JP2015206063A - Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength, and corrosion resistance after brazing and heating and manufacturing method therefor - Google Patents

Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength, and corrosion resistance after brazing and heating and manufacturing method therefor Download PDF

Info

Publication number
JP2015206063A
JP2015206063A JP2014085943A JP2014085943A JP2015206063A JP 2015206063 A JP2015206063 A JP 2015206063A JP 2014085943 A JP2014085943 A JP 2014085943A JP 2014085943 A JP2014085943 A JP 2014085943A JP 2015206063 A JP2015206063 A JP 2015206063A
Authority
JP
Japan
Prior art keywords
brazing
heat
cold rolling
room temperature
temperature strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014085943A
Other languages
Japanese (ja)
Other versions
JP6307331B2 (en
Inventor
望月淳一
Junichi Mochizuki
新倉昭男
Akio Niikura
福元敦志
Atsushi Fukumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2014085943A priority Critical patent/JP6307331B2/en
Publication of JP2015206063A publication Critical patent/JP2015206063A/en
Application granted granted Critical
Publication of JP6307331B2 publication Critical patent/JP6307331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy fin material for a heat exchanger excellent in room temperature strength, high temperature strength, and corrosion resistance after brazing and heating.SOLUTION: There are provided an aluminum alloy fin material for a heat exchanger excellent in room temperature strength, high temperature strength, and corrosion resistance after brazing and heating, containing Si:0.7 to 1.5%, Fe:0.4 to 1.2%, Mn:0.5 to 1.8%, Zn:0.5 to 3.0%, having an intermetallic compound density of an equivalent circle diameter of 0.01 μm or more and less than 0.15 μm (d1) of 5.0×10/mmand an intermetallic compound density of an equivalent circle diameter of 0.15 μm to 5.00 μm (d2) of 5.0×10to 3.0×10/mmwith d1/d2 of 0.30 or more before brazing and heating and an intermetallic compound density of an equivalent circle diameter of 0.01 μm to 5.00 μm (d3) of 5.0×10/mmor more and Si solid solution amount of 0.30 to 0.80 mass% after brazing and heating and a manufacturing method therefor.

Description

本発明は特にラジエータ、ヒーターコア、コンデンサ、インタークーラ等の熱交換器用フィン材として好適に使用され、ろう付加熱後の室温強度、高温強度及び耐食性に優れた熱交換器用アルミニウム合金フィン材及びその製造方法に関する。   In particular, the present invention is suitably used as a heat exchanger fin material for radiators, heater cores, condensers, intercoolers, etc., and has excellent room temperature strength, high temperature strength and corrosion resistance after brazing heat addition, and aluminum alloy fin material for heat exchanger and its It relates to a manufacturing method.

アルミニウム合金は軽量で強度に優れ、更には熱伝導率に優れることから熱交換器用材料、例えばラジエータ、ヒーターコア、コンデンサ、インタークーラ等に好適に用いられている。   Aluminum alloys are suitable for heat exchanger materials such as radiators, heater cores, condensers, and intercoolers because they are lightweight and have excellent strength and thermal conductivity.

このような熱交換器は、従来、例えばコルゲート成形によって波状に成形されたアルミニウム合金のフィンを他の部材とろう付接合して組み立てられる。アルミニウム合金フィン材としては、熱伝導性に優れるJIS1050合金等の純アルミニウム系合金や、強度及び耐座屈性に優れるJIS3003合金等のAl−Mn系合金が一般的に用いられてきた。また、フィン材を電気化学的に卑な電位にすることで犠牲陽極効果によりフィン材を優先腐食させることで、熱交換器のチューブを防食する技術も一般的に使用されている。   Conventionally, such a heat exchanger is assembled by brazing and joining aluminum alloy fins, which are formed into a corrugated shape by, for example, corrugation, to other members. As the aluminum alloy fin material, a pure aluminum alloy such as JIS1050 alloy having excellent thermal conductivity and an Al-Mn alloy such as JIS3003 alloy having excellent strength and buckling resistance have been generally used. In addition, a technique for preventing corrosion of a tube of a heat exchanger by preferentially corroding the fin material by the sacrificial anode effect by making the fin material electrochemically base potential is also generally used.

ところで、近年は熱交換器に対して軽量化、小型化及び高性能化の要求が高まってきている。これに伴い、アルミニウム合金フィン材についても薄肉であることが要求されている。このような薄肉化を実現するには、ろう付加熱後の室温強度、熱伝導性及び耐食性等の特性の向上が強く望まれている。   By the way, in recent years, demands for weight reduction, size reduction, and high performance have been increasing for heat exchangers. Accordingly, the aluminum alloy fin material is also required to be thin. In order to realize such thinning, it is strongly desired to improve characteristics such as room temperature strength, heat conductivity and corrosion resistance after brazing heat.

近年では、従来よりも高温高圧環境下で熱交換器が使用される場合が増えてきた。例えば、エンジンを冷却するラジエータの場合を例に挙げる。高いエンジン出力を得ようとすると、エンジンからの発熱量が多くなる。これを冷却するために、エンジンを冷却する冷媒が高圧で流通される。そうすると、ラジエータに高温、高圧の冷媒が流れ込み、ラジエータにかかる負荷が大きくなり、ラジエータの破損に至る場合が増加する。このため、チューブ材の高強度化のみならず、フィン材の高強度化よる熱交換器の耐久性向上が望まれている。この場合、熱伝導性等の一般的な特性に加えて、高温強度及び耐食性を確保する必要がある。   In recent years, heat exchangers have been increasingly used in a high-temperature and high-pressure environment. For example, the case of a radiator that cools the engine is taken as an example. When trying to obtain a high engine output, the amount of heat generated from the engine increases. In order to cool this, a refrigerant for cooling the engine is circulated at a high pressure. If it does so, high temperature and a high pressure refrigerant will flow into a radiator, the load concerning a radiator will become large, and the case which will cause a failure of a radiator increases. For this reason, it is desired to improve the durability of the heat exchanger not only by increasing the strength of the tube material but also by increasing the strength of the fin material. In this case, in addition to general characteristics such as thermal conductivity, it is necessary to ensure high temperature strength and corrosion resistance.

アルミニウム合金フィン材は、一般的に半連続鋳造(DC)法で製造され、JIS1100、JIS3003などの規格合金では、ろう付加熱後の室温強度に劣るため、熱交換器の十分な耐久性を確保できない。   Aluminum alloy fins are generally manufactured by a semi-continuous casting (DC) method, and standard alloys such as JIS1100 and JIS3003 are inferior in room temperature strength after brazing heat, so heat exchangers have sufficient durability. Can not.

特許文献1には、半連続鋳造法で鋳造し、Niを合金成分に加えることにより優れたろう付加熱後の強度と耐食性を有する熱交換器用アルミニウム合金フィン材が提案されている。しかしながら、Niを含有する化合物はマトリクスとの電位差が大きく、腐食の基点となり易い。このように、Ni含有合金は自己耐食性が低く、実用上不十分である。また、半連続鋳造法では鋳造中に生成する化合物のサイズが連続鋳造圧延法と比較して大きく、腐食の起点となる化合物が多く腐食が進行し易いことから、自己耐食性に劣る。   Patent Document 1 proposes an aluminum alloy fin material for a heat exchanger that is cast by a semi-continuous casting method and has excellent strength and corrosion resistance after brazing addition heat by adding Ni to the alloy component. However, a compound containing Ni has a large potential difference from the matrix and is likely to be a base point for corrosion. Thus, Ni-containing alloys have low self-corrosion resistance and are insufficient in practice. In addition, the semi-continuous casting method is inferior in self-corrosion resistance because the size of the compound produced during casting is larger than that in the continuous casting rolling method, and many compounds are the starting point of corrosion and the corrosion is likely to proceed.

ろう付加熱後の室温強度を向上させるために、連続鋳造法(CC法)でアルミニウム合金フィン材が製造される場合もある。特許文献2には、連続鋳造圧延法により鋳造し、1回目の焼鈍を450〜600℃の温度で1〜10時間行う最終板厚0.1mm以下の耐エロージョン性に優れた熱交換器用高強度アルミニウム合金材の製造方法が提案されている。しかしながら、中間焼鈍が高温で行われるため、焼鈍時に化合物が粗大化してその分布が疎になるため、ろう付加熱後の室温強度が低下する。また、ろう付け加熱後の結晶粒径が微細になることが予想され、ろう付性を確保できない虞がある。より最適化された製造条件及び金属組織を有するアルミニウム合金が要望されている。   In order to improve the room temperature strength after brazing heat, an aluminum alloy fin material may be manufactured by a continuous casting method (CC method). Patent Document 2 discloses a high strength for heat exchangers excellent in erosion resistance of 0.1 mm or less in final plate thickness, which is cast by a continuous casting and rolling method, and the first annealing is performed at a temperature of 450 to 600 ° C. for 1 to 10 hours. A method for producing an aluminum alloy material has been proposed. However, since the intermediate annealing is performed at a high temperature, the compound becomes coarse during annealing and its distribution becomes sparse, so that the room temperature strength after the brazing addition heat is lowered. In addition, the crystal grain size after brazing heating is expected to be fine, and there is a possibility that brazing properties cannot be ensured. There is a need for aluminum alloys having more optimized manufacturing conditions and microstructures.

特許文献3には、フィン材に析出している金属間化合物の90%以上のサイズが最大値で5μm以下の金属組織に制御された、ろう付加熱後の室温強度に優れたアルミニウム合金フィン材が提案されている。しかしながら、後述するように金属間化合物による分散強化は、ろう付加熱後の高温強度の向上への寄与度が固溶強化よりも少ないことから、この特許文献のフィン材は、十分なろう付加熱後高温強度を有しているとは言えず、熱交換器の高温耐久性に劣る。   Patent Document 3 discloses an aluminum alloy fin material excellent in room temperature strength after brazing heat, in which the size of 90% or more of the intermetallic compound deposited on the fin material is controlled to a metal structure having a maximum value of 5 μm or less. Has been proposed. However, as will be described later, the dispersion strengthening by the intermetallic compound contributes less to the improvement of the high-temperature strength after the brazing heat addition than the solid solution strengthening. Therefore, the fin material of this patent document has sufficient brazing heat addition. It cannot be said that it has post-high temperature strength, and is inferior to the high temperature durability of the heat exchanger.

特許文献4には、Mn及びZrを添加してろう付加熱後の高温強度を向上させろう付加熱後の金属組織を粗大結晶粒とすることで、耐垂下性を向上させたアルミニウム合金フィン材が提案されている。しかしながら、特許文献4では100℃近傍での高温強度の向上に有効なSi添加が検討されておらず、実車環境におけるフィン材の高温強度が不十分であった。また、Zrを添加しているために、ろう付加熱後の導電率が低い。導電率が低いと熱伝導性が低くなるために、熱交換率が低下し十分な熱交換性能を発揮できない。   Patent Document 4 discloses that an aluminum alloy fin material having improved droop resistance by adding Mn and Zr to improve high-temperature strength after brazing addition heat and making the metal structure after brazing addition heat coarse grains. Has been proposed. However, in Patent Document 4, Si addition effective for improving the high-temperature strength in the vicinity of 100 ° C. has not been studied, and the high-temperature strength of the fin material in the actual vehicle environment is insufficient. Moreover, since Zr is added, the electrical conductivity after brazing addition heat is low. If the electrical conductivity is low, the thermal conductivity is lowered, so that the heat exchange rate is lowered and sufficient heat exchange performance cannot be exhibited.

特許文献5には、ろう付加熱後の板厚中央部のSi固溶量を0.7%以下に規制することで優れた耐食性を有する熱交換器用アルミニウム合金フィン材を得ることが提案されている。しかしながら、後述するように固溶Siは高温強度を向上させるため、Si固溶量を0.7%以下に規定したのでは十分な高温強度が得られない。また、ろう付加熱前の分散粒子の密度が規定されていないため、ろう付加熱後における優れた室温強度、高温強度及び耐食性を両立出来ない。   Patent Document 5 proposes to obtain an aluminum alloy fin material for a heat exchanger having excellent corrosion resistance by regulating the amount of Si solid solution in the central portion of the plate thickness after brazing heat to 0.7% or less. Yes. However, since solid solution Si improves the high temperature strength as will be described later, a sufficient high temperature strength cannot be obtained if the Si solid solution amount is regulated to 0.7% or less. Moreover, since the density of the dispersed particles before the heat of brazing is not specified, it is impossible to achieve both excellent room temperature strength, high temperature strength and corrosion resistance after heat of brazing.

特開2003−147466号公報JP 2003-147466 A 特開2008−308761号公報JP 2008-307661 A 特開2001−226730号公報JP 2001-226730 A 特開昭61−217547号公報JP 61-217547 A 特許第4166613号Japanese Patent No. 4166613

このように、近年は様々な合金成分、製造工程で製造されるアルミニウム合金フィン材が提案されているが、熱伝導性等の一般的な特性に加えて、高温強度及び耐食性を確保できるアルミニウム合金フィン材が得られていないのが現状である。   Thus, in recent years, aluminum alloy fin materials produced by various alloy components and production processes have been proposed. In addition to general characteristics such as thermal conductivity, aluminum alloys that can ensure high-temperature strength and corrosion resistance. The present condition is that the fin material is not obtained.

以上のように、従来の技術では熱交換器用フィン材として十分な性能を有するアルミニウム合金フィン材は得られておらず、特に、100℃近傍といった高温環境下における強度の性能向上がなされていなかった。本発明はこの様な技術背景に鑑みてなされたものであり、ろう付加熱後の室温強度、高温強度及び耐食性に優れた熱交換器用アルミニウム合金フィン材及びその製造方法を提供することを目的とする。   As described above, in the conventional technology, an aluminum alloy fin material having sufficient performance as a fin material for a heat exchanger has not been obtained, and in particular, strength performance has not been improved in a high temperature environment such as around 100 ° C. . The present invention has been made in view of such a technical background, and an object thereof is to provide an aluminum alloy fin material for a heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing addition heat, and a method for producing the same. To do.

本発明者は、この諸課題を解決するために鋭意研究を行い、特定の成分を有するアルミニウム合金材を用いて、最適化された焼鈍条件及び圧延条件を適用することにより、最適化された金属間化合物分布及び元素固溶量を有し、上記課題を解決可能な熱交換器用アルミニウム合金フィン材を得るに至った。   The present inventor conducted intensive research to solve these problems, and optimized metal conditions by applying optimized annealing conditions and rolling conditions using aluminum alloy materials having specific components. An aluminum alloy fin material for heat exchangers having an intermetallic compound distribution and an element solid solution amount and capable of solving the above problems has been obtained.

具体的には、本発明は請求項1において、Si:0.7〜1.5mass%、Fe:0.4〜1.2mass%、Mn:0.5〜1.8mass%、Zn:0.5〜3.0mass%を含有し、残部Al及び不可避的不純物からなり、ろう付加熱前において、0.01μm以上0.15μm未満の円相当径を有する金属間化合物密度(d1)が5.0×10個/mm以上であり、0.15〜5.00μmの円相当径を有する金属間化合物密度(d2)が5.0×10〜3.0×10個/mmであり、d1/d2が0.30以上であり、ろう付加熱後において、0.01〜5.00μmの円相当径を有する金属間化合物密度(d3)が5.0×10個/mm以上であり、Si固溶量が0.30〜0.80mass%であることを特徴とするろう付加熱後の室温強度、高温強度及び耐食性に優れる熱交換器用アルミニウム合金フィン材とした Specifically, the present invention provides the method according to claim 1, wherein Si: 0.7 to 1.5 mass%, Fe: 0.4 to 1.2 mass%, Mn: 0.5 to 1.8 mass%, Zn: 0.00. The intermetallic compound density (d1) having a circle equivalent diameter of 0.01 μm or more and less than 0.15 μm is 5.0 when it contains 5-3.0 mass%, consists of the balance Al and inevitable impurities, and before brazing addition heat. in × 10 is four or / mm 2 or more, an intermetallic compound having a circle equivalent diameter of 0.15~5.00μm density (d2) is 5.0 × 10 4 to 3.0 × 10 7 cells / mm 2 Yes, d1 / d2 is 0.30 or more, and the density of the intermetallic compound (d3) having an equivalent circle diameter of 0.01 to 5.00 μm after the brazing heat is 5.0 × 10 4 pieces / mm 2 That is the above, and the Si solid solution amount is 0.30 to 0.80 mass%. Room temperature strength after heating brazing to symptoms, and the heat exchanger use aluminum alloy fin material excellent in high temperature strength and corrosion resistance

また、本発明は請求項2では請求項1において、ろう付加熱後において、室温における引張強度が130MPa以上であり、120℃における引張強度が90MPa以上であり、480時間のSWAAT後の引張強度をTS1(MPa)とし、SWAAT前の引張強度をTS0(MPa)とした場合のTS1/TS0が0.40以上であるものとした。   Further, in the present invention, the present invention is characterized in that the tensile strength at room temperature is 130 MPa or more, the tensile strength at 120 ° C. is 90 MPa or more, and the tensile strength after SWAAT for 480 hours is obtained. TS1 (MPa) was assumed, and TS1 / TS0 was 0.40 or more when the tensile strength before SWAAT was TS0 (MPa).

本発明は請求項3において、請求項1又は2に記載のろう付加熱後の室温強度、高温強度及び耐食性に優れる熱交換器用アルミニウム合金フィン材の製造方法であって、Si:0.7〜1.5mass%、Fe:0.4〜1.2mass%、Mn:0.5〜1.8mass%、Zn:0.5〜3.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金溶湯を鋳造する鋳造工程と、鋳塊を焼鈍する焼鈍工程と、最終冷間圧延段階を含む冷間圧延工程とを備え、前記鋳造工程は、アルミニウム合金溶湯を連続鋳造圧延する連続鋳造圧延工程であり、前記焼鈍工程は、圧延板を450〜560℃で1〜10時間熱処理する高温焼鈍段階と、圧延板を200〜450℃で1〜10時間熱処理し、前記最終冷間圧延段階の直前の1回以上の低温焼鈍段階とを含み、前記冷間圧延工程は、最終冷間圧延段階の前工程において1回以上の冷間圧延段階を更に備え、前記最終冷間圧延段階における圧延率を10〜50%とすることを特徴とするろう付加熱後の室温強度、高温強度及び耐食性に優れる熱交換器用アルミニウム合金フィン材の製造方法とした。   The present invention is the method for producing an aluminum alloy fin material for a heat exchanger having excellent room temperature strength, high temperature strength and corrosion resistance after brazing addition heat according to claim 1, wherein Si: 0.7 to Aluminum containing 1.5 mass%, Fe: 0.4 to 1.2 mass%, Mn: 0.5 to 1.8 mass%, Zn: 0.5 to 3.0 mass%, the balance being Al and inevitable impurities A casting process for casting the molten alloy, an annealing process for annealing the ingot, and a cold rolling process including a final cold rolling stage, wherein the casting process is a continuous casting rolling process for continuously casting and rolling the molten aluminum alloy. The annealing step includes a high-temperature annealing stage in which the rolled plate is heat-treated at 450 to 560 ° C. for 1 to 10 hours, and a rolled plate is heat-treated at 200 to 450 ° C. for 1 to 10 hours, immediately before the final cold rolling step. Including one or more low-temperature annealing steps, and the cold rolling step further includes one or more cold rolling steps in a step preceding the final cold rolling step, and the rolling rate in the final cold rolling step is 10 It was set as -50%, It was set as the manufacturing method of the aluminum alloy fin material for heat exchangers which is excellent in the room temperature strength after brazing addition heat, high temperature strength, and corrosion resistance.

更に本発明は請求項4では請求項3において、前記連続鋳造圧延工程と、圧延鋳塊を高温焼鈍する前記高温焼鈍段階と、前記最終冷間圧延段階の前工程としての冷間圧延段階であって、高温焼鈍した圧延鋳塊を冷間圧延する前記冷間圧延段階と、冷間圧延板を低温焼鈍する前記低温焼鈍段階と、低温焼鈍した圧延板を冷間圧延する前記最終冷間圧延段階とを含むものとした。   Further, the present invention according to claim 4 is the method according to claim 3, wherein the continuous casting and rolling step, the high-temperature annealing step of high-temperature annealing the rolled ingot, and the cold rolling step as a pre-process of the final cold rolling step are provided. The cold rolling stage for cold rolling the high temperature annealed ingot, the low temperature annealing stage for low temperature annealing of the cold rolled sheet, and the final cold rolling stage for cold rolling the low temperature annealed rolled sheet Included.

本発明に係る熱交換器用アルミニウム合金フィン材は、熱伝導性等の一般的な特性に加えて、ろう付加熱後の室温強度、高温強度及び耐食性に優れる。   The aluminum alloy fin material for a heat exchanger according to the present invention is excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat in addition to general characteristics such as thermal conductivity.

コルゲートフィンとチューブとの組み付け状態を示すミニコアの断面図である。It is sectional drawing of the minicore which shows the assembly | attachment state of a corrugated fin and a tube. 熱交換器コアの構成を示す断面図である。It is sectional drawing which shows the structure of a heat exchanger core. 熱交換器コアの構成を示す斜視図である。It is a perspective view which shows the structure of a heat exchanger core. ろう拡散性評価における、合格と不合格の具体例を示す顕微鏡写真である。It is a microscope picture which shows the specific example of the pass and failure in wax diffusion evaluation.

以下に、本発明を実施するための形態を詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail.

(1)合金組成の限定理由
Si:0.7〜1.5mass%
Siは,ろう付加熱後における室温強度及び高温強度を確保するために必須の元素である。Siは同時に添加されるFe、Mnと共に、Al−Fe(−Si)系金属間化合物及びAl−Mn−Si(−Fe)系金属間化合物を形成して、分散強化に寄与し材料強度(特にろう付加熱後の室温強度)を向上させる。また、一部のSiはろう付加熱により材料中に固溶し、固溶強化によりろう付加熱後における室温強度及び高温強度を向上させる。Si添加により形成されるAl−Mn−Si(−Fe)系化合物はろう付加熱後に粒界に析出し、その析出量が多いと粒界腐食を引き起こす。Si含有量が0.7mass%(以下、単に「%」と記す)未満では、上記の効果を十分に得ることが出来ず、ろう付加熱後における十分な室温強度及び高温強度を得ることが出来ない。一方で、Si含有量が1.5%を超えると、材料の固相線温度が大きく低下するために、ろう付加熱時に材料が溶融し、ろう付不良が起き易くなる。更に、Al−Mn−Si(−Fe)系化合物の粒界への析出が多くなり、特に粒界腐食が起き易くなる。
(1) Reason for limitation of alloy composition Si: 0.7 to 1.5 mass%
Si is an essential element for securing room temperature strength and high temperature strength after brazing heat. Si, together with Fe and Mn added at the same time, forms an Al—Fe (—Si) -based intermetallic compound and an Al—Mn—Si (—Fe) -based intermetallic compound, contributing to dispersion strengthening, Room temperature strength after brazing heat). Part of Si is dissolved in the material by brazing heat, and the strength at room temperature and high temperature after brazing heat is improved by solid solution strengthening. The Al—Mn—Si (—Fe) -based compound formed by the addition of Si precipitates at the grain boundaries after the heat of brazing, and causes a grain boundary corrosion if the amount of precipitation is large. If the Si content is less than 0.7 mass% (hereinafter simply referred to as “%”), the above effect cannot be obtained sufficiently, and sufficient room temperature strength and high temperature strength after brazing heat can be obtained. Absent. On the other hand, if the Si content exceeds 1.5%, the solidus temperature of the material is greatly reduced, so that the material melts during brazing addition heat and brazing failure is likely to occur. Furthermore, precipitation of Al—Mn—Si (—Fe) -based compounds at grain boundaries increases, and intergranular corrosion is particularly likely to occur.

Fe:0.4〜1.2%
Feは、ろう付加熱後における室温強度及び高温強度を確保するために必須の元素である。Feは同時に添加されるMnと共に、Al−Fe(−Si、Mn)系金属間化合物を鋳造時に形成して、分散強化に寄与し、特にろう付加熱後の室温強度を向上させる。Fe含有量が0.4%未満では、上記の効果を十分に得ることが出来ず、十分なろう付加熱後における十分な室温強度及び高温強度を得ることが出来ない。一方で、Fe含有量が1.2%を超えると、鋳造時にAl−Fe系粗大晶出物が発生するようになり、塑性変形性が低下するために圧延性が低下する。また、Al−Fe系化合物は腐食のカソードサイトとして作用し、孔食などが発生し易くなり耐食性が劣る。
Fe: 0.4-1.2%
Fe is an essential element for securing room temperature strength and high temperature strength after brazing heat. Fe forms an Al—Fe (—Si, Mn) -based intermetallic compound together with Mn added at the same time during casting, thereby contributing to dispersion strengthening, and in particular, improving room temperature strength after heat applied by brazing. If the Fe content is less than 0.4%, the above effects cannot be obtained sufficiently, and sufficient room temperature strength and high temperature strength after sufficient brazing heat cannot be obtained. On the other hand, if the Fe content exceeds 1.2%, an Al-Fe coarse crystallized product is generated during casting, and the plastic deformability is lowered, so that the rollability is lowered. In addition, the Al—Fe compound acts as a cathodic site for corrosion, and pitting corrosion is likely to occur, resulting in poor corrosion resistance.

Mn:0.5〜1.8%
Mnは、ろう付加熱後における室温強度及び高温強度を確保するために必須の元素である。Mnは同時に添加されるSiと共に、Al−Mn−Si系金属間化合物を形成して、分散強化に寄与し材料強度(特にろう付加熱後の室温強度)を向上させる。Mn含有量が0.5%未満では、上記の効果を十分に得ることが出来ない。一方、Mn含有量が1.8%を超えると、鋳造時にAl−Mn系粗大晶出物が発生するようになり、塑性変形性が低下するために圧延性が低下する。また、Al−Mn−Si(−Fe)系化合物の粒界への析出が多くなり、粒界腐食が起き易くなる。更に、含有量が多過ぎるとろう付加熱後のMn固溶量が増加するために、導電率が低下する。
Mn: 0.5 to 1.8%
Mn is an essential element for securing room temperature strength and high temperature strength after brazing heat. Mn forms an Al—Mn—Si intermetallic compound together with Si added at the same time, contributing to dispersion strengthening and improving material strength (particularly room temperature strength after brazing addition heat). If the Mn content is less than 0.5%, the above effects cannot be obtained sufficiently. On the other hand, when the Mn content exceeds 1.8%, Al-Mn coarse crystals are generated during casting, and the plastic deformability is lowered, so that the rollability is lowered. In addition, precipitation of Al—Mn—Si (—Fe) -based compounds at grain boundaries increases, and intergranular corrosion is likely to occur. Furthermore, when there is too much content, since the Mn solid solution amount after brazing addition heat will increase, electrical conductivity will fall.

Zn:0.5〜3.0%
Znは材料の自然電位を卑にし、犠牲防食効果の向上に寄与する。Zn含有量が0.5%未満では上記の効果を十分得ることが出来ない。一方、Zn含有量が3.0%を超えると自己腐食速度が増大し、自己耐食性が低下する。
Zn: 0.5-3.0%
Zn lowers the natural potential of the material and contributes to the improvement of the sacrificial anticorrosive effect. If the Zn content is less than 0.5%, the above effects cannot be obtained sufficiently. On the other hand, if the Zn content exceeds 3.0%, the self-corrosion rate increases and the self-corrosion resistance decreases.

また、結晶粒及びAl−Si系晶出物の微細化を目的として、Ti:0.001〜0.300%、Sr:0.0001〜0.0100%、Na:0.0001〜0.0100%、Ca:0.0001〜0.0100%を添加しても良い。さらに、結晶粒径の粗大化を目的としてZr:0.01〜0.300%を添加してもよい。上記Si、Fe、Mn、Zn、Ti、Sr、Na、Ca、Zr以外の不可避的不純物については、それぞれ単体で0.05%以下、かつ、合計で0.15%以下であることが好ましい。   Further, for the purpose of refining crystal grains and Al-Si based crystals, Ti: 0.001 to 0.300%, Sr: 0.0001 to 0.0100%, Na: 0.0001 to 0.0100 %, Ca: 0.0001 to 0.0100% may be added. Further, Zr: 0.01 to 0.300% may be added for the purpose of coarsening the crystal grain size. Inevitable impurities other than Si, Fe, Mn, Zn, Ti, Sr, Na, Ca, and Zr are each preferably 0.05% or less and 0.15% or less in total.

(2)アルミニウム合金フィン材の金属間化合物密度
ろう付加熱前において、0.01μm以上0.15μm未満の円相当径を有する金属間化合物密度(d1)が5×10個/mm以上であり、かつ、0.15〜5.00μmの円相当径を有する金属間化合物密度(d2)が5×10〜3.0×10個/mmであり、d1/d2が0.30以上であり、ろう付加熱後において、0.01〜5.00μmの円相当径を有する金属間化合物密度(d3)が5×10個/mm以上である。ろう付加熱後における室温強度、高温強度及び耐食性を確保する上で、ろう付加熱前の金属間化合物サイズ(本発明では円相当径、具体的には投影面積円相当直径(Heywood径)で定義される)とその存在密度は最適に調整されている必要がある。
(2) Intermetallic compound density of aluminum alloy fin material Before brazing heat, the intermetallic compound density (d1) having an equivalent circle diameter of 0.01 μm or more and less than 0.15 μm is 5 × 10 4 pieces / mm 2 or more. And the density of the intermetallic compound (d2) having an equivalent circle diameter of 0.15 to 5.00 μm is 5 × 10 4 to 3.0 × 10 7 pieces / mm 2 , and d1 / d2 is 0.30. As described above, the density of the intermetallic compound (d3) having an equivalent circle diameter of 0.01 to 5.00 μm after the brazing heat is 5 × 10 4 pieces / mm 2 or more. In order to secure room temperature strength, high temperature strength and corrosion resistance after brazing heat, it is defined by the size of the intermetallic compound before brazing heat (in the present invention, the equivalent circle diameter, specifically the projected area equivalent circle diameter (Heywood diameter)). ) And the density of existence needs to be adjusted optimally.

ここで、本発明において、「ろう付加熱前」及び「ろう付加熱後」における「ろう付加熱」とは、任意のろう材を用いて、温度580〜610℃で保持時間0.5〜10分とした実際のろう付加熱処理、或いは、ろう材を用いないで実際のろう付加熱に相当する温度580〜610℃で保持時間0.5〜10分とした加熱処理を言うものとする。なお、ろう材を用いる場合も用いない場合も、加熱処理条件としては、温度600℃で保持時間を3分とするのが好ましい。また、ろう材を用いるろう付加熱処理の場合には、フラックスを用いる場合と用いない場合の両方を含む。   Here, in the present invention, “before brazing addition heat” and “after brazing addition heat” are “brazing addition heat” using any brazing material at a temperature of 580 to 610 ° C. and a holding time of 0.5 to 10 ° C. An actual brazing addition heat treatment or a heat treatment with a holding time of 0.5 to 10 minutes at a temperature of 580 to 610 ° C. corresponding to actual brazing addition heat without using a brazing material. Note that, whether or not brazing material is used, the heat treatment condition is preferably a temperature of 600 ° C. and a holding time of 3 minutes. Moreover, in the case of brazing addition heat treatment using a brazing material, both the case where a flux is used and the case where it is not used are included.

金属間化合物とは、Al−Fe(−Mn)系及びAl−Mn−Si(−Fe)系化合物を意味する。Al−Fe(−Mn)系化合物は、主に鋳造中に形成され晶出物として存在し、その円相当径はおよそ0.15μm以上である場合が多い。一方で、Al−Mn−Si(−Fe)系化合物は、鋳造時、焼鈍時、ろう付加熱処理後の冷却過程でも形成され、その円相当径は5.00μm以下であり、およそ0.15μm未満である場合が多い。   An intermetallic compound means an Al—Fe (—Mn) -based compound and an Al—Mn—Si (—Fe) -based compound. The Al—Fe (—Mn) -based compound is mainly formed during casting and exists as a crystallized product, and the equivalent circle diameter is often about 0.15 μm or more. On the other hand, the Al—Mn—Si (—Fe) -based compound is also formed in the cooling process after casting, annealing, and brazing heat treatment, and the equivalent circle diameter is 5.00 μm or less, less than about 0.15 μm. In many cases.

(2)−1 ろう付加熱前において、0.01μm以上0.15μm未満の円相当径を有する金属間化合物密度(d1)を5.0×10個/mm以上に規定すること
ろう付加熱後における高温強度の向上は固溶強化に依存する部分が大きく、ろう付加熱後において一定以上の元素固溶量を確保することが必要である。ろう付加熱前において0.15μm未満の円相当径を有する金属間化合物(特にAl−Mn−Si(−Fe)系化合物)は、ろう付加熱時に材料中に固溶し易く、高温強度の向上に寄与する。本発明者らは、0.01μm以上0.15μm未満の円相当径を有する金属間化合物密度が5.0×10個/mm未満の場合には、固溶量が不足してろう付加熱後における十分な高温強度を確保することが出来ないことを見出した。
(2) -1 Before brazing heat addition, the density of the intermetallic compound (d1) having an equivalent circle diameter of 0.01 μm or more and less than 0.15 μm is regulated to 5.0 × 10 4 pieces / mm 2 or more. Improvement of high-temperature strength after heating largely depends on solid solution strengthening, and it is necessary to ensure a certain amount of element solid solution after brazing heat. Intermetallic compounds having an equivalent circle diameter of less than 0.15 μm before brazing heat (especially Al—Mn—Si (—Fe) -based compounds) easily dissolve in the material during brazing heat and improve high-temperature strength. Contribute to. When the density of the intermetallic compound having a circle-equivalent diameter of 0.01 μm or more and less than 0.15 μm is less than 5.0 × 10 4 pieces / mm 2 , the present inventors have insufficient brazing and brazing. It was found that sufficient high-temperature strength after heating could not be ensured.

なお、0.15μm以上の円相当径を有する上述の金属間化合物には上記効果が小さい。また、0.01μm未満の円相当径を有する上述の金属間化合物は極めて微細で密度測定が困難であるために、0.01μm未満の円相当径を有するものは対象外とした。ここで、上記金属間化合物密度が高いほどろう付加熱後の固溶量が増加しやすく、高温TSが向上しやすい。したがって、上記金属間化合物密度の上限は特に限定しない。   The above-mentioned intermetallic compound having an equivalent circle diameter of 0.15 μm or more has a small effect. Further, since the above-mentioned intermetallic compound having an equivalent circle diameter of less than 0.01 μm is extremely fine and density measurement is difficult, those having an equivalent circle diameter of less than 0.01 μm were excluded. Here, the higher the intermetallic compound density, the more the amount of solid solution after the brazing addition heat tends to increase, and the high temperature TS tends to improve. Therefore, the upper limit of the intermetallic compound density is not particularly limited.

(2)−2 ろう付加熱前において、0.15〜5.00μmの円相当径を有する金属間化合物密度(d2)を5.0×10〜3.0×10個/mmに規定すること
0.15〜5.00μmの円相当径の金属間化合物(特にAl−Fe(−Mn)系化合物)は、ろう付加熱時においてその固溶量が少なく分散強化に寄与するため、分散密度が高いほどろう付加熱後の室温強度が高くなる。一方、当該サイズの金属間化合物は、ろう付加熱後の冷却中に固溶元素を取り込み材料中の固溶量を低下させるため、ろう付加熱後の高温強度を確保するためには一定以下の金属間化合物密度に制御する必要がある。本発明者らは、5.0×10個/mm未満ではこの金属間化合物密度が小さいため分散強化が低減してろう付加熱後の室温強度が低下し、その一方で、この密度が3.0×10個/mmを超えると金属間化合物による固溶元素の取り込みが多くなり、ろう付加熱後の高温強度が低下することを見出した。
(2) -2 Intermetallic compound density (d2) having an equivalent circle diameter of 0.15 to 5.00 μm to 5.0 × 10 4 to 3.0 × 10 7 pieces / mm 2 before brazing addition heat Since the intermetallic compound having an equivalent circle diameter of 0.15 to 5.00 μm (particularly an Al—Fe (—Mn) -based compound) contributes to dispersion strengthening due to its small amount of solid solution during brazing addition heat, The higher the dispersion density, the higher the room temperature strength after brazing addition heat. On the other hand, the intermetallic compound of the size takes in a solid solution element during cooling after the brazing heat and lowers the amount of solid solution in the material. It is necessary to control the intermetallic compound density. When the present inventors have less than 5.0 × 10 4 pieces / mm 2 , the density of the intermetallic compound is small, so the dispersion strengthening is reduced and the room temperature strength after the brazing addition heat is lowered. It has been found that if it exceeds 3.0 × 10 7 pieces / mm 2 , the incorporation of solid solution elements by the intermetallic compound increases, and the high-temperature strength after brazing addition heat decreases.

なお、5.00μmを超える円相当径を有する場合、実質的にほとんどの晶出物が粗大であり、金属間化合物密度が低下して十分な分散強化を得られずに、室温強度が低下する。   In addition, when it has an equivalent circle diameter exceeding 5.00 μm, substantially most of the crystallized material is coarse, the intermetallic compound density is lowered, and sufficient dispersion strengthening cannot be obtained, and the room temperature strength is lowered. .

(2)−3 ろう付加熱後において、0.01〜5.00μmの円相当径を有する金属間化合物密度(d3)を5.0×10個/mm以上に規定すること
ろう付加熱後において0.01〜5.00μmの円相当径を有する金属間化合物(特にAl−Fe(−Mn)系化合物)の密度は、5.0×10個/mm以上とする必要がある。この金属間化合物密度が5.0×10個/mm未満の場合には、ろう付加熱後の室温強度を十分に確保することが出来ない。ここで、5.00μmを超える円相当径を有する場合、実質的にほとんどの晶出物が粗大なため金属間化合物密度が5.0×10個/mm未満となり、ろう付加熱後の室温強度を十分に確保することが出来ない。また、0.01μm未満の円相当径を有する上述の金属間化合物は極めて微細で密度測定が困難であるために、0.01μm未満の円相当径を有するものは対象外とした。なお、上記金属間化合物密度が高いほどろう付加熱後の分散強化による強化が増加し、室温TSが向上しやすい。したがって、上記金属間化合物密度の上限は特に限定しない。
(2) -3 After brazing addition heat, specify the density of intermetallic compound (d3) having an equivalent circle diameter of 0.01 to 5.00 μm to 5.0 × 10 4 pieces / mm 2 or more. Brazing addition heat The density of the intermetallic compound (especially Al—Fe (—Mn) -based compound) having an equivalent circle diameter of 0.01 to 5.00 μm later needs to be 5.0 × 10 4 pieces / mm 2 or more. . When this intermetallic compound density is less than 5.0 × 10 4 pieces / mm 2 , the room temperature strength after brazing addition heat cannot be sufficiently ensured. Here, when the equivalent-circle diameter exceeding 5.00 μm is obtained, the density of the intermetallic compound is less than 5.0 × 10 4 pieces / mm 2 because most of the crystallized material is substantially coarse. The room temperature strength cannot be secured sufficiently. Further, since the above-mentioned intermetallic compound having an equivalent circle diameter of less than 0.01 μm is extremely fine and density measurement is difficult, those having an equivalent circle diameter of less than 0.01 μm were excluded. In addition, reinforcement | strengthening by the dispersion | strengthening strengthening after brazing addition heat | fever increases so that the said intermetallic compound density is high, and room temperature TS tends to improve. Therefore, the upper limit of the intermetallic compound density is not particularly limited.

(2)−4 d1(0.01μm以上0.15μm未満の円相当径を有する金属間化合物密度)/d2(0.15〜5.00μmの円相当径を有する金属間化合物密度)を0.30以上に規定すること
d1/d2が0.30未満では材料に固溶する金属間化合物の量に対して、固溶元素を取り込む金属間化合物の量が多過ぎて固溶元素量が低下するために、ろう付加熱後における十分な高温強度を確保することが出来ない。なお、d1/d2の上限は特に限定するものではない。
(2) -4 d1 (intermetallic compound density having an equivalent circle diameter of 0.01 μm or more and less than 0.15 μm) / d2 (intermetallic compound density having an equivalent circle diameter of 0.15 to 5.00 μm) If d1 / d2 is less than 0.30, the amount of intermetallic compound that takes in a solid solution element is too much to reduce the amount of solid solution element when d1 / d2 is less than 0.30. Therefore, sufficient high-temperature strength after brazing addition heat cannot be ensured. The upper limit of d1 / d2 is not particularly limited.

(3)ろう付加熱後におけるSi固溶量を0.30〜0.80%に規定すること
高温強度の向上には、固溶強化が有効である。化合物による分散強化の強度向上への寄与は少ないと考えられる。その原因は、高温環境下では転位の移動が容易であり、分散粒子は転位の移動の障害になり難いためと考えられる。そこで,固溶強化を図るため、一定以上の固溶量を確保することが必要になる。100℃付近におけるSiの拡散速度と転位の移動速度は同程度であり、Siの拡散が転位の移動を阻害し易いため高温強度の向上に有効である。Si固溶量が0.30%以上であれば高温のTSを十分に確保することができる。一方、0.30%未満では高温の引張強度(TS)を十分に確保することが出来ない。Si固溶量が0.80%を超えると粒界へのAl−Mn−Si(−Fe)系化合物の析出が多くなるために、粒界腐食が起き易くなる。
(3) Specifying the amount of Si solid solution after heat of brazing addition to 0.30 to 0.80% Solid solution strengthening is effective for improving the high temperature strength. It is considered that the contribution of the dispersion strengthening by the compound to the strength improvement is small. This is presumably because dislocations move easily in a high temperature environment, and dispersed particles are unlikely to hinder dislocation movement. Therefore, in order to strengthen the solid solution, it is necessary to ensure a solid solution amount above a certain level. The Si diffusion rate and the dislocation movement rate in the vicinity of 100 ° C. are approximately the same, and since the Si diffusion easily inhibits the dislocation movement, it is effective in improving the high-temperature strength. If the Si solid solution amount is 0.30% or more, high-temperature TS can be sufficiently secured. On the other hand, if it is less than 0.30%, sufficient high-temperature tensile strength (TS) cannot be secured. When the amount of Si solid solution exceeds 0.80%, precipitation of Al—Mn—Si (—Fe) -based compounds at the grain boundaries increases, and intergranular corrosion is likely to occur.

(4)引張強度
本発明では、アルミニウム合金フィン材の種々の条件下での引張強度(TS)を以下のように規定する。
(4) Tensile strength In the present invention, the tensile strength (TS) of the aluminum alloy fin material under various conditions is defined as follows.

(4)−1 ろう付加熱後における室温でのTSを130MPa以上に規定すること
熱交換器の室温における耐久性を確保するために、ろう付加熱後における室温TSは高いことが望ましい。そのためには、ろう付加熱後における室温でのTSを130MPa以上とするのが好ましい。130MPa未満では熱交換器の耐久性が低下し、実用的に十分な耐久性が得られない。本発明においては、25℃を室温とする。なお、ろう付加熱後における室温でのTSが高いほど、室温でのコア耐久性が向上しやすい。したがって、室温TSの上限は特に限定しない。
(4) -1 Defining TS at room temperature after brazing addition heat to 130 MPa or more In order to ensure the durability of the heat exchanger at room temperature, it is desirable that the room temperature TS after brazing addition heat is high. For that purpose, it is preferable to set TS at room temperature after brazing addition heat to 130 MPa or more. If it is less than 130 MPa, the durability of the heat exchanger is lowered, and practically sufficient durability cannot be obtained. In the present invention, 25 ° C. is the room temperature. Note that the higher the TS at room temperature after the brazing heat, the easier it is to improve the core durability at room temperature. Therefore, the upper limit of the room temperature TS is not particularly limited.

(4)−2 ろう付加熱後における120℃でのTSを90MPa以上に規定すること
上記のように、高温環境下で熱交換器が使用されるケースが増加している。高温環境下とは約100℃前後であり、従来と比較して高温である。そこで、100℃よりも高温である120℃でのTSが90MPa以上であれば、熱交換器の十分な高温耐久性が得られる。120℃でのTSが90MPa未満では十分な高温耐久性を得ることが出来ない。なお、ろう付加熱後における120℃でのTSが高いほど、120℃でのコア耐久性が向上しやすい。したがって、120℃TSの上限は特に限定しない。
(4) -2 Specifying TS at 120 ° C. after brazing addition heat to 90 MPa or more As described above, cases where heat exchangers are used in a high temperature environment are increasing. The high temperature environment is about 100 ° C., which is higher than the conventional temperature. Therefore, if the TS at 120 ° C., which is higher than 100 ° C., is 90 MPa or more, sufficient high-temperature durability of the heat exchanger can be obtained. If the TS at 120 ° C. is less than 90 MPa, sufficient high temperature durability cannot be obtained. The higher the TS at 120 ° C. after the brazing heat, the easier the core durability at 120 ° C. improves. Therefore, the upper limit of 120 ° C. TS is not particularly limited.

(4)−3 ろう付加熱後において、480時間のSWAAT後のTS(TS1<MPa>)/(SWAAT前のTS(TS0<MPa>)を0.40以上に規定すること
熱交換器は腐食環境下で使用され、フィンの腐食が進行すると熱交換器コアの耐久性が低下する。フィンは優れた耐食性を有していることが望ましい。そこで、TS1(MPa)/TS0(MPa)を0.40以上とすることにより、フィンは実用上十分な耐食性を有し、腐食環境下でも熱交換の耐久性を十分に確保することができる。なお、TS1(MPa)/TS0(MPa)が高いほど耐食性に優れているので、TS1(MPa)/TS0(MPa)の上限は特に限定しない。
(4) -3 After brazing addition heat, TS after 480 hours SWAAT (TS1 <MPa>) / (TSA before SWAAT (TS0 <MPa>) should be specified as 0.40 or more. When the fins are used in an environment and the corrosion of the fins progresses, the durability of the heat exchanger core decreases.It is desirable that the fins have excellent corrosion resistance, so that TS1 (MPa) / TS0 (MPa) is set to 0. By setting the ratio to 40 or more, the fins have practically sufficient corrosion resistance, and can sufficiently ensure the durability of heat exchange even in a corrosive environment, where TS1 (MPa) / TS0 (MPa) is high. Since it is so excellent in corrosion resistance, the upper limit of TS1 (MPa) / TS0 (MPa) is not particularly limited.

(5)製造方法
以下に、本発明に係る熱交換器用アルミニウム合金フィン材の製造方法について説明する。なお、この製造方法は一実施態様を示すものであり、本発明のアルミニウム合金フィン材の製造方法を限定するものではない。
(5) Manufacturing method Below, the manufacturing method of the aluminum alloy fin material for heat exchangers which concerns on this invention is demonstrated. In addition, this manufacturing method shows one embodiment, and does not limit the manufacturing method of the aluminum alloy fin material of the present invention.

まず、製造方法の全体的な工程の流れについて説明する。最初にAl地金、Al母合金を溶解炉で溶解し成分の調整を行う。その後、連続鋳造圧延法により鋳造を行う。連続鋳造圧延方法としては、双ロール式、ベルト方式などが用いられる。次に、得られた鋳塊に焼鈍と冷間圧延をそれぞれ2回以上行なって、最終製品である板状のフィン材とする。   First, an overall process flow of the manufacturing method will be described. First, the Al metal and the Al mother alloy are melted in a melting furnace to adjust the components. Thereafter, casting is performed by a continuous casting and rolling method. As the continuous casting and rolling method, a twin roll method, a belt method, or the like is used. Next, the obtained ingot is annealed and cold-rolled twice or more to obtain a plate-like fin material as a final product.

(5)−1 鋳造工程
本発明の合金は、連続鋳造圧延法(CC法)により鋳造とされることを特徴としている。CC法で鋳造する場合は、鋳造時の冷却速度(約100〜1000℃/秒)が非常に大きい。そのため、一般的な半連続鋳造法(DC法)(冷却速度約10〜100℃/秒)に比べて、添加されたSi、Fe、Mnによって形成されるAl−Fe(−Mn)系及びAl−Mn−Si(−Fe)系の金属間化合物が微細、かつ密に分散する。その結果、分散強化が大きく、ろう付加熱後の室温強度の向上に大きく寄与する。また、上記金属間化合物が微細、かつ密に分散するために、鋳造時に固溶したSi、Fe、Mnが金属間化合物に取り込まれ易い。このため、導電率の向上が図られる。従って、CC法で鋳造されたアルミニウム合金は、DC法で鋳造されたものよりも強度及び熱伝導性に優れる。また、CC法は金属間化合物が微細に分散するために、フィン材をコルゲート成形する際の型磨耗が少なく、経済的という利点もある。本発明では、CC法における鋳造時の冷却速度を15〜1000℃/秒とするのが好ましい。
(5) -1 Casting Process The alloy of the present invention is characterized by being cast by a continuous casting and rolling method (CC method). When casting by CC method, the cooling rate (about 100-1000 degreeC / sec) at the time of casting is very large. Therefore, compared to a general semi-continuous casting method (DC method) (cooling rate of about 10 to 100 ° C./second), an Al—Fe (—Mn) system formed by added Si, Fe, and Mn and Al -Mn-Si (-Fe) intermetallic compounds are finely and densely dispersed. As a result, the dispersion strengthening is large and greatly contributes to the improvement of the room temperature strength after the brazing addition heat. In addition, since the intermetallic compound is finely and densely dispersed, Si, Fe, and Mn that are dissolved during casting are easily taken into the intermetallic compound. For this reason, the electrical conductivity is improved. Therefore, an aluminum alloy cast by the CC method is superior in strength and thermal conductivity than that cast by the DC method. In addition, since the intermetallic compound is finely dispersed in the CC method, there is little mold wear when corrugating the fin material, and there is an advantage that it is economical. In the present invention, the cooling rate during casting in the CC method is preferably 15 to 1000 ° C./second.

CC法の鋳造は一般的に、溶湯温度を680〜800℃に保持することが好ましい。溶湯温度は、給湯ノズル直前にあるヘッドボックスの温度である。溶湯温度が680℃未満では、鋳造中に粗大晶出物が形成し易く材料の塑性変形性が低下する場合がある。その結果、後の冷間圧延工程中に板が破断する虞がある。一方、溶湯温度が800℃を超えると、鋳造中に溶湯が凝固せず板状鋳塊を得ることが出来ない場合がある。   In general, it is preferable to maintain the molten metal temperature at 680 to 800 ° C. in the casting of the CC method. The molten metal temperature is the temperature of the head box immediately before the hot water supply nozzle. If the molten metal temperature is less than 680 ° C., coarse crystals are easily formed during casting, and the plastic deformability of the material may be lowered. As a result, the plate may break during the subsequent cold rolling process. On the other hand, if the molten metal temperature exceeds 800 ° C., the molten metal does not solidify during casting, and a plate-shaped ingot may not be obtained.

(5)−2 焼鈍工程(高温焼鈍段階)
次に、鋳造された鋳塊は焼鈍工程にかけられる。焼鈍工程は、高温焼鈍段階と低温焼鈍段階とを含む。高温焼鈍段階の条件は、450〜560℃で1〜10時間である。この高温焼鈍工程は、後述の低温焼鈍段階の前工程で行われる。この高温焼鈍工程により材料中の金属間化合物のサイズ及び密度、ならびに、添加元素の固溶量を最適に調整することが出来る。
(5) -2 Annealing process (high temperature annealing stage)
Next, the cast ingot is subjected to an annealing process. The annealing process includes a high temperature annealing stage and a low temperature annealing stage. The conditions for the high-temperature annealing stage are 450 to 560 ° C. and 1 to 10 hours. This high-temperature annealing process is performed in the pre-process of the below-mentioned low-temperature annealing stage. By this high temperature annealing process, the size and density of the intermetallic compound in the material and the solid solution amount of the additive element can be optimally adjusted.

高温焼鈍温度が450℃未満では、材料中に分散する金属間化合物が微細、かつ密に析出するために、分散強化が大きくなる。このことは、ろう付加熱後の室温強度を高くするためには有利であるが、分散粒子による強化は高温環境化においては大きな寄与を発揮せず、またろう付加熱時において材料中の固溶量を減少させるために、高温強度を得るには不利になる。一方、高温焼鈍温度が560℃を超えると金属間化合物が疎に析出する。固溶元素を取り込み難く、材料中の固溶量が低下し難いためにろう付加熱後における高温強度を高く維持できるが、分散強化が低下するためにろう付加熱後における室温強度が低下する。従って、450〜560℃で高温焼鈍することにより、ろう付加熱後における室温強度と高温強度の両立が可能になる。また、1時間未満の焼鈍では上記の効果が十分ではなく、10時間を超える焼鈍を行っても、上記効果が飽和して更なる向上が得られないために経済的に不利になる。   When the high-temperature annealing temperature is less than 450 ° C., the intermetallic compound dispersed in the material is finely and densely precipitated, so that the dispersion strengthening is increased. This is advantageous for increasing the room temperature strength after brazing heat, but strengthening with dispersed particles does not make a significant contribution in high-temperature environments, and solid solution in the material during brazing heat. To reduce the amount, it is disadvantageous to obtain high temperature strength. On the other hand, when the high-temperature annealing temperature exceeds 560 ° C., the intermetallic compound precipitates loosely. The high-temperature strength after brazing addition heat can be maintained high because it is difficult to incorporate solid solution elements and the amount of solid solution in the material is difficult to decrease, but the room temperature strength after brazing addition heat is lowered because dispersion strengthening is reduced. Therefore, high temperature annealing at 450 to 560 ° C. makes it possible to achieve both room temperature strength and high temperature strength after brazing addition heat. Moreover, the above effects are not sufficient when annealing is performed for less than 1 hour, and even if annealing is performed for more than 10 hours, the above effects are saturated and further improvement cannot be obtained, which is economically disadvantageous.

(5)−3 焼鈍工程(低温焼鈍段階)
後述の最終冷間圧延段階の直前に、1回以上の低温焼鈍段階が設けられる。この低温焼鈍段階は、材料を軟化させて最終冷間圧延段階で所望の材料強度を得るために行われる。この低温焼鈍の条件は、200〜450℃で1〜10時間である。焼鈍温度が250℃未満では材料の軟化が十分に起こらずに、最終冷間圧延における強度の調整が困難となる。一方、450℃を超えた温度で焼鈍を行うと、製造工程中の材料への入熱量が多くなり過ぎるために、金属間化合物が粗大、かつ疎に分布し分散強化が小さくなる。その結果、ろう付加熱後の室温強度の低下を招く。また、1時間未満の焼鈍温度では上記の効果が十分ではなく、10時間を超える焼鈍時間では上記の効果が飽和して更なる向上がえられないため、経済的に不利となる。
(5) -3 Annealing process (low temperature annealing stage)
One or more low-temperature annealing steps are provided immediately before the final cold rolling step described later. This low temperature annealing step is performed to soften the material and obtain the desired material strength in the final cold rolling step. The conditions for this low-temperature annealing are 200 to 450 ° C. and 1 to 10 hours. When the annealing temperature is less than 250 ° C., the material is not sufficiently softened, and it is difficult to adjust the strength in the final cold rolling. On the other hand, when annealing is performed at a temperature exceeding 450 ° C., the amount of heat input to the material during the manufacturing process is excessively increased, so that the intermetallic compound is coarsely and sparsely distributed and dispersion strengthening is reduced. As a result, the room temperature strength after brazing heat is reduced. Further, the above effect is not sufficient at an annealing temperature of less than 1 hour, and the above effect is saturated and further improvement cannot be obtained at an annealing time of more than 10 hours, which is economically disadvantageous.

(5)−4 冷間圧延工程
鋳造工程後において、2回以上の冷間圧延段階が設けられる。製造工程の最後に行う冷間圧延は最終冷間圧延段階であり、それまでに、1回以上の冷間圧延段階が設けられる。最終冷間圧延段階以前の冷間圧延段階は、最終冷間圧延段階で所望の最終板厚を得るために行われ、常法に従い冷間圧延を行えばよい。
(5) -4 Cold rolling step After the casting step, two or more cold rolling steps are provided. The cold rolling performed at the end of the manufacturing process is the final cold rolling stage, and one or more cold rolling stages are provided by then. The cold rolling step before the final cold rolling step is performed in order to obtain a desired final thickness in the final cold rolling step, and cold rolling may be performed according to a conventional method.

最終冷間圧延段階は、ろう付加熱前における所望の強度を得るために行なわれる。最終冷間圧延段階における圧延率(最終圧延率)は、10〜50%である。この圧延率が10%未満の場合には、ろう付加熱時における再結晶化が十分に完了しなかった亜結晶を起点としてろう材が侵入し、エロージョンが強く発生する。このエロージョンの発生によりフィン材の強度が低減するため、熱交換器の耐久性が低下する。一方、最終圧延率が50%を超えると、ろう付加熱時における再結晶化が容易に生起して再結晶粒が非常に微細になる。再結晶粒が微細になると、結晶粒界を起点としてろうが侵入する。その結果、フィンにエロージョンが強く発生する。このエロージョンの発生により、熱交換器のコア寸法が変化してしまうため、耐久性が低下する。なお、本発明においては、再結晶化が完了しないことによるフィンのエロージョン発生、ならびに、微細再結晶化によるフィンのエロージョン発生を、併せてろう拡散という。また、ろう拡散の程度をろう拡散性という。   The final cold rolling step is performed to obtain the desired strength before brazing heat. The rolling rate (final rolling rate) in the final cold rolling stage is 10 to 50%. When the rolling rate is less than 10%, the brazing material invades from the sub-crystal that has not been sufficiently recrystallized during the brazing addition heat, and erosion is strongly generated. Due to the occurrence of erosion, the strength of the fin material is reduced, so that the durability of the heat exchanger is lowered. On the other hand, when the final rolling ratio exceeds 50%, recrystallization occurs easily during brazing addition heat, and the recrystallized grains become very fine. When the recrystallized grains become finer, the wax enters from the grain boundaries. As a result, erosion is strongly generated in the fin. Due to the occurrence of this erosion, the core size of the heat exchanger changes, so that the durability decreases. In the present invention, generation of fin erosion due to incomplete recrystallization and generation of fin erosion due to fine recrystallization are collectively referred to as wax diffusion. The degree of wax diffusion is called wax diffusion.

(5)−5 焼鈍工程と冷間圧延工程の順序
本発明に係る熱交換器用アルミニウム合金フィン材の製造方法では、鋳造工程後において、焼鈍と冷間圧延がそれぞれ2回以上行なわれる。例えば、(i)高温焼鈍段階→最初の冷間圧延段階→低温焼鈍段階→最終冷間圧延段階としてもよく、これに代えて、(ii)最初の冷間圧延段階→高温焼鈍段階→低温焼鈍段階→最終冷間圧延工程としてもよい。また、上記(i)、(ii)において、低温焼鈍段階を2回以上続けて行ってもよい。更に、上記(ii)において、高温焼鈍段階の後に最初の冷間圧延段階を再び設けてもよい。
(5) -5 Order of annealing step and cold rolling step In the method for producing an aluminum alloy fin material for a heat exchanger according to the present invention, annealing and cold rolling are each performed twice or more after the casting step. For example, (i) high temperature annealing stage → first cold rolling stage → low temperature annealing stage → final cold rolling stage may be used. Alternatively, (ii) first cold rolling stage → high temperature annealing stage → low temperature annealing. It is good also as a step-> last cold rolling process. Moreover, in said (i) and (ii), you may perform a low-temperature annealing step continuously twice or more. Furthermore, in the above (ii), the first cold rolling step may be provided again after the high temperature annealing step.

以下に、本発明を実施例に基づいて詳細に説明する。表1に示す合金組成で温度720℃の溶湯を用いて、双ロール式連続鋳造圧延法により板厚6mmの板状鋳塊を得た。鋳造における冷却速度は、500℃/秒であった。次に、得られた鋳塊を高温焼鈍工程にかけた。更に、板厚0.056〜0.1mmまでの最初の冷間圧延工程にかけた。次いで、冷間圧延板を低温焼鈍工程にかけた後に、最終冷間圧延工程にかけた。高温焼鈍工程、低温焼鈍工程及び最終冷間圧延工程の条件を表2に示した。   Hereinafter, the present invention will be described in detail based on examples. A plate-shaped ingot having a thickness of 6 mm was obtained by a twin-roll continuous casting and rolling method using a molten metal having a temperature of 720 ° C. with the alloy composition shown in Table 1. The cooling rate in casting was 500 ° C./second. Next, the obtained ingot was subjected to a high temperature annealing process. Further, it was subjected to an initial cold rolling process with a plate thickness of 0.056 to 0.1 mm. Next, the cold-rolled sheet was subjected to a low-temperature annealing process and then subjected to a final cold-rolling process. Table 2 shows the conditions of the high temperature annealing step, the low temperature annealing step, and the final cold rolling step.

Figure 2015206063
Figure 2015206063

Figure 2015206063
Figure 2015206063

このようにして得られた最終的なフィン材試料の板厚は、全て0.05mmとした。なお、本発明は、本実施例の鋳造板厚及び最終板の板厚に限定されるものではない。鋳造板厚は一般的に2〜10mm程度、最終板厚は一般的に0.03〜0.20mm程度である場合が多い。   The plate thickness of the final fin material sample thus obtained was all 0.05 mm. The present invention is not limited to the cast plate thickness and the final plate thickness of this embodiment. The cast plate thickness is generally about 2 to 10 mm, and the final plate thickness is generally about 0.03 to 0.20 mm in many cases.

また、後述するコア耐久性の評価において、チューブ、サイドサポート、ヘッダー、タンクをフィン材に組み付けた材料構成を採用し、かつ、これらのフィン材以外の材料として、JIS3003の心材に全板厚の5%の割合でJIS4045ろう材をクラッドしたクラッド材を用いている。本発明は、これらの材料構成及びクラッド材に限定されるものではない。本発明に係るアルミニウム合金フィン材の実施形態として、熱交換機用材料として使用されている全ての部材との組み合わせが可能である。   Further, in the evaluation of core durability described later, a material configuration in which a tube, a side support, a header, and a tank are assembled to a fin material is adopted, and as a material other than these fin materials, the core material of JIS3003 has a total thickness of 5 The clad material which clad JIS4045 brazing material in the ratio of% is used. The present invention is not limited to these material configurations and cladding materials. As an embodiment of the aluminum alloy fin material according to the present invention, a combination with all members used as a heat exchanger material is possible.

上記のようにして得られたフィン材に対して、ろう付加熱前の特性として下記(a)、(b)を測定した。また、ろう付加熱後(ろう材を用いない)のフィン特性として、下記(c)〜(f)を測定した。更に、ろう付加熱後(ろう材を用いた)の特性として、ミニコア又は熱交換器コアを作製して、ろう付評価(g)〜(j)を行った。なお、ろう付加熱条件は、ろう材を用いた場合も用いない場合も、一般的に行われている600℃で3分間とした。結果を、表3〜5に示す。   With respect to the fin material obtained as described above, the following (a) and (b) were measured as characteristics before the heat of brazing. Moreover, the following (c)-(f) was measured as a fin characteristic after brazing addition heat (it does not use a brazing material). Furthermore, a mini-core or a heat exchanger core was produced as a characteristic after brazing addition heat (using brazing material), and brazing evaluation (g) to (j) was performed. The brazing heat application condition was set at 600 ° C. for 3 minutes, whether or not brazing material was used. The results are shown in Tables 3-5.

Figure 2015206063
Figure 2015206063

Figure 2015206063
Figure 2015206063

Figure 2015206063
Figure 2015206063

(a)固相線温度
固相線温度は、フィン材のろう付性の優劣を決める基準になる。固相線温度が低過ぎると、ろう付加熱時にフィン溶け及びフィン座屈が発生する。610℃以上であれば、十分な固相線温度を有する。
(A) Solidus temperature The solidus temperature is a standard for determining the superiority or inferiority of the brazing property of the fin material. If the solidus temperature is too low, fin melting and fin buckling occur during brazing heat. If it is 610 degreeC or more, it has sufficient solidus temperature.

(b)ろう付加熱前における金属間化合物密度の測定
FE−SEM(Field Emission−Scannning Electron Microscopy:走査電子顕微鏡)を用いてフィン材試料表面の化合物を観察し、画像解析により所定の円相当径を有する金属間化合物の密度を測定した。具体的には、倍率20000倍で20視野を観察し、2値化処理することで密度を算出した。上述のように、円相当径0.01μm未満の金属間化合物は微細過ぎるために、ノイズと区別がつき難く、2値化する際にカウントしなかった。なお、d1/d2の比率も併せて表3〜5に示す。
(B) Measurement of density of intermetallic compound before heat of brazing addition The compound on the surface of the fin material sample is observed using a FE-SEM (Field Emission-Scanning Electron Microscopy), and a predetermined equivalent circle diameter is determined by image analysis. The density of the intermetallic compound having was measured. Specifically, 20 visual fields were observed at a magnification of 20000, and binarization was performed to calculate the density. As described above, an intermetallic compound having an equivalent circle diameter of less than 0.01 μm is too fine to be distinguished from noise, and was not counted when binarized. The ratios of d1 / d2 are also shown in Tables 3 to 5.

(c)ろう付加熱後における室温TS
ろう付加熱後のフィン材試料を、JIS13号B引張試験片に成形し、Shimadzu製AG−20kN試験機によって室温でのTSを測定した。同じ試料から用意した3枚の試験片を用いて試験し、その算術平均値を室温でのTSとした。前述のように熱交換器の耐久性を確保するためには、室温TSが高い方が望ましい。130MPa以上であれば熱交換器の耐久性を十分に確保することが出来るので合格とし、それ未満を不合格とした。
(C) Room temperature TS after brazing heat
The fin material sample after the brazing heat was formed into a JIS No. 13 B tensile test piece, and the TS at room temperature was measured with an AG-20kN tester manufactured by Shimadzu. The test was performed using three test pieces prepared from the same sample, and the arithmetic average value was defined as TS at room temperature. As described above, in order to ensure the durability of the heat exchanger, a higher room temperature TS is desirable. If it is 130 MPa or more, the durability of the heat exchanger can be sufficiently secured, so that it was accepted, and less than that was rejected.

(d)ろう付加熱後における高温TS
室温TSと同様に、試験片を作製して120℃でのTSを測定した。更に、同様に算術平均値をもって高温(120℃)でのTSとした。前述のように熱交換器の耐久性を確保するためには、高温TSが高い方が望ましい。これが90MPa以上であれば熱交換器の耐久性を十分に確保することが出来るので合格とし、それ未満を不合格とした。
(D) High temperature TS after brazing heat
Similarly to room temperature TS, a test piece was prepared and TS at 120 ° C. was measured. Further, similarly, an arithmetic average value was defined as TS at a high temperature (120 ° C.). As described above, in order to ensure the durability of the heat exchanger, a higher high temperature TS is desirable. If this is 90 MPa or more, the durability of the heat exchanger can be sufficiently secured, so that it was accepted, and less than that was rejected.

(e)ろう付加熱後における金属間化合物密度の測定
ろう付加熱前における金属間化合物密度と同様にしてd3を測定し、2値化処理することで密度を算出した。
(E) Measurement of intermetallic compound density after brazing heat The d3 was measured in the same manner as the intermetallic compound density before brazing heat, and the density was calculated by binarization.

(f)ろう付加熱後におけるSi固溶量
ろう付加熱後におけるフィン材のSi固溶量を算出した。具体的には、ICP(Induced Coupled Plasma)を用いて、アルミニウム合金のSi含有量を求め、次いで、フェノール溶解法によってSi系金属間化合物のSi総量を求めた。そして、前者から後者を差し引いてSi固溶量を算出した。
(F) Si solid solution amount after brazing addition heat The Si solid solution amount of the fin material after brazing addition heat was calculated. Specifically, ICP (Induced Coupled Plasma) was used to determine the Si content of the aluminum alloy, and then the total Si amount of the Si-based intermetallic compound was determined by a phenol dissolution method. And the amount of Si solid solution was computed by subtracting the latter from the former.

(g)ろう拡散性
フィンへのろう侵食量が多いとフィンの座屈が生じるために、ろう付加熱処理後の熱交換器の寸法が設定通りにならず耐久性が低下する。そこで、フィンへのろう侵食の指標としてろう拡散性を以下のように評価した。図1に示すように、上記のようにして作製したフィン材試料を幅16mm、山高さ5mm、山間隔3mmにコルゲート成形したフィン材2と、JIS3003の心材にクラッド率5%でJIS4045ろう材をクラッドした板厚0.5mmのブレージングシートからなるチューブ材3を組み付けて、ろう付けすることによりミニコア1を作製した。作製したミニコア1を、非腐食性フラックス量5g/m用いて、600℃で3分間のろう付を行った。このようにしてろう付けしたミニコア断面を光学顕微鏡によりミクロ観察して、ろう浸食の有無を観察した。ろう侵食の発生しなかったものをろう拡散性が合格「○」、ろう侵食が発生したものをろう拡散性が不合格「×」とした。合格の場合の具体例を図4(a)に、不合格の場合の具体例を図4(b)に示す。図中において、2、3は図1と同じであり、10は侵食ろうを示す。
(G) Brazing diffusivity When the amount of brazing erosion to the fins is large, the fins buckle, and therefore the dimensions of the heat exchanger after brazing heat treatment are not as set and the durability is lowered. Therefore, wax diffusivity was evaluated as follows as an index of wax erosion to fins. As shown in FIG. 1, the fin material 2 produced as described above was corrugated into a width of 16 mm, a peak height of 5 mm, and a peak interval of 3 mm, and the core material of JIS3003 was coated with JIS4045 brazing material at a cladding ratio of 5%. The mini-core 1 was produced by assembling and brazing the tube material 3 made of a clad brazing sheet having a thickness of 0.5 mm. The produced mini-core 1 was brazed at 600 ° C. for 3 minutes using a non-corrosive flux amount of 5 g / m 2 . The cross-section of the brazed mini-core was micro-observed with an optical microscope to observe the presence or absence of brazing erosion. Wax diffusivity was evaluated as “good” when wax erosion did not occur, and “X” when wax erosion occurred when wax erosion occurred. A specific example in the case of acceptance is shown in FIG. 4A, and a specific example in the case of failure is shown in FIG. 4B. In the figure, 2 and 3 are the same as in FIG. 1, and 10 indicates an erosion wax.

(h)自然電位
フィンの自然電位が貴になると犠牲陽極効果が小さく、熱交換器の耐食性を確保することが出来ない。図1に示すろう付したフィン材の自然電位が−720mV以下であれば、十分な犠牲陽極効果を有するフィン材となる。表3中において、上記自然電位が−720mV以下の場合を合格(○)とし、−720mVより貴の場合を不合格(×)とした。なお、自然電位の測定は、Ag/AgCl(s)を参照電極とし、測定溶液25℃の5%NaCl水溶液中にミニコアにろう付されたフィン部分のみを浸漬して行った。
(H) Natural potential If the natural potential of the fin is noble, the sacrificial anode effect is small, and the corrosion resistance of the heat exchanger cannot be ensured. If the natural potential of the brazed fin material shown in FIG. 1 is −720 mV or less, the fin material has a sufficient sacrificial anode effect. In Table 3, the case where the natural potential was −720 mV or less was determined to be acceptable (◯), and the case where the natural potential was higher than −720 mV was determined to be unacceptable (×). The natural potential was measured by using Ag / AgCl (s) as a reference electrode and immersing only the fin portion brazed to the minicore in a 5% NaCl aqueous solution at 25 ° C. in the measurement solution.

(i)SWAAT後のフィン残強度
図1において、フィン材試料の幅のみを20mmに変えたミニコア1を作製した。作製したミニコア1を、非腐食性フラックス量5g/m用いて、600℃で3分間のろう付を行った。このようにしてろう付けしたミニコア1に対し、480hのSWAAT(ASTMのG85−Aに準拠した人工海水噴霧試験)を行った。まず、SWAAT後のミニコア1に対して、チューブ3を固定してフィン2のみに引張荷重が加わる状態で引張試験を行うことで、フィンの引張強度(480時間のSWAAT後の引張強度TS1<MPa>)を測定した。一方、SWAAT前のミニコア1に対しても、同様にしてフィンの引張強度(SWAAT前の引張強度TS0<MPa>)を測定した。そして、TS1/TS0をSWAAT後のフィン残強度とし、これが0.40以上のものは十分な耐食性を有するフィンであるとして合格とし、0.40未満のものは耐食性が不十分なフィンであるとして不合格とした。
(I) Fin residual strength after SWAAT In FIG. 1, a mini-core 1 was produced in which only the width of the fin material sample was changed to 20 mm. The produced mini-core 1 was brazed at 600 ° C. for 3 minutes using a non-corrosive flux amount of 5 g / m 2 . The mini-core 1 brazed in this manner was subjected to 480 h SWAAT (artificial seawater spray test in accordance with ASTM G85-A). First, with respect to the mini-core 1 after SWAAT, a tensile test is performed in a state where the tube 3 is fixed and a tensile load is applied only to the fin 2, so that the tensile strength of the fin (tensile strength TS1 <MPa after 480 hours SWAAT) >) Was measured. On the other hand, for the mini-core 1 before SWAAT, the fin tensile strength (tensile strength TS0 <MPa> before SWAAT) was similarly measured. Then, TS1 / TS0 is assumed to be the fin residual strength after SWAAT, and if it is 0.40 or more, it is accepted as a fin having sufficient corrosion resistance, and if less than 0.40, it is assumed that the corrosion resistance is insufficient. It was rejected.

(j)室温コア耐久性及び高温コア耐久性
図2、3に示すように、フィン材試料を幅20mm、山高さ5mm、山間隔3mmにコルゲート成形したコルゲート成形したフィン材2を作製した。次に、他の部材であるチューブ材3、ヘッダー材5、タンク材6、サイドサポート材7の作製には、JIS3003の心材にクラッド率5%のJIS4045ろう材をクラッドしたクラッド材を用いた。チューブ材3の板厚を0.2mmとし、ヘッダー材5、タンク材6及びサイドサポート材7の板厚は1.0mmとした。成形した各部材を図2及び図3に示すように組み付け、非腐食性フラックス量5g/m用いて600℃で3分間のろう付を行ない、耐久性評価用の熱交換器コア4とした。なお、図2の8は冷媒供給口を示し、9は冷媒排出口を示す。
(J) Room temperature core durability and high temperature core durability As shown in FIGS. 2 and 3, corrugated fin material 2 was produced by corrugating a fin material sample into a width of 20 mm, a peak height of 5 mm, and a peak interval of 3 mm. Next, for the production of the tube material 3, header material 5, tank material 6 and side support material 7 as other members, a clad material obtained by clad JIS4045 brazing material with a clad rate of 5% on the core material of JIS3003 was used. The plate thickness of the tube material 3 was 0.2 mm, and the thickness of the header material 5, the tank material 6 and the side support material 7 was 1.0 mm. Each molded member is assembled as shown in FIGS. 2 and 3 and brazed at 600 ° C. for 3 minutes using a non-corrosive flux amount of 5 g / m 2 to obtain a heat exchanger core 4 for durability evaluation. . 2 indicates a refrigerant supply port, and 9 indicates a refrigerant discharge port.

コア耐久性の評価は、チューブ内を水で満たし、1Hzの周波数でチューブ内に加わる最大水圧が100kPaとなる加圧状態と無加圧状態とを繰り返す、繰り返し加圧耐久試験により行った。室温におけるコア耐久性は試験雰囲気を25℃とし、高温におけるコア耐久性は試験雰囲気を120℃とした。加圧状態と無加圧状態をそれぞれ10回繰り返した後に、フィンの座屈及びフィンの破断のいずれも発生しなかった場合には、実用上十分なコア耐久性を有しているとして合格(○)とし、それ以外を不合格(×)とした。 The evaluation of the core durability was performed by a repeated pressure durability test in which the inside of the tube was filled with water and the pressurized state where the maximum water pressure applied to the tube at a frequency of 1 Hz was 100 kPa and the non-pressurized state were repeated. The core durability at room temperature was 25 ° C in the test atmosphere, and the core durability at high temperature was 120 ° C in the test atmosphere. If neither the buckling of the fin nor the breaking of the fin occurs after repeating the pressurized state and the non-pressurized state 10 5 times each, it is judged that the core has sufficient practical durability. (○), and the others were rejected (×).

表3、4の本発明例1〜43では、ろう付加熱前の固相線温度が十分に高いために良好なろう付性を有し、ろう付加熱後における室温強度が十分に高いために室温コア耐久性が十分に確保され、ろう付加熱後における高温強度が十分に高いために高温コア耐久性が十分に確保された。また、ろう付加熱後における金属間化合物密度が適切な範囲内にあり、最終圧延率が適切に設定されているためにろう拡散性が合格となり、自然電位が適切に設定されているために犠牲陽極効果に優れ、SWAAT後のフィン残強度が高いために耐食性に優れていた。   In Examples 1 to 43 of the present invention in Tables 3 and 4, the solidus temperature before brazing heat is sufficiently high so that the brazing property is good and the room temperature strength after brazing heat is sufficiently high. The room temperature core durability was sufficiently ensured, and the high temperature core durability was sufficiently ensured because the high temperature strength after brazing heat was sufficiently high. In addition, the density of the intermetallic compound after the brazing heat is within an appropriate range, the final rolling rate is set appropriately, the brazing diffusivity is passed, and the natural potential is set appropriately, which is sacrificed. Excellent anodic effect and excellent corrosion resistance due to high residual fin strength after SWAAT.

これに対して表5に示すように、比較例44では、高温焼鈍温度が低過ぎたために、ろう付け加熱前における0.15〜5.00μmの円相当径を有する金属間化合物の密度が高くなり、固溶元素を多く取り込み過ぎたために、固溶Si量が減少し、ろう付加熱後高温TSが低下した。また、ろう付加熱後における高温におけるコア耐久性も不合格であった。   On the other hand, as shown in Table 5, in Comparative Example 44, since the high temperature annealing temperature was too low, the density of the intermetallic compound having an equivalent circle diameter of 0.15 to 5.00 μm before brazing heating was high. As a result, too much solid solution element was taken in, so the amount of solid solution Si decreased, and the high temperature TS decreased after heat of brazing. Moreover, the core durability at high temperature after the brazing heat was also rejected.

比較例45では、高温焼鈍温度が高過ぎたために、ろう付加熱後における0.01〜5.00μmの円相当径を有する金属間化合物密度が低くなり分散強化が低下したために、ろう付加熱後室温TSが低下した。また、ろう付加熱後における室温におけるコア耐久性も不合格であった。   In Comparative Example 45, since the high-temperature annealing temperature was too high, the density of the intermetallic compound having a circle-equivalent diameter of 0.01 to 5.00 μm after the brazing addition heat was lowered and the dispersion strengthening was lowered. Room temperature TS decreased. Moreover, the core durability at room temperature after the brazing heat was also rejected.

比較例46では、高温焼鈍時間が短過ぎ、ろう付け加熱前における0.15〜5.00μmの円相当径を有する金属間化合物密度が高くなりすぎた。その結果、固溶元素を多く取り込んだために、固溶Si量が減少しろう付加熱後高温TSが低下した。また、ろう付加熱後における高温におけるコア耐久性が不合格であった。   In Comparative Example 46, the high-temperature annealing time was too short, and the density of the intermetallic compound having an equivalent circle diameter of 0.15 to 5.00 μm before brazing heating was too high. As a result, since a large amount of solid solution element was taken in, the amount of solid solution Si decreased, and the high temperature TS decreased after the additional heat. Moreover, the core durability at high temperature after brazing addition heat was disqualified.

比較例47では、低温焼鈍温度が低過ぎ、材料の軟化が十分に起こらなかった部分ができた。コルゲート成形後のフィンの山間隔が不均一となり、山間隔が長い部分ではコアからの荷重が大きくなりすぎたため、ろう付加熱後における室温及び高温でのコア耐久性が不合格であった。   In Comparative Example 47, there was a portion where the low-temperature annealing temperature was too low and the material was not sufficiently softened. Since the gap between the fins after the corrugation molding became uneven and the load from the core was too large at the part where the gap was long, the core durability at room temperature and high temperature after the brazing heat was rejected.

比較例48では、低温焼鈍温度が高過ぎ、材料への入熱が多くなり過ぎた。ろう付加熱後における0.01〜5.00μmの円相当径を有する金属間化合物密度が低下し、分散強化が低下したため、ろう付加熱後室温TSが低下した。また、ろう付加熱後における室温におけるコア耐久性が不合格であった。   In Comparative Example 48, the low-temperature annealing temperature was too high, and the heat input to the material was too much. Since the density of the intermetallic compound having an equivalent circle diameter of 0.01 to 5.00 μm after the brazing heat was reduced and the dispersion strengthening was lowered, the room temperature TS was lowered after the brazing heat. Moreover, the core durability at room temperature after brazing addition heat was unacceptable.

比較例49では、低温焼鈍時間が短過ぎ、材料の軟化が十分に起こらなかった部分ができた。コルゲート成形後のフィンは山間隔が不均一となり、山間隔が長い部分ではコアからの荷重が大きくなりすぎたため、ろう付加熱後における室温及び高温でのコア耐久性が不合格であった。   In Comparative Example 49, there was a portion where the low-temperature annealing time was too short and the material was not sufficiently softened. The fins after corrugated molding had uneven crest intervals, and the load from the core was too large at the crest portions, so that the core durability at room temperature and high temperature after brazing addition heat was rejected.

比較例50では、最終圧延率が低過ぎ、ろう付加熱中に未再結晶起因のエロージョンが起こったために、耐ろう拡散性に劣った。また、エロージョンにより、コアの寸法が正確に維持されなかったために、ろう付加熱後における室温及び高温におけるコア耐久性が不合格であった。   In Comparative Example 50, the final rolling rate was too low, and erosion due to non-recrystallization occurred during brazing addition heat, so that the resistance to brazing diffusion was poor. Moreover, since the core dimensions were not accurately maintained due to erosion, the core durability at room temperature and high temperature after brazing addition heat was rejected.

比較例51では、最終圧延率が高過ぎたために、ろう付加熱中に微細再結晶粒起因のエロージョンが起こり、耐ろう拡散性が不十分であった。また、エロージョンにより、ろう付加熱後における室温及び高温におけるコア耐久性が不合格であった。   In Comparative Example 51, since the final rolling rate was too high, erosion caused by fine recrystallized grains occurred during brazing addition heat, and the brazing resistance to brazing was insufficient. Further, due to erosion, the core durability at room temperature and high temperature after brazing addition heat was rejected.

比較例52では、フィン材のSi含有量が少なく、d1及びd3の金属間化合物密度が低下した。また、d1の低下によりd1/d2が低下し、ろう付加熱後のSi固溶量も低下した。その結果、ろう付加熱後の室温TS及び高温TSが低下した。また、ろう付加熱後における室温及び高温におけるコア耐久性が不合格であった。   In Comparative Example 52, the Si content of the fin material was small, and the intermetallic compound density of d1 and d3 was reduced. Moreover, d1 / d2 decreased due to the decrease in d1, and the amount of Si solid solution after the brazing addition heat also decreased. As a result, room temperature TS and high temperature TS after brazing addition heat decreased. Moreover, the core durability at room temperature and high temperature after brazing addition heat was unacceptable.

比較例53では、Si含有量が多過ぎたために、固相線温度が大きく低下し、ろう付加熱中にフィン溶けが発生した。また、コアの寸法が正確に維持されなかったために、ろう付加熱後における室温及び高温におけるコア耐久性が不十分であった。   In Comparative Example 53, since the Si content was too high, the solidus temperature was greatly reduced, and fin melting occurred during brazing addition heat. Moreover, since the core dimensions were not accurately maintained, the core durability at room temperature and high temperature after brazing heat was insufficient.

比較例54では、Fe含有量が少な過ぎたために、ろう付加熱後における0.01〜5.00μmの円相当径を有する金属間化合物密度が低下し、ろう付加熱後室温TSが低下した。また、室温におけるコア耐久性が不十分であった。   In Comparative Example 54, since the Fe content was too small, the density of the intermetallic compound having an equivalent circle diameter of 0.01 to 5.00 μm after the brazing addition heat was lowered, and the room temperature TS was lowered after the brazing heat. Moreover, the core durability at room temperature was insufficient.

比較例55では、Fe含有量が多過ぎたために、鋳造時に粗大晶出物が生成され、後の圧延工程にて板破断が生じて評価ができなかった。   In Comparative Example 55, since the Fe content was too large, a coarse crystallized product was generated at the time of casting, and a plate breakage occurred in the subsequent rolling process, and evaluation could not be performed.

比較例56では、Mn含有量が少な過ぎたために、ろう付加熱後における0.01〜5.00μmの円相当径を有する金属間化合物密度が低下し、ろう付加熱後室温TSが低下した。また、室温におけるコア耐久性が不十分であった。   In Comparative Example 56, since the Mn content was too small, the density of the intermetallic compound having an equivalent circle diameter of 0.01 to 5.00 μm after the brazing addition heat was lowered, and the room temperature TS was lowered after the brazing addition heat. Moreover, the core durability at room temperature was insufficient.

比較例57では、Mn含有量が多過ぎたために、鋳造時に粗大晶出物が生成され、後の圧延工程にて板破断が生じて評価ができなかった。   In Comparative Example 57, since the Mn content was too large, a coarse crystallized product was generated at the time of casting, and a plate breakage occurred in the subsequent rolling process, and evaluation could not be performed.

比較例58では、Zn含有量が少な過ぎたために、自然電位が貴になり、チューブ材との電位差を十分に確保することが出来なかった。犠牲防食が十分に作用せずに、チューブの腐食量が多くなり、コアとして十分な耐食性を有さない。   In Comparative Example 58, since the Zn content was too small, the natural potential became noble, and a sufficient potential difference from the tube material could not be secured. The sacrificial anticorrosion does not work sufficiently, the amount of corrosion of the tube increases, and the core does not have sufficient corrosion resistance.

比較例59では、Zn含有量が多過ぎたために、腐食速度が大きくなり、腐食減量が多いために、自己耐食性に劣った。したがって、SWAAT後におけるTS1/TS0が0.40以上を満足できなかった。   In Comparative Example 59, since the Zn content was too high, the corrosion rate increased and the corrosion weight loss was large, so that the self-corrosion resistance was inferior. Therefore, TS1 / TS0 after SWAAT could not satisfy 0.40 or more.

なお、これら比較例44〜59が、いずれの請求項の比較例に該当するかを、表6に示す。   In addition, Table 6 shows which comparative examples 44 to 59 correspond to which comparative example.

Figure 2015206063
Figure 2015206063

本発明に係る熱交換器用アルミニウム合金フィン材は、熱伝導性等の一般的な特性に加えて、ろう付加熱後の室温強度、高温強度及び耐食性に優れた特徴を有する。   The aluminum alloy fin material for a heat exchanger according to the present invention has excellent characteristics such as room temperature strength, high temperature strength and corrosion resistance after brazing heat in addition to general characteristics such as thermal conductivity.

1・・・ミニコア
2・・・フィン材、フィン
3・・・チューブ材、チューブ
4・・・熱交換器コア
5・・・ヘッダー材、ヘッダー
6・・・タンク材、タンク
7・・・サイドサポート材、サイドサポート
8・・・冷媒供給口
9・・・冷媒排出口
10・・・侵食ろう
DESCRIPTION OF SYMBOLS 1 ... Minicore 2 ... Fin material, Fin 3 ... Tube material, tube 4 ... Heat exchanger core 5 ... Header material, header 6 ... Tank material, tank 7 ... Side support Material, side support 8 ... Refrigerant supply port 9 ... Refrigerant discharge port 10 ... Erosion wax

Claims (4)

Si:0.7〜1.5mass%、Fe:0.4〜1.2mass%、Mn:0.5〜1.8mass%、Zn:0.5〜3.0mass%を含有し、残部Al及び不可避的不純物からなり、ろう付加熱前において、0.01μm以上0.15μm未満の円相当径を有する金属間化合物密度(d1)が5.0×10個/mm以上であり、0.15〜5.00μmの円相当径を有する金属間化合物密度(d2)が5.0×10〜3.0×10個/mmであり、d1/d2が0.30以上であり、ろう付加熱後において、0.01〜5.00μmの円相当径を有する金属間化合物密度(d3)が5.0×10個/mm以上であり、Si固溶量が0.30〜0.80mass%であることを特徴とするろう付加熱後の室温強度、高温強度及び耐食性に優れる熱交換器用アルミニウム合金フィン材。 Si: 0.7 to 1.5 mass%, Fe: 0.4 to 1.2 mass%, Mn: 0.5 to 1.8 mass%, Zn: 0.5 to 3.0 mass%, the balance Al and The density of the intermetallic compound (d1) having an equivalent circle diameter of 0.01 μm or more and less than 0.15 μm, which is unavoidable, is 5.0 × 10 4 pieces / mm 2 or more before brazing heat, The intermetallic compound density (d2) having an equivalent circle diameter of 15 to 5.00 μm is 5.0 × 10 4 to 3.0 × 10 7 pieces / mm 2 , and d1 / d2 is 0.30 or more, After brazing heat, the intermetallic compound density (d3) having an equivalent circle diameter of 0.01 to 5.00 μm is 5.0 × 10 4 pieces / mm 2 or more, and the Si solid solution amount is 0.30. Room temperature strength after brazing heat, high temperature, characterized by 0.80 mass% Heat exchanger use aluminum alloy fin material excellent in degrees and corrosion resistance. ろう付加熱後において、室温における引張強度が130MPa以上であり、120℃における引張強度が90MPa以上であり、480時間のSWAAT後の引張強度をTS1(MPa)とし、SWAAT前の引張強度をTS0(MPa)とした場合のTS1/TS0が0.40以上である、請求項1に記載のろう付加熱後の室温強度、高温強度及び耐食性に優れる熱交換器用アルミニウム合金フィン材。   After brazing heat, the tensile strength at room temperature is 130 MPa or more, the tensile strength at 120 ° C. is 90 MPa or more, the tensile strength after SWAAT for 480 hours is TS1 (MPa), and the tensile strength before SWAAT is TS0 ( The aluminum alloy fin material for heat exchangers having excellent room temperature strength, high temperature strength and corrosion resistance after brazing addition heat according to claim 1, wherein TS1 / TS0 is 0.40 or more. 請求項1又は2に記載のろう付加熱後の室温強度、高温強度及び耐食性に優れる熱交換器用アルミニウム合金フィン材の製造方法であって、Si:0.7〜1.5mass%、Fe:0.4〜1.2mass%、Mn:0.5〜1.8mass%、Zn:0.5〜3.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金溶湯を鋳造する鋳造工程と、鋳塊を焼鈍する焼鈍工程と、最終冷間圧延段階を含む冷間圧延工程とを備え、前記鋳造工程は、アルミニウム合金溶湯を連続鋳造圧延する連続鋳造圧延工程であり、前記焼鈍工程は、圧延板を450〜560℃で1〜10時間熱処理する高温焼鈍段階と、圧延板を200〜450℃で1〜10時間熱処理し、前記最終冷間圧延段階の直前の1回以上の低温焼鈍段階とを含み、前記冷間圧延工程は、最終冷間圧延段階の前工程において1回以上の冷間圧延段階を更に備え、前記最終冷間圧延段階における圧延率を10〜50%とすることを特徴とするろう付加熱後の室温強度、高温強度及び耐食性に優れる熱交換器用アルミニウム合金フィン材の製造方法。   It is a manufacturing method of the aluminum alloy fin material for heat exchangers which is excellent in the room temperature strength after a brazing addition heat of Claim 1 or 2, high temperature strength, and corrosion resistance, Comprising: Si: 0.7-1.5mass%, Fe: 0 A casting process for casting a molten aluminum alloy containing 4 to 1.2 mass%, Mn: 0.5 to 1.8 mass%, Zn: 0.5 to 3.0 mass%, and the balance Al and inevitable impurities; An annealing process for annealing the ingot, and a cold rolling process including a final cold rolling stage, the casting process is a continuous casting and rolling process for continuously casting and rolling a molten aluminum alloy, and the annealing process includes: A high-temperature annealing stage in which the rolled sheet is heat-treated at 450 to 560 ° C. for 1 to 10 hours, and the rolled sheet is heat-treated at 200 to 450 ° C. for 1 to 10 hours, and one or more low-temperature annealing stages immediately before the final cold rolling stage. When The cold rolling step further includes at least one cold rolling step in the previous step of the final cold rolling step, and the rolling rate in the final cold rolling step is 10 to 50%. The manufacturing method of the aluminum alloy fin material for heat exchangers which is excellent in room temperature strength, high temperature strength, and corrosion resistance after heat addition. 前記連続鋳造圧延工程と、圧延鋳塊を高温焼鈍する前記高温焼鈍段階と、前記最終冷間圧延段階の前工程としての冷間圧延段階であって、高温焼鈍した圧延鋳塊を冷間圧延する前記冷間圧延段階と、冷間圧延板を低温焼鈍する前記低温焼鈍段階と、低温焼鈍した圧延板を冷間圧延する前記最終冷間圧延段階とを含む、請求項3に記載のろう付加熱後の室温強度、高温強度及び耐食性に優れる熱交換器用アルミニウム合金フィン材の製造方法。   Cold rolling of the continuous ingot rolling process, the high temperature annealing stage for high temperature annealing of the rolled ingot, and the cold rolling stage as a pre-process of the final cold rolling stage, and cold rolling the high temperature annealed ingot. The brazing additional heat according to claim 3, comprising the cold rolling step, the low temperature annealing step for low-temperature annealing the cold rolled plate, and the final cold rolling step for cold rolling the low-temperature annealed rolled plate. The manufacturing method of the aluminum alloy fin material for heat exchangers which is excellent in later room temperature strength, high temperature strength, and corrosion resistance.
JP2014085943A 2014-04-17 2014-04-17 Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat and method for producing the same Expired - Fee Related JP6307331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014085943A JP6307331B2 (en) 2014-04-17 2014-04-17 Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014085943A JP6307331B2 (en) 2014-04-17 2014-04-17 Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015206063A true JP2015206063A (en) 2015-11-19
JP6307331B2 JP6307331B2 (en) 2018-04-04

Family

ID=54603111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014085943A Expired - Fee Related JP6307331B2 (en) 2014-04-17 2014-04-17 Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat and method for producing the same

Country Status (1)

Country Link
JP (1) JP6307331B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3351648A4 (en) * 2015-09-19 2019-01-30 UACJ Corporation Aluminum alloy fin material for heat exchanger, method for manufacturing same, heat exchanger using said aluminum alloy fin material and method for manufacturing same
CN110918907A (en) * 2019-11-27 2020-03-27 新疆众和股份有限公司 Casting method of flat ingot for electrolytic capacitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289489A (en) * 2004-08-06 2006-10-26 Showa Denko Kk Laminate material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, method for producing heat exchanger, and heat exchanger
JP4166613B2 (en) * 2002-06-24 2008-10-15 株式会社デンソー Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP2008308761A (en) * 2007-05-14 2008-12-25 Mitsubishi Alum Co Ltd Method for producing high strength aluminum alloy material for automobile heat exchanger having excellent erosion resistance and used for high strength automobile heat exchanger member produced by brazing
JP2012026008A (en) * 2010-07-26 2012-02-09 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and method of producing the same, and heat exchanger using the fin material
JP2012126950A (en) * 2010-12-14 2012-07-05 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material
JP2013057132A (en) * 2012-12-04 2013-03-28 Nippon Light Metal Co Ltd Method for producing high strength aluminum alloy fin material
JP2014047384A (en) * 2012-08-30 2014-03-17 Denso Corp High strength aluminum alloy fin material and producing method therefor
WO2015141698A1 (en) * 2014-03-19 2015-09-24 株式会社Uacj Aluminum alloy fin material for heat exchanger, method for manufacturing same, and heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166613B2 (en) * 2002-06-24 2008-10-15 株式会社デンソー Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP2006289489A (en) * 2004-08-06 2006-10-26 Showa Denko Kk Laminate material for heat exchanger, tube material for heat exchanger, header material for heat exchanger, method for producing heat exchanger, and heat exchanger
JP2008308761A (en) * 2007-05-14 2008-12-25 Mitsubishi Alum Co Ltd Method for producing high strength aluminum alloy material for automobile heat exchanger having excellent erosion resistance and used for high strength automobile heat exchanger member produced by brazing
JP2012026008A (en) * 2010-07-26 2012-02-09 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and method of producing the same, and heat exchanger using the fin material
JP2012126950A (en) * 2010-12-14 2012-07-05 Mitsubishi Alum Co Ltd Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material
JP2014047384A (en) * 2012-08-30 2014-03-17 Denso Corp High strength aluminum alloy fin material and producing method therefor
JP2013057132A (en) * 2012-12-04 2013-03-28 Nippon Light Metal Co Ltd Method for producing high strength aluminum alloy fin material
WO2015141698A1 (en) * 2014-03-19 2015-09-24 株式会社Uacj Aluminum alloy fin material for heat exchanger, method for manufacturing same, and heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3351648A4 (en) * 2015-09-19 2019-01-30 UACJ Corporation Aluminum alloy fin material for heat exchanger, method for manufacturing same, heat exchanger using said aluminum alloy fin material and method for manufacturing same
CN110918907A (en) * 2019-11-27 2020-03-27 新疆众和股份有限公司 Casting method of flat ingot for electrolytic capacitor

Also Published As

Publication number Publication date
JP6307331B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
KR101162250B1 (en) High strength aluminum alloy fin material for heat exchanger and method for production thereof
JP5371173B2 (en) Manufacturing method of high strength aluminum alloy fin material
JP5186185B2 (en) High-strength aluminum alloy material for automobile heat exchanger fins excellent in formability and erosion resistance used for fin material for high-strength automobile heat exchangers manufactured by brazing, and method for producing the same
JP6492056B2 (en) Aluminum alloy fin material for heat exchanger, method for producing the same, and heat exchanger
JP2008308761A (en) Method for producing high strength aluminum alloy material for automobile heat exchanger having excellent erosion resistance and used for high strength automobile heat exchanger member produced by brazing
JP6315365B2 (en) Brazing sheet for heat exchanger and method for producing the same
JP7107690B2 (en) Aluminum alloy fin material for heat exchangers and heat exchangers with excellent strength, electrical conductivity, corrosion resistance, and brazeability
JP6407253B2 (en) Aluminum alloy clad material excellent in corrosion resistance and brazing and method for producing the same
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
WO2000005426A1 (en) High conductivity aluminum fin alloy
JP5195837B2 (en) Aluminum alloy fin material for heat exchanger
JP6307331B2 (en) Aluminum alloy fin material for heat exchanger excellent in room temperature strength, high temperature strength and corrosion resistance after brazing heat and method for producing the same
JP7207935B2 (en) Aluminum alloy fin material and heat exchanger
CN111057910A (en) Aluminum alloy heat-dissipating component and heat exchanger
JP2010270387A (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JP6154224B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP2013057132A (en) Method for producing high strength aluminum alloy fin material
JP2005139505A (en) Aluminum alloy fin material, and its production method
JP6154225B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP2009046702A (en) Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance
JP2009046705A (en) Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance, and heat exchanger
JP7517811B2 (en) Aluminum alloy brazing sheet and method for manufacturing heat exchanger
WO2023008499A1 (en) Aluminum alloy fin material, heat exchanger, and method for producing aluminum alloy fin material
JP6328472B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JP2016148072A (en) Aluminum alloy fin material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6307331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees