JP2015206302A - Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine Download PDF

Info

Publication number
JP2015206302A
JP2015206302A JP2014087436A JP2014087436A JP2015206302A JP 2015206302 A JP2015206302 A JP 2015206302A JP 2014087436 A JP2014087436 A JP 2014087436A JP 2014087436 A JP2014087436 A JP 2014087436A JP 2015206302 A JP2015206302 A JP 2015206302A
Authority
JP
Japan
Prior art keywords
exhaust gas
collection device
regeneration
particulate collection
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014087436A
Other languages
Japanese (ja)
Inventor
貴幸 古川
Takayuki Furukawa
貴幸 古川
和成 山本
Kazunari Yamamoto
和成 山本
藤井 謙治
Kenji Fujii
謙治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014087436A priority Critical patent/JP2015206302A/en
Publication of JP2015206302A publication Critical patent/JP2015206302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purification system for internal combustion engine and an exhaust gas purification method for internal combustion engine that can suppress local deterioration of a catalyst carried by a fine particle collection device in an exhaust gas purification device and improve fuel economy, and further can reduce troubles such as breakage of the catalyst.SOLUTION: An internal combustion engine 10 includes, in an exhaust passage 15 of the internal combustion engine 10, an exhaust gas purification device 20 having an oxidation catalyst device 22 and a fine particle collection device 23 in order from upstream, and reproduction processing of the fine particle collection device 23 is performed in a first state in which an exhaust gas Ga flows to both a center part 23a and an outer peripheral part 23b of the fine particle collection device 23 right after the start of reproduction, in a second state in which a flow to the center part 23a of the fine particle collection device 23 is stopped below a previously set amount in the middle of the reproduction, and in a third state in which the flow to the center part 23a of the fine particle collection device 23 is stopped at the set amount in the ending of the reproduction.

Description

本発明は、内燃機関より排出される排気ガス中のPMを捕集する微粒子捕集装置に担持された触媒の局所的な劣化を抑制すると共に、燃費を改善し、さらに、触媒の破損等の不具合を低減することができる内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法に関する。   The present invention suppresses local deterioration of the catalyst carried by the particulate collection device that collects PM in the exhaust gas discharged from the internal combustion engine, improves fuel consumption, and further breaks down the catalyst. The present invention relates to an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for the internal combustion engine that can reduce problems.

車両に搭載されるディーゼルエンジン等の内燃機関では、その排気ガスの中に含まれているPM(Particulate Matter)と呼ばれる粒子状物質を、排気通路に配設した排気ガス浄化装置に備えた微粒子捕集装置により捕集して、大気中へ排出される排気ガスを浄化している。この微粒子捕集装置ではPMを捕集するとともに、PMの堆積量が増加するにつれて、圧力損失の増加による燃費の悪化を生じたり、すり抜けるPM量の増加による浄化性能の低下が生じたりするため、定期的に微粒子捕集装置をPM燃焼温度以上に所定の時間の間昇温して、捕集されたPMを燃焼する再生処理をしてPM捕集能力を回復している。そして、この捕集と再生の繰り返しにより、微粒子捕集装置のPM捕集能力を維持し、大気中に排出される排気ガス中のPMの減少を図っている。   In an internal combustion engine such as a diesel engine mounted on a vehicle, particulate matter called PM (Particulate Matter) contained in the exhaust gas is collected in a particulate trap provided in an exhaust gas purification device disposed in an exhaust passage. The exhaust gas collected by the collector and exhausted into the atmosphere is purified. In this particulate collection device, PM is collected, and as the amount of accumulated PM increases, fuel consumption deteriorates due to an increase in pressure loss, or purification performance decreases due to an increase in the amount of PM that passes through. The particulate collection device is periodically heated to a temperature equal to or higher than the PM combustion temperature for a predetermined time, and a regeneration process for burning the collected PM is performed to recover the PM collection capability. By repeating this collection and regeneration, the PM collection capability of the particulate collection device is maintained, and the PM in the exhaust gas discharged into the atmosphere is reduced.

この微粒子捕集装置の再生処理は、捕集されて堆積したPM堆積量を、例えば、微粒子捕集装置の前後の差圧によって推定し、一定圧以上の差圧になると、PMが限界量に達したとして、再生処理を行っている。また、この再生処理における微粒子捕集装置の昇温は、例えば、微粒子捕集装置より上流側の排気通路に酸化触媒装置(DOC)を設けて、再生処理時に一時的に増加される未燃燃料の炭化水素(HC)をこの酸化触媒で酸化して、この酸化熱により、酸化触媒装置を通過する排気ガスを昇温して高温化し、この高温化した排気ガスを下流側の微粒子捕集装置に流入させることで微粒子捕集装置を昇温している。   The regeneration process of the particulate collection device is to estimate the amount of PM deposited and deposited by, for example, the differential pressure before and after the particulate collection device. If it has reached, the reproduction process is performed. Further, the temperature increase of the particulate collection device in the regeneration process is performed by, for example, providing an oxidation catalyst device (DOC) in the exhaust passage upstream of the particulate collection device and temporarily increasing the unburned fuel during the regeneration process. The hydrocarbon (HC) is oxidized with this oxidation catalyst, and with this oxidation heat, the exhaust gas that passes through the oxidation catalyst device is heated to a high temperature, and the heated exhaust gas is collected on the downstream particulate collection device The particulate collection device is heated by being caused to flow into.

ところで、一般的に、排気通路内を流れる排気ガスには速度分布が存在し、排気ガスの流速は、排気通路の中心部から外周部に近づくにつれて低下する傾向があり、排気ガス浄化装置に組み込まれた微粒子捕集装置を通過する排気ガスについても同様に流速分布が存在する。   By the way, in general, there is a velocity distribution in the exhaust gas flowing in the exhaust passage, and the flow rate of the exhaust gas tends to decrease from the central portion of the exhaust passage toward the outer peripheral portion, and is incorporated into the exhaust gas purification device. Similarly, a flow velocity distribution exists for the exhaust gas passing through the particulate collection device.

例えば、図12に示す、酸化触媒装置(DOC)22Xと微粒子捕集装置23Xを備えた排気ガス浄化装置21Xを参照しながら説明すると、微粒子捕集装置23Xにおいては、PMは、流速が早く多量の排気ガスが通過する中心部から堆積していき、PMの堆積に伴って、中心部の圧力損失が高くなるので、順次外周部への排気ガスの流れが増加し、外周部にPMが堆積するようになる。   For example, referring to the exhaust gas purification device 21X including the oxidation catalyst device (DOC) 22X and the particulate collection device 23X shown in FIG. 12, in the particulate collection device 23X, PM has a high flow rate and a large amount. As the PM accumulates, the pressure loss at the center increases, so the flow of exhaust gas to the outer periphery gradually increases and PM accumulates on the outer periphery. To come.

そして、微粒子捕集装置23Xの再生処理時においても、排気ガスGaの流速は、微粒子捕集装置23Xの中心部から外周部に近づくにつれて低下し、外周部では外部環境への放熱が大きく排気ガス温度が低下する傾向があるので、中心部から外周部に近づくにつれて排気ガスのエネルギーも低くなる。その結果、再生処理時においては、排気ガスの流速が早く多くの排気ガスが流れる中心部の触媒の方が、外周部の触媒よりも熱やHC被毒等の負荷が高く、触媒の劣化が早まる。そのため、触媒の局所的な劣化が生じる。この触媒の局所的な劣化は、微粒子捕集装置の再生頻度の高い条件で使用される車両にとってはより顕著となるため、触媒の一部が極端に劣化して排気ガスの浄化処理能力を低下させてしまうという問題となる。   Even during the regeneration process of the particulate collection device 23X, the flow rate of the exhaust gas Ga decreases as it approaches the outer peripheral portion from the center of the particulate collection device 23X, and the exhaust gas has a large heat release to the external environment at the outer peripheral portion. Since the temperature tends to decrease, the energy of the exhaust gas decreases as the distance from the central portion approaches the outer peripheral portion. As a result, during regeneration, the catalyst at the center where the exhaust gas flow rate is high and a large amount of exhaust gas flows has a higher load such as heat and HC poisoning than the catalyst at the outer periphery, and the catalyst deteriorates. Get early. Therefore, local degradation of the catalyst occurs. This local deterioration of the catalyst becomes more prominent for vehicles used under conditions where the particulate collection device has a high frequency of regeneration. Therefore, a part of the catalyst is extremely deteriorated to lower the exhaust gas purification processing capacity. It becomes a problem of letting you.

また、再生処理時に外周部での再生が不十分になり易く、中心部はその外周部に比べ、再生が早期に完了する。そして、中心部の再生が完了した後は、中心部の圧力損失が改善され降下するので、排気ガスがPMが堆積している外周部よりもPMの燃焼した後の中心部へ流れ易くなるため、中心部のガス流速と外周部のガス流速の差がより大きくなるので、中心部と外周部では、その再生の進捗状況に違い(以下、「再生状況のムラ」という)が生じる。   In addition, the reproduction at the outer peripheral portion tends to be insufficient during the reproduction process, and the reproduction at the center portion is completed earlier than the outer peripheral portion. Then, after the regeneration of the central portion is completed, the pressure loss in the central portion is improved and falls, so that the exhaust gas flows more easily to the central portion after the PM burns than the outer peripheral portion where the PM is accumulated. Since the difference between the gas flow rate in the central part and the gas flow rate in the outer peripheral part becomes larger, there is a difference in the progress of the regeneration between the central part and the outer peripheral part (hereinafter referred to as “unevenness of the regeneration state”).

この外周部の再生処理が不十分なままになるため、微粒子捕集装置23Xの前後差圧が速やかに降下しないので、外周部での再生を進行させるために燃料を使用することになり、燃費が悪化する。また、この燃料の使用により、触媒への熱負荷が必要以上に大きくなるので、触媒の破損等の不具合を助長することになる。   Since the regeneration processing of the outer peripheral portion remains insufficient, the differential pressure across the particulate collection device 23X does not drop quickly, so that fuel is used to advance the regeneration at the outer peripheral portion, and the fuel efficiency Gets worse. Further, the use of this fuel increases the heat load on the catalyst more than necessary, which promotes problems such as damage to the catalyst.

これに関連して、再生処理に要する燃料消費量を最小限にするため、PM燃焼時の燃焼速度をPM堆積量ごとに算出してPM燃焼に必要な活性化エネルギーを算出し、その値からPMが燃焼するのに必要な温度と時間の関係を算出し、燃料消費量を最小とする条件で再生を実行する方法が提案されている(例えば、特許文献1参照)。   In this connection, in order to minimize the fuel consumption required for the regeneration process, the activation rate necessary for PM combustion is calculated by calculating the combustion speed for each PM deposition amount at the time of PM combustion, and from that value There has been proposed a method of calculating the relationship between temperature and time required for PM to burn and executing regeneration under conditions that minimize fuel consumption (see, for example, Patent Document 1).

しかしながら、この再生方法では、微粒子捕集装置内のPM堆積量に基づいて、再生処理に必要な燃料消費量を最適化することで、燃費の悪化の抑制を図っているが、微粒子捕集装置の中心部と外周部の再生処理を並行して行うため、上述した触媒の局所的な劣化、燃費の悪化、触媒の破損等の不具合の助長といった問題点を解消することができない。   However, in this regeneration method, the fuel consumption deterioration is optimized by optimizing the fuel consumption necessary for the regeneration process based on the PM accumulation amount in the particulate collection device. Therefore, the above-mentioned problems such as local deterioration of the catalyst, deterioration of fuel consumption, and promotion of problems such as damage to the catalyst cannot be solved.

特開2013−44256号公報JP 2013-44256 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、微粒子捕集装置の再生処理時に、触媒に局所的な負荷がかかって、触媒の一部で排気ガスの浄化処理能力が極端に低下することを抑制することができて、PM捕集効率の向上と、再生処理用の燃料の節約による燃費の改善と、触媒の不具合の低減を図ることができる内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to apply a local load to the catalyst during the regeneration processing of the particulate collection device, and to purify the exhaust gas with a part of the catalyst. Exhaust gas of an internal combustion engine that can suppress the drastic reduction of the gas, improve PM collection efficiency, improve fuel efficiency by saving fuel for regeneration treatment, and reduce catalyst malfunction A purification system and an exhaust gas purification method for an internal combustion engine are provided.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に上流側より順に酸化触媒装置と微粒子捕集装置を有する排気ガス浄化装置を備えた内燃機関の排気ガス浄化システムにおいて、前記酸化触媒装置より上流側の前記排気通路に、前記微粒子捕集装置へ流入する排気ガスの流れの状態を、排気ガスが前記微粒子捕集装置の中心部と外周部の両方へ流入する第1状態と、前記微粒子捕集装置の前記中心部へ流入する流れが予め設定された設定量未満で妨げられる第2状態と、前記微粒子捕集装置の前記中心部へ流入する流れが前記設定量で妨げられる第3状態とに切り替える流路変更機構を設けると共に、前記微粒子捕集装置の再生処理時において、再生開始直後は前記第1状態で再生し、再生中盤は前記第2状態で再生し、再生終盤は前記第3状態で再生する制御を行うように構成された制御装置を設けて構成される。   In order to achieve the above object, an exhaust gas purification system for an internal combustion engine according to the present invention includes an exhaust gas purification system having an exhaust gas purification device having an oxidation catalyst device and a particulate collection device in order from the upstream side in an exhaust passage of the internal combustion engine. In the exhaust gas purification system, the state of the flow of the exhaust gas flowing into the particulate collection device into the exhaust passage upstream of the oxidation catalyst device is determined, and the exhaust gas is disposed between the central portion and the outer peripheral portion of the particulate collection device. A first state flowing into both, a second state in which a flow flowing into the central portion of the particulate collection device is hindered by less than a preset amount, and an inflow into the central portion of the particulate collection device A flow path changing mechanism for switching the flow to the third state where the flow is hindered by the set amount is provided, and at the time of regeneration processing of the particulate collection device, the regeneration is performed in the first state immediately after the regeneration is started, Reproduced by the second state, reproducing late it is configured to provide a controller configured to perform control of reproduction in the third state.

なお、この設定量は、微粒子捕集装置の前後差圧が過剰に大きくならないようにするための中央部への流れを制限する制限量の限界値であり、実験結果などから、予め設定される量である。   This set amount is a limit value of a limit amount that restricts the flow to the central portion so that the differential pressure across the particulate collection device does not become excessively large, and is set in advance from experimental results and the like. Amount.

この構成によれば、再生制御時に、再生処理の進捗状態に応じて、排気ガスの流れの状態を第1状態から第2状態を経て第3状態とすることにより、酸化触媒装置において順次中心部から外周部に再生用の炭化水素を含んだ排気ガスを行き渡らせることができるので、酸化触媒装置の触媒を全体的に使用できるので局所的な劣化を抑制できるので、酸化触媒装置の触媒の一部で排気ガスの浄化処理能力が極端に低下することを防止できる。   According to this configuration, at the time of regeneration control, the state of the exhaust gas flow is changed from the first state to the third state through the second state according to the progress state of the regeneration process, so that the central portion of the oxidation catalyst device sequentially Since the exhaust gas containing the regeneration hydrocarbon can be spread from the outer periphery to the outer peripheral portion, the catalyst of the oxidation catalyst device can be used as a whole, so that local deterioration can be suppressed. It is possible to prevent the exhaust gas purification processing capacity from being extremely lowered at the portion.

また、酸化触媒装置において排気ガスが通過する部分を中心部から外周部に変化させることにより、微粒子捕集装置においても、順次、中心部から外周部に再生用の高い温度の排気ガスを行き渡らせることができるので、微粒子捕集装置の中心部のみが過剰に昇温することを回避できる。これにより、微粒子捕集装置に触媒を担持した場合には、微粒子捕集装置の触媒の一部で排気ガスの浄化処理能力が極端に低下することを防止できる。   Further, by changing the portion through which the exhaust gas passes in the oxidation catalyst device from the central portion to the outer peripheral portion, the exhaust gas having a high temperature for regeneration is sequentially distributed from the central portion to the outer peripheral portion also in the particulate collection device. Therefore, it is possible to avoid that only the central portion of the particulate collection device is excessively heated. As a result, when the catalyst is supported on the particulate collection device, it is possible to prevent the exhaust gas purification processing capability from being extremely reduced by a part of the catalyst of the particulate collection device.

なお、設定量に関しては、第3状態において、設定量を設けずに全閉としてしまうと、微粒子捕集装置の中心部を流れる排気ガスの流量がゼロとなり、排気ガスの流れが、PMが燃焼していない状態の外周部への流れのみになるので、微粒子捕集装置の圧力損失の増加(前後差圧の上昇)を招くことになる。そのため、全閉とならない、例えば、弁開度が弁体部分の流路方向に関しての投影流路面積が閉じ量の上限となる設定量を設けて、最小限の排気ガスを酸化触媒装置及び微粒子捕集装置の中心部に流すことにより、微粒子捕集装置の中心部を流れる排気ガスの流れも確保して圧力損失の増加を抑制しながら、微粒子捕集装置の外周部でのPMの燃焼を促進することができる。   Regarding the set amount, in the third state, if the set amount is not provided and the valve is fully closed, the flow rate of the exhaust gas flowing through the center of the particulate collection device becomes zero, and the flow of the exhaust gas burns PM. Since only the flow to the outer peripheral portion in a state where it is not performed, the pressure loss of the particulate collection device increases (increase in the differential pressure across the front and rear). Therefore, for example, the valve opening degree is provided with a set amount in which the projected flow passage area with respect to the flow passage direction of the valve body portion is the upper limit of the closing amount, and the minimum exhaust gas is supplied to the oxidation catalyst device and the fine particles. By flowing to the center of the collection device, the exhaust gas flowing through the center of the particle collection device is secured and the increase in pressure loss is suppressed, while PM is burned at the outer periphery of the particle collection device. Can be promoted.

従って、この微粒子捕集装置において優先して再生する部分を中心部から外周部に順次変化させることにより、再生微粒子捕集装置の再生処理を効率よく、かつ、再生のムラなく行うことができる。そのため、通常のPM捕集時におけるPM捕集効率を向上させることができ、また、微粒子捕集装置の再生処理を短時間に効率よく行うことができるので、再生処理用の燃料を節約できて燃費を改善することができる。   Therefore, by sequentially changing the portion to be regenerated in this particulate collection device from the center portion to the outer peripheral portion, the regeneration processing of the regeneration particulate collection device can be performed efficiently and without unevenness of regeneration. Therefore, the PM collection efficiency during normal PM collection can be improved, and the regeneration process of the particulate collection device can be efficiently performed in a short time, so that the fuel for the regeneration process can be saved. Fuel consumption can be improved.

さらに、酸化触媒装置及び微粒子捕集装置の中心部における温度上昇を抑制できるので、酸化触媒装置の中心部に配置された触媒への熱負荷を低減することができ、この触媒の破損等の不具合を低減することができる。また、微粒子捕集装置が触媒を担持している場合は、この微粒子捕集装置の中心部に配置された触媒への熱負荷を低減することができ、この触媒の破損等の不具合を低減することができる。   Furthermore, since the temperature rise in the central portion of the oxidation catalyst device and the particulate collection device can be suppressed, the heat load on the catalyst arranged in the central portion of the oxidation catalyst device can be reduced, and this catalyst can be damaged. Can be reduced. In addition, when the particulate collection device carries a catalyst, the thermal load on the catalyst disposed at the center of the particulate collection device can be reduced, and problems such as breakage of the catalyst are reduced. be able to.

なお、この構成とは逆に、微粒子捕集装置の再生制御時に、先に、微粒子捕集装置の外周部に排気ガスを優先的に流して、その後で中心部に排気ガスを優先して流す場合には、酸化触媒装置で排気ガス中の炭化水素の酸化により高温化した排気ガスの大半が、最初に温度の低い外周部を通過することとなり、微粒子捕集装置の外周部表面から外部への放熱量が大きくなってしまうため、外周部の温度上昇に要する時間が長くなり、外周部で再生処理の開始が遅れてしまう上に、中心部に比べて堆積密度が小さい外周部のPMを燃焼するのでPMの燃焼による温度上昇速度も遅くなる。   Contrary to this configuration, during the regeneration control of the particulate collection device, the exhaust gas is first flowed preferentially to the outer peripheral portion of the particulate collection device, and then the exhaust gas is preferentially flowed to the center portion. In this case, most of the exhaust gas whose temperature is increased by oxidation of hydrocarbons in the exhaust gas in the oxidation catalyst device first passes through the outer peripheral portion where the temperature is low, and from the outer peripheral surface of the particulate collection device to the outside. This increases the amount of heat released, which increases the time required for the temperature rise at the outer periphery, delays the start of the regeneration process at the outer periphery, and reduces the PM at the outer periphery where the deposition density is lower than at the center. Since it burns, the rate of temperature rise due to combustion of PM also becomes slow.

また、外周部の外側の表面積が内側の中心部との境の表面積よりも多いので、この外周部でPMの燃焼熱の多くが、外側の表面から放熱されてしまうため、再生によるPMの燃焼熱の一部しか中心部で利用することができないため、中心部の温度上昇に要する時間も長くなり、中心部の再生処理も抑制されるため、再生処理の効率が低下する。そのため、PMの燃焼熱を効率よく再生処理に利用できない。   Further, since the outer surface area of the outer peripheral portion is larger than the surface area at the boundary with the inner central portion, most of the combustion heat of PM is dissipated from the outer surface at this outer peripheral portion, so the combustion of PM by regeneration Since only a part of the heat can be used in the central portion, the time required for the temperature rise in the central portion is lengthened and the regeneration processing in the central portion is suppressed, so that the efficiency of the regeneration processing is reduced. Therefore, the combustion heat of PM cannot be efficiently used for the regeneration process.

上記の内燃機関の排気ガス浄化システムにおいて、前記微粒子捕集装置の前記中心部に流入する排気ガスの温度である中心温度を検出する中心部用温度検出装置と、前記微粒子捕集装置の前記外周部に流入する排気ガスの温度である外周温度を検出する外周部用温度検出装置を備えて構成すると共に、前記制御装置が、前記第2状態においては、前記中心温度と前記外周温度との温度差が予め設定された第1判定用温度差の範囲内に収まるように、再生の進行度合いに従って、連続的または段階的に前記中心部を流れる排気ガスの流れをより大きく妨げるように前記流路変更機構を制御するように構成される。   In the exhaust gas purification system for an internal combustion engine, the temperature detecting device for the center part that detects the center temperature that is the temperature of the exhaust gas flowing into the center part of the particle collecting device, and the outer periphery of the particle collecting device And an outer peripheral temperature detecting device that detects an outer peripheral temperature that is the temperature of the exhaust gas flowing into the portion, and in the second state, the control device is a temperature between the center temperature and the outer peripheral temperature. In order to keep the difference within a preset first determination temperature difference range, the flow path is more largely prevented from flowing exhaust gas flowing through the central portion continuously or stepwise according to the progress of regeneration. It is configured to control the change mechanism.

この構成によれば、酸化触媒装置及び微粒子捕集装置の中心部へ流入する排気ガスの流量と外周部へ流入する排気ガスの流量の割合を、中心温度と外周温度の温度差に応じてより極め細かく変化させることができ、微粒子捕集装置の中心部の再生と外周部の再生のそれぞれの進行度合いに合わせた排気ガスの分配を最適化できるので、より効率よく再生ムラの発生を防止しながら再生時間を短縮できる。   According to this configuration, the ratio of the flow rate of the exhaust gas flowing into the central portion of the oxidation catalyst device and the particulate collection device and the flow rate of the exhaust gas flowing into the outer peripheral portion can be set according to the temperature difference between the central temperature and the peripheral temperature. The distribution of exhaust gas can be optimized according to the degree of progress of the regeneration of the central part of the particulate collection device and the regeneration of the outer peripheral part, so that the generation of uneven regeneration can be prevented more efficiently. Playback time can be shortened.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記酸化触媒装置の上流に設けられて、排気ガスの流れを、前記酸化触媒装置の前記中心部に流入する第1の流れと前記酸化触媒装置の前記外周部に流入する第2の流れとに分流する内部通路と、該内部通路に設けた流量調整弁とを有して、前記流路変更機構が構成されると、比較的簡単な構成で、しかも、流量調整弁の弁開度の制御だけで、排気ガスの流れを第1状態、第2状態、又は、第3状態にすることができる。   In the exhaust gas purification system for an internal combustion engine, the oxidation catalyst device is provided upstream of the oxidation catalyst device, and the exhaust gas flows into the central portion of the oxidation catalyst device. If the flow path changing mechanism is configured to have an internal passage that divides into the second flow that flows into the outer peripheral portion and a flow rate adjustment valve that is provided in the internal passage, a relatively simple configuration In addition, the flow of the exhaust gas can be changed to the first state, the second state, or the third state only by controlling the valve opening degree of the flow rate adjusting valve.

そして、上記の目的を達成するための本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路に上流側より順に酸化触媒装置と微粒子捕集装置を有する排気ガス浄化装置を備えた内燃機関の排気ガス浄化方法において、前記微粒子捕集装置の再生処理時において、再生開始直後は排気ガスが前記微粒子捕集装置の中心部と外周部の両方へ流入する第1状態で再生し、再生中盤は前記微粒子捕集装置の前記中心部へ流入する流れが予め設定された設定量未満で妨げられる第2状態で再生し、再生終盤は前記微粒子捕集装置の前記中心部へ流入する流れが前記設定量で妨げられる第3状態で再生することを特徴とする方法である。   And the exhaust gas purification method of the internal combustion engine of the present invention for achieving the above object is an internal combustion engine provided with an exhaust gas purification device having an oxidation catalyst device and a particulate collection device in order from the upstream side in the exhaust passage of the internal combustion engine. In the exhaust gas purification method for an engine, at the time of regeneration processing of the particulate collection device, immediately after starting regeneration, regeneration is performed in a first state in which exhaust gas flows into both the central portion and the outer peripheral portion of the particulate collection device. The middle plate is regenerated in a second state where the flow flowing into the central portion of the particulate collection device is hindered by a preset amount less than the preset amount, and the final flow is a flow flowing into the central portion of the particulate collection device. The reproduction is performed in a third state that is hindered by the set amount.

また、上記の内燃機関の排気ガス浄化方法において、前記微粒子捕集装置の前記中心部に流入する排気ガスの温度である中心温度と、前記微粒子捕集装置の前記外周部に流入する排気ガスの温度である外周温度を検出し、前記第2状態において、前記中心温度と前記外周温度との温度差が予め設定された第1判定用温度差の範囲内に収まるように、再生の進行度合いに従って、連続的または段階的に前記中心部を流れる排気ガスの流れをより大きく妨げる。   Further, in the exhaust gas purification method for an internal combustion engine, the exhaust gas flowing into the outer peripheral portion of the fine particle collecting device and the central temperature that is the temperature of the exhaust gas flowing into the central portion of the fine particle collecting device. An outer peripheral temperature that is a temperature is detected, and in the second state, according to the progress of regeneration, the temperature difference between the center temperature and the outer peripheral temperature falls within a preset first determination temperature difference range. The flow of the exhaust gas flowing through the central part continuously or stepwise is more hindered.

これらの方法によれば、上記の内燃機関の排気ガス浄化システムと同様の効果を奏することができる。   According to these methods, the same effect as the exhaust gas purification system of the internal combustion engine can be obtained.

本発明の内燃機関の排気ガス浄化システム及びその排気ガス浄化方法によれば、微粒子捕集装置の再生処理時に、排気ガスの流れを、再生開始直後は酸化触媒装置の中心部と外周部の両方に流し、再生中盤は酸化触媒装置及び微粒子捕集装置の中心部の流れを減少し、再生終盤は酸化触媒装置及び微粒子捕集装置の外周部のみの流れにすることにより、微粒子捕集装置の再生処理を再生のムラの発生を防止しながら中心部から外周部に順次進めることができる。   According to the exhaust gas purification system for an internal combustion engine and the exhaust gas purification method thereof according to the present invention, the exhaust gas flow at the time of regeneration processing of the particulate collection device, both at the center and the outer periphery of the oxidation catalyst device immediately after the start of regeneration. In the middle of the regeneration, the flow in the central part of the oxidation catalyst device and the particulate collection device is reduced, and in the final stage of the regeneration, the flow is only in the outer peripheral portion of the oxidation catalyst device and the particulate collection device. The reproduction process can be sequentially advanced from the central portion to the outer peripheral portion while preventing the occurrence of uneven reproduction.

これにより、通常のPM捕集時におけるPM捕集効率を向上させることができ、また、微粒子捕集装置の再生処理を短時間に効率よく行うことができるので、再生処理用の燃料を節約できるので燃費を改善することができる。   Thereby, PM collection efficiency at the time of normal PM collection can be improved, and regeneration processing of the particulate collection device can be performed efficiently in a short time, so that fuel for regeneration processing can be saved. So fuel economy can be improved.

また、酸化触媒装置の触媒に局所的な負荷がかかって、酸化触媒装置の触媒の一部で排気ガスの浄化処理能力が極端に低下することを抑制することができる。また、微粒子捕集装置が触媒を担持している場合は、微粒子捕集装置の触媒に局所的な負荷がかかって、微粒子捕集装置の触媒の一部で排気ガスの浄化処理能力が極端に低下することを抑制することができる。   In addition, it is possible to suppress a local load from being applied to the catalyst of the oxidation catalyst device, and the exhaust gas purification processing capacity from being extremely reduced by a part of the catalyst of the oxidation catalyst device. In addition, when the particulate collection device carries a catalyst, a local load is applied to the catalyst of the particulate collection device, and the exhaust gas purification processing capacity is extremely large in part of the catalyst of the particulate collection device. It can suppress that it falls.

従って、微粒子捕集装置の再生処理時に、触媒に局所的な負荷がかかって、触媒の一部で排気ガスの浄化処理能力が極端に低下することを抑制することができて、PM捕集効率の向上と、再生処理用の燃料の節約による燃費の改善と、触媒の不具合の低減を図ることができる。   Therefore, it is possible to suppress a local load on the catalyst during the regeneration processing of the particulate collection device, and to suppress the exhaust gas purification processing capacity from being extremely reduced by a part of the catalyst, and to improve the PM collection efficiency. It is possible to improve the fuel efficiency by saving the fuel for the regeneration treatment and reduce the malfunction of the catalyst.

本発明に係る実施の形態の排気ガス浄化システムを備えた内燃機関の構成の一例を模式的に示す図である。It is a figure showing typically an example of composition of an internal-combustion engine provided with an exhaust-gas purification system of an embodiment concerning the present invention. 本発明に係る実施の形態の排気ガス浄化システムの構成を模式的に示す側断面図である。1 is a side sectional view schematically showing a configuration of an exhaust gas purification system according to an embodiment of the present invention. 図2の酸化触媒装置の上流側に配置されたバタフライ式バルブ(流量調整弁)の弁体の様子を模式的に示す、図2のX−X方向から見た図である。It is the figure seen from the XX direction of FIG. 2 which shows typically the mode of the valve body of the butterfly type valve | bulb (flow-rate regulating valve) arrange | positioned in the upstream of the oxidation catalyst apparatus of FIG. 本発明に係る内燃機関の排気ガス浄化方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the exhaust gas purification method of the internal combustion engine which concerns on this invention. 図4のステップS400の詳細を示す図である。It is a figure which shows the detail of step S400 of FIG. 第1状態におけるバタフライ式バルブの弁体の様子を模式的に示す側断面図である。It is a sectional side view which shows typically the mode of the valve body of the butterfly valve in a 1st state. 第1状態におけるバタフライ式バルブの弁体の様子を模式的に示す、図6のX−X方向から見た図である。It is the figure seen from the XX direction of FIG. 6 which shows typically the mode of the valve body of the butterfly valve in a 1st state. 第2状態におけるバタフライ式バルブの弁体の様子を模式的に示す側断面図である。It is a sectional side view which shows typically the mode of the valve element of the butterfly type valve in the 2nd state. 第2状態におけるバタフライ式バルブの弁体の様子を模式的に示す、図8のX−X方向から見た図である。It is the figure seen from the XX direction of FIG. 8 which shows typically the mode of the valve body of the butterfly valve in a 2nd state. 第3状態におけるバタフライ式バルブの弁体の様子を模式的に示す側断面図である。It is a sectional side view which shows typically the mode of the valve body of the butterfly valve in a 3rd state. 第3状態におけるバタフライ式バルブの弁体の様子を模式的に示す、図10のX−X方向から見た図である。It is the figure seen from the XX direction of FIG. 10 which shows the mode of the valve body of the butterfly valve in a 3rd state typically. 従来技術の排気ガス浄化装置を通過する排気ガスの流速の様子を模式的に示す図である。It is a figure which shows typically the mode of the flow velocity of the exhaust gas which passes an exhaust-gas purification apparatus of a prior art.

以下、本発明に係る実施の形態の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法について図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine according to embodiments of the present invention will be described with reference to the drawings.

最初に、図1を参照しながら、この実施の形態の内燃機関の排気ガス浄化システム2が配置されるエンジン(内燃機関)10について説明する。このエンジン10には、気筒(シリンダ)10aに面して燃料噴射装置11と吸気弁12と排気弁13が設けられ、更に、吸気弁12に連通する吸気通路14と、排気弁13に連通する排気通路15と、EGR通路16が設けられている。   First, an engine (internal combustion engine) 10 in which the exhaust gas purification system 2 for an internal combustion engine of this embodiment is arranged will be described with reference to FIG. The engine 10 is provided with a fuel injection device 11, an intake valve 12 and an exhaust valve 13 facing a cylinder (cylinder) 10 a, and further, an intake passage 14 communicating with the intake valve 12 and an exhaust valve 13. An exhaust passage 15 and an EGR passage 16 are provided.

この吸気通路14には、上流側より順に、エアクリーナ17、ターボチャージャ(ターボ式過給器)18のコンプレッサ18b、インタークーラ19a、インテークスロットルバルブ19bが設けられ、また、排気通路15には、上流側より順に、ターボチャージャ18のタービン18a、排気ガス浄化装置20が設けられている。また、EGR通路16は、コンプレッサ18bより下流の吸気通路14とタービン18aより上流の排気通路15を接続して設けられ、このEGR通路16には、上流側より順に、EGRクーラ16a、EGRバルブ16bが設けられている。   The intake passage 14 is provided with an air cleaner 17, a turbocharger (turbo supercharger) 18 compressor 18 b, an intercooler 19 a, and an intake throttle valve 19 b in order from the upstream side. The turbine 18a of the turbocharger 18 and the exhaust gas purification device 20 are provided in this order from the side. The EGR passage 16 is provided by connecting an intake passage 14 downstream of the compressor 18b and an exhaust passage 15 upstream of the turbine 18a. The EGR passage 16 is provided with an EGR cooler 16a and an EGR valve 16b in this order from the upstream side. Is provided.

そして、大気から導入される新気Aは、必要に応じて、EGR通路16から吸気通路14に流入する排気ガス(EGRガス)Geを伴って、吸気弁12経由で気筒(シリンダ)10aに送られる。また、気筒10aで発生した排気ガスGは、排気弁13経由で排気通路15に流出し、その一部はEGR通路16にEGRガスGeとして流れ、残りの排気ガスGa(=G−Ge)は、タービン18aを経由して、排気ガス浄化装置20に流入して、浄化された後、浄化された排気ガスGcとしてマフラー(図示しない)を経由して大気中へ放出される。   The fresh air A introduced from the atmosphere is sent to the cylinder (cylinder) 10a via the intake valve 12 with the exhaust gas (EGR gas) Ge flowing into the intake passage 14 from the EGR passage 16 as necessary. It is done. Further, the exhaust gas G generated in the cylinder 10a flows into the exhaust passage 15 via the exhaust valve 13, a part of which flows as the EGR gas Ge in the EGR passage 16, and the remaining exhaust gas Ga (= G-Ge) is Then, after flowing into the exhaust gas purification device 20 via the turbine 18a and being purified, it is discharged into the atmosphere as a purified exhaust gas Gc via a muffler (not shown).

また、排気ガス浄化装置20は、この図1の構成では、酸化触媒装置(DOC)22、微粒子捕集装置23、選択還元型触媒装置(SCR)24及び酸化触媒装置(DOC)25等で構成される。   Further, in the configuration of FIG. 1, the exhaust gas purification device 20 includes an oxidation catalyst device (DOC) 22, a particulate collection device 23, a selective catalytic reduction device (SCR) 24, an oxidation catalyst device (DOC) 25, and the like. Is done.

この酸化触媒装置22は、例えば、コージェライトハニカム等の多孔質のセラミックのハニカム構造体の担持体に、ロジウム、酸化セリウム、白金、酸化アルミニウム等を担持して形成される。この酸化触媒装置22は、排気ガスGa中に存在する、未燃燃料等の炭化水素(HC)や一酸化炭素(CO)を酸化し、この酸化熱により、通過する排気ガスGaを昇温する。   The oxidation catalyst device 22 is formed, for example, by supporting rhodium, cerium oxide, platinum, aluminum oxide, or the like on a support of a porous ceramic honeycomb structure such as a cordierite honeycomb. The oxidation catalyst device 22 oxidizes hydrocarbons (HC) and carbon monoxide (CO) such as unburned fuel present in the exhaust gas Ga, and raises the temperature of the exhaust gas Ga passing through the oxidation heat. .

また、この微粒子捕集装置23は、一般的に、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタ等で形成され、このフィルタの部分に、白金や酸化セリウム等の酸化触媒やPM酸化触媒を担持する場合が多い。この微粒子捕集装置23により、排気ガスGa中のPMは、多孔質のセラミックの壁で捕集される。   The particulate collection device 23 is generally formed of a monolith honeycomb wall flow type filter or the like in which the inlet and outlet of a porous ceramic honeycomb channel are alternately sealed. In many cases, an oxidation catalyst such as platinum or cerium oxide or a PM oxidation catalyst is supported. By the particulate collection device 23, PM in the exhaust gas Ga is collected by a porous ceramic wall.

また、燃料噴射装置26は、酸化触媒装置22の上流側に配設された、未燃燃料を排気通路15内に噴射する装置であり、微粒子捕集装置23の再生処理時に、排気通路15内に未燃燃料を噴射し、酸化触媒装置22で酸化された未燃燃料の酸化熱により排気ガスGaを昇温して微粒子捕集装置23をPM燃焼可能な温度域まで昇温させる役割を持っている。   The fuel injection device 26 is a device arranged on the upstream side of the oxidation catalyst device 22 and injects unburned fuel into the exhaust passage 15. When the particulate collection device 23 is regenerated, the fuel injection device 26 is disposed in the exhaust passage 15. The unburned fuel is injected into the gas, and the exhaust gas Ga is heated by the oxidation heat of the unburned fuel oxidized by the oxidation catalyst device 22 to raise the temperature of the particulate collection device 23 to a temperature range where PM combustion is possible. ing.

また、尿素噴射装置27は、選択還元型触媒装置24の上流側に配設された、NOx還元用の尿素水を排気通路15内に噴射する装置であり、噴射された尿素水は分解してアンモニアを生成し、選択還元型触媒装置24でこのアンモニアにより排気ガスGa中のNOxを水と窒素に還元して無害化している。   The urea injection device 27 is a device that is disposed upstream of the selective catalytic reduction device 24 and injects urea water for NOx reduction into the exhaust passage 15. The injected urea water is decomposed. Ammonia is generated, and NOx in the exhaust gas Ga is reduced to water and nitrogen by the selective reduction catalyst device 24 by this ammonia to make it harmless.

さらに、微粒子捕集装置23の前後差圧を検出するための差圧センサ41が設けられ、排気ガス浄化装置20へ流入する排気ガスGaの温度を測定するための温度センサ42が設けられるとともに、酸化触媒装置22と微粒子捕集装置23の間の排気通路15に、微粒子捕集装置23の中心部23aを流れる排気ガスGiの温度(以下、中心温度という)Tiを検出する中心部用温度センサ(中心部用温度検出装置)43と、微粒子捕集装置23の外周部23bを流れる排気ガスGoの温度(以下、外周温度という)Toを検出する外周部用温度センサ(外周部用温度検出装置)44を備える。   Furthermore, a differential pressure sensor 41 for detecting the differential pressure across the particulate collection device 23 is provided, and a temperature sensor 42 for measuring the temperature of the exhaust gas Ga flowing into the exhaust gas purification device 20 is provided, and A temperature sensor for the center portion that detects the temperature Ti (hereinafter referred to as the center temperature) Ti of the exhaust gas Gi flowing through the center portion 23a of the particulate collection device 23 in the exhaust passage 15 between the oxidation catalyst device 22 and the particulate collection device 23. (Temperature detection device for central portion) 43 and a temperature sensor for outer periphery (hereinafter referred to as an outer periphery temperature) To detect the temperature of exhaust gas Go flowing through the outer periphery 23b of the particulate collection device 23 (hereinafter referred to as the outer periphery temperature). 44).

なお、図2、図6、図8、図10では、排気ガス浄化装置20の前半部分のみを図示している。また、これらの図面では、中心部用温度センサ43と外周部用温度センサ44は、両方とも排気ガス浄化装置20の上部に配設されているが、必ずしも、一方向から挿入される必要はなく、言い換えれば、両者の配置はこの配置に限定されるものではなく、中心温度Tiと外周温度Toを検出できるように配置されればよい。   2, 6, 8, and 10, only the first half of the exhaust gas purification device 20 is illustrated. In these drawings, the center temperature sensor 43 and the outer periphery temperature sensor 44 are both arranged on the upper part of the exhaust gas purification device 20, but are not necessarily inserted from one direction. In other words, the arrangement of the two is not limited to this arrangement, and it is only necessary that the arrangement is such that the center temperature Ti and the outer peripheral temperature To can be detected.

本発明においては、排気ガス浄化システム2は、更に、図2及び図3に示すように、内部通路31を酸化触媒装置22の上流に設け、排気ガスの流れを、酸化触媒装置22の中心部22aに流入する第1の流れと酸化触媒装置22の外周部22bに流入する第2の流れとに分流するように構成する。この内部通路31は、酸化触媒装置22の上流側の直前まで設けられるが、酸化触媒装置22の内部や微粒子捕集装置23の内部には、特に中心部22a、23aと外周部22b、23bを区分する仕切り壁を設けず、中心部22a、23aと外周部22b、23bとの間で熱移動が可能な状態に構成しておく。   In the present invention, the exhaust gas purification system 2 is further provided with an internal passage 31 upstream of the oxidation catalyst device 22 as shown in FIGS. The first flow that flows into 22 a and the second flow that flows into the outer peripheral portion 22 b of the oxidation catalyst device 22 are divided. This internal passage 31 is provided up to immediately before the upstream side of the oxidation catalyst device 22, but in the interior of the oxidation catalyst device 22 and the inside of the particulate collection device 23, in particular, center portions 22 a and 23 a and outer peripheral portions 22 b and 23 b are provided. A partition wall for partitioning is not provided, and a state in which heat transfer is possible between the center portions 22a and 23a and the outer peripheral portions 22b and 23b is made.

この内部通路31の内側を流れる排気ガスGaの大半が、微粒子捕集装置23の中心部23aを流れ、この内部通路31の外側を流れる排気ガスGaの大半が、微粒子捕集装置23の外周部23bを流れることになる。   Most of the exhaust gas Ga flowing inside the internal passage 31 flows through the central portion 23a of the particulate collection device 23, and most of the exhaust gas Ga flowing outside the internal passage 31 is the outer peripheral portion of the particulate collection device 23. 23b will flow.

さらに、この内部通路31内に弁体32aが配置されるバタフライ式バルブ(流量調整弁)32を設ける。このバタフライ式バルブ32の駆動源としては、例えば、ステッピングモータ等のアクチュエータ(図示しない)等を用いる。この内部通路31とバタフライ式バルブ32で流路変更機構30を構成する。この構成によれば、可動部が少なく、単純な構成となるので、故障頻度も低く、また、高い耐久性も持つ流路変更機構30となる。   Further, a butterfly valve (flow rate adjusting valve) 32 in which a valve body 32 a is disposed is provided in the internal passage 31. As a drive source of the butterfly valve 32, for example, an actuator (not shown) such as a stepping motor is used. The internal passage 31 and the butterfly valve 32 constitute a flow path changing mechanism 30. According to this configuration, since there are few movable parts and a simple configuration, the flow path changing mechanism 30 has a low failure frequency and high durability.

このバタフライ式バルブ32を図7のように全開することで、酸化触媒装置22及び微粒子捕集装置23へ流入する排気ガスGaの流れの状態を、図6に示すような、排気ガスGi+Goが微粒子捕集装置23の中心部23aと外周部23bの両方へ流入する第1状態と、バタフライ式バルブ32を図9のように全開よりも閉じ、予め設定した設定量未満で閉じて、全閉よりも開ける半開状態にすることで、図8に示すような、微粒子捕集装置23の中心部23aへ流入する流れGiが一部妨げられる第2状態と、バタフライ式バルブ32を図11に示すように予め設定された設定量で閉じることで、図10に示すように微粒子捕集装置23の中心部23aへ流入する流れGiが設定量で妨げられるが、完全に妨げられはしない第3状態に切り替えることができる。なお、第2状態では、バタフライ式バルブ32の弁開度の減少(閉じる方向)は、連続的または段階的に行われる。   When the butterfly valve 32 is fully opened as shown in FIG. 7, the state of the flow of the exhaust gas Ga flowing into the oxidation catalyst device 22 and the particulate collection device 23 is changed to the exhaust gas Gi + Go as shown in FIG. The first state that flows into both the central portion 23a and the outer peripheral portion 23b of the collection device 23, and the butterfly valve 32 is closed from the fully opened state as shown in FIG. As shown in FIG. 11, the second state where the flow Gi flowing into the central portion 23a of the particulate collection device 23 is partially blocked and the butterfly valve 32 are shown in FIG. By closing at a preset amount, the flow Gi flowing into the central portion 23a of the particulate collection device 23 is blocked by the set amount as shown in FIG. Cut off It can be replaced. In the second state, the valve opening of the butterfly valve 32 is decreased (in the closing direction) continuously or stepwise.

また、微粒子捕集装置23の再生処理と流路変更機構30を制御する制御装置51を備えて構成する。この制御装置51は、微粒子捕集装置23の再生処理の進行状況に応じて、アクチュエータを動作させて、バタフライ式バルブ32を開状態から閉状態に移行させる。また、この制御装置51は、アクセル開度センサ(図示しない)等の各種センサの情報に基づいて、エンジン10の全般の制御を行う全体システム制御装置(ECU)50に通常は組み込まれて構成されるが、独立して設けてもよい。   Further, the control unit 51 is configured to control the regeneration process of the particulate collection device 23 and the flow path changing mechanism 30. The control device 51 operates the actuator in accordance with the progress of the regeneration process of the particulate collection device 23 to shift the butterfly valve 32 from the open state to the closed state. The control device 51 is normally configured to be incorporated in an overall system control device (ECU) 50 that performs overall control of the engine 10 based on information from various sensors such as an accelerator opening sensor (not shown). However, it may be provided independently.

そして、本発明においては、制御装置51は、微粒子捕集装置23の再生処理時に、バタフライ式バルブ32を制御して、再生開始直後は第1状態で再生し、再生中盤は第2状態で再生し、再生終盤は第3状態で再生する制御を行うように構成される。   In the present invention, the control device 51 controls the butterfly valve 32 during the regeneration process of the particulate collection device 23 so that the regeneration is performed in the first state immediately after the regeneration is started, and the middle of the regeneration is performed in the second state. In the final stage of playback, playback is controlled in the third state.

この各状態への移行開始のタイミングについては、再生継続時間t、微粒子捕集装置23の前後差圧ΔP、中心温度Tiと外周温度Toとの温度差ΔTの内の一つ又は幾つかの組み合わせを監視して、それぞれの値が予め設定した閾値を超えるときに、次の状態に移行するようにする。なお、これらの閾値は実験結果等により予め設定しておき、マップデータ等で制御装置51に記憶しておく。なお、これらの閾値は、再生処理時のエンジン10の運転状態(エンジン回転数と負荷)によって補正されるように構成することが好ましい。   Regarding the timing of starting the transition to each state, one or several combinations of the regeneration duration t, the differential pressure ΔP before and after the particulate collection device 23, and the temperature difference ΔT between the center temperature Ti and the outer peripheral temperature To When each value exceeds a preset threshold value, the next state is entered. These threshold values are set in advance based on experimental results and stored in the control device 51 as map data or the like. These threshold values are preferably configured to be corrected according to the operating state (engine speed and load) of the engine 10 during the regeneration process.

この構成によれば、再生開始直後は、酸化触媒装置22への排気ガスGaの流れが中心部22aに偏り易い第1状態にすることにより、微粒子捕集装置23の中心部23aに流入する排気ガスGiの中心温度Tiを優先的に上昇させて、排気ガスGaを微粒子捕集装置23に流入させることにより、中心部23aの再生を優先して行うことができる。これにより、中心部23aの温度をPM燃焼開始の温度まで速やかに上昇できるので、迅速にPMの燃焼を開始できる。なお、この実施の形態では、第1状態は、図6、図7に示すように、弁体32aを内管31に平行な方向に傾斜した状態(全開状態)にしている状態である。   According to this configuration, immediately after the start of regeneration, the exhaust gas Ga flowing into the oxidation catalyst device 22 is in a first state in which the flow of the exhaust gas Ga tends to be biased toward the central portion 22a, thereby exhausting into the central portion 23a of the particulate collection device 23. By preferentially raising the center temperature Ti of the gas Gi and causing the exhaust gas Ga to flow into the particulate collection device 23, the regeneration of the central portion 23a can be performed with priority. As a result, the temperature of the central portion 23a can be quickly raised to the temperature at which PM combustion starts, so that PM combustion can be started quickly. In this embodiment, the first state is a state in which the valve body 32a is inclined in a direction parallel to the inner tube 31 (fully opened state) as shown in FIGS.

また、再生中盤では、再生開始直後における高温の排気ガスGaの中心部23aへの集中的通過とPMの燃焼により、ある程度,微粒子捕集装置23の中央部23aの再生が進展し、微粒子捕集装置23の中心部23aの温度が上昇してきているので、酸化触媒装置22の中心部22aへの流れを設定量未満で制限する第2状態にして、酸化触媒装置22の中心部22aでの発熱を抑制し、酸化触媒装置22の外周部22bでの発熱を促進することで、酸化触媒装置22の中心部の温度の過剰な上昇を回避することができる。また、同時に、微粒子捕集装置23の中心部23aにおける再生を抑制して中心部23aの温度の過剰な上昇を回避することができる。それと共に、微粒子捕集装置23の外周部23bの温度上昇を図って、微粒子捕集装置23の外周部23bにおける再生を促進することができる。なお、この実施の形態では、第2状態は、図8、図9に示すように、弁体32aを内管31に対してやや傾斜した状態(半開状態)にしている状態である。   In the middle of the regeneration, regeneration of the central portion 23a of the particulate collection device 23 progresses to some extent due to the concentrated passage of the high-temperature exhaust gas Ga to the central portion 23a and the combustion of PM immediately after the start of regeneration. Since the temperature of the central portion 23a of the device 23 has risen, the heat generation at the central portion 22a of the oxidation catalyst device 22 is set to the second state in which the flow to the central portion 22a of the oxidation catalyst device 22 is limited to less than the set amount. By suppressing the heat generation and promoting the heat generation at the outer peripheral portion 22b of the oxidation catalyst device 22, an excessive increase in the temperature of the central portion of the oxidation catalyst device 22 can be avoided. At the same time, regeneration at the central portion 23a of the particulate collection device 23 can be suppressed, and an excessive increase in the temperature of the central portion 23a can be avoided. At the same time, it is possible to increase the temperature of the outer peripheral portion 23b of the particle collecting device 23 and to promote the regeneration in the outer peripheral portion 23b of the particle collecting device 23. In this embodiment, the second state is a state in which the valve body 32a is slightly inclined (half-opened state) with respect to the inner tube 31, as shown in FIGS.

また、この第2状態は、第1状態から第3状態への移行段階に相当し、再生の進行に従って、バラフライ式バルブ32の弁開度を全開から設定量まで連続的又は段階的に行うことが好ましい。これにより、微粒子捕集装置23の中心部23aに流入する排気ガスGiの流量Qiと外周部23bに流入する排気ガスGoの流量Qoの割合をより極め細かく変化させることができ、中心部23aの再生と外周部23bの再生の進行状況に合わせた排気ガスGaの分配の最適化が可能となる。   The second state corresponds to a transition stage from the first state to the third state, and the opening degree of the butterfly valve 32 is continuously or stepwise from fully opened to a set amount as the regeneration proceeds. Is preferred. Thereby, the ratio of the flow rate Qi of the exhaust gas Gi flowing into the central portion 23a of the particulate collection device 23 and the flow rate Qo of the exhaust gas Go flowing into the outer peripheral portion 23b can be changed more finely. The distribution of the exhaust gas Ga can be optimized in accordance with the progress of regeneration and regeneration of the outer peripheral portion 23b.

また、再生終盤では、微粒子捕集装置23の中心部23aにおける再生が殆ど終了してPMの燃焼が下火になってくる一方で、微粒子捕集装置23内では中心部23aからの熱が外周部23bに移動してきて、外周部23bの温度も上昇してきているので、第3状態にして、温度が上昇してきた微粒子捕集装置23の外周部23bに積極的に排気ガスを流すことにより、更に、酸化触媒装置22の中心部での発熱を抑制し、酸化触媒装置22の外周部での発熱を促進することで、PMがほぼ燃焼し終えた中心部23aよりも、温度が上昇してきた外周部23bのPMを集中的に燃焼させることで、外周部23bのPMの燃焼を完了して再生処理を完了することができる。なお、この実施の形態では、第3状態は、図10、図11に示すように、弁体32aを内管31に設定量まで傾斜した状態(最大閉鎖状態:完全閉鎖ではない状態)にしている状態である。この状態では、中心部23aを通過する排気ガスGiの流量を最低限確保している。   Further, at the end of regeneration, regeneration in the central portion 23a of the particulate collection device 23 is almost completed and PM combustion becomes a lower flame, while in the particulate collection device 23, heat from the central portion 23a is outside. Since the temperature of the outer peripheral portion 23b has also risen since it has moved to the portion 23b, the exhaust gas is allowed to flow positively through the outer peripheral portion 23b of the particulate collection device 23 that has risen in temperature in the third state, Furthermore, by suppressing the heat generation at the central portion of the oxidation catalyst device 22 and promoting the heat generation at the outer peripheral portion of the oxidation catalyst device 22, the temperature has risen from the central portion 23a where PM has almost burned. By burning the PM in the outer peripheral portion 23b intensively, the combustion of the PM in the outer peripheral portion 23b can be completed and the regeneration process can be completed. In this embodiment, as shown in FIGS. 10 and 11, the third state is a state in which the valve body 32 a is inclined to the set amount to the inner pipe 31 (maximum closed state: not completely closed). It is in a state. In this state, the flow rate of the exhaust gas Gi passing through the central portion 23a is secured at a minimum.

つまり、再生制御時に、再生の進捗状態に応じて、排気ガスGaの流れの状態を第1状態から第2状態を経て第3状態とすることにより、微粒子捕集装置23において排気ガスGaが通過する部分を中心部23aから外周部23bに変化させて、順次、微粒子捕集装置23の全体に再生制御時の高い温度の排気ガスGaを行き渡らせることができ、中心部23aのみが過剰に昇温することを回避できる。これにより、微粒子捕集装置23が触媒を担持している場合は、その触媒の局所的な劣化を抑制できるので、微粒子捕集装置23の触媒の一部で排気ガスGaの浄化処理能力が極端に低下することを防止できる。   That is, during the regeneration control, the exhaust gas Ga passes through the particulate collection device 23 by changing the flow state of the exhaust gas Ga from the first state to the third state according to the progress state of the regeneration. The exhaust gas Ga at the high temperature during regeneration control can be spread over the entire particulate collection device 23 in sequence, by changing the portion to be changed from the central portion 23a to the outer peripheral portion 23b, and only the central portion 23a rises excessively. You can avoid warming. As a result, when the particulate collection device 23 carries a catalyst, local degradation of the catalyst can be suppressed, so that the exhaust gas Ga purification processing capability is extremely high in a part of the catalyst of the particulate collection device 23. Can be prevented.

なお、バタフライ式バルブ32の閉弁制御において、設定量を設けずに全閉状態とすると、微粒子捕集装置23の中心部23aを流れる排気ガスGaの流量がゼロとなり、排気ガスGaの流れが、PMが燃焼していない状態の微粒子捕集装置23の外周部23bへの流れのみになるので、圧力損失の増加を招くことになる。そのため、バタフライ式バルブ32の閉じる量に設定量を設けて全閉を回避することにより、中心部23aを流れる排気ガスGiの流れも確保しつつ、圧力損失の増加を抑制しながら、微粒子捕集装置23の外周部23bでのPMの燃焼を促進できる。   In the valve closing control of the butterfly valve 32, if the valve is fully closed without setting a set amount, the flow rate of the exhaust gas Ga flowing through the central portion 23a of the particulate collection device 23 becomes zero, and the flow of the exhaust gas Ga is reduced. Since only the flow to the outer peripheral portion 23b of the particulate collection device 23 in a state where PM is not combusted, an increase in pressure loss is caused. Therefore, by providing a set amount for the amount of closing of the butterfly valve 32 and avoiding the full closing, the flow of the exhaust gas Gi flowing through the central portion 23a is ensured, and the increase in pressure loss is suppressed, and the particulate collection is performed. The combustion of PM at the outer peripheral portion 23b of the device 23 can be promoted.

また、制御装置51は、第2状態においては、中心部用温度センサ43で検出される中心温度Tiと外周部用温度センサ44で検出される外周温度Toとの温度差ΔT(=Ti−To)が予め設定された第1判定用温度差ΔT1内に収まるように、再生の進行度合いに従って、連続的または段階的に酸化触媒装置22の中心部及び微粒子捕集装置23の中心部23aを流れる排気ガスGaの流れを設定量未満でより大きく妨げるように流路変更機構30を制御するように構成される。この第1判定用温度差ΔT1は、実験結果等により予め設定して制御装置51に記憶させておく。   Further, in the second state, the control device 51 detects the temperature difference ΔT (= Ti−To) between the center temperature Ti detected by the center temperature sensor 43 and the outer temperature To detected by the outer temperature sensor 44. ) Flows through the central portion of the oxidation catalyst device 22 and the central portion 23a of the particulate collection device 23 in a continuous or stepwise manner in accordance with the progress of the regeneration so as to fall within the preset first determination temperature difference ΔT1. The flow path changing mechanism 30 is configured to control the flow of the exhaust gas Ga so that the flow of the exhaust gas Ga is less than the set amount. The first determination temperature difference ΔT1 is set in advance based on experimental results and stored in the control device 51.

この構成により、酸化触媒装置22の中心部22aと外周部22bへ流入する排気ガスGaの流量の割合をより極め細かく変化させて、微粒子捕集装置23の中心部23aへ流入する排気ガスGaの流量Qiと中心温度Tiと外周部23bへ流入する排気ガスGaの流量Qoと外周温度Toをより極め細かく変化させて、微粒子捕集装置23の中心部23aの再生と外周部23bの再生のそれぞれの進行度合いに合わせた排気ガスGaの分配を最適化することができ、再生ムラの発生を防止しながら再生時間を短縮できる。この再生時間の短縮化により、再生処理用の燃料を節約できて燃費を改善することができる。また、触媒への熱負荷を低減することができるため、触媒の破損等の不具合を低減することができる。   With this configuration, the ratio of the flow rate of the exhaust gas Ga flowing into the central portion 22a and the outer peripheral portion 22b of the oxidation catalyst device 22 is changed more finely, and the exhaust gas Ga flowing into the central portion 23a of the particulate collection device 23 is changed. The flow rate Qi, the central temperature Ti, the flow rate Qo of the exhaust gas Ga flowing into the outer peripheral portion 23b, and the outer peripheral temperature To are changed more finely to regenerate the central portion 23a and the outer peripheral portion 23b of the particulate collection device 23, respectively. The distribution of the exhaust gas Ga can be optimized in accordance with the degree of progress, and the regeneration time can be shortened while preventing the occurrence of uneven regeneration. By shortening the regeneration time, fuel for regeneration processing can be saved and fuel consumption can be improved. In addition, since the heat load on the catalyst can be reduced, problems such as damage to the catalyst can be reduced.

次に、本発明の実施の形態の内燃機関の排気ガス浄化方法について、図4、図5の制御フローを参照しながら説明する。図4の制御フローは、上級の制御フローで微粒子捕集装置23の再生が必要と判断されたときに、上級の制御フローから呼ばれてスタートし、制御フローの制御を実施しては、リターンして、上級の制御フローに戻り、また、微粒子捕集装置23の再生が必要と判断されたときに、上級の制御フローから呼ばれて、エンジン10の運転中は繰り返し実施されるものとして示してある。なお、制御の途中でエンジン10が停止するときには、割り込みが生じてリターンに行って上級の制御フローに戻り、そして、エンジン10が運転停止すると、この上級の制御フローの終了と共に終了する。   Next, an exhaust gas purification method for an internal combustion engine according to an embodiment of the present invention will be described with reference to the control flow of FIGS. The control flow of FIG. 4 is called from the high-level control flow when it is determined that regeneration of the particulate collection device 23 is necessary in the high-level control flow, and the control flow is controlled to return. Then, returning to the advanced control flow, and when it is determined that the particulate collection device 23 needs to be regenerated, it is called from the advanced control flow and is shown to be repeatedly executed during the operation of the engine 10. It is. Note that when the engine 10 stops in the middle of the control, an interrupt is generated and a return is made to return to the advanced control flow, and when the operation of the engine 10 is stopped, the operation ends with the end of the advanced control flow.

上級の制御フローでは、差圧センサ41で測定した微粒子捕集装置23の前後差圧の測定値が予め設定した再生開始判定用差圧を超えているか否かで、あるいは、堆積されるPM量を累積計算したPM堆積量が予め設定した再生開始判定用PM堆積量を超えているか否かで、微粒子捕集装置23の再生処理を開始するか否かを判定し、再生処理の開始と判定されると、この図4の制御フローが上級の制御フローから呼ばれてスタートする。   In the advanced control flow, whether the measured value of the differential pressure across the particle collection device 23 measured by the differential pressure sensor 41 exceeds a preset differential pressure for determining regeneration start, or the amount of PM deposited It is determined whether or not the regeneration process of the particulate collection device 23 is started based on whether or not the PM accumulation amount obtained by accumulating the calculated PM accumulation amount exceeds a preset regeneration start determination PM accumulation amount. Then, the control flow of FIG. 4 is called from the advanced control flow and starts.

図4の制御フローがスタートすると、ステップS100の「微粒子捕集装置の再生処理の開始」が行われ、次のステップS200の「再生処理」と、ステップS300の「再生処理の終了判定」と、ステップS400の「流路制御」が並行して行われる。   When the control flow in FIG. 4 starts, “start of regeneration processing of the particulate collection device” in step S100 is performed, “regeneration processing” in the next step S200, “end determination of regeneration processing” in step S300, “Channel control” in step S400 is performed in parallel.

ステップS200の「再生処理」では、周知の技術である、排気ガスGaの温度を昇温する排気ガス昇温制御と、これに続く昇温後の排気ガスGaの温度を維持する排気ガス温度維持制御を行う。この排気ガス温度維持制御は、並行して行われているステップS300からの終了判定の信号を受け取ると制御を終了する。   In the “regeneration process” in step S200, the exhaust gas temperature raising control for raising the temperature of the exhaust gas Ga, which is a well-known technique, and the exhaust gas temperature maintenance for keeping the temperature of the exhaust gas Ga after the subsequent temperature rise are performed. Take control. The exhaust gas temperature maintenance control ends when receiving a signal for determining completion from step S300 being performed in parallel.

ステップS300の「再生処理の終了判定」では、再生開始からの再生継続時間が予め設定した終了判定用時間t1以上継続したか否かで再生処理の終了を判定する。再生継続時間が終了判定用時間t1を超えたときに、再生処理制御を終了するとの「再生処理の終了判定」を行い、この「終了判定の信号」をステップS200側とステップS400側に発信して、このステップS300を終了する。なお、微粒子捕集装置23の前後差圧による終了判定を用いたり、両方の判定を組み合わせたりすることもできる。   In “reproduction process end determination” in step S300, the end of the reproduction process is determined based on whether or not the reproduction continuation time from the start of reproduction has continued for a preset end determination time t1. When the reproduction continuation time exceeds the end determination time t1, “reproduction process end determination” is performed to end the reproduction process control, and this “end determination signal” is transmitted to the steps S200 and S400. This step S300 is completed. Note that the end determination based on the differential pressure across the particulate collection device 23 may be used, or both determinations may be combined.

ステップS400の「流路制御」は、本発明の特徴であり、流路変更装置30を制御して、制御開始直後は第1状態の「中心部優先流路制御」とし、再生中盤は第2状態の「並行流路制御」とし、再生終盤は第3状態の「外周部優先流路制御」とする制御である。   The “flow path control” in step S400 is a feature of the present invention. The flow path changing device 30 is controlled, and immediately after the start of the control, the first state “center part priority flow path control” is set, and the regeneration middle stage is the second state. The state is “parallel flow path control”, and the final stage of the regeneration is the third state “peripheral section priority flow path control”.

このステップS400における、第1状態から第2状態への移行、及び、第2状態から第3状態への移行のタイミングは、実験結果等で予め設定された再生継続時間に関する第1移行判定用時間及び第2移行判定用時間を用いて検出したり、微粒子捕集装置23の前後差圧に関する第1移行判定用差圧値及び第2移行判定用差圧時間を用いて検出したりすることができる。   The timing of the transition from the first state to the second state and the transition from the second state to the third state in step S400 is the first transition determination time related to the reproduction duration set in advance by an experimental result or the like. And detection using the second transition determination time, or detection using the first transition determination differential pressure value and the second transition determination differential pressure time related to the differential pressure across the particulate collection device 23. it can.

例えば、図5に示す制御フローでは、各制御時間毎に求めたPM堆積量を基にしている。この制御フローでは、ステップS401で再生開始時PM堆積量PMcmを入力し、次のステップS402では、第1状態から第2状態への移行のタイミングを判定するための第1判定用閾値PM1と、第2状態から第3状態への移行のタイミングを判定するための判定用の第2判定用閾値PM2を設定する。この第1判定用閾値PM1と第2判定用閾値PM2は、実験結果等により予め設定しておき、制御装置51に記憶させておく。   For example, the control flow shown in FIG. 5 is based on the PM accumulation amount obtained for each control time. In this control flow, the regeneration start PM accumulation amount PMcm is input in step S401, and in the next step S402, a first determination threshold value PM1 for determining the timing of transition from the first state to the second state, A second determination threshold value PM2 for determining the timing of transition from the second state to the third state is set. The first determination threshold value PM1 and the second determination threshold value PM2 are set in advance based on experimental results and stored in the control device 51.

次のステップS403で、再生開始時PM堆積量PMcmから、再生処理の進行で発生する、制御時間ごとのPM除去量ΔPMemを差し引いて、制御時点でのPM堆積量PMcを算出する。このPM除去量ΔPMemは、エンジンの運転状態(エンジン回転速度と負荷)と排気ガスGaの温度等に対して予め実験などにより設定されたマップデータ等を参照して、算出する。   In the next step S403, the PM accumulation amount PMc at the time of control is calculated by subtracting the PM removal amount ΔPMem for each control time, which occurs during the regeneration process, from the regeneration start PM deposition amount PMcm. This PM removal amount ΔPMem is calculated by referring to map data or the like set beforehand by experiments or the like with respect to the engine operating state (engine speed and load), the temperature of the exhaust gas Ga, and the like.

ステップS404で、微粒子捕集装置23の中心部23aの再生が予め設定した程度まで終了していないか否かを、PM堆積量PMcが第1判定用閾値PM1以上であるか否かで判定する。この判定で以上であるとのYESの場合は、ステップS405に行き、第1状態の「中心部優先流路制御」を予め設定された制御時間の間行った後、ステップS409に行く。また、NOの場合は、中心部23aの再生が予め設定した程度には終了しているとして、ステップS406に行く。   In step S404, whether or not the regeneration of the central portion 23a of the particulate collection device 23 has been completed to a preset level is determined based on whether or not the PM deposition amount PMc is greater than or equal to the first determination threshold value PM1. . If YES in this determination, the process goes to step S405, and after performing “center-priority channel control” in the first state for a preset control time, the process goes to step S409. In the case of NO, it is determined that the reproduction of the central portion 23a has been completed to a preset level, and the process goes to step S406.

このステップS406で、微粒子捕集装置23の中心部23aの再生が予め設定した程度には終了しているが、十分には終了はしていないか否かを、PM堆積量PMcが第2判定用閾値PM2以上であるか否かで判定する。この判定で以上であるとのYESの場合は、ステップS407に行き、第2状態の「並行流路制御」を制御時間の間行った後、ステップS409に行く。このステップS406の判定で、NOの場合は、微粒子捕集装置23の中心部23aの再生が十分に終了はしているとして、ステップS408に行き、第3状態の「外周部優先流路制御」を制御時間の間行った後、ステップS409に行く。   In this step S406, whether or not the regeneration of the central portion 23a of the particulate collection device 23 has been completed to a preset level but has not been sufficiently completed is determined based on whether or not the PM deposition amount PMc is the second. Judgment is made based on whether or not it is equal to or greater than the threshold value PM2. If YES in this determination, the process goes to step S407, and after performing the “parallel flow path control” in the second state for the control time, the process goes to step S409. If the determination in step S406 is NO, the regeneration of the central part 23a of the particulate collection device 23 has been sufficiently completed, and the process goes to step S408, where the “peripheral part priority flow path control” in the third state is performed. Is performed for the control time, and then the process proceeds to step S409.

ステップS409では、ステップS300からの「終了判定の信号」を受信しているか否かを判定し、受信していないNOの場合は、ステップS403に戻る。また、YESの場合は、ステップS410に行き、流路制御の終了処理で、バタフライ式バルブ32を全開にして、ステップS400の「流路制御」を終了する。   In step S409, it is determined whether or not the “end determination signal” from step S300 has been received. If NO, the process returns to step S403. In the case of YES, the process goes to step S410, and in the flow path control end process, the butterfly valve 32 is fully opened, and the “flow path control” in step S400 is ended.

そして、図4の制御フローで、ステップS300で「再生処理の終了判定」が下されると、ステップS200では「再生処理の終了処理」を行い、「再生処理」の制御を終了し、また、ステップS400では「流路制御の終了処理」を行い、「流路制御」の制御を終了する。これらの並行した3つの制御が全部終了すると、リターンに行き、上級の制御フローに戻る。そして、また、微粒子捕集装置23の再生が必要と判断されたときに、図4の制御フローが上級の制御フローから呼ばれて、繰り返し実施される。   Then, in the control flow of FIG. 4, when “reproduction process end determination” is made in step S300, “reproduction process end process” is performed in step S200, and control of “reproduction process” is terminated. In step S400, the “flow path control end process” is performed, and the “flow path control” control is ended. When these three parallel controls are all finished, the process goes to return and returns to the advanced control flow. When it is determined that the particulate collection device 23 needs to be regenerated, the control flow of FIG. 4 is called from the advanced control flow and is repeatedly performed.

上記の制御により、エンジン10の排気通路15に上流側より順に酸化触媒装置22と微粒子捕集装置23を有する排気ガス浄化装置20を備えた内燃機関の排気ガス浄化方法において、微粒子捕集装置22の再生処理時において、再生開始直後は排気ガスGaが微粒子捕集装置23の中心部23aと外周部23bの両方へ流入する第1状態で再生し、再生中盤は微粒子捕集装置23の中心部23aへ流入する流れが予め設定された設定量未満で妨げられる第2状態で再生し、再生終盤は微粒子捕集装置23の中心部23aへ流入する流れが設定量で妨げられる第3状態で再生させることができる。   In the exhaust gas purification method for an internal combustion engine provided with the exhaust gas purification device 20 having the oxidation catalyst device 22 and the particulate collection device 23 in order from the upstream side in the exhaust passage 15 of the engine 10 by the above control, the particulate collection device 22 During the regeneration process, immediately after the regeneration is started, the exhaust gas Ga is regenerated in a first state where the exhaust gas Ga flows into both the central portion 23a and the outer peripheral portion 23b of the particulate collection device 23, and the regeneration middle is the central portion of the particulate collection device 23. Regeneration is performed in the second state where the flow flowing into 23a is hindered by a preset amount less than the preset amount, and the end of the regeneration is performed in a third state where the flow flowing into the central portion 23a of the particulate collection device 23 is hindered by the set amount. Can be made.

また、微粒子捕集装置23の中心部23aに流入する排気ガスGiの温度である中心温度Tiと、微粒子捕集装置23の外周部23bに流入する排気ガスGoの温度である外周温度Toを検出し、第2状態において、中心温度Tiと外周温度Toとの温度差ΔTが予め設定された第1判定温度差ΔT1の範囲内に収まるように、再生の進行度合いに従って、連続的または段階的に中心部23aを流れる排気ガスGiの流れをより大きく妨げることができる。   Further, the center temperature Ti, which is the temperature of the exhaust gas Gi flowing into the central portion 23a of the particulate collection device 23, and the outer peripheral temperature To, which is the temperature of the exhaust gas Go, which flows into the outer peripheral portion 23b of the particulate collection device 23 are detected. In the second state, the temperature difference ΔT between the center temperature Ti and the outer peripheral temperature To is continuously or stepwise according to the progress of regeneration so that the temperature difference ΔT falls within the preset first determination temperature difference ΔT1. The flow of the exhaust gas Gi flowing through the central portion 23a can be largely prevented.

上記の構成の内燃機関の排気ガス浄化システム2及び内燃機関の排気ガス浄化方法によれば、微粒子捕集装置23の再生処理時に、排気ガスGaの流れを、再生開始直後は酸化触媒装置22及び微粒子捕集装置23の中心部22a、23aと外周部22b、23bの両方に流し、再生中盤は酸化触媒装置22及び微粒子捕集装置23の中心部22a、23aの流れを減少し、再生終盤は酸化触媒装置22及び微粒子捕集装置23の外周部22b、23bのみの流れにすることにより、微粒子捕集装置23の再生処理を再生のムラの発生を防止しながら中心部23aから外周部23bに順次進めることができる。   According to the exhaust gas purification system 2 for an internal combustion engine and the exhaust gas purification method for an internal combustion engine configured as described above, the flow of the exhaust gas Ga during the regeneration process of the particulate collection device 23, and the oxidation catalyst device 22 and the It flows to both the central portions 22a, 23a and the outer peripheral portions 22b, 23b of the particulate collection device 23, the middle of the regeneration reduces the flow of the central portions 22a, 23a of the oxidation catalyst device 22 and the particulate collection device 23, By using only the outer peripheral portions 22b and 23b of the oxidation catalyst device 22 and the particulate collection device 23, the regeneration processing of the particulate collection device 23 is performed from the central portion 23a to the outer peripheral portion 23b while preventing the occurrence of uneven regeneration. You can proceed sequentially.

これにより、通常のPM捕集時におけるPM捕集効率を向上させることができ、また、微粒子捕集装置23の再生処理を短時間に効率よく行うことができるので、再生処理用の燃料を節約できるので燃費を改善することができる。   As a result, PM collection efficiency during normal PM collection can be improved, and regeneration processing of the particulate collection device 23 can be efficiently performed in a short time, thus saving fuel for regeneration processing. This can improve fuel economy.

また、酸化触媒装置22の触媒に局所的な負荷がかかって、酸化触媒装置22の触媒の一部で排気ガスGaの浄化処理能力が極端に低下することを抑制することができる。また、微粒子捕集装置23が触媒を担持している場合は、微粒子捕集装置23の触媒に局所的な負荷がかかって、微粒子捕集装置23の触媒の一部で排気ガスGaの浄化処理能力が極端に低下することを抑制することができる。   Further, it is possible to suppress a local load from being applied to the catalyst of the oxidation catalyst device 22 and the exhaust gas Ga purification processing capability to be extremely reduced by a part of the catalyst of the oxidation catalyst device 22. Further, when the particulate collection device 23 carries a catalyst, a local load is applied to the catalyst of the particulate collection device 23, and the exhaust gas Ga is purified by a part of the catalyst of the particulate collection device 23. It is possible to suppress the ability from being extremely lowered.

従って、微粒子捕集装置23の再生処理時に、触媒に局所的な負荷がかかって、触媒の一部で排気ガスGaの浄化処理能力が極端に低下することを抑制することができて、PM捕集効率の向上と、再生処理用の燃料の節約による燃費の改善と、触媒の不具合の低減を図ることができる。   Therefore, it is possible to prevent the exhaust gas Ga purification processing capability from being extremely reduced due to a local load applied to the catalyst during the regeneration process of the particulate collection device 23, and the PM trapping. It is possible to improve the collection efficiency, improve the fuel consumption by saving the fuel for the regeneration process, and reduce the malfunction of the catalyst.

2 内燃機関の排気ガス浄化システム
10 エンジン(内燃機関)
11 燃料噴射装置
14 吸気通路
15 排気通路
20 排気ガス浄化装置
22 酸化触媒装置(DOC)
22a 酸化触媒装置の中心部
22b 酸化触媒装置の外周部
23 微粒子捕集装置
23a 微粒子捕集装置の中心部
23b 微粒子捕集装置の外周部
24 選択還元型触媒装置(SCR)
25 酸化触媒装置(DOC)
26 燃料噴射装置
27 尿素噴射装置
30 流路変更機構
31 内部通路
32 バタフライ式バルブ(流量調整弁)
32a 弁体
41 差圧センサ
42 温度センサ
43 中心部用温度センサ(中心部用温度検出装置)
44 外周部用温度センサ(外周部用温度検出装置)
50 全体システム制御装置(ECU)
51 制御装置
A 新気
A+Ge 吸入ガス
G 発生した排気ガス
Ga 排気ガス浄化装置に流入する排気ガス(G−Ge)
Gc 浄化された排気ガス
Ge EGRガス
Gi 微粒子捕集装置の中心部へと流れる排気ガス
Go 微粒子捕集装置の外周部へと流れる排気ガス
2 Exhaust gas purification system for internal combustion engine 10 Engine (internal combustion engine)
11 Fuel injection device 14 Intake passage 15 Exhaust passage 20 Exhaust gas purification device 22 Oxidation catalyst device (DOC)
22a Central part 22b of oxidation catalyst device Peripheral part 23 of oxidation catalyst device Particulate collection device 23a Central part 23b of particulate collection device Peripheral part 24 of particulate collection device Selective reduction type catalytic device (SCR)
25 Oxidation catalyst equipment (DOC)
26 Fuel Injector 27 Urea Injector 30 Channel Change Mechanism 31 Internal Passage 32 Butterfly Valve (Flow Control Valve)
32a Valve body 41 Differential pressure sensor 42 Temperature sensor 43 Temperature sensor for center (temperature detection device for center)
44. Temperature sensor for outer periphery (temperature detection device for outer periphery)
50 Overall system control unit (ECU)
51 Control Device A Fresh Air A + Ge Intake Gas G Generated Exhaust Gas Ga Exhaust Gas (G-Ge) Flowing into Exhaust Gas Purification Device
Gc Purified exhaust gas Ge EGR gas Gi Exhaust gas Go flowing to the center of the particulate collection device Go Exhaust gas flowing to the outer periphery of the particulate collection device

Claims (5)

内燃機関の排気通路に上流側より順に酸化触媒装置と微粒子捕集装置を有する排気ガス浄化装置を備えた内燃機関の排気ガス浄化システムにおいて、
前記酸化触媒装置より上流側の前記排気通路に、前記微粒子捕集装置へ流入する排気ガスの流れの状態を、排気ガスが前記微粒子捕集装置の中心部と外周部の両方へ流入する第1状態と、前記微粒子捕集装置の前記中心部へ流入する流れが予め設定された設定量未満で妨げられる第2状態と、前記微粒子捕集装置の前記中心部へ流入する流れが前記設定量で妨げられる第3状態とに切り替える流路変更機構を設けると共に、
前記微粒子捕集装置の再生処理時において、再生開始直後は前記第1状態で再生し、再生中盤は前記第2状態で再生し、再生終盤は前記第3状態で再生する制御を行うように構成された制御装置を設けたことを特徴とする内燃機関の排気ガス浄化システム。
In an exhaust gas purification system for an internal combustion engine comprising an exhaust gas purification device having an oxidation catalyst device and a particulate collection device in order from the upstream side in the exhaust passage of the internal combustion engine,
The state of the flow of the exhaust gas flowing into the particulate collection device into the exhaust passage upstream of the oxidation catalyst device is the first state where the exhaust gas flows into both the central portion and the outer peripheral portion of the particulate collection device. A state, a second state where the flow flowing into the central portion of the particulate collection device is hindered by less than a preset amount, and a flow flowing into the central portion of the particulate collection device at the set amount. While providing a flow path changing mechanism for switching to the blocked third state,
At the time of regeneration processing of the particulate collection device, control is performed to perform regeneration in the first state immediately after the start of regeneration, regeneration in the middle of regeneration in the second state, and regeneration in the third state of the regeneration end. An exhaust gas purification system for an internal combustion engine, characterized in that a control device is provided.
前記微粒子捕集装置の前記中心部に流入する排気ガスの温度である中心温度を検出する中心部用温度検出装置と、前記微粒子捕集装置の前記外周部に流入する排気ガスの温度である外周温度を検出する外周部用温度検出装置を備えて構成すると共に、
前記制御装置が、前記第2状態においては、前記中心温度と前記外周温度との温度差が予め設定された第1判定用温度差の範囲内に収まるように、再生の進行度合いに従って、連続的または段階的に前記中心部を流れる排気ガスの流れをより大きく妨げるように前記流路変更機構を制御するように構成されることを特徴とする請求項1記載の内燃機関の排気ガス浄化システム。
A temperature detecting device for the center that detects the center temperature that is the temperature of the exhaust gas flowing into the center of the particulate collection device, and an outer periphery that is the temperature of the exhaust gas that flows into the outer periphery of the particulate collection device While comprising a temperature detection device for the outer periphery to detect the temperature,
In the second state, the control device continuously adjusts according to the progress of regeneration so that the temperature difference between the center temperature and the outer peripheral temperature falls within a preset first determination temperature difference. 2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the flow path changing mechanism is controlled so as to largely prevent the flow of exhaust gas flowing through the central portion in a stepwise manner.
前記酸化触媒装置の上流に設けられて、排気ガスの流れを、前記酸化触媒装置の前記中心部に流入する第1の流れと前記酸化触媒装置の前記外周部に流入する第2の流れとに分流する内部通路と、該内部通路に設けた流量調整弁とを有して、前記流路変更機構が構成されることを特徴とする請求項1又は2に記載の内燃機関の排気ガス浄化システム。   Provided upstream of the oxidation catalyst device, the flow of exhaust gas is divided into a first flow that flows into the central portion of the oxidation catalyst device and a second flow that flows into the outer peripheral portion of the oxidation catalyst device. 3. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the flow path changing mechanism is configured to include an internal passage for diversion and a flow rate adjustment valve provided in the internal passage. . 内燃機関の排気通路に上流側より順に酸化触媒装置と微粒子捕集装置を有する排気ガス浄化装置を備えた内燃機関の排気ガス浄化方法において、
前記微粒子捕集装置の再生処理時において、再生開始直後は排気ガスが前記微粒子捕集装置の中心部と外周部の両方へ流入する第1状態で再生し、再生中盤は前記微粒子捕集装置の前記中心部へ流入する流れが予め設定された設定量未満で妨げられる第2状態で再生し、再生終盤は前記微粒子捕集装置の前記中心部へ流入する流れが前記設定量で妨げられる第3状態で再生することを特徴とする内燃機関の排気ガス浄化方法。
In an exhaust gas purification method for an internal combustion engine comprising an exhaust gas purification device having an oxidation catalyst device and a particulate collection device in order from the upstream side in the exhaust passage of the internal combustion engine,
At the time of regeneration processing of the particulate collection device, immediately after the start of regeneration, the exhaust gas is regenerated in a first state where it flows into both the central portion and the outer periphery of the particulate collection device. Regeneration is performed in a second state where the flow flowing into the central portion is hindered by a preset amount less than a preset amount, and at the end of the regeneration, the flow flowing into the central portion of the particulate collection device is hindered by the set amount. An exhaust gas purification method for an internal combustion engine, characterized by regenerating in a state.
前記微粒子捕集装置の前記中心部に流入する排気ガスの温度である中心温度と、前記微粒子捕集装置の前記外周部に流入する排気ガスの温度である外周温度を検出し、
前記第2状態において、前記中心温度と前記外周温度との温度差が予め設定された第1判定用温度差の範囲内に収まるように、再生の進行度合いに従って、連続的または段階的に前記中心部を流れる排気ガスの流れをより大きく妨げることを特徴とする請求項4に記載の内燃機関の排気ガス浄化方法。
Detecting a central temperature that is a temperature of exhaust gas flowing into the central portion of the particulate collection device and an outer peripheral temperature that is a temperature of exhaust gas flowing into the outer peripheral portion of the particulate collection device;
In the second state, the center is continuously or stepwise according to the progress of regeneration so that the temperature difference between the center temperature and the outer peripheral temperature falls within a preset first determination temperature difference range. 5. The exhaust gas purification method for an internal combustion engine according to claim 4, wherein the flow of the exhaust gas flowing through the section is largely hindered.
JP2014087436A 2014-04-21 2014-04-21 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine Pending JP2015206302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014087436A JP2015206302A (en) 2014-04-21 2014-04-21 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087436A JP2015206302A (en) 2014-04-21 2014-04-21 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2015206302A true JP2015206302A (en) 2015-11-19

Family

ID=54603300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087436A Pending JP2015206302A (en) 2014-04-21 2014-04-21 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2015206302A (en)

Similar Documents

Publication Publication Date Title
JP3870815B2 (en) Exhaust gas purification device for internal combustion engine
JP4333289B2 (en) Exhaust gas purification system
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
US8549843B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
JP2004019496A (en) Exhaust emission control device of internal combustion engine
JP2005299480A (en) Engine exhaust emission control device
JP4507737B2 (en) Exhaust gas purification device
JP2010031833A (en) Exhaust emission control device for diesel engine
JP2007270705A (en) Egr device for engine
JP5316041B2 (en) Engine exhaust purification system
JP2004218497A (en) Exhaust emission control device for internal combustion engine
JP3896870B2 (en) Exhaust gas purification device for internal combustion engine
JP2004340137A (en) Exhaust emission control device for internal combustion engine
JP4735341B2 (en) Engine exhaust purification system
JP4052268B2 (en) Exhaust gas purification device for internal combustion engine
JP2018178979A (en) Filter regeneration control device and filter regeneration control method
JP5544758B2 (en) Diesel engine control system
JP2015206302A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP4070687B2 (en) Exhaust purification device
JP2010144557A (en) Exhaust emission control system and exhaust emission control method
JP5332664B2 (en) Engine exhaust purification system
JP5845869B2 (en) Diesel engine exhaust gas purification method and exhaust gas purification system
JP2005163652A (en) Emission control device
JP4000929B2 (en) Exhaust gas purification device for internal combustion engine
JP4325580B2 (en) Control device for internal combustion engine