電位差を増幅する。AD変換器120は、増幅器110が増幅したアナログ信号をデジタル信号に変換する。
心電計100は、2つの電極101a、101bを例示しているが、電極の数は2つに限定されるものではない。例えば、12誘導心電図を得るために、四肢に夫々取り付ける4つの電極と、胸部に取り付ける6つの電極を備える構成でもよい。また、体の2点間の電位差を求める方法ではなく、あらかじめ決めておいた基準と電極装着点の電位差を記録する方法であっても構わない。
心電波形検出装置1は、入力部10、高域強調部20、算出部30、検出部40、テンプレート生成部50を備える。
入力部10は、ECG信号をAD変換器120から取得する。高域強調部20は、高域強調処理をECG信号に対して行い、周波数成分の高域が強調されたECG信号、即ち、高域強調ECG信号を生成する。算出部30は、高域強調ECG信号と高域強調テンプレートとを照合して、評価値を算出する。ここで、高域強調テンプレートは、特定の検出対象波形に対して高域強調処理が行われた波形に対応するテンプレートである。今の例では、高域強調処理が行われたR波の波形に対応するテンプレートである。以下、高域強調テンプレートを単にテンプレートと呼ぶ場合がある。
テンプレート生成部40は、高域強調部20で生成された高域強調ECG信号に基づいて、上記の高域強調テンプレートを生成する。検出部50は、評価値に基づいてR波を検出して心拍同期信号を生成する。また、検出部50は、生成した心拍同期信号を心電同期撮像装置200に送る。
心電波形検出装置1の各部は、ASIC(Application Specific Integration Circuit)やFPGA(Field-Programmable Gate Array)等のハードウェアで構成してもよいし、ソフトウェア処理で実現しても良い。また、ハードウェアとソフトウェア処理とを組み合わせて実現してもよい。ソフトウェア処理で実現する場合、図3に例示するコンピュータ300に所定のプログラムを実行させることによって心電波形検出装置1の各部の動作を実現することができる。
図3に例示するコンピュータ300は、入出力インターフェース301、プロセッサ302、通信インターフェース303、RAM(Random Access Memory)304、不揮発性メモリ305、ディスクドライブ306を有する。
不揮発性メモリ305は、例えばハードディスクやフラッシュメモリなどの記憶装置であり、各種のプログラムやデータを記憶する。プロセッサ302は、不揮発性メモリ305に記憶されている。プロセッサ302は、心電波形検出装置1の各部の動作を実現するためのプログラムを不揮発性メモリ305からRAM304に読み出して実行する。この他、磁気ディスク、光ディスク、USBメモリ等の記録媒体に保存されたプログラムを、ディスクドライブ306或いは入出力インターフェース301から読み込んでも良い。また、外部のサーバから通信インターフェース303を介してダウンロードしても良い。
実施形態の心電波形検出装置1は、高域強調ECG信号と高域強調テンプレートとを照合することによってR波を検出している。以下、この理由について説明する。
ECG信号中の検出対象波形であるR波の波形は、被検体ごとに固有の波形を有している。しかしながら、計測の対象の時間内でみると、それぞれのR波の時間的な変化は少ない。したがって、R波の検出率を向上させるには、被検体ごとに固有の波形をテンプレートとして利用すればよい。一方、ECG信号中の検出対象以外の波形や、ECG信号に重畳する外乱信号の波形の中には、検出対象であるR波の波形と類似するものが存在する。例えば、電極の位置などの条件によっては、R波とT波は類似した波形を示す。また、MRI装置内での電磁誘導によって、R波に類似した外乱信号がECG信号に重畳される場合も多い。このような場合にも、外乱信号をR波であるとして誤検出する可能性がある。
検出対象以外の波形や外乱信号の波形と、R波の波形の差異が小さいと、R波を安定に検出することが難しくなる。したがって、R波の検出率をさらに向上させるには、R波とそれ以外の波形との差異を可能な限り大きくすることが望ましい。
図4(a)は、高域強調処理を行わない場合におけるR波の波形(実線)と、R波に類似した外乱信号の波形(破線)とを模式的に示す図である。図4(a)に示すR波と外乱信号との正規化相互相関を算出すると、0.89となる。この値は、完全に同一の波形に対する正規化相互相関値の1よりは小さいものの、1に近い大きな値となっている。
従来、R波の波形に対応するテンプレートと、入力されるECG信号とを、相互相関演算等のマッチング処理によって照合していた。そして、照合結果として得られる相互相関値を所定の閾値と比較することによってR波を検出している。この場合、図4(a)に示す外乱信号の誤検出を回避するためには、閾値を0.89よりも大きく設定する必要がある。しかしながら、閾値をこのように大きな値に設定すると、検出対象であるR波の波形にゆらぎがあった場合、R波を安定に検出することが困難となる。逆に、R波を安定に検出しようとして閾値を下げると、外乱信号の誤検出が増加する。
これに対して、実施形態の心電波形検出装置1では、マッチング処理による照合に先立って高域強調処理を行っている。そして、照合の対象波形を、波形の幅や傾きに対してより敏感な波形に変換している。
図4(b)は、図4(a)に示すR波と外乱信号に対して、それぞれ高域強調処理を行った波形を示している。高域強調処理有りの波形では、正のピーク位置と正のピーク値が、高域強調処理無しの波形の正の最大傾斜位置と正の傾きの最大値に夫々対応する。また、高域強調処理有りの波形では、負のピーク位置と負のピーク値が、高域強調処理無しの波形の負の最大傾斜位置と負の傾きの最大値に夫々対応する。
高域強調処理無しの場合、図4(a)に示すように、R波と外乱信号との波形が類似していても、多くの場合、波形の幅や、波形の立ち上がりや立下りの傾斜が異なる。このため、高域強調処理を行った波形(図4(b))では、R波と外乱信号とで、正負のそれぞれのピーク位置及びピーク値のいずれか一方、或いは双方が異なる。つまり、高域強調処理を行うことにより、R波の波形と外乱信号の波形との差異は大きくなる。例えば、R波と外乱信号との正規化相互相関の値は、高域強調処理無しの場合には0.89であるのに対して、高域強調処理有りの場合には0.70まで下がる。
この結果、高域強調処理後のR波の波形に対応するテンプレートと、高域強調処理後のECG波形との相互相関値を求め、求めた相互相関値と閾値を比較してR波を検出する場合、R波を正しく検出する確率(正検出率)を高くすることができる。また、R波に類似する外乱信号に対しても、この外乱信号を誤って検出する確率(誤検出率)を抑制することができる。
図5は、心電波形検出装置1の処理の概要を示すフローチャートである。ステップST100で、心電波形検出装置1の入力部10が、ECG信号を時系列信号として入力する。ECG信号は、例えば、一定周期で(例えば、1ミリ秒で)サンプリングされた信号である。
ステップST102で、高域強調部20が、入力したECG信号に対して高域強調処理を行う。高域強調部20は、高域強調されたECG信号、即ち、高域強調ECG信号を出力する。図6(a)は高域強調部20に入力されるECG波形を例示する図である。図6(b)は高域強調部20から出力される高域強調ECG波形を例示する図である。高域強調ECG波形のR波に対応する位置には、正の最大ピークと負の最大ピークが発生する。正のピークは、R波の立ち上がり領域での最大傾斜位置に発生する。また、負のピークは、R波の立ち下がり領域での最大傾斜位置に発生する。正の最大ピークと負の最大ピークとの間のゼロクロス位置は、R波のピーク位置に対応する。
高域強調部20で行う高域強調処理の方法は特に限定するものではないが、例えば、複数タップのFIR(Finite Impulse Response)フィルタで実現する微分処理を用いても良い。図7は、高域強調部20を、5タップのFIRフィルタで構成した例を示す。図7に示すFIRフィルタにおいて、「τ」は遅延要素、「W1」乃至「W5」はフィルタ係数、「+」は加算要素である。
図7に示すFIRフィルタを、高域強調処理(微分処理)用のフィルタとして構成する場合には、各フィルタ係数(W1、W2、W3、W4、W5)を、例えば次のように設定する。
(W1、W2、W3、W4、W5)=(−1、−2、0、2、1)
FIRフィルタのタップ数は5以外でもよい。例えば、タップ数が4の場合、各フィルタ係数(W1、W2、W3、W4)を、例えば次のように設定する。
(W1、W2、W3、W4)=(−1、−2、2、1)
タップ数が3の場合、各フィルタ係数(W1、W2、W3)を、例えば次のように設定する。
(W1、W2、W3)=(−1、0、1)
また、タップ数が2の場合、各フィルタ係数(W1、W2)を、例えば次のように設定する。
(W1、W2)=(−1、1)
FIRフィルタのフィルタ係数は機械学習によって求めてもよい。図4(a)、(b)に示したように、外乱信号の誤検出を低減するためには、検出対象信号としてのR波と外乱信号との正規化相互相関がなるべく小さくなることが望ましい。そこで、R波の波形データと、外乱信号の波形データとを予め学習用データとして用意し、予め決めたタップ数のFIRフィルタに対して、平均的な正規化相互相関が小さくなるようにフィルタ係数を機械学習によって算出する。そして、このように算出したフィルタ係数をFIRフィルタに用いることによって、高域強調処理を行うFIRフィルタを実現することができる。
図5に戻り、ステップST104では、テンプレート生成部50が、高域強調部20で生成された高域強調ECG信号から、検出対象信号であるR波に対応するテンプレート、即ち、高域強調テンプレートを生成する。
図8は、高域強調テンプレートの生成方法の一例を説明する図である。高域強調テンプレートは、テンプレート生成部50が、図8(a)及び(b)に示すように、R波に対応する期間の高域強調ECG信号を抽出することによって生成する。高域強調テンプレートの抽出位置は、テンプレート生成部50が、脈波計400から入力する脈波信号に基づいて決定する。
脈波信号は、脈波計400によって末梢血管の運動を測定することによって得られる信号である。図8(c)に示すように、脈波信号では、通常、R波よりも少し遅れた位置に極小点が現れる。したがって、脈波信号の極小点の位置を検出し、極小点よりも少し前の位置にある高域強調ECG信号を切り出す(抽出する)ことによって、R波に対応する高域強調テンプレートを生成することができる。
しかしながら、R波から脈波信号の極小点までの時間には個人差がある。そこで、脈波信号の極小点から前の期間にR波の探索範囲を設定し、探索範囲内においてECG信号の絶対値が最大となる位置をR波のピーク位置として定める。そして、R波のピーク位置を中心とした所定の時間幅に対応する高域強調ECG信号を抽出することによって、R波に対応する高域強調テンプレートを生成してもよい。なお、抽出する高域強調テンプレートの時間幅は、想定されるR波の時間幅から予め決定することができる。
脈波信号以外の外部信号を用いて高域強調テンプレートを生成してもよい。例えば、心音計によって心音を検出し、その検出結果を利用してR波の探索範囲を設定しても良い。
テンプレート生成部50は、時系列信号として入力される最新の高域強調ECG信号に基づいて高域強調テンプレートを更新してもよい。例えば、R波が到来するごとに高域強調テンプレートを生成し、最新の高域強調テンプレートによって過去の高域強調テンプレートを置き換えてもよい。或いは、高域強調テンプレートの更新間隔を、複数のR波からなるより長い期間に設定して、この更新期間ごとに、最新の高域強調テンプレートによって過去の高域強調テンプレートを置き換えてもよい。或いは、R波が到来するごとに切り出した直近の複数の高域強調ECG信号を単純移動平均又は荷重移動平均して、高域強調テンプレートを生成してもよい。
上記のようにして高域強調テンプレートが生成されると、次のステップST106では、算出部30が、高域強調ECG信号と高域強調テンプレートとを照合して評価値を算出する。図9は、算出部30による、高域強調ECG信号と高域強調テンプレートとの照合処理の概念を示す図である。
以下、算出部30による照合処理のいくつかの例を説明する。以下の説明において、T(i)は高域強調テンプレート、S(i)は高域強調ECG信号、Eは評価値を表わす。また、Nは高域強調テンプレートの長さ、iはインデックスを表わす。
照合処理の第1の例では、Matched Filterを用いる。つまり、高域強調テンプレートT(i)と高域強調ECG信号S(i)との相互相関を算出し、相互相関の値を評価値Eとする。この場合、高域強調テンプレートT(i)と高域強調ECG信号S(i)の形状が類似するほど、また、高域強調ECG信号S(i)の強度が強いほど評価値Eは大きくなる。評価値Eは以下で与えられる。
Figure 2015213714
照合処理の第2の例では、高域強調テンプレートT(i)と高域強調ECG信号S(i)の正規化相関を算出し、正規化相関の値を評価値Eとする。評価値Eは高域強調テンプレートT(i)及び高域強調ECG信号S(i)の強度で正規化される。この場合は、高域強調テンプレートT(i)と高域強調ECG信号S(i)の形状が類似するほど評価値Eは大きくなる。評価値Eは以下で与えられる。
Figure 2015213714
上記式のかわりに、各T(i)からT(i)の平均値を、各S(i)からS(i)の平均値を引いて得られるゼロ平均正規化相互相関を用いても良い。
照合処理の第3の例では、評価値Eとして差分二乗和、又はその平方根を用いる。これらの場合、高域強調テンプレートT(i)と高域強調ECG信号S(i)の形状が類似するほど、評価値Eは小さくなる。差分二乗和の場合、評価値Eは以下で与えられる。
Figure 2015213714
照合処理の第4の例では、評価値Eとして差分絶対値和、又は、より一般的に、差分のL-pノルム(p>0)の総和の(1/p)乗を用いる。差分絶対値和は、p=1に相当する。L-pノルムでp<2とすると、高域強調ECG信号S(i)或いは高域強調テンプレートT(i)の一部に計測誤りなどによるはずれ値が含まれた場合に、はずれ値の影響を小さくするロバスト化の効果が得られる。差分絶対値和、差分のL-pノルムの総和の(1/p)乗を用いる式はそれぞれ以下で与えられる。いずれの場合も、高域強調ECG信号S(i)と高域強調テンプレートT(i)の形状が類似するほど、評価値Eは小さくなる。
Figure 2015213714
照合処理の第5の例では、評価値Eの算出において誤差関数を用いる。誤差関数は、入力値が大きいときの関数値として入力値の2乗よりも小さい値を返す関数である。誤差関数を用いることによって、ロバスト化、即ち、はずれ値の影響を小さくすることができる。xに対する誤差関数の値をR(x)で表すとき、評価値Eを、誤差関数R(x)を用いて以下の式より算出することができる。この場合にも、高域強調ECG信号S(i)と高域強調テンプレートT(i)の形状が類似するほど、評価値Eは小さくなる。
Figure 2015213714
誤差関数R(x)の3つの例を以下に示す。なお、誤差関数の形は以下の例に限定されない。誤差関数のパラメータpは、例えば良い結果が得られるように予備実験を行い、予め定めておけばよい。
Figure 2015213714
上記のようにして評価値が求まると、ステップST108にて、検出部40が、評価値に基づいてR波を検出し、心拍同期信号を心電同期撮像装置200に出力する。
図10は、検出部40の動作の概念を説明する図である。上述したように、照合処理の第1、第2の例では、評価値を相互相関、又は正規化相互相関として算出する。この場合、図10(a)に示すように、高域強調ECG信号と高域強調テンプレートの形状が類似するほど評価値は大きくなる。
一方、照合処理の第3乃至第5の例では、評価値を差分に基づいて算出している。この場合、図10(b)に示すように、高域強調ECG信号と高域強調テンプレートの形状が類似するほど評価値は小さくなる。
図10(a)及び(b)のいずれの場合にも、閾値を定めておき、評価値が閾値より大きくなった位置、或いは小さくなった位置をR波の検出位置とすることができる。閾値は固定値でもよいが、適応的に変化させることもできる。例えば、照合処理の第3乃至第5の例の場合(図10(b)の場合)、検出直前の所定期間における評価値の最小値と中央値を求め、最小値と中央値とを別途定めた重みによって荷重加算した値を閾値としてよい。
検出部40による検出は、閾値を用いた方法に限定されない。例えば、評価値の極小点を求め、極小点の位置をR波の位置として検出しても良い。
なお、閾値を用いるか否かに関わらず、R波が検出された時刻から別途定めた時間を、検出対象の期間から除外することにより、R波に類似する波形が重複して検出されることを防止してもよい。
図11は、上述した心電波形検出装置1の有効性を確認するための評価結果の一例を示す図である。MRI装置の傾斜磁場によって乱されたECG信号を取得し、そのECG信号に対してR波の検出を行った。取得したECG信号には1108個のR波が含まれていた。R波を正しく検出した数(正検出数)と、R波以外をR波であると誤って検出した数(誤検出数)とを、高域強調処理無しの場合と、有りの場合で比較した。
図11(a)に示すように、誤検出数は、高域強調処理無しの場合には201であったのに対して、高域強調処理有りの場合には134に減少した。一方、図11(b)に示すように、正検出数は、高域強調処理無しの場合には723であったのに対して、高域強調処理有りの場合には916に増加した。このように、高域強調処理を用いた心電波形検出装置1では、誤検出数が低減する一方、正検出数が増加することが確認された。
(第2の実施形態)
図12は、第2の実施形態の心電波形検出装置1bの構成を示すブロック図である。第1の実施形態の心電波形検出装置1(図2)との相違点は、判定部60をさらに有している点である。
判定部60は、心電計100から出力されるECG信号に外乱信号が重畳されているか否かを判定する。そして、判定結果をテンプレート生成部50に出力する。判定部60がECG信号に外乱信号が重畳されていると判定した期間は、テンプレート生成部50は、高域強調テンプレートの生成、又は更新を一時的に停止する。逆に、判定部60がECG信号に外乱信号が重畳されていないと判定した期間にのみ、テンプレート生成部50は、高域強調テンプレートの生成、又は更新を行う。この結果、外乱信号に起因する乱れた形状の高域強調テンプレートの生成を防止することができる。
ECG信号に外乱信号が重畳されているか否かは、例えば、入力部10から出力されるECG信号の波形をモニタすることで判定することができる。例えば、所定の判定期間に、所定の閾値を超える信号の数から判定してもよい。
また、ECG信号をモニタすることに換えて、或いは、ECG信号のモニタと並行して、心電同期撮像装置200の動作状態をモニタし、心電同期撮像装置200の動作状態に応じて、ECG信号に外乱信号が重畳されているか否かを判定してもよい。
心電同期撮像装置200がMRI装置の場合、RFパルスや傾斜磁場パルスの印加中は、ECG信号の波形が乱れる可能性が高い。また、患者を載せた寝台を移動させている期間もECG信号の波形が乱れることがある。寝台移動中のECG波形の乱れは、心電同期撮像装置200がCT装置の場合にも起こり得る。
判定部60は、心電同期撮像装置200がRFパルスや傾斜磁場パルスを印加している期間や、寝台を移動している期間は、ECG信号に外乱信号が重畳されていると判定する。逆に、心電同期撮像装置200がRFパルスや傾斜磁場パルスを印加していない期間や、寝台を移動していない期間は、ECG信号に外乱信号が重畳されていないと判定する。そして、テンプレート生成部50は、外乱信号が重畳されていないと判定された期間に、高域強調テンプレートの生成、或いは更新を行う。
例えば、心電同期撮像装置200がMRI装置の場合、心電同期撮像装置200は、1つの検査において、撮像計画段階に操作者から入力された撮像条件に従って、複数のプロトコル(例えば、T1強調画像、T2強調画像等、複数の撮像種の画像を収集するための複数のプロトコル)を順次実行する場合がある。また、心電同期撮像装置200は、複数のプロトコルを連続的に実行するが、プロトコルとプロトコルとの間に、一定の中断時間が生じる場合がある。判定部60は、心電同期撮像装置200から、動作状態情報として、例えば、プロトコルの開始や停止、実行中であることを示す情報を受け取り、この情報に基づいて、プロトコルとプロトコルとの間の中断時間は、ECG信号に外乱信号が重畳されていないと判定し、プロトコルの実行中には、ECG信号に外乱信号が重畳されていると判定する。
(第3の実施形態)
図13は、第3の実施形態の心電波形検出装置1cの構成を示すブロック図である。第1の実施形態の心電波形検出装置1(図2)との相違点は、テンプレート生成部50に換えて、テンプレート記憶部70を有している点である。
第1、第2の実施形態では、高域強調部20からリアルタイムで出力される高域強調ECG信号の一部を切り出して、高域強調テンプレートを生成、或いは更新している。これに対して、第3の実施形態の心電波形検出装置1cは、被検体の撮像に先立って高域強調テンプレートを予め生成しておき、これをテンプレート記憶部70に記憶させておく。高域強調テンプレートは撮像の前に生成されるため、例えば、心電同期撮像装置200がMRI装置の場合であっても、RFパルスや傾斜磁場パルスの印加に起因する外乱信号の影響の無い高域強調テンプレートを、算出部30に提供することができる。
(第4の実施形態)
前述した第1乃至第3の実施形態では、心電計100から心電波形検出装置1、1b、1cに対して出力するECG信号は1次元(ECG信号の数が1つ)である。
一方、例えば、12誘導式の心電計は、I、II、III、aVR、aVL、aVF、V1〜V6、といった12個(12次元)のECG信号を出力する。また、例えば、心電同期に使用される4端子の心電計であれば、2〜3個のECG信号(2〜3次元)を出力する。また、例えば、ベクトルカーディオグラムは、複数の電極信号から生成した3つのECG信号(3次元)(これら3つのECG信号はX、Y、Zと呼ばれる)を利用する。
第4の実施形態では、心電計100から出力されるこれらの多次元のECG信号からR波を検出する。図14は、第4の実施形態の心電波形検出装置1dの構成を示すブロック図である。心電波形検出装置1dは、次元低減部80、評価値合成部90を有する。また、処理する信号の次元数に対応して、それぞれ複数の高域強調部20、算出部30、及びテンプレート生成部40を有する。
次元低減部80は、心電計100から出力されるECG信号の数(次元数)を低減する。例えば、心電計100から出力されるECG信号の数がn(n次元の信号)のとき、nより少ない次元数(m次元:(m<n))の信号に変換する。例えば、過去に入力された所定時間のn次元のECG信号に対して主成分分析を行って主成分ベクトルを算出する。その上で、寄与率の大きなm個(m<n)の主成分ベクトルから生成される部分空間に、入力されるn次元のECG信号を射影することによって、次元数をn次元からm次元に低減することができる。
次元が低減されたECG信号、即ち、信号数がnからmに低減されたECG信号は、夫々がm個の高域強調部20の1つに入力される。なお、心電計100から出力される複数のECG信号を、次元を低減することなく夫々の高域強調部20に入力しても良い。この場合には、次元低減部80は不要である。
夫々の高域強調部20は、入力した各ECG信号に対して、第1の実施形態と同様の高域強調処理を行う。今、m個のECG信号を、m次元のベクトル信号S(t)で表すと、ベクトル信号S(t)は、以下となる。
S(t)=(S1(t), S2(t), S3(t), ・・・・, Sm(t))
高域強調部20は、S1(t), S2(t), S3(t), ・・・・, Sm(t)に対して、夫々独立に、例えば、前述したフィルタ係数を有するFIRフィルタを適用して、高域強調ECG信号を生成する。この場合、個々の高域強調部20は、それぞれ1入力1出力のFIRフィルタとして構成される。そして、m個の高域強調部20は、全体としてm個の高域強調ECG信号を出力する。
例えば、ベクトルカーディオグラムの場合、上述した3つの信号、X、Y、Zが、S1(t), S2(t), S3(t)として3つの高域強調部20に夫々入力される。そして、高域強調された3つの信号が、3つの高域強調部20の夫々から出力される。
なお、高域強調部20を、複数入力複数出力の多次元FIRフィルタで構成してもよい。たとえば、入力信号が、ベクトルカーディオグラムに対応するX、Y、Zの3次元の信号であった場合に、高域強調部20を、3入力3出力の3次元FIRフィルタとして構成してもよい。
高域強調部20で生成されるm個の高域強調ECG信号は、m個のテンプレート生成部50の夫々に入力される。各テンプレート生成部50は、高域強調テンプレートを夫々生成する。各テンプレート生成部50は、生成した高域強調テンプレートをm個の算出部30に出力する。各テンプレート生成部50の動作は、第1乃至第3の実施形態と同様である。
各算出部30は、各高域強調部20から出力される高域強調ECG信号と、各テンプレート生成部50から出力される高域強調テンプレートに基づいて、相互相関、或いは差分二乗和等の評価値を算出する。各算出部30の動作も、第1乃至第3の実施形態と同様である。
評価値合成部90は、m個の算出部30から出力される合計m個の評価値を合成して1つの総合評価値を算出する。例えば、m個の評価値を単純加算して総合評価値を算出しても良い。或いは、m個の評価値に適宜重み付けし、重み付け加算値を総合評価値としてもよい。
検出部40は、評価値合成部90から出力される総合評価値に基づいてR波を検出する。検出部40の動作は第1乃至第3の実施形態と同様である。
第4の実施形態の心電波形検出装置1dによれば、心電計100から出力される多次元のECG信号の情報を利用したR波の検出が可能となる。
上記の各実施形態では、心電波形検出装置1が、心電同期撮像装置200とは別個の構成である例を示した。心電波形検出装置1を心電同期撮像装置200の内部構成としてもよい。
図15は、心電同期撮像装置200aが電波形検出装置1を含む例を示す図である。心電同期撮像装置200aは、心拍同期信号を生成する心電波形検出装置1の他、心拍同期信号に同期して被検体から撮像用のデータを収集するデータ収集部210、収集した撮像用のデータから被検体の画像を生成する画像生成部220を有する。
上記の各実施形態では、心電波形検出装置1は、心電計100とは別個の構成である例を示した。心電計100を心電波形検出装置1の内部構成としてもよい。
図16乃至図18は、心電波形検出装置1が心電計100を備える例を示す図である。
図16に示す心電波形検出装置1は、AD変換器120から受け取ったECG信号を、有線で入力部10に入力する。
図17に示す心電波形検出装置1は、送信部130と、受信部132をさらに備える。送信部130と受信部132は互いに無線通信が可能である。受信部132は、送信部130が無線で送信するECG信号を受信する。この構成によれば、心電同期撮像装置200のボア内部に横臥する患者に取り付けられた心電計100から、外部への配線を無くすことができる。
図18に示す心電波形検出装置1は、記憶部140、読取部142さらに備える。記憶部140は、CD、DVD、USBメモリ等の可搬型の記録媒体にECG信号を記憶させる。読取部142は、記録媒体を読み込む。読取部142は、読み取ったECG信号を入力部10に送る。
なお、上述してきた各種処理の手順(例えば、図5)は、必ずしも図示した処理手順に限られるものではない。並行して実行可能な処理手順は、並行して実行してもよいし、その順序に依存性がない処理手順は、順序を入れ替えて実行してもよい。
以上説明した少なくとも1つの実施形態によれば、検出対象外の波形がECG信号に重畳された場合であっても、検出対象外の波形の誤検出を低減することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 心電波形検出装置
10 入力部
20 高域強調部
30 算出部
40 検出部
50 テンプレート生成部
60 判定部
70 テンプレート記憶部
80 次元低減部
90 評価値合成部
100 心電計
200 心電同期撮像装置

Claims (15)

  1. 被検体から取得した少なくとも1つの第1のECG信号を高域強調し、第2のECG信号を生成する強調部と、
    特定の検出対象波形に対応するテンプレートと、前記第2のECG信号とを照合して評価値を算出する算出部と、
    前記評価値に基づいて前記検出対象波形を検出する検出部と、
    を備える心電波形検出装置。
  2. 前記第2のECG信号に基づいて前記テンプレートを生成する生成部、をさらに備えたことを特徴とする請求項1に記載の心電波形検出装置。
  3. 前記テンプレートを生成するか否かを判定する判定部、をさらに備え、
    前記生成部は、前記判定部の判定結果に基づいて前記テンプレートを生成する、
    ことを特徴とする請求項2に記載の心電波形検出装置。
  4. 前記判定部は、MRI装置の動作状態に関する情報を取得し、前記MRI装置が前記被検体からの磁気共鳴信号を収集している期間は、前記テンプレートを生成しないと判定し、前記磁気共鳴信号を収集していない期間は、前記テンプレートを生成すると判定する、
    ことを特徴とする請求項3に記載の心電波形検出装置。
  5. 前記生成部は、前記被検体の脈波信号に基づいて前記第1のECG信号の所定期間の信号を抽出し、抽出した前記所定期間の信号に基づいて前記テンプレートを生成する、
    ことを特徴とする請求項2に記載の心電波形検出装置。
  6. 前記評価値は、前記第2のECG信号と前記テンプレートとの相関である、
    ことを特徴とする請求項1〜5のいずれか1項に記載の心電波形検出装置。
  7. 前記評価値は、前記第2のECG信号と前記テンプレートとの差分二乗和、差分絶対値和、差分に対するL−pノルム(p>0)、又は差が所定の値よりも大きいとき前記差の二乗よりも小さな値となる関数を前記差に適用して算出される関数値の総和、のうち少なくとも1つに基づいて求まる値である、
    ことを特徴とする請求項1〜6のいずれか1項に記載の心電波形検出装置。
  8. 前記強調部は、前記被検体から同時に取得される複数の前記第1のECG信号の夫々を高域強調し、複数の前記第2のECG信号を生成し、
    前記算出部は、複数の前記第2のECG信号に対応する複数の前記評価値を求め、
    複数の前記評価値を加算、又は重み付け加算して総合評価値を算出する合成部、をさらに備え、
    前記検出部は、前記総合評価値に基づいて前記検出対象波形を検出する、
    ことを特徴とする請求項1〜7のいずれか1項に記載の心電波形検出装置。
  9. 前記複数の第1のECG信号は、ベクトルカーディオグラムを生成するため複数の信号である、
    ことを特徴とする請求項8に記載の心電波形検出装置。
  10. 前記第1のECG信号の数をNとし前記複数の第1のECG信号をN次元の時系列信号とするとき、
    前記第1のECG信号の数をNよりも小さな数に低減する次元低減処理を前記高域強調処理の前に行う次元低減部、をさらに備え、
    前記次元低減部は、
    前記N次元の時系列信号に対して主成分分析を行って主成分ベクトルを算出し、寄与率が所定の値よりも大きな主成分ベクトルから生成される部分空間に前記N次元の時系列信号を射影することにより、前記第1のECG信号の数をNよりも小さな数に低減する、
    ことを特徴とする請求項10に記載の心電波形検出装置。
  11. 前記テンプレートを記憶する記憶部、をさらに備え、
    前記テンプレートは、前記第1のECG信号を取得する前に生成され、前記記憶部に記憶されている、
    ことを特徴とする請求項1に記載の心電波形検出装置。
  12. 被検体から取得した少なくとも1つの第1のECG信号を高域強調し、第2のECG信号を生成する強調部と、
    特定の検出対象波形に対応するテンプレートと、前記第2のECG信号とを照合して評価値を算出する算出部と、
    前記評価値に基づいて前記検出対象波形を検出して同期信号を生成する検出部と、
    前記同期信号に同期して、被検体から撮像用のデータを収集するデータ収集部と、
    収集した前記撮像用のデータから、前記被検体の画像を生成する画像生成部と、
    を備える撮像装置。
  13. 前記撮像装置はMRI装置である、
    ことを特徴とする請求項12に記載の撮像装置。
  14. 被検体から取得した少なくとも1つの第1のECG信号を高域強調し、第2のECG信号を生成し、
    特定の検出対象波形に対応するテンプレートと、前記第2のECG信号とを照合して評価値を算出し、
    前記評価値に基づいて前記検出対象波形を検出する、
    心電波形検出方法。
  15. コンピュータに、
    被検体から取得した少なくとも1つの第1のECG信号を高域強調し、第2のECG信号を生成するステップと、
    特定の検出対象波形に対応するテンプレートと、前記第2のECG信号とを照合して評価値を算出するステップと、
    前記評価値に基づいて前記検出対象波形を検出するステップと、
    を実行させる心電波形検出プログラム。
JP2014099914A 2014-04-25 2014-05-13 心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び撮像装置 Active JP6430144B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014099914A JP6430144B2 (ja) 2014-05-13 2014-05-13 心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び撮像装置
PCT/JP2015/062245 WO2015163369A1 (ja) 2014-04-25 2015-04-22 心電波形検出装置、及び撮像装置
US14/978,284 US9968273B2 (en) 2014-04-25 2015-12-22 ECG waveform detecting apparatus and imaging apparatus
US15/946,450 US10219712B2 (en) 2014-04-25 2018-04-05 ECG waveform detecting apparatus and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099914A JP6430144B2 (ja) 2014-05-13 2014-05-13 心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び撮像装置

Publications (2)

Publication Number Publication Date
JP2015213714A true JP2015213714A (ja) 2015-12-03
JP6430144B2 JP6430144B2 (ja) 2018-11-28

Family

ID=54751204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099914A Active JP6430144B2 (ja) 2014-04-25 2014-05-13 心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び撮像装置

Country Status (1)

Country Link
JP (1) JP6430144B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013268A (ja) * 2018-07-17 2020-01-23 ファナック株式会社 機械学習装置、制御装置、及び機械学習方法
CN111513706A (zh) * 2020-04-20 2020-08-11 重庆邮电大学 一种针对含有异常r波的心电信号的检测方法和装置
US11058361B2 (en) 2014-11-06 2021-07-13 Canon Medical Systems Corporation Signal processing apparatus, imaging apparatus, and signal processing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116207A (ja) * 2004-10-25 2006-05-11 Fukuda Denshi Co Ltd 心電図の分類装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116207A (ja) * 2004-10-25 2006-05-11 Fukuda Denshi Co Ltd 心電図の分類装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11058361B2 (en) 2014-11-06 2021-07-13 Canon Medical Systems Corporation Signal processing apparatus, imaging apparatus, and signal processing method
JP2020013268A (ja) * 2018-07-17 2020-01-23 ファナック株式会社 機械学習装置、制御装置、及び機械学習方法
US10901374B2 (en) 2018-07-17 2021-01-26 Fanuc Corporation Machine learning device, control device, and machine learning method
CN111513706A (zh) * 2020-04-20 2020-08-11 重庆邮电大学 一种针对含有异常r波的心电信号的检测方法和装置

Also Published As

Publication number Publication date
JP6430144B2 (ja) 2018-11-28

Similar Documents

Publication Publication Date Title
US10219712B2 (en) ECG waveform detecting apparatus and imaging apparatus
Sharma et al. A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency
US20220175298A1 (en) Medical decision support system
Sathyapriya et al. Analysis and detection R-peak detection using Modified Pan-Tompkins algorithm
US9198634B2 (en) Medical decision support system
JP6181146B2 (ja) 適応閾値を用いたリアルタイムqrs検出
EP3474742A1 (en) Non-invasive method and system for measuring myocardial ischemia, stenosis identification, localization and fractional flow reserve estimation
US20150164466A1 (en) System and method for classifying a heart sound
WO2019079829A9 (en) Method of preprocessing and screening auscultatory sound signals
JP6430144B2 (ja) 心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び撮像装置
JP4945309B2 (ja) 脳波測定方法及び脳波測定装置並びに記録媒体
JP6647831B2 (ja) 信号処理装置、撮像装置及び信号処理方法
US11058361B2 (en) Signal processing apparatus, imaging apparatus, and signal processing method
JP6943634B2 (ja) 信号処理装置、撮像装置及び信号処理方法
JP6320836B2 (ja) 心電波形検出装置、心電波形検出プログラム、及び撮像装置
Paul et al. Automated detection of cardinal points of ECG signal for feature extraction using a single median filter
Tanasković et al. A new algorithm for fetal heart rate detection: Fractional order calculus approach
JP2017169615A (ja) 収縮期心雑音検出装置
JP6706996B2 (ja) 生体信号処理装置、異常判別方法およびプログラム
Liu et al. Algorithm of heart sound segmentation and feature extraction
Sundaram et al. Discriminating normal phonocardiogram from artifact using a multiscale entropy technique
US10952625B2 (en) Apparatus, methods and computer programs for analyzing heartbeat signals
JP6433690B2 (ja) 心電波形検出装置、心電波形検出方法、心電波形検出プログラム、及び撮像装置
Xie et al. Heart rate estimation from ballistocardiogram using hilbert transform and viterbi decoding
Alqaraawi et al. Towards efficient heart rate variability estimation in artifact-induced Photoplethysmography signals

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181031

R150 Certificate of patent or registration of utility model

Ref document number: 6430144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150