JP2015204359A - Insulated gate nitride semiconductor transistor - Google Patents

Insulated gate nitride semiconductor transistor Download PDF

Info

Publication number
JP2015204359A
JP2015204359A JP2014082681A JP2014082681A JP2015204359A JP 2015204359 A JP2015204359 A JP 2015204359A JP 2014082681 A JP2014082681 A JP 2014082681A JP 2014082681 A JP2014082681 A JP 2014082681A JP 2015204359 A JP2015204359 A JP 2015204359A
Authority
JP
Japan
Prior art keywords
layer
recess
nitride semiconductor
electron transit
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014082681A
Other languages
Japanese (ja)
Inventor
大悟 菊田
Daigo Kikuta
大悟 菊田
哲生 成田
Tetsuo Narita
哲生 成田
伊藤 健治
Kenji Ito
健治 伊藤
冨田 一義
Kazuyoshi Tomita
一義 冨田
松井 正樹
Masaki Matsui
正樹 松井
伸幸 大竹
Nobuyuki Otake
伸幸 大竹
安史 樋口
Yasushi Higuchi
安史 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2014082681A priority Critical patent/JP2015204359A/en
Priority to PCT/JP2015/001917 priority patent/WO2015159499A1/en
Publication of JP2015204359A publication Critical patent/JP2015204359A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem of a HEMT including a laminated structure of a nitride semiconductor electron transit layer having a small bandgap, and a nitride semiconductor electron supply layer having a large bandgap, and including a gate electrode penetrating the electron supply layer from the upper surface thereof and reaching the electron transit layer, that the threshold voltage is not stabilized because a nitrogen defect is formed on the bottom face of a recess for the gate electrode when etching the recess.SOLUTION: Etching is stopped in a state where the bottom face 16a of a recess is formed of an n-type nitride semiconductor 8. Nitrogen defect is less likely to occur for the n-type at the time of etching, and the threshold voltage of a HEMT is stabilized. It is also possible to make the nitride semiconductor forming an electron transit layer 8 n-type, and to form an n-type region separately from an i-type electron transit layer, and to form the bottom face of a recess in the n-type region.

Description

本明細書では、窒化物半導体のヘテロ接合を利用する電界効果型トランジスタの閾値電圧を安定させる技術を開示する。すなわち、閾値電圧が揃っている電界効果型トランジスタを量産可能とする技術を開示する。   The present specification discloses a technique for stabilizing the threshold voltage of a field-effect transistor using a nitride semiconductor heterojunction. That is, a technique that enables mass production of field-effect transistors with uniform threshold voltages is disclosed.

窒化物半導体からなる電子走行層と、電子走行層を形成する窒化物半導体よりもバンドギャップが大きい窒化物半導体からなる電子供給層がヘテロ接合していると、ヘテロ接合面に沿って二次元電子ガスが形成される。電子供給層の表面にソース電極とドレイン電極を設け、ソース電極とドレイン電極に挟まれた位置(すなわちソース電極とドレイン電極を分断する位置)にゲート電極を形成すると、ゲート電極の電位によってソース電極とドレイン電極の間の抵抗が変化する現象が得られる。その現象を利用するトランジスタが知られている。本明細書では、上記のトランジスタをHEMT(High Electron Mobility Transistor)という。電子の移動度を高く保つために、電子走行層には、不純物濃度が低いi型の窒化物半導体を用いる。   When an electron transit layer made of a nitride semiconductor and an electron supply layer made of a nitride semiconductor having a band gap larger than that of the nitride semiconductor forming the electron transit layer are heterojunction, two-dimensional electrons along the heterojunction plane Gas is formed. When a source electrode and a drain electrode are provided on the surface of the electron supply layer, and a gate electrode is formed at a position sandwiched between the source electrode and the drain electrode (that is, a position where the source electrode and the drain electrode are divided), the source electrode is driven by the potential of the gate electrode. And a phenomenon in which the resistance between the drain electrode changes. Transistors that use this phenomenon are known. In this specification, the above transistor is referred to as a HEMT (High Electron Mobility Transistor). In order to keep the electron mobility high, an i-type nitride semiconductor having a low impurity concentration is used for the electron transit layer.

通常の条件下では、HEMTの閾値電圧がマイナス電圧となる。閾値電圧をプラス側に向けて引き上げる技術が提案されている。特許文献1の技術では、電子供給層をエッチングしてリセスを形成する。リセスが電子供給層を貫通し、リセスの底面に電子走行層が露出するまでエッチングを続ける。リセスの底面に電子走行層が露出したらエッチングを終了し、リセスの壁面に絶縁膜を形成し、その絶縁膜の内側にゲート電極を充填する。ゲート電極は、絶縁膜で覆われた状態でリセスの内側に形成される。ゲート電極をリセス内に設けることによって、閾値電圧がプラス側に引き上げられる。   Under normal conditions, the HEMT threshold voltage is a negative voltage. A technique for raising the threshold voltage toward the positive side has been proposed. In the technique of Patent Document 1, the electron supply layer is etched to form a recess. Etching is continued until the recess penetrates the electron supply layer and the electron transit layer is exposed at the bottom of the recess. When the electron transit layer is exposed on the bottom surface of the recess, the etching is finished, an insulating film is formed on the wall surface of the recess, and a gate electrode is filled inside the insulating film. The gate electrode is formed inside the recess while being covered with an insulating film. By providing the gate electrode in the recess, the threshold voltage is raised to the positive side.

国際公開 WO2003/071607号公報International Publication No. WO2003 / 071607

ゲート電極をリセス内に設ける技術によって閾値電圧をプラス側に引き上げることができるものの、その引き上げ効果は不安定であり、閾値電圧が揃ったHEMTを量産することは難しい。
本明細書では、ゲート電極をリセス内に設けることによって閾値電圧をプラス側に引き上げるだけでなく、その引き上げ効果が安定し、閾値電圧が揃った(閾値電圧のばらつきが小さい)HEMTを量産可能とする技術を開示する。
Although the threshold voltage can be raised to the plus side by the technique of providing the gate electrode in the recess, the raising effect is unstable, and it is difficult to mass-produce HEMTs with uniform threshold voltages.
In this specification, by providing the gate electrode in the recess, not only the threshold voltage is raised to the plus side, but also the raising effect is stabilized, and HEMTs with uniform threshold voltages (small variations in threshold voltage) can be mass-produced. The technology to do is disclosed.

ゲート電極をリセス内に設けることによる閾値電圧の引き上げ効果が不安定である理由を研究したところ、リセスの底面に電子走行層が露出するまでエッチングを続ける工程でリセスの底面に露出する電子走行層にエッチングダメージが加えられ、リセスの底面に露出する電子走行層に窒素欠陥が生じるためであることが判明した。窒素欠陥は電子を捕捉するトラップとなってしまうために閾値電圧が安定しないことが判明した。
そこで、エッチングしても窒素欠陥が生じない(あるいは窒素欠陥が生じにくい)技術を研究した。その結果、下記が判明した。上記したように、電子の移動度を高く保つために、電子走行層には不純物濃度が低いi型の窒化物半導体を用いることが多い。i型の窒化物半導体であると、エッチングによって窒素欠陥が生じやすい。p型の窒化物半導体であっても同様であり、エッチングによって窒素欠陥が生じやすい。それに対してn型の窒化物半導体であれば、エッチングしても窒素欠陥が生じない(あるいは窒素欠陥が生じにくい)。
本明細書に記載の技術では、上記知見を活用し、リセスの底面にn型の窒化物半導体が露出する構造のHEMTを創作した。リセスの底面にn型の窒化物半導体が露出する構造であれば、窒素欠陥の発生を抑えることができ、閾値電圧の変動を抑えることができる。
The reason why the effect of raising the threshold voltage by providing the gate electrode in the recess is unstable is studied, and the electron transit layer exposed to the bottom surface of the recess in the process of continuing etching until the electron transit layer is exposed to the bottom surface of the recess. It was found that this was because etching damage was applied to the electron transport layer and nitrogen defects were generated in the electron transit layer exposed on the bottom surface of the recess. It was found that the threshold voltage is not stable because the nitrogen defect becomes a trap for trapping electrons.
Therefore, we studied a technology that does not cause nitrogen defects (or resists nitrogen defects) even after etching. As a result, the following was found. As described above, in order to keep the electron mobility high, an i-type nitride semiconductor having a low impurity concentration is often used for the electron transit layer. In the case of an i-type nitride semiconductor, nitrogen defects are likely to occur due to etching. The same applies to p-type nitride semiconductors, and nitrogen defects are likely to occur due to etching. On the other hand, if an n-type nitride semiconductor is used, nitrogen defects do not occur even if etching is performed (or nitrogen defects are not easily generated).
In the technique described in this specification, a HEMT having a structure in which an n-type nitride semiconductor is exposed on the bottom surface of the recess is created by utilizing the above knowledge. If the n-type nitride semiconductor is exposed on the bottom surface of the recess, the generation of nitrogen defects can be suppressed, and the variation in threshold voltage can be suppressed.

本明細書で開示するHEMTは、窒化物半導体で形成されている電子走行層と、電子走行層上に積層されている電子供給層を備えている。電子供給層は、電子走行層を形成する窒化物半導体より大きなバンドギャップを持つ窒化物半導体で形成されており、電子走行層と電子供給層の間にヘテロ接合界面が得られる。
本明細書で開示するHEMTでは、電子供給層の上面から電子供給層を貫通して電子走行層に達しているリセスが形成されている。そのリセスの壁面はゲート絶縁膜で被覆されている。ゲート電極は、ゲート絶縁膜で覆われた状態でリセス内に形成されている。ゲート電極がリセスを埋め尽くす必要はなく、ゲート電極がリセスの底面と側面に沿って形成されていればよい。
本明細書で開示するHEMTでは、リセスの底面がn型の窒化物半導体で形成されている(すなわちリセスの底面にn型の窒化物半導体が露出している)。リセスの底面を形成するn型の窒化物半導体は、電子走行層の一部であってもよい。あるいは、電子走行層とは別にn型の窒化物半導体領域を形成し、そのn型の窒化物半導体領域がリセスの底面に露出するようにしてもよい。
The HEMT disclosed in the present specification includes an electron transit layer formed of a nitride semiconductor and an electron supply layer stacked on the electron transit layer. The electron supply layer is formed of a nitride semiconductor having a larger band gap than the nitride semiconductor forming the electron transit layer, and a heterojunction interface is obtained between the electron transit layer and the electron supply layer.
In the HEMT disclosed in this specification, a recess is formed that penetrates the electron supply layer from the upper surface of the electron supply layer and reaches the electron transit layer. The wall surface of the recess is covered with a gate insulating film. The gate electrode is formed in the recess while being covered with a gate insulating film. The gate electrode does not need to fill the recess, and the gate electrode only needs to be formed along the bottom and side surfaces of the recess.
In the HEMT disclosed in this specification, the bottom surface of the recess is formed of an n-type nitride semiconductor (that is, the n-type nitride semiconductor is exposed on the bottom surface of the recess). The n-type nitride semiconductor that forms the bottom surface of the recess may be a part of the electron transit layer. Alternatively, an n-type nitride semiconductor region may be formed separately from the electron transit layer, and the n-type nitride semiconductor region may be exposed at the bottom surface of the recess.

電子走行層をn型の窒化物半導体で形成し、そのn型の窒化物半導体がリセスの底面を形成する構造であってもよい。
あるいは、電子走行層とは別にn型の窒化物半導体領域を形成し、そのn型の窒化物半導体領域がリセスの底面に露出するようにしてもよい。例えば、電子走行層の下側にn型の窒化物半導体層を形成し、リセスの底面がn型の窒化物半導体層で形成される構造でもよい。あるいは、電子走行層の一部にn型の窒化物半導体領域を形成し、リセスの底面がn型の窒化物半導体領域内に形成される構造でもよい。電子走行層とは別にn型の窒化物半導体を設ける場合には、i型の窒化物半導体で電子走行層を形成することができる。
The electron transit layer may be formed of an n-type nitride semiconductor, and the n-type nitride semiconductor may form a bottom surface of the recess.
Alternatively, an n-type nitride semiconductor region may be formed separately from the electron transit layer, and the n-type nitride semiconductor region may be exposed at the bottom surface of the recess. For example, an n-type nitride semiconductor layer may be formed below the electron transit layer, and the bottom surface of the recess may be formed of an n-type nitride semiconductor layer. Alternatively, an n-type nitride semiconductor region may be formed in a part of the electron transit layer, and the recess bottom may be formed in the n-type nitride semiconductor region. When an n-type nitride semiconductor is provided separately from the electron transit layer, the electron transit layer can be formed of an i-type nitride semiconductor.

リセスの底面にn型の窒化物半導体が露出している構造によると、窒素欠陥の発生が抑えられて閾値電圧が安定する一方において、閾値電圧をプラス側に引き上げる効果は減少する。電子走行層の下側にバックバリヤ層を形成すれば、閾値電圧をプラス側に引き上げることができる。電子走行層の下側にバックバリヤ層を形成する技術と併用すれば、閾値電圧をプラス側に引き上げることができ、引き上げられた閾値電圧を安定化させることができる。   According to the structure in which the n-type nitride semiconductor is exposed on the bottom surface of the recess, the generation of nitrogen defects is suppressed and the threshold voltage is stabilized, while the effect of raising the threshold voltage to the positive side is reduced. If the back barrier layer is formed under the electron transit layer, the threshold voltage can be raised to the plus side. When used in combination with a technique for forming a back barrier layer below the electron transit layer, the threshold voltage can be raised to the plus side, and the raised threshold voltage can be stabilized.

電子供給層の上側にGaN層を形成してもよい。GaN層がキャップ層となり、HEMTの特性が安定する。   A GaN layer may be formed above the electron supply layer. The GaN layer becomes a cap layer, and the HEMT characteristics are stabilized.

第1実施例のHEMTの製造工程の第1段階を示す断面図。Sectional drawing which shows the 1st step of the manufacturing process of HEMT of 1st Example. 第1実施例のHEMTの製造工程の第2段階を示す断面図。Sectional drawing which shows the 2nd step of the manufacturing process of HEMT of 1st Example. 第1実施例のHEMTの製造工程の第3段階を示す断面図。Sectional drawing which shows the 3rd step of the manufacturing process of HEMT of 1st Example. 第1実施例のHEMTの製造工程の第4段階を示す断面図。Sectional drawing which shows the 4th step of the manufacturing process of HEMT of 1st Example. 第1実施例のHEMTの製造工程の第5段階を示す断面図。Sectional drawing which shows the 5th step of the manufacturing process of HEMT of 1st Example. 第1実施例のHEMTの製造工程の第6段階を示す断面図。Sectional drawing which shows the 6th step of the manufacturing process of HEMT of 1st Example. 第1実施例のHEMTの断面図。Sectional drawing of HEMT of 1st Example. 第2実施例のHEMTの断面図。Sectional drawing of HEMT of 2nd Example. 第3実施例のHEMTの断面図。Sectional drawing of HEMT of 3rd Example. 第4実施例のHEMTの断面図。Sectional drawing of HEMT of 4th Example. 第5実施例のHEMTの断面図。Sectional drawing of HEMT of 5th Example. 第6実施例のHEMTの断面図。Sectional drawing of HEMT of 6th Example. 第7実施例のHEMTの製造工程の第1段階を示す断面図。Sectional drawing which shows the 1st step of the manufacturing process of HEMT of 7th Example. 第7実施例のHEMTの製造工程の第2段階を示す断面図。Sectional drawing which shows the 2nd step of the manufacturing process of HEMT of 7th Example. 第7実施例のHEMTの製造工程の第3段階を示す断面図。Sectional drawing which shows the 3rd step of the manufacturing process of HEMT of 7th Example. 第7実施例のHEMTの製造工程の第4段階を示す断面図。Sectional drawing which shows the 4th step of the manufacturing process of HEMT of 7th Example. 第7実施例のHEMTの製造工程の第5段階を示す断面図。Sectional drawing which shows the 5th step of the manufacturing process of HEMT of 7th Example. 第7実施例のHEMTの製造工程の第6段階を示す断面図。Sectional drawing which shows the 6th step of the manufacturing process of HEMT of 7th Example. 第7実施例のHEMTの断面図。Sectional drawing of HEMT of 7th Example. GaNのフェルミレベルと窒素欠陥の生成エネルギーの関係を示す図。The figure which shows the relationship between the Fermi level of GaN, and the production energy of a nitrogen defect. (A)はn型のGaNのエッチング前後の表面ポテンシャルを示し、(B)はp型のGaNのエッチング前後の表面ポテンシャルを示す。(A) shows the surface potential before and after etching of n-type GaN, and (B) shows the surface potential before and after etching of p-type GaN.

以下、本明細書で開示する技術の特徴を整理する。なお、以下に記す事項は、各々単独で技術的な有用性を有している。
(第1特徴)電子走行層はGaNで形成され、電子供給層はIn1−x−yAlGaN(0≦x≦1,0≦y<1,0≦x+y≦1)で形成されている。
(第2特徴)ゲート電極の底面に接するゲート絶縁膜とn型窒化物半導体の界面からバックバリヤ層までの距離は、閾値電圧が正となってノーマリオフの特性を付与する距離より短い。
(第3特徴)n型窒化物半導体層の下側(深部側)に、p型またはi型の窒化物半導体層が形成されており、それがバックバリヤ層となる。
(第4特徴)n型窒化物半導体層の下側(深部側)に、それよりバンドギャップが大きい窒化物半導体の層が形成されており、それがバックバリヤ層となる。
(第5特徴)n型窒化物半導体層の下側(深部側)に、炭素または鉄がドープされた窒化物半導体の層が形成されており、それがバックバリヤ層となる。
(第6特徴)半導体基板を平面視したときに、リセスの底面を形成するn型窒化物半導体の層が、ソース電極からドレイン電極まで延びている。
(第7特徴)半導体基板を平面視したときに、リセスの底面を形成するn型窒化物半導体の領域が、リセスの形成範囲にのみ形成されている。
The features of the technology disclosed in this specification will be summarized below. The items described below have technical usefulness independently.
(First Feature) The electron transit layer is formed of GaN, and the electron supply layer is formed of In 1-xy Al x Ga y N (0 ≦ x ≦ 1, 0 ≦ y <1, 0 ≦ x + y ≦ 1). Has been.
(Second feature) The distance from the interface between the gate insulating film in contact with the bottom surface of the gate electrode and the n-type nitride semiconductor to the back barrier layer is shorter than the distance at which the threshold voltage is positive and the normally-off characteristic is imparted.
(Third feature) A p-type or i-type nitride semiconductor layer is formed on the lower side (deep side) of the n-type nitride semiconductor layer, which becomes a back barrier layer.
(Fourth feature) A nitride semiconductor layer having a larger band gap is formed below (deep side) of the n-type nitride semiconductor layer, which becomes a back barrier layer.
(Fifth Feature) A nitride semiconductor layer doped with carbon or iron is formed under the n-type nitride semiconductor layer (deep side), which becomes a back barrier layer.
(Sixth feature) When the semiconductor substrate is viewed in plan, an n-type nitride semiconductor layer that forms the bottom surface of the recess extends from the source electrode to the drain electrode.
(Seventh feature) When the semiconductor substrate is viewed in plan, an n-type nitride semiconductor region that forms the bottom surface of the recess is formed only in the recess formation range.

(第1実施例)
図7は第1実施例のHEMTの断面を示している。参照番号は下記を示している。
2:基板。サファイア基板、Si基板、またはGaN基板を用いる。
4:バッファ層。サファイア基板またはSi基板上にGaNを成長可能とする結晶層。基板2にGaN基板を用いる場合は省略可能。
6:バックバリヤ層。閾値電圧を正側に引き上げる層。上記の第3特徴〜第5特徴に記載した種々の層がバックバリヤ層となる。本実施例では、i型のGaN層を用いる。これに代えて、p型のGaN層,炭素をドープしたGaN層,あるいは鉄をドープしたGaN層によってバックバリヤ層としてもよい。
8:電子走行層。本実施例では、n型のGaNを用いる。本実施例では、n型の窒化物半導体層の層8が、リセス底面を形成する層を兼ねる。
10:電子供給層。本実施例ではAlGaNを用いる。電子走行層8を形成する窒化物半導体(本実施例ではGaN)より大きなバンドギャップを持っている。
12:絶縁膜。
16:リセス。
16a:リセスの底面。
18:ゲート絶縁膜。リセス16の壁面(底面と側面)を覆っている。
20:ゲート電極。金属またはドープされたポリシリコンで形成されている。リセス16の内側を埋めるように形成されている。ゲート電極20は、リセス16を埋め尽くす必要はなく、リセスの底面と側面に沿って形成されていればよい。ゲート電極20は、後記するソース電極28とドレイン電極30の間であって、両者を分断する位置に形成されている。
22:層間絶縁膜
28:ソース電極
30:ドレイン電極
第1実施例のHEMTは、ゲート電極20の電位によって、ソース電極28とドレイン電極30の間の抵抗が変化する。バックバリヤ層6から電子走行層8内に空乏層が広がるために、閾値電圧が正側に引き上げられ、ノーマリオフの特性に調整されている。ゲート電極20に閾値電圧以上の正電圧を印加すると、電子走行層8と電子供給層10の界面に沿って形成されている2次元電子ガスを構成している電子がソース電極28とドレイン電極30の間を移動して導通する。リセス16の底面16aは、n型の窒化物半導体で形成されている層(電子走行層8を兼用する)によって形成されており、リセス16の形成時にリセス16の底面16aを形成する窒化物半導体に窒素欠陥が生じにくくなっている。そのために閾値電圧が安定する。すなわち閾値電圧が安定したHEMTを量産することができる。
(First embodiment)
FIG. 7 shows a cross section of the HEMT of the first embodiment. Reference numbers indicate the following.
2: Substrate. A sapphire substrate, a Si substrate, or a GaN substrate is used.
4: Buffer layer. A crystal layer capable of growing GaN on a sapphire substrate or Si substrate. This can be omitted if a GaN substrate is used for the substrate 2.
6: Back barrier layer. A layer that raises the threshold voltage to the positive side. The various layers described in the third to fifth features are the back barrier layers. In this embodiment, an i-type GaN layer is used. Alternatively, the back barrier layer may be a p-type GaN layer, a carbon-doped GaN layer, or an iron-doped GaN layer.
8: Electron travel layer. In this embodiment, n-type GaN is used. In this embodiment, the n-type nitride semiconductor layer 8 also serves as a layer for forming the recess bottom surface.
10: Electron supply layer. In this embodiment, AlGaN is used. It has a larger band gap than the nitride semiconductor (GaN in this embodiment) forming the electron transit layer 8.
12: Insulating film.
16: Recess.
16a: bottom surface of the recess.
18: Gate insulating film. The wall surface (bottom surface and side surface) of the recess 16 is covered.
20: Gate electrode. It is made of metal or doped polysilicon. It is formed so as to fill the inside of the recess 16. The gate electrode 20 does not need to fill the recess 16 and may be formed along the bottom and side surfaces of the recess. The gate electrode 20 is formed between a source electrode 28 and a drain electrode 30, which will be described later, at a position where they are divided.
22: Interlayer insulating film 28: Source electrode 30: Drain electrode In the HEMT of the first embodiment, the resistance between the source electrode 28 and the drain electrode 30 varies depending on the potential of the gate electrode 20. Since the depletion layer spreads from the back barrier layer 6 into the electron transit layer 8, the threshold voltage is raised to the positive side and adjusted to a normally-off characteristic. When a positive voltage equal to or higher than the threshold voltage is applied to the gate electrode 20, electrons constituting the two-dimensional electron gas formed along the interface between the electron transit layer 8 and the electron supply layer 10 are converted into the source electrode 28 and the drain electrode 30. To move between. The bottom surface 16a of the recess 16 is formed by a layer formed of an n-type nitride semiconductor (also used as the electron transit layer 8), and the nitride semiconductor that forms the bottom surface 16a of the recess 16 when the recess 16 is formed. Nitrogen defects are less likely to occur. Therefore, the threshold voltage is stabilized. That is, a HEMT with a stable threshold voltage can be mass-produced.

図7のHEMTは、図1〜図6を経て製造される。
図1:基板2上に、順に、バッファ層4、i型のGaN層6、n型のGaN層8、AlGaN層10、絶縁層12を積層する。n型のGaN層8の不純物濃度は、1×1015cm−3以上とし、その厚みは100nm以下とする。i型のGaN層6がバックバリヤ層6となり、n型のGaN層8がリセスの底面となる層を兼用する電子走行層8となり、AlGaN層10が電子供給層10となる。
図2:絶縁層12の表面に、後記するリセス16の形成範囲に開口14aが形成されているレジスト層14を形成する。
図3:開口14aからドライエッチングしてリセス16を形成する。この工程では、絶縁層12とAlGaN層10を貫通してn型のGaN層8の中間深さに達するまでエッチングする。リセス16の底面16aからi型のGaN層6の上面までの距離が5nm以上とする。5nm以上のn型のGaN層8が残っている状態でエッチングを終了すると、i型のGaN層6にエッチングダメージが加えられることがない。
エッチングしてリセス16を形成すると、リセス16の底面16aに損傷が生じる。リセス16の完成時には、GaN層8の一部であってリセス16の底面16aとなる部位にエッチングエネルギーが加えられる。仮に、GaN層8にp型又はi型を用いていると、エッチングによって、リセス16の底面16aとなるGaN層8に窒素欠陥が生じる。窒素欠陥は、電子を捕捉してしまうことから、窒素欠陥が生じると閾値電圧が安定しない。本実施例では、n型のGaN層8をエッチングすることで、リセス16が完成する。
The HEMT of FIG. 7 is manufactured through FIGS.
FIG. 1: A buffer layer 4, an i-type GaN layer 6, an n-type GaN layer 8, an AlGaN layer 10, and an insulating layer 12 are sequentially stacked on the substrate 2. The impurity concentration of the n-type GaN layer 8 is 1 × 10 15 cm −3 or more and the thickness is 100 nm or less. The i-type GaN layer 6 becomes the back barrier layer 6, the n-type GaN layer 8 becomes the electron transit layer 8 also serving as the bottom surface of the recess, and the AlGaN layer 10 becomes the electron supply layer 10.
FIG. 2: On the surface of the insulating layer 12, a resist layer 14 is formed in which an opening 14a is formed in a formation range of a recess 16 to be described later.
FIG. 3: The recess 16 is formed by dry etching from the opening 14a. In this step, etching is performed until the intermediate depth of the n-type GaN layer 8 is reached through the insulating layer 12 and the AlGaN layer 10. The distance from the bottom surface 16a of the recess 16 to the upper surface of the i-type GaN layer 6 is 5 nm or more. If the etching is completed with the n-type GaN layer 8 of 5 nm or more remaining, no etching damage is applied to the i-type GaN layer 6.
When the recess 16 is formed by etching, the bottom surface 16a of the recess 16 is damaged. When the recess 16 is completed, etching energy is applied to a part of the GaN layer 8 that becomes the bottom surface 16 a of the recess 16. If p-type or i-type is used for the GaN layer 8, nitrogen defects are generated in the GaN layer 8 that becomes the bottom surface 16 a of the recess 16 by etching. Since nitrogen defects capture electrons, the threshold voltage is not stable when nitrogen defects occur. In the present embodiment, the recess 16 is completed by etching the n-type GaN layer 8.

図20の横軸は、不純物がドープされたGaNのフェルミレベルを示し、左側はp型不純物が濃くドープされたGaNに対応し、右側はn型不純物が濃くドープされたGaNに対応し、左右方向の中央はi型のGaNに対応する。縦軸は、窒素欠陥の生成エネルギーを示している。明らかに、n型不純物がドープされたGaNほど、窒素欠陥の生成エネルギーが高い。   The horizontal axis of FIG. 20 shows the Fermi level of GaN doped with impurities, the left side corresponds to GaN heavily doped with p-type impurities, the right side corresponds to GaN heavily doped with n-type impurities, The center of the direction corresponds to i-type GaN. The vertical axis represents the generation energy of nitrogen defects. Obviously, GaN doped with n-type impurities has a higher generation energy of nitrogen defects.

本実施例では、リセス底面16aに、n型不純物がドープされたGaNに対する窒素欠陥の生成エネルギー未満のエネルギーしか加えない条件でエッチングする。n型不純物がドープされたGaNの窒素欠陥生成エネルギーが高いので、上記の条件を満たしながらエッチングすることができる。
仮にi型またはp型不純物がドープされたGaNを用いると、窒素欠陥の生成エネルギーが低いために、窒素欠陥の生成エネルギー未満のエネルギーしかリセス底面に加えないという条件ではGaN層8エッチングすることができない。
In the present embodiment, the recess bottom surface 16a is etched under the condition that only energy less than the generation energy of the nitrogen defect for GaN doped with n-type impurities is applied. Since GaN doped with n-type impurities has high nitrogen defect generation energy, etching can be performed while satisfying the above conditions.
If GaN doped with an i-type or p-type impurity is used, the GaN layer 8 may be etched under the condition that only energy less than the generation energy of the nitrogen defect is applied to the recess bottom surface because the generation energy of the nitrogen defect is low. Can not.

図21は、エッチング底面における表面ポテンシャルの測定結果を示している。具体的にはXPS(X-ray photoelectron spectroscopy)で測定した結果を示している。(B)は、p型のGaNを測定した結果を示し、カーブC2はエッチング前を示し、カーブC3はエッチング後を示している。これに対して、(A)は、n型のGaNを測定した結果を示し、エッチングの前後を通して変化がない。エッチング前の測定結果もC1であり、エッチング後の測定結果もC1である。p型のGaNをエッチングすると、リセス底面が変質するのに対し、n型のGaNをエッチングすると、リセス底面が変質しないことが確認される。   FIG. 21 shows the measurement result of the surface potential at the bottom of the etching. Specifically, the result of measurement by XPS (X-ray photoelectron spectroscopy) is shown. (B) shows the result of measuring p-type GaN, curve C2 shows before etching, and curve C3 shows after etching. On the other hand, (A) shows the result of measuring n-type GaN, and there is no change before and after etching. The measurement result before etching is also C1, and the measurement result after etching is also C1. It is confirmed that when the p-type GaN is etched, the recess bottom is altered, whereas when the n-type GaN is etched, the recess bottom is not altered.

図4は、図3に示したレジスト層14を除去し、リセス16の壁面(底面と側面)ならびに絶縁層12の表面にゲート絶縁膜18を形成した段階を示す。ゲート絶縁膜18には、SiO膜、SiN膜、あるいはAl膜などを使用することができ、堆積手法には、減圧CVD法、プラズマCVD法、原子層堆積法などを利用することができる。
図5は、ゲート電極20を形成した状態を示している。ゲート電極20は、ゲート絶縁膜18で取り囲まれた状態でリセス16の壁面(側壁と底面)を覆うように形成する。ゲート電極20は、絶縁膜12の上面上にまで達していてもよい。パターニングしてゲート電極20を形成する。ゲート電極20には、Al,Ni,Ti,W,Cu,TiN,TaN,poly−Siなどを用いることができる。
図6は、層間絶縁膜22を形成した段階を示す。層間絶縁膜22には、開口24,26が形成されている。開口24はソース電極形成位置に形成されており、開口26はドレイン電極形成位置に形成されている。
図7は、開口24にソース電極28を形成し、開口26にドレイン電極30を形成した状態を示している。ソース電極28とドレイン電極30には、Al,Ti,W,Cu,TiN,TaNなどを用いることができる。以上によって、HEMTが製造される。
FIG. 4 shows a stage in which the resist layer 14 shown in FIG. 3 is removed and a gate insulating film 18 is formed on the wall surface (bottom surface and side surface) of the recess 16 and the surface of the insulating layer 12. As the gate insulating film 18, an SiO 2 film, an SiN film, an Al 2 O 3 film, or the like can be used, and a low pressure CVD method, a plasma CVD method, an atomic layer deposition method, or the like is used as a deposition method. Can do.
FIG. 5 shows a state in which the gate electrode 20 is formed. The gate electrode 20 is formed so as to cover the wall surface (side wall and bottom surface) of the recess 16 while being surrounded by the gate insulating film 18. The gate electrode 20 may reach the upper surface of the insulating film 12. The gate electrode 20 is formed by patterning. For the gate electrode 20, Al, Ni, Ti, W, Cu, TiN, TaN, poly-Si, or the like can be used.
FIG. 6 shows a stage where the interlayer insulating film 22 is formed. Openings 24 and 26 are formed in the interlayer insulating film 22. The opening 24 is formed at the source electrode formation position, and the opening 26 is formed at the drain electrode formation position.
FIG. 7 shows a state in which the source electrode 28 is formed in the opening 24 and the drain electrode 30 is formed in the opening 26. For the source electrode 28 and the drain electrode 30, Al, Ti, W, Cu, TiN, TaN, or the like can be used. As described above, the HEMT is manufactured.

上記のHEMTは、リセス16の底面16aがn型のGaNで形成されており、リセスのエッチング時に窒素欠陥が発生しづらく、閾値電圧が安定する。上記構造は、閾値電圧が安定したHEMTの量産を可能とする。   In the HEMT described above, the bottom surface 16a of the recess 16 is formed of n-type GaN, so that nitrogen defects are not easily generated during the etching of the recess, and the threshold voltage is stabilized. The above structure enables mass production of HEMT with a stable threshold voltage.

以下ではその他の実施例を説明する。既に説明した部材と同一または均等部材には同じ参照番号を用い、重複説明を省略する。
(第2実施例)
図8に示すように、本実施例では、電子走行層8aとバックバリヤ層6の間に、n型GaN層8bが追加されている。リセス16の底面16aはn型GaN層8bによって形成されている。n型GaN層8bでリセス16の底面16aが形成されているために、底面16aに窒素欠陥が生じにくい。閾値電圧が安定する。
電子走行層8aとは別にn型GaN層8bを設ける技術によると、電子走行層8aをn型とする必要がなくなる。本実施例では、電子走行層8aをi型のGaNで形成する。i型のGaNで電子走行層8aを形成すると、電子走行層8aにおける電子の移動度を高く維持することができ、オン抵抗が低く、応答性に優れたHEMTを得ることができる。
Other embodiments will be described below. The same reference numerals are used for the same or equivalent members as those already described, and a duplicate description is omitted.
(Second embodiment)
As shown in FIG. 8, in this embodiment, an n-type GaN layer 8b is added between the electron transit layer 8a and the back barrier layer 6. The bottom surface 16a of the recess 16 is formed by the n-type GaN layer 8b. Since the bottom surface 16a of the recess 16 is formed of the n-type GaN layer 8b, nitrogen defects are unlikely to occur on the bottom surface 16a. The threshold voltage is stabilized.
According to the technique of providing the n-type GaN layer 8b separately from the electron transit layer 8a, the electron transit layer 8a does not need to be n-type. In this embodiment, the electron transit layer 8a is formed of i-type GaN. When the electron transit layer 8a is formed of i-type GaN, the electron mobility in the electron transit layer 8a can be maintained high, and a HEMT with low on-resistance and excellent response can be obtained.

(第3実施例)
図9に示すように、バックバリヤ層6aをAlGaNで形成してもよい。
(Third embodiment)
As shown in FIG. 9, the back barrier layer 6a may be formed of AlGaN.

(第4実施例)
図10に示すように、電子供給層10の上面にGaN層11を形成してもよい。GaN層11はキャップ層となり、HEMTの動作を安定させる。
(Fourth embodiment)
As shown in FIG. 10, a GaN layer 11 may be formed on the upper surface of the electron supply layer 10. The GaN layer 11 becomes a cap layer and stabilizes the operation of the HEMT.

(第5実施例)
図11に示すように、電子供給層10aをInAlNで形成してもよい。電子走行層8を構成するGaNよりも大きなバンドギャップを備えている。
(5th Example)
As shown in FIG. 11, the electron supply layer 10a may be formed of InAlN. A band gap larger than that of GaN constituting the electron transit layer 8 is provided.

(第6実施例)
図12に示すように、電子供給層を複数層で形成してもよい。第6実施例では、下層10bをInGaN層で形成し、上層10cをAlGaN層で形成する。下層10bは、InAlN層で形成してもよいし、AlN層で形成してもよい。いずれも、電子走行層8を形成するGaNよりも大きなバンドギャップを備えている。電子供給層を複数層で形成すると、電子密度を向上させたり、電子の移動度を向上させることができる。
(Sixth embodiment)
As shown in FIG. 12, the electron supply layer may be formed of a plurality of layers. In the sixth embodiment, the lower layer 10b is formed of an InGaN layer, and the upper layer 10c is formed of an AlGaN layer. The lower layer 10b may be formed of an InAlN layer or an AlN layer. Both have a larger band gap than GaN forming the electron transit layer 8. When the electron supply layer is formed of a plurality of layers, the electron density can be improved and the electron mobility can be improved.

(第7実施例)
図19に示すように、バックバリヤ層と電子走行層を兼用する層7を用いることもできる。層7にp型GaN,炭素をドープしたGaN,あるいは鉄をドープしたGaNを用いると、閾値電圧が正側に引き上げられる。上記のGaNであれば、AlGaN層10との界面に2次元電子ガスが発生し、電子走行層を兼用する。
閾値電圧を安定させるために、局所的に形成されたn型のGaN領域8dによってリセス16の底面16aが形成される。n型のGaN領域8dは、リセス16の形成の際に窒素欠陥が生じないようにする領域であり、リセス16の形成範囲にあればよい。
(Seventh embodiment)
As shown in FIG. 19, a layer 7 serving both as a back barrier layer and an electron transit layer can also be used. When p-type GaN, carbon-doped GaN, or iron-doped GaN is used for the layer 7, the threshold voltage is raised to the positive side. In the case of the above GaN, a two-dimensional electron gas is generated at the interface with the AlGaN layer 10 and also serves as an electron transit layer.
In order to stabilize the threshold voltage, the bottom surface 16a of the recess 16 is formed by the locally formed n-type GaN region 8d. The n-type GaN region 8 d is a region that prevents a nitrogen defect from occurring when the recess 16 is formed, and may be in the range where the recess 16 is formed.

図13〜18は、図19に示すHEMTの製造工程を示している。
図13:基板2上に、順に、バッファ層4、i型のGaN層7、AlGaN層10、絶縁層12を積層する。図1では存在するn型のGaN層8は形成しない。
図2:絶縁層12の表面に、後記するリセス16の形成範囲に開口14aが形成されているレジスト層14を形成する。
図14:開口14aからエッチングして浅いリセス16bを形成する。この工程では、絶縁層12のみをエッチングしてAlGaN層10が露出するまでエッチングする。あるいは、絶縁層12とAlGaN層10をエッチングしてi型のGaN層7を露出させてもよい。前者の場合、後で説明する2回目のリセス形成用エッチングの際に、AlGaN層10がエッチングされる。
図15:浅いリセス16bが形成された後に、レジスト層14または絶縁膜12をマスクにしてn型不純物を注入した後の段階を示している。この際には、不純物がAlGaN層10を貫通してGaN層7に達するエネルギーで注入する。ただし、不純物がGaN層7に留まり、GaN層7を貫通しないエネルギーで注入する。この結果、n型のGaN領域8cが形成される。
図16:絶縁膜12をマスクにしてエッチングした段階を示している。この工程では、絶縁膜12で被覆されていないリセス底面がエッチングされ、深いリセス16cが完成する。この工程では、AlGaN層10が除去され、リセス16の底面にn型のGaN領域が露出するまでエッチングする。リセス16の底面16aには、n型のGaN領域8cの厚みが薄くなった領域8dが残る。
図17:ゲート絶縁膜18を形成した段階を示す。図4に対応する。
図18:ゲート電極20を形成する。図5に対応する。
それ以降は、図6の工程を実施する。それによって、図19の構造が製造される。
13 to 18 show a manufacturing process of the HEMT shown in FIG.
FIG. 13: A buffer layer 4, an i-type GaN layer 7, an AlGaN layer 10, and an insulating layer 12 are sequentially stacked on the substrate 2. In FIG. 1, the existing n-type GaN layer 8 is not formed.
FIG. 2: On the surface of the insulating layer 12, a resist layer 14 is formed in which an opening 14a is formed in a formation range of a recess 16 to be described later.
FIG. 14: Etching from the opening 14a forms a shallow recess 16b. In this step, only the insulating layer 12 is etched until the AlGaN layer 10 is exposed. Alternatively, the i-type GaN layer 7 may be exposed by etching the insulating layer 12 and the AlGaN layer 10. In the former case, the AlGaN layer 10 is etched at the time of the second recess formation etching described later.
FIG. 15: shows a stage after the n-type impurity is implanted using the resist layer 14 or the insulating film 12 as a mask after the shallow recess 16b is formed. At this time, the impurities are implanted with energy reaching the GaN layer 7 through the AlGaN layer 10. However, the impurities remain in the GaN layer 7 and are implanted with energy that does not penetrate the GaN layer 7. As a result, an n-type GaN region 8c is formed.
FIG. 16 shows the stage of etching using the insulating film 12 as a mask. In this step, the bottom surface of the recess that is not covered with the insulating film 12 is etched to complete the deep recess 16c. In this step, etching is performed until the AlGaN layer 10 is removed and the n-type GaN region is exposed on the bottom surface of the recess 16. On the bottom surface 16a of the recess 16, a region 8d in which the n-type GaN region 8c is thin remains.
FIG. 17 shows the stage where the gate insulating film 18 is formed. This corresponds to FIG.
FIG. 18: The gate electrode 20 is formed. This corresponds to FIG.
Thereafter, the process of FIG. 6 is performed. Thereby, the structure of FIG. 19 is manufactured.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

2:基板
4:バッファ層
6:バックバリヤ層
6a:AlGaN層
7:ドープドGaN層
8:電子走行層
8a:i型GaN層
8b:n型GaN層
8c:n型GaN層
8d:局所的n型GaN層
10:電子供給層
10a:InGaN層
10b:InGaN,InAlN,AlN
10c:AlGaN
11:キャップ層
12:絶縁膜
14:レジスト層
14a:開口
16:リセス
16a:底面
16b:浅いリセス
16c:深いリセス
18:ゲート絶縁膜
20:ゲート電極
22:層間絶縁膜
24:開口
26:開口
28:ソース電極
30:ドレイン電極
2: Substrate 4: Buffer layer 6: Back barrier layer 6a: AlGaN layer 7: Doped GaN layer 8: Electron travel layer 8a: i-type GaN layer 8b: n-type GaN layer 8c: n-type GaN layer 8d: local n-type GaN layer 10: electron supply layer 10a: InGaN layer 10b: InGaN, InAlN, AlN
10c: AlGaN
11: cap layer 12: insulating film 14: resist layer 14a: opening 16: recess 16a: bottom 16b: shallow recess 16c: deep recess 18: gate insulating film 20: gate electrode 22: interlayer insulating film 24: opening 26: opening 28 : Source electrode 30: Drain electrode

Claims (7)

窒化物半導体で形成されている電子走行層と、
前記電子走行層を形成する窒化物半導体より大きなバンドギャップを持つ窒化物半導体で形成されており、前記電子走行層上に積層されている電子供給層と、
前記電子供給層の上面から前記電子供給層を貫通して前記電子走行層に達しているリセスと、
前記リセスの壁面を被覆しているゲート絶縁膜と、
前記ゲート絶縁膜で覆われた状態で前記リセス内に形成されているゲート電極を備え、
前記リセスの底面がn型の窒化物半導体で形成されているHEMT。
An electron transit layer formed of a nitride semiconductor;
An electron supply layer formed of a nitride semiconductor having a larger band gap than the nitride semiconductor forming the electron transit layer, and stacked on the electron transit layer;
A recess penetrating the electron supply layer from the upper surface of the electron supply layer and reaching the electron transit layer;
A gate insulating film covering the wall surface of the recess;
A gate electrode formed in the recess in a state covered with the gate insulating film;
A HEMT in which the bottom surface of the recess is formed of an n-type nitride semiconductor.
前記電子走行層の下側にバックバリヤ層が形成されている請求項1のHEMT。   The HEMT according to claim 1, wherein a back barrier layer is formed below the electron transit layer. 前記電子走行層がn型の窒化物半導体で形成されており、そのn型の窒化物半導体が前記リセスの底面を形成している請求項1または2のHEMT。   The HEMT according to claim 1 or 2, wherein the electron transit layer is formed of an n-type nitride semiconductor, and the n-type nitride semiconductor forms a bottom surface of the recess. 前記電子走行層の下側に、前記リセスの底面を形成するn型の窒化物半導体の層が形成されている請求項1または2のHEMT。   The HEMT according to claim 1, wherein an n-type nitride semiconductor layer that forms a bottom surface of the recess is formed below the electron transit layer. 前記電子走行層の一部に、前記リセスの底面を形成するn型の窒化物半導体の領域が形成されている請求項1または2のHEMT。   The HEMT according to claim 1, wherein a region of an n-type nitride semiconductor that forms a bottom surface of the recess is formed in a part of the electron transit layer. 前記電子走行層がi型の窒化物半導体で形成されている請求項4または5のHEMT。   6. The HEMT according to claim 4, wherein the electron transit layer is formed of an i-type nitride semiconductor. 前記電子供給層の上側に、GaN層が形成されている請求項1〜6のいずれかの1項に記載のHEMT。   The HEMT according to any one of claims 1 to 6, wherein a GaN layer is formed above the electron supply layer.
JP2014082681A 2014-04-14 2014-04-14 Insulated gate nitride semiconductor transistor Pending JP2015204359A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014082681A JP2015204359A (en) 2014-04-14 2014-04-14 Insulated gate nitride semiconductor transistor
PCT/JP2015/001917 WO2015159499A1 (en) 2014-04-14 2015-04-06 High electron mobility transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014082681A JP2015204359A (en) 2014-04-14 2014-04-14 Insulated gate nitride semiconductor transistor

Publications (1)

Publication Number Publication Date
JP2015204359A true JP2015204359A (en) 2015-11-16

Family

ID=54323725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014082681A Pending JP2015204359A (en) 2014-04-14 2014-04-14 Insulated gate nitride semiconductor transistor

Country Status (2)

Country Link
JP (1) JP2015204359A (en)
WO (1) WO2015159499A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152690A (en) * 2016-02-04 2017-08-31 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ Enhanced normally-off high electron mobility heterojunction transistor
CN109119471A (en) * 2017-06-22 2019-01-01 株式会社东芝 Semiconductor device and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430238B (en) * 2020-04-09 2020-12-22 浙江大学 Preparation method of GaN device structure for improving two-dimensional electron gas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231396A (en) * 2008-03-19 2009-10-08 Sumitomo Chemical Co Ltd Semiconductor device and method for manufacturing semiconductor device
JP5390983B2 (en) * 2008-08-08 2014-01-15 古河電気工業株式会社 Field effect transistor and method of manufacturing field effect transistor
JP4794656B2 (en) * 2009-06-11 2011-10-19 シャープ株式会社 Semiconductor device
JP5495257B2 (en) * 2009-10-09 2014-05-21 シャープ株式会社 Group III nitride field effect transistor and method of manufacturing the same
JP5548910B2 (en) * 2011-05-26 2014-07-16 古河電気工業株式会社 Field effect transistor
TWI508281B (en) * 2011-08-01 2015-11-11 Murata Manufacturing Co Field effect transistor
JP5899879B2 (en) * 2011-12-05 2016-04-06 富士通セミコンダクター株式会社 Compound semiconductor device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152690A (en) * 2016-02-04 2017-08-31 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ Enhanced normally-off high electron mobility heterojunction transistor
CN109119471A (en) * 2017-06-22 2019-01-01 株式会社东芝 Semiconductor device and its manufacturing method
JP2019009231A (en) * 2017-06-22 2019-01-17 株式会社東芝 Semiconductor device and method for manufacturing the same
US10505030B2 (en) 2017-06-22 2019-12-10 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
CN109119471B (en) * 2017-06-22 2021-07-30 株式会社东芝 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
WO2015159499A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6591168B2 (en) Semiconductor device and manufacturing method thereof
JP6214978B2 (en) Semiconductor device
CN104241350B (en) Gate stack for normal related compounds semiconductor transistor
JP6591169B2 (en) Semiconductor device and manufacturing method thereof
JP6401053B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2013235873A (en) Semiconductor device and method of manufacturing the same
JP2017073506A (en) Nitride semiconductor device and method for manufacturing the same
JP2010050347A (en) Semiconductor device, and method of manufacturing the same
WO2012111363A1 (en) Lateral-type semiconductor device
JP5713109B2 (en) Field effect transistor
JPWO2007122790A1 (en) Field effect transistor
JP2010232610A (en) Semiconductor device and method of manufacturing the same
JP5144326B2 (en) Field effect transistor
JP6507983B2 (en) Nitride semiconductor device
WO2015159499A1 (en) High electron mobility transistor
JP2013229458A (en) Heterojunction field-effect transistor and method of manufacturing the same
JP2016058721A (en) Semiconductor device
JP2013225621A (en) Semiconductor device and manufacturing method of the same
JP2014056998A (en) LAMINATE TYPE NITRIDE SEMICONDUCTOR DEVICE INCLUDING InAlN LAYER AND GaN LAYER
JP5169515B2 (en) Compound semiconductor device
TWI760937B (en) Semiconductor structure and method of making the same
JP2015073002A (en) Compound semiconductor device and manufacturing method of the same
JP5648307B2 (en) Vertical AlGaN / GaN-HEMT and manufacturing method thereof
JP2012256923A (en) Compound semiconductor device
JP2015204425A (en) Field effect transistor and method of manufacturing the same