JP2009046705A - Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance, and heat exchanger - Google Patents

Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance, and heat exchanger Download PDF

Info

Publication number
JP2009046705A
JP2009046705A JP2007211384A JP2007211384A JP2009046705A JP 2009046705 A JP2009046705 A JP 2009046705A JP 2007211384 A JP2007211384 A JP 2007211384A JP 2007211384 A JP2007211384 A JP 2007211384A JP 2009046705 A JP2009046705 A JP 2009046705A
Authority
JP
Japan
Prior art keywords
heat exchanger
alfesi
extruded flat
tube
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007211384A
Other languages
Japanese (ja)
Inventor
宗尚 ▲高▼橋
Munehisa Takahashi
Yasunori Hiyougo
靖憲 兵庫
Masazo Asano
雅三 麻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2007211384A priority Critical patent/JP2009046705A/en
Publication of JP2009046705A publication Critical patent/JP2009046705A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extruded flat perforated pipe for a heat exchanger which has excellent corrosion resistance and sufficient strength, and can be made thin in thickness, and to provide a heat exchanger. <P>SOLUTION: The extruded flat perforated pipe for the heat exchanger is composed of an aluminum alloy having a composition containing, by mass, 0.01 to 0.30% Si, 0.01 to 0.30% Fe, 0.05 to 0.40% Cu and 0.05 to 0.30% Mn, further comprising 0.05 to 0.30% Ti, or comprising 0.05 to 0.25% Zr, or comprising 0.05 to 0.25% Zr and 0.05 to 0.25% Ti, and in which the total of Zr and Ti is ≤0.3%, and the balance Al with inevitable impurities. As for grains with a grain area of ≥1.0 μm<SP>2</SP>dispersed into a matrix, the occupancy area ratio of an AlFeSi stable phase is 0.1 to <0.5%. The outer surface is coated with a composition for brazing obtained by mixing Zn-containing flux, Si powder and a binder. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、カーエアコンなどの自動車用熱交換器に好適に用いることができる耐食性に優れた熱交換器用押出扁平多穴管及び熱交換器に関する。   The present invention relates to an extruded flat multi-hole tube for a heat exchanger excellent in corrosion resistance and a heat exchanger that can be suitably used for an automotive heat exchanger such as a car air conditioner.

従来から、カーエアコンのコンデンサやエバポレータなどの自動車用熱交換器には、純アルミニウムやアルミニウム合金を押出加工してなるチューブや扁平多穴管が用いられている。   Conventionally, tubes and flat multi-hole tubes made by extruding pure aluminum or aluminum alloys have been used in automotive heat exchangers such as condensers and evaporators of car air conditioners.

一般に、熱交換器は、図2に示されるように、ヘッダーパイプ5と称される左右一対の管体と、そのヘッダーパイプ5の間に互いに平行に間隔を空けて設けられたアルミニウム合金からなる多数のチューブ1と、チューブ1、1同士の間に設けられたフィン6とで構成されている。そして各チューブ1…の内部空間とヘッダーパイプ5の内部空間を連通させ、ヘッダーパイプ5の内部空間と各チューブ1の内部空間に媒体を循環させ、前記フィン6を介して効率良く熱交換ができるようになっている。   In general, as shown in FIG. 2, the heat exchanger is made of a pair of left and right tubes called header pipes 5, and an aluminum alloy provided between the header pipes 5 so as to be spaced apart from each other in parallel. It is composed of a large number of tubes 1 and fins 6 provided between the tubes 1 and 1. Then, the internal space of each tube 1 and the internal space of the header pipe 5 are communicated, the medium is circulated between the internal space of the header pipe 5 and the internal space of each tube 1, and heat can be exchanged efficiently through the fins 6. It is like that.

この熱交換器を構成する各チューブ1は、図1の斜視図に示されるような複数の冷媒通路穴4を有する断面偏平状のAl合金押出管3の表面に、ろう材粉末を含有したフラックスを塗布することによりフラックス層(被覆層)2を形成した熱交換器用押出扁平多穴管11を用いて製造されることが知られており、前記フラックス層2に含まれるろう材としては、Si粉末、Al−Si系合金粉末、またはAl−Si−Zn系合金粉末が使用されることも知られている。   Each tube 1 constituting this heat exchanger has a flux containing brazing filler metal powder on the surface of an Al alloy extruded tube 3 having a flat cross section having a plurality of refrigerant passage holes 4 as shown in the perspective view of FIG. It is known that it is manufactured using an extruded flat multi-hole tube 11 for heat exchanger in which a flux layer (coating layer) 2 is formed by applying It is also known that powders, Al—Si based alloy powders, or Al—Si—Zn based alloy powders are used.

熱交換器用押出扁平多穴管11を用いて熱交換器を作製するには、互いに平行に間隔を空けて設けられたヘッダーパイプ5に対して熱交換器用押出扁平多穴管11を直角に架設し、各熱交換器用押出扁平多穴管11の端部をヘッダーパイプ5の側面に設けられた開口(図示せず)に挿入し、この熱交換器用押出扁平多穴管11の間に波形のフィン6を配置して組み立て、得られた組立体を加熱炉に装入し加熱すると、熱交換器用押出扁平多穴管11のろう材によりヘッダーパイプ5とチューブ1がろう付けされ固定されるとともにチューブ1、1同士の間に波形のフィン6がろう付けされ固定された熱交換器が得られる。   In order to fabricate a heat exchanger using the extruded flat multi-hole tube 11 for heat exchanger, the extruded flat multi-hole tube 11 for heat exchanger is installed at right angles to the header pipes 5 provided at intervals in parallel to each other. Then, the end of each extruded flat multi-hole tube 11 for heat exchanger is inserted into an opening (not shown) provided on the side surface of the header pipe 5, and a corrugated shape is formed between the extruded flat multi-hole tubes 11 for the heat exchanger. When the fins 6 are arranged and assembled, and the resulting assembly is charged into a heating furnace and heated, the header pipe 5 and the tube 1 are brazed and fixed by the brazing material of the extruded flat multi-hole tube 11 for heat exchangers. A heat exchanger in which corrugated fins 6 are brazed and fixed between the tubes 1 and 1 is obtained.

一般に、熱交換器を構成するチューブ1の肉厚は、熱交換を効率よく行う観点から、ヘッダーパイプ5などに比べて薄くなっている。このため、チューブ1とヘッダーパイプ5がほぼ同一の速度で腐食した場合、先にチューブ1に穴が空き、そこから媒体が漏れるおそれがある。従って熱交換器では、主にチューブ1の防食対策が重要な課題になっている。   Generally, the thickness of the tube 1 constituting the heat exchanger is thinner than that of the header pipe 5 and the like from the viewpoint of efficiently performing heat exchange. For this reason, when the tube 1 and the header pipe 5 corrode at substantially the same speed, there is a possibility that the tube 1 has a hole first and the medium leaks from there. Therefore, in the heat exchanger, the anticorrosion measure of the tube 1 is an important issue.

また、熱交換器用押出扁平多穴管11では、組立性、ろう付け性、熱交換器の強度・耐食性などについて所定の条件を満たすことが要求されている。さらに、このような熱交換器用押出扁平多穴管11は、一般に、幅5〜50mm、高さ1〜5mmの断面形状とされており、所定の寸法精度や表面粗さなどの条件を満たすことが要求されている。   In addition, the extruded flat multi-hole tube 11 for heat exchanger is required to satisfy predetermined conditions with respect to assembling property, brazing property, heat exchanger strength / corrosion resistance, and the like. Furthermore, such an extruded flat multi-hole tube 11 for a heat exchanger is generally formed into a cross-sectional shape having a width of 5 to 50 mm and a height of 1 to 5 mm, and satisfies a predetermined dimensional accuracy and surface roughness. Is required.

このような条件を満たす熱交換器用押出扁平多穴管11を実現できる材料としては、押出性の良好な純アルミニウムや、少量のCuが含有されたアルミニウム合金などが挙げられ、広く使用されている(例えば、特許文献1)。   Examples of the material that can realize the extruded flat multi-hole tube 11 for heat exchanger that satisfies such conditions include pure aluminum with good extrudability and aluminum alloys containing a small amount of Cu, and are widely used. (For example, patent document 1).

このCuの添加は、製品強度を高める一方で、適度な添加量に制御する事により高温での変形抵抗が低減し、押出性の改善に寄与している。
一方、熱交換器用押出扁平多穴管11を腐食環境下で使用した場合には孔食などの局部腐食が生じることがあるが、特に近年の軽量・薄肉化を図った場合には比較的早期に貫通孔が生じ、使用に耐えられなくなる虞があった。
この耐食性の問題に関しては、チューブ表面にZnを被覆して製品のろう付け時の加熱でチューブ内面へと拡散させる手法が用いられており、実環境ではチューブ肉厚が比較的厚い場合にはZnのいわゆる犠牲陽極効果によって局部腐食に進行を最小限に抑える方法が用いられていた。犠牲陽極効果を付与する方法としては、Zn溶射やZn Flux塗布などの方法により、チューブ表面にZnを設ける手法がある。
例えば、特許文献2には、Si粉末とZn含有フラックスとを含むフラックス層を表面に設けた熱交換器用チューブが記載されている。
特開2001−26832号公報 特開2004−330233号公報
The addition of Cu increases the strength of the product, while reducing the deformation resistance at high temperatures by controlling the addition amount to an appropriate level, thereby contributing to the improvement of extrudability.
On the other hand, when the extruded flat multi-hole tube 11 for heat exchangers is used in a corrosive environment, local corrosion such as pitting corrosion may occur, but it is relatively early especially when the recent reduction in weight and thickness is achieved. There was a possibility that a through-hole was formed in the case and could not be used.
Regarding this corrosion resistance problem, a method is used in which Zn is coated on the tube surface and diffused to the inner surface of the tube by heating at the time of brazing of the product. The so-called sacrificial anode effect was used to minimize the progression to local corrosion. As a method for imparting the sacrificial anode effect, there is a method of providing Zn on the tube surface by a method such as Zn spraying or Zn flux coating.
For example, Patent Document 2 describes a heat exchanger tube in which a flux layer containing Si powder and Zn-containing flux is provided on the surface.
JP 2001-26832 A JP 2004-330233 A

しかしながら、Zn溶射は溶射量を正確に制御することが難しく、溶射量のバラツキが大きくなることによる耐食性の劣化が避けられない。また、Zn Flux塗布は一般的にロールコート方式を採るが、これについても安定して均一な塗布を行なうことは難しく、Zn濃度不均一による耐食性劣化が避けられない。   However, it is difficult for Zn spraying to control the amount of spraying accurately, and deterioration in corrosion resistance due to large variations in the amount of spraying is inevitable. In addition, although Zn flux coating generally adopts a roll coating method, it is difficult to stably and uniformly apply this, and corrosion resistance deterioration due to non-uniform Zn concentration is inevitable.

また、チューブ肉厚が0.3mmより薄くなると、従来の肉厚では看過できた局部腐食でも材料強度の著しい低下が起こり、熱交換器冷媒の内圧によって、この局部腐食での変形が進み、容易に破断に至る傾向がある。このことから更なる耐食性向上が求められた。   In addition, when the tube thickness is less than 0.3 mm, the material strength significantly decreases even with local corrosion that could be overlooked with the conventional wall thickness, and the internal pressure of the heat exchanger refrigerant causes the deformation due to this local corrosion to proceed easily. There is a tendency to break. Therefore, further improvement in corrosion resistance has been demanded.

現在、広く用いられている合金としては、純アルミに少量のCuを添加した合金があるが、経時変化や加熱によってそれまで固溶していたCuが析出し、粒界腐食による耐食性の著しい劣化(早期貫通孔の発生)に至るケースが問題となっていた。   Currently, alloys that are widely used include alloys in which a small amount of Cu is added to pure aluminum. However, Cu that had been dissolved until then changes due to aging or heating, and the corrosion resistance is significantly deteriorated due to intergranular corrosion. Cases leading to (early through-hole generation) have been a problem.

そこで、合金添加元素および添加量を見直し、現行よりも耐食性の優れるチューブ材の検討を行った。前記の如く、耐食性劣化の原因となるCu添加量の低減を検討した。ただ、Cu添加量を低減した場合、機械的性質の低下に直結するため、多元素による強度補完が必須となる。   Accordingly, the alloy additive elements and addition amounts were reviewed, and tube materials with better corrosion resistance than the current one were studied. As described above, reduction of the amount of Cu added, which causes deterioration of corrosion resistance, was examined. However, when the amount of Cu added is reduced, it directly leads to a decrease in mechanical properties, so that it is essential to supplement strength with multiple elements.

本発明は、上記事情に鑑みてなされたものであり、耐食性に優れ、十分な強度を有し、薄肉化可能な押出チューブ、および熱交換器用押出扁平多穴管を提供することを目的とする。
さらに、本発明は、上記の押出チューブまたは熱交換器用多穴管を用い、耐食性に優れ、十分な強度を有する熱交換器を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an extruded tube having excellent corrosion resistance, sufficient strength, and capable of being thinned, and an extruded flat multi-hole tube for a heat exchanger. .
Furthermore, an object of the present invention is to provide a heat exchanger that is excellent in corrosion resistance and has sufficient strength, using the extruded tube or the multi-hole tube for heat exchanger.

上記課題を解決するため、本発明者は、前述の強度補完元素について鋭意検討した結果、耐食性および押出性を劣化させない条件を満たすものとしてTi、Zrが求められた。そして、このTi、Zrは機械的性質の補完ができるだけでなく、Al−Ti系、Al−Zr系化合物をそれぞれ形成し、押出時の金型クリーニング効果を発揮することや、チューブ組織の扁平化を促し、孔食状腐食による貫通孔発生を遅延させる効果があることを見出した。またCu固溶量を制御することで前記のTiによる耐食性向上効果を更に有効とする手段を発明した。そして、更なる耐食性を付与するためにZnを被覆する方法を考案し、本発明を完成させるに至った。すなわち、本発明は以下の構成からなる。   In order to solve the above-mentioned problems, the present inventor has intensively studied the above-described strength-complementing element. And Ti and Zr can not only complement the mechanical properties, but also form Al-Ti and Al-Zr compounds, respectively, to exhibit the mold cleaning effect during extrusion, and to flatten the tube structure It has been found that there is an effect of delaying the generation of through holes due to pitting corrosion. In addition, the inventors have invented a means for further improving the corrosion resistance improvement effect of Ti by controlling the amount of Cu solid solution. And in order to provide further corrosion resistance, the method of coat | covering Zn was devised, and it came to complete this invention. That is, the present invention has the following configuration.

(1)本発明の熱交換器用押出扁平多穴管は、質量%でSi:0.01〜0.30%、Fe:0.01〜0.30%、Cu:0.05〜0.40%、Mn:0.05〜0.30%からなる組成に、Ti:0.05〜0.25%を含有、またはZr:0.05〜0.25%を含有、またはZr:0.05〜0.25%およびTi:0.05〜0.25%を含有し、かつZrとTiとの合計が0.3%以下であり、残部がAlおよび不可避不純物からなるアルミニウム合金からなり、マトリックス中に分散している粒子面積1.0μm以上の粒子のうち、AlFeSi安定相の占める面積率が0.1%以上0.5%未満であり、Zn含有フラックスと、Si粉末と、バインダとを混合したろう付用組成物が外表面に塗布されたことを特徴とする。 (1) The extruded flat multi-hole tube for heat exchanger of the present invention is Si: 0.01 to 0.30%, Fe: 0.01 to 0.30%, Cu: 0.05 to 0.40 in mass%. %, Mn: 0.05 to 0.30%, Ti: 0.05 to 0.25%, or Zr: 0.05 to 0.25%, or Zr: 0.05 -0.25% and Ti: 0.05-0.25%, the total of Zr and Ti is 0.3% or less, the balance is made of an aluminum alloy consisting of Al and inevitable impurities, and the matrix Among the particles having a particle area of 1.0 μm 2 or more dispersed therein, the area ratio occupied by the AlFeSi stable phase is 0.1% or more and less than 0.5%, Zn-containing flux, Si powder, binder, And a brazing composition mixed with

(2)また、本発明の熱交換器用押出扁平多穴管は、前記Znフラックス層がZnF,ZnCl,KZnFのいずれか1種又は2種以上からなることができる。 (2) The heat exchanger extrusion flat multi-hole tubes of the present invention, the Zn flux layer can be made of ZnF 2, ZnCl 2, any one of KZnF 3 or 2 or more kinds.

(3)また、本発明の熱交換器は、(1)又は(2)のいずれかに記載の熱交換器用押出扁平多穴管を備えたことを特徴とする。 (3) Moreover, the heat exchanger of this invention was equipped with the extrusion flat multi-hole pipe for heat exchangers as described in either (1) or (2).

本発明の押出チューブおよび熱交換器用多穴管によれば、質量%でSi:0.01〜0.30%、Fe:0.01〜0.30%、Cu:0.05〜0.40%、Mn:0.05〜0.30%からなる組成に、Ti:0.05〜0.25%を含有、またはZr:0.05〜0.25%を含有、またはZr:0.05〜0.25%およびTi:0.05〜0.25%を含有し、かつZrとTiとの合計が0.3%以下であり、残部がAlおよび不可避不純物からなるアルミニウム合金からなり、マトリックス中に分散している粒子面積1.0μm以上の粒子のうち、AlFeSi安定相の占める面積率が0.1%以上0.5%未満であり、Zn含有フラックスと、Si粉末と、バインダとを混合したろう付用組成物が外表面に塗布されたことで、耐食性劣化の原因となるCu添加量を低減した上で、Cu低減による機械的性質の低下を防ぐための強度補完元素として、TiやZrを含有することで、耐食性および押出性を劣化させずに機械的性質の補完ができる。更に、Al−Ti系、Al−Zr系化合物をそれぞれ形成するため、押出時の金型クリーニング効果を発揮する。また、チューブ組織の扁平化を促し、孔食状腐食による貫通孔発生を抑制する効果がある。 According to the extruded tube and the multi-hole tube for heat exchanger of the present invention, Si: 0.01 to 0.30%, Fe: 0.01 to 0.30%, Cu: 0.05 to 0.40 in mass%. %, Mn: 0.05 to 0.30%, Ti: 0.05 to 0.25%, or Zr: 0.05 to 0.25%, or Zr: 0.05 -0.25% and Ti: 0.05-0.25%, the total of Zr and Ti is 0.3% or less, the balance is made of an aluminum alloy consisting of Al and inevitable impurities, and the matrix Among the particles having a particle area of 1.0 μm 2 or more dispersed therein, the area ratio occupied by the AlFeSi stable phase is 0.1% or more and less than 0.5%, Zn-containing flux, Si powder, binder, The brazing composition mixed with In addition to reducing the amount of Cu that causes corrosion resistance deterioration, and containing Ti and Zr as strength supplemental elements to prevent deterioration of mechanical properties due to Cu reduction, corrosion resistance and extrudability are not deteriorated. Complements mechanical properties. Furthermore, since an Al—Ti-based compound and an Al—Zr-based compound are formed, a mold cleaning effect during extrusion is exhibited. Moreover, it has the effect of promoting flattening of the tube structure and suppressing the generation of through holes due to pitting corrosion.

次に、Cu固溶量を可能な限り低減することで、その後の経時変化や加熱による粒界腐食を防止し、かつTiによる耐食性向上効果を更に有効とする。このCu固溶量を低減するということは、すなわちCuを析出するということであり、このCuを析出させる手段として、AlFeSi安定相の発生を利用する。CuはSiと似た挙動を示すことから、AlFeSi安定相を築くということは、AlFeSi(Cu)安定相を築くことに共通する。このようにして、Cuを析出させ、合金中における固溶量を低減することで、耐食性を向上させることができる。   Next, by reducing the amount of Cu solid solution as much as possible, the intergranular corrosion due to subsequent changes with time and heating is prevented, and the effect of improving the corrosion resistance by Ti is further effective. Reducing the amount of Cu solid solution means that Cu is precipitated, and the generation of an AlFeSi stable phase is used as a means for precipitating this Cu. Since Cu behaves similarly to Si, building an AlFeSi stable phase is common to building an AlFeSi (Cu) stable phase. Thus, corrosion resistance can be improved by precipitating Cu and reducing the amount of solid solution in the alloy.

また、Zn含有フラックスとSi粉末、バインダを混合したろう付用組成物が塗布されたことで、ろう付組成物が、ろう付時に溶融ろうを形成して、Zn拡散・分布の均一化を促し、塗布時に生じた分均一を解消する。また、ZnがAl素地に拡散する事によって、犠牲陽極効果を発揮するが、一方ではSiが拡散によってマトリックス中に固溶し、Znによる犠牲陽極効果を妨げている。よって、本発明では、ろう付け前段階にてSiが拡散して来る事を見込み、AlFeSi相を形成する核を発生させておくことで、ろう付け時、前記核と拡散Siが結びついてAlFeSi相を形成し、マトリックスへのSi固溶を抑止し、Znによる犠牲陽極効果がより有効なものとなり、耐食性およびろう付機能が向上する。   Also, by applying a brazing composition in which Zn-containing flux, Si powder and binder are mixed, the brazing composition forms a molten brazing during brazing and promotes uniform Zn diffusion and distribution. Eliminates the uniformity that occurs during application. Further, when Zn diffuses into the Al substrate, the sacrificial anode effect is exhibited. On the other hand, Si is dissolved in the matrix by diffusion, and the sacrificial anode effect due to Zn is hindered. Therefore, in the present invention, it is anticipated that Si will diffuse in the stage before brazing, and by generating nuclei that form an AlFeSi phase, at the time of brazing, the nuclei and the diffused Si are combined to form an AlFeSi phase. This suppresses the solid solution of Si in the matrix, makes the sacrificial anode effect due to Zn more effective, and improves the corrosion resistance and brazing function.

また、本発明の熱交換器は、上記の熱交換器用押出扁平多穴管を備えたことで、合金と犠牲陽極層との組み合わせによる耐食性向上が可能となる。   Further, the heat exchanger of the present invention includes the above-described extruded flat multi-hole tube for heat exchanger, so that the corrosion resistance can be improved by the combination of the alloy and the sacrificial anode layer.

以下、本発明に係る耐食性に優れた熱交換器用押出扁平多穴管及び熱交換器について例を挙げて詳細に説明する。
本実施形態の耐食性に優れた熱交換器用押出扁平多穴管は、質量%でSi:0.01〜0.30%、Fe:0.01〜0.30%、Cu:0.05〜0.40%、Mn:0.05〜0.30%からなる組成に、Ti:0.05〜0.25%を含有、またはZr:0.05〜0.25%を含有、またはZr:0.05〜0.25%およびTi:0.05〜0.25%を含有し、かつZrとTiとの合計が0.3%以下であり、残部がAlおよび不可避不純物からなるアルミニウム合金からなり、マトリックス中に分散している粒子面積1.0μm以上の粒子のうち、AlFeSi安定相の占める面積率が0.1%以上0.5%未満であり、Zn含有フラックスと、Si粉末と、バインダとを混合したろう付用組成物が外表面に塗布されたことを特徴とする。
Hereinafter, the extruded flat multi-hole tube for a heat exchanger and the heat exchanger excellent in corrosion resistance according to the present invention will be described in detail with examples.
The extruded flat multi-hole tube for heat exchanger having excellent corrosion resistance according to this embodiment is Si: 0.01 to 0.30%, Fe: 0.01 to 0.30%, Cu: 0.05 to 0% by mass. .40%, Mn: 0.05 to 0.30%, Ti: 0.05 to 0.25%, or Zr: 0.05 to 0.25%, or Zr: 0 0.05 to 0.25% and Ti: 0.05 to 0.25%, and the total of Zr and Ti is 0.3% or less, and the balance is made of an aluminum alloy composed of Al and inevitable impurities. In the particles having a particle area of 1.0 μm 2 or more dispersed in the matrix, the area ratio occupied by the AlFeSi stable phase is 0.1% or more and less than 0.5%, Zn-containing flux, Si powder, A brazing composition mixed with a binder was applied to the outer surface And features.

[アルミニウム合金の成分組成]
本発明に係る耐食性に優れた熱交換器用押出扁平多穴管に用いるアルミニウム合金の成分組成について説明する。以下に記載する各元素の含有量は、特に規定しない限り質量%である。
[Component composition of aluminum alloy]
The component composition of the aluminum alloy used for the extruded flat multi-hole pipe for heat exchangers excellent in corrosion resistance according to the present invention will be described. Unless otherwise specified, the content of each element described below is mass%.

「Si」0.01〜0.30%
本発明を構成する熱交換器用押出扁平多穴管において、Siを含有させることでAlFeSi安定相を発生させ、Cuを析出させることができる。CuはSiと似た挙動を示すことから、AlFeSi安定相を築くということは、AlFeSi(Cu)安定相を築くことに共通する。そして、その後の経時変化や加熱による粒界腐食を防止し、かつTiによる耐食性向上効果を更に有効とする。
Siの含有量が0.01%未満であると、マトリックス中にAlFeSi安定相を生じさせる効果が十分に得られず、Cuの析出が不十分となるため、耐食性を十分に向上させることができない場合がある。また、Siの含有量が0.01%未満であると、強度が不十分となるため好ましくない。また、Siの含有量が0.30%を超えると、低融点化合物が形成されやすくなり、高速押出の押出加工熱に起因するピックアップが生じやすくなる。
"Si" 0.01-0.30%
In the extruded flat multi-hole tube for a heat exchanger constituting the present invention, an AlFeSi stable phase can be generated and Cu can be precipitated by containing Si. Since Cu behaves similarly to Si, building an AlFeSi stable phase is common to building an AlFeSi (Cu) stable phase. And the intergranular corrosion by subsequent temporal change and a heating is prevented, and the corrosion-resistance improvement effect by Ti is made still more effective.
If the Si content is less than 0.01%, the effect of generating an AlFeSi stable phase in the matrix cannot be sufficiently obtained, and Cu precipitation becomes insufficient, so that the corrosion resistance cannot be sufficiently improved. There is a case. Moreover, since intensity | strength will become inadequate that content of Si is less than 0.01%, it is unpreferable. On the other hand, when the Si content exceeds 0.30%, a low melting point compound is likely to be formed, and pickup due to the heat of extrusion processing at high speed extrusion is likely to occur.

「Fe」0.01〜0.30%
本発明を構成する熱交換器用押出扁平多穴管において、アルミニウム合金にFeを含有させることにより、マトリックス中にAlFeSi安定相を生じさせることができる。また、Feは、分散強化によってアルミニウム合金の強度を向上させる一方、粗大な晶出物を生成しやすく、合金の腐食速度を増大させて、耐食性を低下させる虞がある。また、Feを含有させることによって、生成した晶出物が再結晶の核となるため、ろう付け時の再結晶が微細となり、耐ろう侵食性が低下する場合がある。このため、Feの含有量は、質量%で0.01〜0.30であることが望ましい。Feの含有量を0.01〜0.30とすることにより、耐食性、ろう付性を劣化させることなく、強度を向上させることができる。
"Fe" 0.01-0.30%
In the extruded flat multi-hole tube for a heat exchanger constituting the present invention, an AlFeSi stable phase can be generated in the matrix by containing Fe in the aluminum alloy. Moreover, while Fe improves the strength of the aluminum alloy by dispersion strengthening, it tends to generate coarse crystallized products, which may increase the corrosion rate of the alloy and reduce the corrosion resistance. Moreover, since the produced crystallized substance becomes the nucleus of recrystallization by containing Fe, the recrystallization at the time of brazing becomes fine, and brazing erosion resistance may fall. For this reason, as for content of Fe, it is desirable that it is 0.01-0.30 by mass%. By setting the Fe content to 0.01 to 0.30, the strength can be improved without deteriorating the corrosion resistance and the brazing property.

「Cu」0.05〜0.40%
本発明を構成する熱交換器用押出扁平多穴管において、Cuは、熱交換器用押出扁平多穴管の強度、耐食性、押出性を向上させる作用がある。
Cuの含有量が0.05%未満であると、熱交換器用押出扁平多穴管の強度、耐食性が不十分となるため好ましくない。また、Cuの含有量が0.40%を越えると、低融点化合物が形成されやすくなり、押出時の変形抵抗が上昇して高速押出が困難となる虞が生じ、高速押出時の加工熱によって生じるアルミ滓に起因するピックアップが生じ易くなるため好ましくない。また、Cuの含有量が0.40%を越えると、低融点化合物が形成されやすくなり、高速押出の押出加工熱によって生じるアルミ滓に起因するピックアップが生じやすくなる。
"Cu" 0.05-0.40%
In the extruded flat multi-hole tube for heat exchangers constituting the present invention, Cu has the effect of improving the strength, corrosion resistance, and extrudability of the extruded flat multi-hole tube for heat exchangers.
If the Cu content is less than 0.05%, the strength and corrosion resistance of the extruded flat multi-hole tube for heat exchangers are insufficient, which is not preferable. Further, if the Cu content exceeds 0.40%, a low melting point compound is likely to be formed, the deformation resistance at the time of extrusion rises, and there is a possibility that high speed extrusion becomes difficult. Since picking up due to the generated aluminum flaws is likely to occur, it is not preferable. On the other hand, when the Cu content exceeds 0.40%, a low-melting-point compound is likely to be formed, and pickup due to aluminum soot generated by the heat of extrusion processing during high-speed extrusion tends to occur.

「Mn」0.05〜0.30%
本発明を構成する熱交換器用押出扁平多穴管において、Mnは、熱交換器用押出扁平多穴管の強度および耐食性を向上させる作用がある。
Mnの含有量が0.05%未満であると、熱交換器用押出扁平多穴管の強度および耐食性が不十分となるため好ましくない。また、Mnの含有量が0.30%を越えると、押出時の変形抵抗が上昇して高速押出が困難となる虞が生じるため好ましくない。また、Mnの含有量が0.30%を越えると、高速押出時にピックアップが生じやすくなる。
"Mn" 0.05-0.30%
In the extruded flat multi-hole tube for heat exchangers constituting the present invention, Mn has an effect of improving the strength and corrosion resistance of the extruded flat multi-hole tube for heat exchangers.
If the Mn content is less than 0.05%, the strength and corrosion resistance of the extruded flat multi-hole tube for a heat exchanger are insufficient, which is not preferable. On the other hand, if the Mn content exceeds 0.30%, deformation resistance at the time of extrusion increases, which may cause difficulty in high-speed extrusion. On the other hand, if the Mn content exceeds 0.30%, pickup tends to occur during high-speed extrusion.

「Zr」0.05〜0.25%
本発明を構成するアルミニウム合金において、Zrは、合金の強度の向上、および金型への清浄効果によって押出性を向上させる作用や、押出装置の金型と合金との接触部分の高速押出時における潤滑性を向上させてピックアップの発生を抑制するとともに、金型の磨耗性を向上させる作用がある。
Zrの含有量が0.05%未満であると、合金の強度が不十分となるため好ましくない。また、Zrの含有量が0.05%未満であると、金型への清浄効果が十分に得られない虞や、高速押出時におけるピックアップの発生を十分に抑制できない虞が生じる。また、Zrの含有量が0.25%を越えると、鋳造性が低下して割れなどが生じやすくなるため好ましくない。さらに、Zrの含有量が0.25%を越えると、粗大なZr化合物が発生しやすくなって、アルミニウム合金中の成分が不均一となり、素材の品質を損なうことになるため好ましくない。
"Zr" 0.05-0.25%
In the aluminum alloy constituting the present invention, Zr improves the strength of the alloy and improves the extrudability by the cleaning effect on the mold, and at the time of high-speed extrusion of the contact portion between the mold and the alloy of the extrusion apparatus. It has the effect of improving lubricity and suppressing the occurrence of pick-up and improving the wear of the mold.
If the Zr content is less than 0.05%, the strength of the alloy becomes insufficient. Further, when the Zr content is less than 0.05%, there is a possibility that a sufficient cleaning effect on the mold cannot be obtained, and that the occurrence of pickup during high-speed extrusion cannot be sufficiently suppressed. On the other hand, if the content of Zr exceeds 0.25%, it is not preferable because castability is deteriorated and cracks are easily generated. Furthermore, if the content of Zr exceeds 0.25%, a coarse Zr compound is likely to be generated, the components in the aluminum alloy become non-uniform, and the quality of the material is impaired.

「Ti」0.05〜0.25%
本発明を構成するアルミニウム合金において、Tiは、合金の強度および耐久性を向上させ、押出装置の金型と合金との接触部分の高速押出時における潤滑性を向上させてピックアップの発生を抑制するものである。
Tiの含有量が0.05%未満であると、合金の強度および耐久性を向上させる効果が十分に得られなくなる場合があるため好ましくない。また、Tiの含有量が0.05%未満であると、高速押出時における潤滑性を向上させる効果が十分に得られず、高速押出時におけるピックアップの発生を抑制する効果を向上させることができない虞がある。また、Tiの含有量が0.25%を越えると、押出時の変形抵抗が上昇して高速押出が困難となる虞が生じるため好ましくない。さらに、Tiの含有量が0.25%を越えると、粗大なTi化合物が発生しやすく、素材の品質を損なうことになるため好ましくない。
"Ti" 0.05-0.25%
In the aluminum alloy constituting the present invention, Ti improves the strength and durability of the alloy, improves the lubricity at the time of high-speed extrusion of the contact portion between the mold of the extrusion device and the alloy, and suppresses the occurrence of pickup. Is.
If the Ti content is less than 0.05%, the effect of improving the strength and durability of the alloy may not be obtained sufficiently, which is not preferable. Further, if the Ti content is less than 0.05%, the effect of improving the lubricity during high-speed extrusion cannot be sufficiently obtained, and the effect of suppressing the occurrence of pickup during high-speed extrusion cannot be improved. There is a fear. On the other hand, if the Ti content exceeds 0.25%, deformation resistance at the time of extrusion is increased, which may cause difficulty in high-speed extrusion. Further, if the Ti content exceeds 0.25%, a coarse Ti compound is likely to be generated, and the quality of the material is impaired.

また、本発明を構成するアルミニウム合金は、質量%においてZrが0.05〜0.25%、Tiが0.05〜0.25%の範囲で、かつZrおよびTiの含有量の合計が0.3%以下の範囲である場合、ZrおよびTiをともに含有することができる。
ZrおよびTiの含有量が0.05%未満であると、合金の強度が不十分となるため好ましくない。また、金型への清浄効果が十分に得られない虞や、高速押出時におけるピックアップの発生を十分に抑制できない虞が生じる。また、ZrおよびTiの含有量の合計が0.3%を越えると、鋳造性が低下して割れなどが生じやすくなるため好ましくない。さらに、粗大なZr化合物やTi化合物が発生しやすくなって、アルミニウム合金中の成分が不均一となり、素材の品質を損なうことになるため好ましくない。
The aluminum alloy constituting the present invention has a mass% in which Zr is 0.05 to 0.25%, Ti is 0.05 to 0.25%, and the total content of Zr and Ti is 0. When it is in the range of not more than 3%, both Zr and Ti can be contained.
If the content of Zr and Ti is less than 0.05%, the strength of the alloy becomes insufficient. In addition, there is a possibility that the cleaning effect on the mold cannot be sufficiently obtained, and there is a possibility that the occurrence of pickup during high-speed extrusion cannot be sufficiently suppressed. On the other hand, if the total content of Zr and Ti exceeds 0.3%, it is not preferable because castability is lowered and cracks are easily generated. Furthermore, coarse Zr compounds and Ti compounds are likely to be generated, the components in the aluminum alloy become non-uniform, and the quality of the material is impaired.

[AlFeSi安定相]
本発明の熱交換器用押出扁平多穴管では、マトリックス中に分散している粒子面積1.0μm以上の粒子のうち、AlFeSi安定相の占める面積率が0.1%以上0.5%未満であるものとすることが好ましい。このようなアルミニウム合金は、マトリックス中のSiがAlFeSi安定相と共にAlFeSi(Cu)安定相として析出されたものとなる。ここで、マトリックス中に分散している粒子の粒子面積1.0μm未満の粒子は、粒子の容量が少ないため、押出時の加熱(予熱、加工熱、摩擦熱)によって、容易にSiの固溶が生じ、効果的にSiをAlFeSi安定相として析出させることができないため、好ましくない。上記面積率が0.1%未満であると、SiをAlFeSi安定相として析出させる効果や、CuをAlFeSi(Cu)安定相として析出させることによる効果が十分に得られないため、好ましくない。また、上記面積率を0.5%以上としても、SiやCuを析出させることによる効果が飽和するため、耐食性の向上は見られない。
[AlFeSi stable phase]
In the extruded flat multi-hole tube for heat exchanger of the present invention, the area ratio occupied by the AlFeSi stable phase is 0.1% or more and less than 0.5% among particles having a particle area of 1.0 μm 2 or more dispersed in the matrix. It is preferable that In such an aluminum alloy, Si in the matrix is precipitated as an AlFeSi (Cu) stable phase together with the AlFeSi stable phase. Here, particles having a particle area of less than 1.0 μm 2 dispersed in the matrix have a small volume of particles, so that Si solidification can be easily performed by heating (preheating, processing heat, frictional heat) during extrusion. Since dissolution occurs and Si cannot be effectively precipitated as an AlFeSi stable phase, it is not preferable. If the area ratio is less than 0.1%, the effect of precipitating Si as an AlFeSi stable phase and the effect of precipitating Cu as an AlFeSi (Cu) stable phase cannot be sufficiently obtained, which is not preferable. Further, even if the area ratio is 0.5% or more, the effect of precipitating Si or Cu is saturated, so that the corrosion resistance is not improved.

なお、AlFeSi相にはAlFeSi安定相だけでなく、AlFeSi準安定相もある。AlFeSi準安定相は、粒子面積が1.0μm以上であっても、押出時の加熱によって容易にSiの固溶が生じてしまうため、マトリックス中のSi濃度を向上させてしまうので本発明の目的達成には不利となる。
ここで、「AlFeSi安定相」とは、EDX(Energy Dispersive X−ray Spectroscopy:エネルギー分散型X線分光法)により測定したFe,Si原子濃度の比(=Fe原子濃度/Si原子濃度)が3.5未満であるものを意味する。
また、「AlFeSi準安定相」とは、EDXにより測定したFe,Si原子濃度の比(=Fe原子濃度/Si原子濃度)が3.5〜7.0であるものを意味する。
The AlFeSi phase includes not only an AlFeSi stable phase but also an AlFeSi metastable phase. Even if the particle area of the AlFeSi metastable phase is 1.0 μm 2 or more, since the solid solution of Si is easily generated by heating during extrusion, the Si concentration in the matrix is improved. It is disadvantageous for the purpose.
Here, the “AlFeSi stable phase” is a ratio of Fe and Si atom concentrations (= Fe atom concentration / Si atom concentration) measured by EDX (Energy Dispersive X-ray Spectroscopy). Means less than .5.
The “AlFeSi metastable phase” means that the ratio of Fe and Si atom concentrations (= Fe atom concentration / Si atom concentration) measured by EDX is 3.5 to 7.0.

マトリックス中にCuが固溶していると、様々な問題が生じる。まず、加熱や経時変化でSiとともに析出し、粒界近傍にCu−Si欠乏相を形成して粒界腐食が発生する。また、マトリックスの電位が貴になり、AlZr、AlTi粒子と電位差がとれなくなることや、Zn Fluxによる犠牲陽極効果を阻害するなどの問題が生じる。このようなことが原因で、押出チューブに早期貫通孔が発生し、耐食性が劣化する。
そのため、Cuの固溶量の低減を検討し、Cuを析出させる手段として、AlFeSiすなわちAlFeSi(Cu)を析出する方法を採用した。マトリックス中に分散している粒子面積1.0μm以上の粒子のうち、AlFeSi安定相の占める面積率が0.1%未満であると効果が得られないため、好ましくない。また、AlFeSi安定相の占める面積率が0.5%以上であると飽和する。そのため、AlFeSi安定相の占める面積率が0.1%以上0.5%未満であるアルミニウム合金を用いることが好ましい。
When Cu is dissolved in the matrix, various problems occur. First, it precipitates with Si by heating or aging, and forms a Cu-Si deficient phase in the vicinity of the grain boundary to cause grain boundary corrosion. In addition, the potential of the matrix becomes noble, and there are problems that the potential difference cannot be obtained with the AlZr and AlTi particles and that the sacrificial anode effect due to Zn flux is hindered. For these reasons, early through holes are generated in the extruded tube, and the corrosion resistance is deteriorated.
Therefore, reduction of the solid solution amount of Cu was studied, and a method of depositing AlFeSi, that is, AlFeSi (Cu) was adopted as a means for depositing Cu. Of the particles having a particle area of 1.0 μm 2 or more dispersed in the matrix, if the area ratio occupied by the AlFeSi stable phase is less than 0.1%, the effect cannot be obtained, which is not preferable. Moreover, it saturates that the area ratio which an AlFeSi stable phase occupies is 0.5% or more. Therefore, it is preferable to use an aluminum alloy in which the area ratio occupied by the AlFeSi stable phase is 0.1% or more and less than 0.5%.

この方法によって、加熱や経時変化によるCu析出が防止でき、粒界腐食が防止できる。また、AlZr、AlTi粒子との電位差が得られ、層状腐食を促進することから、孔食性腐食が防止できる。また、Zn Fluxによる犠牲陽極効果も増加する。したがって、押出チューブにおける耐食性の向上が可能になる。   By this method, Cu precipitation due to heating or aging can be prevented, and intergranular corrosion can be prevented. Moreover, since a potential difference from AlZr and AlTi particles is obtained and layer corrosion is promoted, pitting corrosion can be prevented. Moreover, the sacrificial anode effect by Zn Flux also increases. Therefore, the corrosion resistance in the extruded tube can be improved.

続いて、本発明を構成するアルミニウム合金の製造方法について説明する。ただし、これは一例であって、本発明は以下の製造方法に限定されない。   Then, the manufacturing method of the aluminum alloy which comprises this invention is demonstrated. However, this is an example, and the present invention is not limited to the following manufacturing method.

[アルミニウム合金の製造方法]
本実施形態においては、アルミニウム合金を均質化処理する工程において、第1熱処理と冷却工程と第2熱処理とを順に行なう。
「第1熱処理」
第1熱処理においては、上記のアルミニウム合金を560℃〜620℃の範囲の温度、より好ましくは590℃超〜610℃の範囲の温度で1時間〜18時間、より好ましくは3時間〜10時間保持する。
第1熱処理を行なうことで、Cuや不可避不純物として含まれるSiなどの低融点元素を均一に分布させ、高速押出時にピックアップを発生させる元素を固溶させて、ピックアップの発生を抑制することができる。また、アルミニウム合金中に均一に拡散しにくいZrを、アルミニウム合金中に均一に拡散させることができる。
[Production method of aluminum alloy]
In the present embodiment, in the step of homogenizing the aluminum alloy, the first heat treatment, the cooling step, and the second heat treatment are sequentially performed.
"First heat treatment"
In the first heat treatment, the aluminum alloy is held at a temperature in the range of 560 ° C. to 620 ° C., more preferably in the range of more than 590 ° C. to 610 ° C. for 1 hour to 18 hours, more preferably 3 hours to 10 hours. To do.
By performing the first heat treatment, low melting point elements such as Cu and Si contained as an inevitable impurity can be uniformly distributed, and the element that generates the pickup during high speed extrusion can be dissolved to suppress the generation of the pickup. . Further, Zr that is difficult to uniformly diffuse in the aluminum alloy can be uniformly diffused in the aluminum alloy.

第1熱処理の処理温度が上記範囲よりも低い場合や処理時間が上記範囲よりも短い場合には、Si、Cu、Zrなどの元素の分布が不均一となったり、高速押出時にピックアップを発生させる元素の固溶が不十分となり、高速押出時におけるピックアップの発生を十分に抑制できなかったりする虞が生じる。また、第1熱処理の処理温度が上記範囲よりも高い場合や処理時間が上記範囲よりも長い場合には、アルミニウム合金の一部が溶解する虞があるし、第1熱処理を行なうことによる費用が大きくなり、経済的に不利となる。   When the processing temperature of the first heat treatment is lower than the above range or when the processing time is shorter than the above range, the distribution of elements such as Si, Cu, Zr, etc. becomes non-uniform, or pickup is generated during high speed extrusion There is a possibility that the solid solution of the elements becomes insufficient and the occurrence of pickup during high-speed extrusion cannot be sufficiently suppressed. In addition, when the processing temperature of the first heat treatment is higher than the above range or when the processing time is longer than the above range, a part of the aluminum alloy may be dissolved, and the cost of performing the first heat treatment is high. It becomes large and disadvantageous economically.

「冷却工程」
冷却工程は、第1熱処理の後、第2熱処理の前に、第1熱処理によって高温となったアルミニウム合金を常温とする工程である。
アルミニウム合金中に析出されたZr化合物は、押出装置の金型と熱交換器用押出合金との接触部分の高速押出時における潤滑性を向上させてピックアップの発生を抑制するとともに、金型の磨耗性を向上させる。Zr化合物からなる析出物(サイト)の大きさは、均質化処理における温度が高温であるほど大きく、低温であるほど小さくなり、Zr化合物からなる析出物の数は、均質化処理における温度が高温であるほど少なく、低温であるほど多くなる。したがって、冷却工程により、Zr化合物からなる析出物の核となる大きさの小さい析出物を多数形成しておくことで、第2熱処理において、冷却工程で形成された小さい析出物を軸としたZr化合物の析出を促進することができ、大きい析出物を多数形成することができる。
"Cooling process"
The cooling step is a step in which the aluminum alloy that has become high temperature by the first heat treatment is brought to room temperature after the first heat treatment and before the second heat treatment.
The Zr compound deposited in the aluminum alloy improves the lubricity at the time of high-speed extrusion of the contact part between the mold of the extrusion device and the extruded alloy for the heat exchanger, and suppresses the occurrence of pick-up and also wears the mold. To improve. The size of the precipitate (site) made of the Zr compound is larger as the temperature in the homogenization treatment is higher, and is smaller as the temperature is lower. The number of the precipitate made of the Zr compound is higher in the temperature in the homogenization treatment. The lower the temperature, the higher the temperature. Therefore, by forming a large number of small-sized precipitates serving as nuclei of the precipitates made of the Zr compound in the cooling step, Zr around the small precipitates formed in the cooling step in the second heat treatment. The precipitation of the compound can be promoted, and a large number of large precipitates can be formed.

冷却工程においては、第1熱処理後のアルミニウム合金を、好ましくは20℃/min〜100℃/min、より好ましくは40℃/min〜60℃/minの冷却速度で冷却する。冷却速度を20℃/min未満としても、冷却工程を行うことによるZr化合物からなる析出物の核の形成効果に変化はないし、冷却工程に要する時間が長くなるため好ましくない。また、冷却速度が100℃/minを超えると、冷却工程を行っても、Zr化合物からなる析出物の核が十分に形成されない虞がある。   In the cooling step, the aluminum alloy after the first heat treatment is preferably cooled at a cooling rate of 20 ° C./min to 100 ° C./min, more preferably 40 ° C./min to 60 ° C./min. Even if the cooling rate is less than 20 ° C./min, the effect of forming the nuclei of precipitates composed of Zr compounds by performing the cooling step is not changed, and the time required for the cooling step is not preferable. On the other hand, if the cooling rate exceeds 100 ° C./min, there is a possibility that the nucleus of the precipitate made of the Zr compound is not sufficiently formed even if the cooling step is performed.

「第2熱処理」
第2熱処理は、第1熱処理後のアルミニウム合金を450℃〜520℃の範囲の温度、より好ましくは480℃〜510℃の範囲の温度で2時間超〜18時間、より好ましくは3時間〜10時間保持する。
第2熱処理を行なうことで、第1熱処理によって一旦固溶したSi、Cu、Mn、Zrを前記冷却工程で形成した析出物(サイト)と結合させることで、押出装置の金型と熱交換器用押出合金との接触部分の高速押出時における潤滑性を向上させ、ピックアップの発生を抑制するとともに、金型の磨耗性を向上させることができる。
"Second heat treatment"
In the second heat treatment, the aluminum alloy after the first heat treatment is subjected to a temperature in the range of 450 ° C. to 520 ° C., more preferably in the range of 480 ° C. to 510 ° C. for more than 2 hours to 18 hours, more preferably 3 hours to 10 hours. Hold for hours.
By performing the second heat treatment, Si, Cu, Mn, and Zr once dissolved by the first heat treatment are combined with the precipitates (sites) formed in the cooling step, so that the mold for the extrusion apparatus and the heat exchanger are used. Lubricity at the time of high-speed extrusion of the contact portion with the extruded alloy can be improved, generation of pick-up can be suppressed, and wear of the mold can be improved.

第2熱処理の処理温度が上記範囲よりも低い場合や処理時間が上記範囲よりも短い場合には、AlFeSi安定相およびAlFeSi(Cu)安定相の析出物を十分に析出させることができない虞や、アルミニウム合金中に析出物を十分に拡散させることができない虞が生じる。また、第2熱処理の処理温度が上記範囲よりも高い場合は、アルミニウム合金中における元素の拡散が活発となり、アルミニウム合金中の元素が拡散して、AlFeSi安定相およびAlFeSi(Cu)安定相の析出物が析出されにくくなり、上記範囲よりも処理時間を長くしても、得られる効果は変わらず、むしろ経済的に不利となる。   When the treatment temperature of the second heat treatment is lower than the above range or the treatment time is shorter than the above range, there is a possibility that the precipitates of the AlFeSi stable phase and the AlFeSi (Cu) stable phase cannot be sufficiently precipitated, There is a possibility that precipitates cannot be sufficiently diffused in the aluminum alloy. Further, when the treatment temperature of the second heat treatment is higher than the above range, the diffusion of elements in the aluminum alloy becomes active, and the elements in the aluminum alloy diffuse to precipitate AlFeSi stable phase and AlFeSi (Cu) stable phase. Even if the treatment time is longer than the above range, the effect obtained is not changed, and it is economically disadvantageous.

なお、上記均質化処理における加熱方法や加熱炉の構造等については特に限定されない。また、均質化処理する工程の後のアルミニウム合金を押出すことにより熱交換器用押出合金が得られる。ここでの押出において、押出形状は特に限定されるものではなく、熱交換器の形状等に応じて押出形状が選定される。また、押出方法(方式)については特に限定されるものではなく、押出形状等に合わせて適宜常法の方法を採用することができる。   In addition, it does not specifically limit about the heating method in the said homogenization process, the structure of a heating furnace, etc. Moreover, the extruded alloy for heat exchangers is obtained by extruding the aluminum alloy after the step of homogenizing. In the extrusion here, the extrusion shape is not particularly limited, and the extrusion shape is selected according to the shape of the heat exchanger and the like. Further, the extrusion method (method) is not particularly limited, and a conventional method can be appropriately employed according to the extrusion shape and the like.

このような熱交換器用押出合金は、熱交換器用の材料として使用されるものであり、例えば、熱媒体を流通させる熱交換器用押出扁平多穴管などとして用いられる。また、熱交換器の使用場所は、特に限定されるものではないが、自動車用の熱交換器に好適である。また、自動車用の熱交換器として、具体的にはコンデンサ、エバポレータ、インタクーラ等の用途に好適に使用できる。
また、このような熱交換器用押出扁平多穴管は、熱交換器用の部品として使用するに際し、他部材(例えばフィンやヘッダパイプ)と組み付けて、通常はろう付けにより接合される。なお、本発明においては、ろう付けの際の雰囲気や加熱温度、時間などの条件について、特に限定されるものではなく、ろう付け方法も特に限定されない。
Such an extruded alloy for a heat exchanger is used as a material for a heat exchanger, and is used, for example, as an extruded flat multi-hole tube for a heat exchanger for circulating a heat medium. Moreover, although the use place of a heat exchanger is not specifically limited, It is suitable for the heat exchanger for motor vehicles. Further, as a heat exchanger for automobiles, specifically, it can be suitably used for applications such as condensers, evaporators and intercoolers.
Moreover, when using such an extruded flat multi-hole tube for a heat exchanger as a component for a heat exchanger, it is assembled with other members (for example, fins and header pipes) and usually joined by brazing. In the present invention, the conditions such as the atmosphere, the heating temperature, and the time for brazing are not particularly limited, and the brazing method is not particularly limited.

このような熱交換器用押出扁平多穴管は、高速押出により製造がなされた場合であっても、表面にピックアップのない良好なものとなる。また、このような熱交換器用押出扁平多穴管は、高い強度を有しており、かつ高速押出により薄肉化および小断面積化された熱交換器用押出扁平多穴管の製造がなされた場合であっても、押出形状の寸法精度が十分に高い良好なものとなる。   Such an extruded flat multi-hole tube for a heat exchanger is a good one having no pickup on the surface even when manufactured by high-speed extrusion. In addition, when such an extruded flat multi-hole tube for heat exchanger has high strength, and the extruded flat multi-hole tube for heat exchanger is thinned and reduced in cross-sectional area by high-speed extrusion, Even so, the dimensional accuracy of the extruded shape is sufficiently high.

なお、上述した実施形態では、アルミニウム合金を均質化処理する工程において、第1熱処理と冷却工程と第2熱処理とを順に行なったが、第1熱処理と第2熱処理のみを行なってもよい。この場合においても、十分な強度および耐食性を有し、高速押出により多穴管を製造した場合に表面にピックアップの発生しない多穴管を製造できる。また、冷却工程を行なわない場合、第2熱処理のために常温から所定の温度まで再度加熱する必要がないので、冷却工程を行なう場合と比較して、製造に必要なエネルギーを削減できる。また、冷却工程を行なわない場合、冷却工程を行なう場合と比較して、製造工程を削減できるので、製造効率を向上させることができる。   In the above-described embodiment, the first heat treatment, the cooling step, and the second heat treatment are sequentially performed in the step of homogenizing the aluminum alloy. However, only the first heat treatment and the second heat treatment may be performed. Even in this case, it is possible to manufacture a multi-hole tube having sufficient strength and corrosion resistance and having no pickup on the surface when the multi-hole tube is manufactured by high speed extrusion. In addition, when the cooling process is not performed, it is not necessary to reheat from normal temperature to a predetermined temperature for the second heat treatment, so that energy required for manufacturing can be reduced as compared with the case where the cooling process is performed. Further, when the cooling process is not performed, the manufacturing process can be reduced as compared with the case where the cooling process is performed, so that the manufacturing efficiency can be improved.

また、上述した実施形態では、アルミニウム合金を均質化処理する工程において、冷却工程を行なったが、冷却工程に代えて、以下に示す中間工程を行なってもよい。
「中間工程」
中間工程は、第1熱処理の後、第2熱処理の前に、第1熱処理によって560℃以上の高温とされたアルミニウム合金を380℃〜440℃、より好ましくは400℃〜420℃の範囲の温度で10分〜4時間保持する工程である。
第1熱処理および第2熱処理よりも低温で行なわれる中間工程を行なうことにより、Zr化合物からなる析出物の核となる大きさの小さい析出物を多数形成しておくことができるので、第2熱処理において、中間工程で形成された小さい析出物を軸としたZr化合物の析出を促進することができ、大きい析出物を多数形成することができる。
なお、上記範囲の4時間を超える保持時間を設けても、得られる効果は変わらず、むしろ経済的に不利となる。
In the above-described embodiment, the cooling step is performed in the step of homogenizing the aluminum alloy. However, the following intermediate step may be performed instead of the cooling step.
"Intermediate process"
In the intermediate step, after the first heat treatment and before the second heat treatment, the temperature of the aluminum alloy that has been increased to a high temperature of 560 ° C. or higher by the first heat treatment is 380 ° C. to 440 ° C., more preferably 400 ° C. to 420 ° C. And holding for 10 minutes to 4 hours.
By performing an intermediate step performed at a lower temperature than the first heat treatment and the second heat treatment, a large number of precipitates having a small size as a nucleus of the precipitate made of the Zr compound can be formed. , The precipitation of the Zr compound with the small precipitate formed in the intermediate step as the axis can be promoted, and a large number of large precipitates can be formed.
In addition, even if the holding time exceeding 4 hours of the said range is provided, the effect obtained will not change, but rather it becomes economically disadvantageous.

[ろう付用組成物]
このようにして得られた押出合金材の外表面に、Zn含有フラックスと、Si粉末と、バインダとを混合したろう付用組成物が外表面に塗布する。
Zn含有フラックスには、例えばZnF、ZnCl、KZnF等のZn化合物が少なくとも1種以上含まれることが好ましい。
Zn含有フラックスの塗布量は5〜20g/mの範囲が好ましい。塗布量が5g/m未満であると、Zn拡散層の形成が不十分となって防食効果が充分に得られないので好ましくなく、塗布量が20g/mを超えると、チューブと他の部品との接合部であるフィレット部に過剰のZnが集中し、その接合部において腐食速度が速まるので好ましくない。
また、Zn含有フラックスに加えてZn非含有フラックスを含有することでき、例えば、LiF,KF,CaF、AlF、SiFなどの弗化物や、前記弗化物の錯化合物であるKAlF、KAlFなどが挙げられる。
[Brazing composition]
A brazing composition in which a Zn-containing flux, Si powder, and a binder are mixed is applied to the outer surface of the extruded alloy material thus obtained.
The Zn-containing flux preferably contains at least one Zn compound such as ZnF 2 , ZnCl 2 , KZnF 3 , for example.
The coating amount of the Zn-containing flux is preferably in the range of 5 to 20 g / m2. When the coating amount is less than 5 g / m 2 , the formation of the Zn diffusion layer is insufficient and the anticorrosion effect cannot be sufficiently obtained, and when the coating amount exceeds 20 g / m 2 , it is not preferable. Since excess Zn concentrates on the fillet portion, which is a joint portion with the component, and the corrosion rate increases at the joint portion, it is not preferable.
Further, in addition to the Zn-containing flux, a Zn-free flux can be contained. For example, fluorides such as LiF, KF, CaF 2 , AlF 3 , and SiF 4, and KAlF 4 and KAlF that are complex compounds of the fluorides. 3 etc. are mentioned.

Si粉末の塗布量は1〜5g/mの範囲が好ましい。塗布量が1g/m未満であると、ろう材量が不足して十分なろう付け強度が得られず、さらにZnの拡散が不十分になるので好ましくない。また塗布量が5g/mを超えると、熱交換器用押出扁平多穴管表面のSi濃度が高くなり、腐食速度が速まるので好ましくない。
上述のSi粉末とZn含有フラックスとで、アクリル系バインダとアルコール系溶剤を用いてスラリー状のろう材組成物を作製した。
The application amount of Si powder is preferably in the range of 1 to 5 g / m 2 . If the coating amount is less than 1 g / m 2 , the amount of brazing material is insufficient and sufficient brazing strength cannot be obtained, and furthermore, the diffusion of Zn becomes insufficient. On the other hand, if the coating amount exceeds 5 g / m 2 , the Si concentration on the surface of the extruded flat multi-hole pipe for heat exchanger becomes high and the corrosion rate is increased, which is not preferable.
A slurry-like brazing material composition was prepared using the above-described Si powder and Zn-containing flux using an acrylic binder and an alcohol solvent.

Zn含有フラックスとSi粉末、バインダを混合したろう付用組成物が塗布されたことで、ろう付組成物が、ろう付時に溶融ろうを形成して、Zn拡散・分布の均一化を促し、塗布時に生じた分均一を解消する。また、ZnがAl素地に拡散する事によって、犠牲陽極効果を発揮するが、一方ではSiが拡散によってマトリックス中に固溶し、Znによる犠牲陽極効果を妨げている。よって、本発明では、ろう付け前段階にてSiが拡散して来る事を見込み、AlFeSi相を形成する核を発生させておくことで、ろう付け時、前記核と拡散Siが結びついてAlFeSi相を形成し、マトリックスへのSi固溶を抑止し、Znによる犠牲陽極効果がより有効なものとなり、耐食性およびろう付機能が向上する。   By applying a brazing composition in which a Zn-containing flux, Si powder, and a binder are mixed, the brazing composition forms a molten brazing during brazing and promotes uniform Zn diffusion and distribution. Eliminates uniformity caused by occasion Further, when Zn diffuses into the Al substrate, the sacrificial anode effect is exhibited. On the other hand, Si is dissolved in the matrix by diffusion, and the sacrificial anode effect due to Zn is hindered. Therefore, in the present invention, it is anticipated that Si will diffuse in the stage before brazing, and by generating nuclei that form an AlFeSi phase, at the time of brazing, the nuclei and the diffused Si are combined to form an AlFeSi phase. This suppresses the solid solution of Si in the matrix, makes the sacrificial anode effect due to Zn more effective, and improves the corrosion resistance and brazing function.

[熱交換器]
上記の熱交換器用押出扁平多穴管に、熱交換器用ヘッダーパイプやフィンをろう付けすることにより、熱交換器を構成することができる。
すなわち、この熱交換器は、本発明に係る熱交換器用押出扁平多穴管と、熱交換器用ヘッダーパイプとフィンとが接合されて構成される。即ち、従来の技術において説明した熱交換器と同様に、熱交換器用ヘッダーパイプと称される左右一対の管体と、その熱交換器用ヘッダーパイプの間に互いに平行に間隔を空けて設けられた複数のチューブと、チューブ同士の間に設けられたフィンとで構成されている。そして各チューブの内部空間と熱交換器用ヘッダーパイプの内部空間を連通させ、熱交換器用ヘッダーパイプの内部空間と各チューブの内部空間に媒体を循環させ、フィンを介して効率良く熱交換ができるようになっている。
[Heat exchanger]
A heat exchanger can be constituted by brazing a header pipe or fin for heat exchanger to the extruded flat multi-hole pipe for heat exchanger.
That is, this heat exchanger is configured by joining the extruded flat multi-hole pipe for heat exchanger according to the present invention, the header pipe for heat exchanger, and the fins. That is, similar to the heat exchanger described in the related art, a pair of left and right tubes called a heat exchanger header pipe and the heat exchanger header pipe are provided in parallel with a space therebetween. It is comprised with the several tube and the fin provided between tubes. The internal space of each tube communicates with the internal space of the header pipe for heat exchanger, and the medium is circulated between the internal space of the header pipe for heat exchanger and the internal space of each tube so that heat can be exchanged efficiently through the fins. It has become.

「実施例1〜実施例27、比較例1〜比較例10」
以下、本発明の実施例および比較例について説明する。
表1に示す成分を含有するアルミニウム合金を鋳造してなるビレットを製作した。このビレットに、表2に示す均質化処理を行なった。そして均質化処理後のビレットを以下に示す条件で押出すことにより、図1に示す複数の媒体通路用穴4を有する断面形状の熱交換器用押出扁平多穴管11を得た。
"Example 1 to Example 27, Comparative Example 1 to Comparative Example 10"
Examples of the present invention and comparative examples will be described below.
Billets formed by casting aluminum alloys containing the components shown in Table 1 were produced. The billet was homogenized as shown in Table 2. And the extruded flat multi-hole pipe 11 for heat exchangers of the cross-sectional shape which has the some hole 4 for medium passages shown in FIG. 1 was obtained by extruding the billet after a homogenization process on the conditions shown below.

Figure 2009046705
Figure 2009046705

Figure 2009046705
Figure 2009046705

このようにして得られた熱交換器用押出扁平多穴管11に、所定の条件で外部形状を整える圧延加工を行ない、鋳造割れ、表面粗さ、AlFeSi安定相面積率を測定した。     The extruded flat multi-hole tube 11 for heat exchanger thus obtained was subjected to rolling to adjust the external shape under predetermined conditions, and the casting crack, surface roughness, and AlFeSi stable phase area ratio were measured.

「鋳造割れ」
鋳造割れの測定は、クラウトレーマー社製USM25Jにより二極判定を行なった。評価方法は、鋳造割れが○であるとは、ビレットに次工程の押出で不具合が出るような割れが発生していなかったことを意味し、鋳造割れが×であるとは、ビレットに次工程の押出で不具合が出るような割れが発生していたことを意味する。
"Casting crack"
The measurement of the casting crack was performed by a bipolar determination using USM25J manufactured by Clautramer. The evaluation method is that the casting crack is ◯ means that there was no crack that would cause a defect in the extrusion of the next process in the billet, and that the casting crack was x means that the next process in the billet. This means that there was a crack that would cause a defect in the extrusion.

「チューブ表面粗さ」
チューブ表面粗さは金型磨耗が進行すると悪化する傾向があり、フラックスやSBLを塗布した際にムラにつながる。また、ろう付け時にヘッダーのろうが凹凸溝に導かれ、チューブ上に流れてきて、エロージョンが発生しチューブに貫通孔が発生しやすくなる。
そのため、チューブ表面粗さの測定として、チューブ幅方向におけるRmaxの値を計測し、Rmaxの値が15μm以上になると好ましくないと判断した。
"Tube surface roughness"
The tube surface roughness tends to worsen as the mold wear progresses, leading to unevenness when flux or SBL is applied. Further, the brazing of the header is guided to the concave / convex groove during brazing and flows onto the tube, erosion occurs, and a through hole is easily generated in the tube.
Therefore, as a measurement of the tube surface roughness, the value of R max in the tube width direction was measured, and it was determined that it was not preferable that the value of R max was 15 μm or more.

AlFeSi安定相面積率の測定方法は、測定面積1mmの測定視野内に存在する全粒子について、EDX(Energy Dispersive X−ray Spectroscopy)によりFe、Si原子濃度を測定した。AlFeSi安定相の判定基準は、FeとSiの原子濃度の比(=Fe原子濃度/Si原子濃度)が3.5未満であることとした。そして、以下の式(1)により、AlFeSi安定相総面積率(%)を算出した。
AlFeSi安定相総面積率(%)=AlFeSi安定相総面積÷測定面積×100・・・(1)
As a method for measuring the AlFeSi stable phase area ratio, Fe and Si atom concentrations were measured by EDX (Energy Dispersive X-ray Spectroscopy) for all particles present in a measurement visual field having a measurement area of 1 mm 2 . The criterion for determining the AlFeSi stable phase was that the ratio of the atomic concentration of Fe and Si (= Fe atomic concentration / Si atomic concentration) was less than 3.5. And the AlFeSi stable phase total area ratio (%) was computed by the following formula | equation (1).
AlFeSi stable phase total area ratio (%) = AlFeSi stable phase total area ÷ measured area × 100 (1)

続いて、これらの熱交換器用押出扁平多穴管11に、Zn含有フラックスと、Si粉末と、バインダとを混合したろう付用組成物を外表面に塗布して、被覆層2を設けた。Zn含有フラックスと、Si粉末の塗布量は表1に示してあり、バインダとしてアクリル樹脂を用いた。
更に、600℃、3minの条件でろう付け加熱した後、その熱交換器用押出扁平多穴管11を長手方向に引張試験機にて引っ張る方法により熱交換器用押出扁平多穴管11の強度を測定した。
Subsequently, a brazing composition in which a Zn-containing flux, Si powder, and a binder were mixed was applied to the outer surface of the extruded flat multi-hole tube 11 for heat exchanger to provide the coating layer 2. The Zn-containing flux and the amount of Si powder applied are shown in Table 1, and an acrylic resin was used as the binder.
Further, after brazing and heating at 600 ° C. for 3 minutes, the strength of the extruded flat multi-hole tube 11 for heat exchanger is measured by a method of pulling the extruded flat multi-hole tube 11 for heat exchanger in the longitudinal direction with a tensile tester. did.

更に、これらの熱交換器用押出扁平多穴管11を、図2に示すような、両面ろうを有するフィン6と組み合わせたコアを作製して、SWAAT(Sea Water Acetic Acid Test、人工海水噴霧試験)評価を行なった。試験方法は、ASTM(G85−85)規格に則り、以下の条件で(1)および(2)を2サイクル行い実施した。
(1)人工海水(pH=3)噴霧:50℃、0.5時間
(2)湿潤:50℃、1.5時間
以上の結果を表3〜表5に示す。
Further, a core in which these extruded flat multi-hole tubes 11 for heat exchangers are combined with fins 6 having double-sided wax as shown in FIG. 2 is produced, and SWAAT (Sea Water Acidic Acid Test, artificial seawater spray test) Evaluation was performed. The test method was performed in accordance with ASTM (G85-85) standard by performing (1) and (2) for two cycles under the following conditions.
(1) Artificial seawater (pH = 3) Spray: 50 ° C., 0.5 hours (2) Wet: 50 ° C., 1.5 hours The results are shown in Tables 3 to 5.

Figure 2009046705
Figure 2009046705

Figure 2009046705
Figure 2009046705

Figure 2009046705
Figure 2009046705

表3、表4より、実施例1〜実施例27では、いずれもAlFeSi安定相の面積率(%)が0.1%以上0.5%未満であり、ろう付け後強度65(MPa)以上の十分な強度が得られ、鋳造割れの評価も○であり、表面粗さ(Rmax)15μm未満であった。
更に、SWAAT評価では、SWAAT貫通日数が30日を超え、耐食性の向上が確認できた。
From Tables 3 and 4, in Examples 1 to 27, the area ratio (%) of the AlFeSi stable phase is 0.1% or more and less than 0.5%, and the strength after brazing is 65 (MPa) or more. Sufficient strength was obtained, the casting crack was evaluated as “good”, and the surface roughness (R max ) was less than 15 μm.
Furthermore, in SWAAT evaluation, the SWAAT penetration days exceeded 30 days, and it was confirmed that the corrosion resistance was improved.

これに対し、比較例1では、各元素の添加量が何れもが少なすぎることから、相対的にアルミの純度が高くなったため、ろう付後強度が60MPa未満と低く、強度が不十分であった。
また、比較例2、比較例3では、各元素の添加量が何れも多すぎるため、比較例2はろう付後強度は高いが鋳造割れの評価が×となり、比較例3はろう付後強度も高く鋳造割れの評価も○であったが、表面粗さが15μmを超えた。
また、比較例4では、ZrおよびTiの添加量が多すぎるため、鋳造割れの評価が×となり、表面粗さも15μmを超えた。
On the other hand, in Comparative Example 1, since the amount of each element added was too small, the purity of aluminum was relatively high, so the strength after brazing was as low as less than 60 MPa, and the strength was insufficient. It was.
In Comparative Example 2 and Comparative Example 3, since the amount of each element added is too large, Comparative Example 2 has a high strength after brazing, but the evaluation of casting cracks is x, and Comparative Example 3 has a strength after brazing. Although the evaluation of casting crack was good, the surface roughness exceeded 15 μm.
Further, in Comparative Example 4, since the amount of Zr and Ti added was too large, the casting crack was evaluated as x and the surface roughness exceeded 15 μm.

また、均質化処理において、第1熱処理の後、冷却工程を200℃で行ない、第2熱処理を行わなかった比較例5〜比較例7では、AlFeSi安定相総面積率が0.1%未満であった。   Moreover, in the homogenization process, after the first heat treatment, the cooling step was performed at 200 ° C., and in Comparative Examples 5 to 7 where the second heat treatment was not performed, the total area ratio of the AlFeSi stable phase was less than 0.1%. there were.

また、比較例8では、フラックスとしてKAIFを用いたZn非含有層としたために、SWAAT貫通日数が20日未満となった。
また、比較例9および比較例10では、Si粉末を塗布しなかったため、実施例5に比べてSWAAT貫通日数が低下して30日未満となった。
Further, in Comparative Example 8, since the Zn-free layer using KAIF 4 as the flux was used, the SWAAT penetration days were less than 20 days.
In Comparative Example 9 and Comparative Example 10, since the Si powder was not applied, the SWAAT penetration days decreased to less than 30 days compared to Example 5.

図1は本発明の熱交換器用押出扁平多穴管の一例を示した斜視図である。FIG. 1 is a perspective view showing an example of an extruded flat multi-hole tube for a heat exchanger according to the present invention. 図2は熱交換器の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a heat exchanger.

符号の説明Explanation of symbols

1・・・チューブ、2・・・被覆層、3・・・押出管、4・・・媒体通路用穴、5・・・ヘッダーパイプ、6・・・フィン、11・・・熱交換器用押出扁平多穴管。

DESCRIPTION OF SYMBOLS 1 ... Tube, 2 ... Coating layer, 3 ... Extrusion tube, 4 ... Hole for medium passages, 5 ... Header pipe, 6 ... Fin, 11 ... Extrusion for heat exchanger Flat multi-hole tube.

Claims (3)

質量%でSi:0.01〜0.30%、Fe:0.01〜0.30%、Cu:0.05〜0.40%、Mn:0.05〜0.30%からなる組成に、Ti:0.05〜0.25%を含有、またはZr:0.05〜0.25%を含有、またはZr:0.05〜0.25%およびTi:0.05〜0.25%を含有し、かつZrとTiとの合計が0.3%以下であり、残部がAlおよび不可避不純物からなるアルミニウム合金からなり、マトリックス中に分散している粒子面積1.0μm以上の粒子のうち、AlFeSi安定相の占める面積率が0.1%以上0.5%未満であり、Zn含有フラックスと、Si粉末と、バインダとを混合したろう付用組成物が外表面に塗布されたことを特徴とする熱交換器用押出扁平多穴管。 In a composition consisting of Si: 0.01 to 0.30%, Fe: 0.01 to 0.30%, Cu: 0.05 to 0.40%, and Mn: 0.05 to 0.30% in mass%. Ti: 0.05-0.25%, or Zr: 0.05-0.25%, or Zr: 0.05-0.25% and Ti: 0.05-0.25% And the total of Zr and Ti is 0.3% or less, the balance is made of an aluminum alloy consisting of Al and inevitable impurities, and particles having a particle area of 1.0 μm 2 or more dispersed in the matrix Among them, the area ratio occupied by the AlFeSi stable phase was 0.1% or more and less than 0.5%, and a brazing composition in which a Zn-containing flux, Si powder, and a binder were mixed was applied to the outer surface. Extruded flat multi-hole tube for heat exchangers characterized by 前記Znフラックス層がZnF,ZnCl,KZnFのいずれか1種又は2種以上からなることを特徴とする請求項1記載の熱交換器用押出扁平多穴管。 2. The extruded flat multi-hole tube for a heat exchanger according to claim 1, wherein the Zn flux layer is composed of one or more of ZnF 2 , ZnCl 2 , and KZnF 3 . 請求項1又は請求項2のいずれかに記載の熱交換器用押出扁平多穴管を備えたことを特徴とする熱交換器。   A heat exchanger comprising the extruded flat multi-hole tube for a heat exchanger according to any one of claims 1 and 2.
JP2007211384A 2007-08-14 2007-08-14 Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance, and heat exchanger Withdrawn JP2009046705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211384A JP2009046705A (en) 2007-08-14 2007-08-14 Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211384A JP2009046705A (en) 2007-08-14 2007-08-14 Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance, and heat exchanger

Publications (1)

Publication Number Publication Date
JP2009046705A true JP2009046705A (en) 2009-03-05

Family

ID=40499193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211384A Withdrawn JP2009046705A (en) 2007-08-14 2007-08-14 Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance, and heat exchanger

Country Status (1)

Country Link
JP (1) JP2009046705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247459A (en) * 2010-05-25 2011-12-08 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy heat exchanger
WO2013150957A1 (en) * 2012-04-05 2013-10-10 日本軽金属株式会社 Aluminum alloy for microporous hollow material which has excellent extrudability and grain boundary corrosion resistance, and method for producing same
JP2015061995A (en) * 2010-03-02 2015-04-02 三菱アルミニウム株式会社 Aluminum alloy heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061995A (en) * 2010-03-02 2015-04-02 三菱アルミニウム株式会社 Aluminum alloy heat exchanger
US9328977B2 (en) 2010-03-02 2016-05-03 Mitsubishi Aluminum Co., Ltd. Aluminum alloy heat exchanger
JP2011247459A (en) * 2010-05-25 2011-12-08 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy heat exchanger
WO2013150957A1 (en) * 2012-04-05 2013-10-10 日本軽金属株式会社 Aluminum alloy for microporous hollow material which has excellent extrudability and grain boundary corrosion resistance, and method for producing same
CN104220615A (en) * 2012-04-05 2014-12-17 日本轻金属株式会社 Aluminum alloy for microporous hollow material which has excellent extrudability and grain boundary corrosion resistance, and method for producing same
JPWO2013150957A1 (en) * 2012-04-05 2015-12-17 日本軽金属株式会社 Aluminum alloy for microporous hollow material having excellent extrudability and intergranular corrosion resistance and method for producing the same
KR101604206B1 (en) 2012-04-05 2016-03-16 니폰게이긴조쿠가부시키가이샤 Aluminum alloy for microporous hollow material which has excellent extrudability and grain boundary corrosion resistance, and method for producing same
US10309001B2 (en) 2012-04-05 2019-06-04 Nippon Light Metal Company, Ltd. Aluminum alloy for microporous hollow material which has excellent extrudability and grain boundary corrosion resistance, and method for producing same

Similar Documents

Publication Publication Date Title
KR101581607B1 (en) Fin material for heat exchanger using aluminum alloy material and aluminum alloy structure having the fin material
JP5188115B2 (en) High strength aluminum alloy brazing sheet
EP3093356B1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
EP3018223B1 (en) Brazing sheet for heat exchanger, and method for manufacturing said sheet
KR20130090767A (en) Method for producing aluminum alloy heat exchanger
JP5192890B2 (en) Extruded flat multi-hole tube and heat exchanger for heat exchangers with excellent corrosion resistance
JP2008208416A (en) Extruded material of aluminum alloy used for heat exchanger using natural refrigerant
WO2017141921A1 (en) Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet
JP6726370B1 (en) Aluminum brazing sheet for flux-free brazing
EP3121301B1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
JP5925022B2 (en) Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing heat exchanger
WO2014157116A1 (en) Brazed structure
JP2009022981A (en) Aluminum alloy brazing sheet having high-strength and production method therefor
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP2007039753A (en) Aluminum alloy clad material with excellent surface joinability of sacrificial anode material surface
JP2009161826A (en) Brazing sheet for tube material of heat exchanger, heat exchanger, and method for producing the same
JP6758281B2 (en) Aluminum alloy brazing sheet fin material for heat exchanger and its manufacturing method
JP4996909B2 (en) Aluminum alloy brazing sheet and method for producing the same
WO2018047971A1 (en) Precoated fin material and heat exchanger using same
JP2009046705A (en) Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance, and heat exchanger
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP2009249728A (en) Extruded flat perforated pipe for heat exchanger, and heat exchanger
JP2009046702A (en) Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance
JP5635806B2 (en) Aluminum alloy extruded material for connectors with excellent extrudability and sacrificial anode properties
JP2022554163A (en) Aluminum alloy with improved extrudability and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A761 Written withdrawal of application

Effective date: 20120319

Free format text: JAPANESE INTERMEDIATE CODE: A761