JP2015203045A - Method for producing coke - Google Patents

Method for producing coke Download PDF

Info

Publication number
JP2015203045A
JP2015203045A JP2014081951A JP2014081951A JP2015203045A JP 2015203045 A JP2015203045 A JP 2015203045A JP 2014081951 A JP2014081951 A JP 2014081951A JP 2014081951 A JP2014081951 A JP 2014081951A JP 2015203045 A JP2015203045 A JP 2015203045A
Authority
JP
Japan
Prior art keywords
coal
particle size
caking coal
expansion
slightly caking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014081951A
Other languages
Japanese (ja)
Other versions
JP6115509B2 (en
Inventor
沙緒梨 藤原
Saori Fujiwara
沙緒梨 藤原
愛澤 禎典
Sadanori Aizawa
禎典 愛澤
上坊 和弥
Kazuya Uebo
和弥 上坊
野村 誠治
Seiji Nomura
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54596707&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015203045(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014081951A priority Critical patent/JP6115509B2/en
Publication of JP2015203045A publication Critical patent/JP2015203045A/en
Application granted granted Critical
Publication of JP6115509B2 publication Critical patent/JP6115509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a coke, when a non-fine-caking coal is used as a part of a coal blend, capable of easily obtaining a coke having higher strength.SOLUTION: Provided is a method for producing a coke, when a coke is produced as a part of a coal blend by pulverizing a non-fine-caking coal in which a volatile matter content is 30 mass% or higher, the total expansion ratio by dilatometer measurement is 40% or lower, and the logarithm value of Gieseler fluidity (ddpm) is 1.5 or lower, the pulverization particle diameter of the non-fine-caking coal is decided in such a manner that an expandable obstruction variability rate reaches a prescribed value or lower.

Description

本発明は、コークスの製造方法に関する。   The present invention relates to a method for producing coke.

コークスの製造では、安価原料である非微粘結炭を多量に使用することが望まれている。非微粘結炭は、高揮発分であるが故に、軟化溶融−再固化後の(セミ)コークス収縮率が高い。非微粘結炭が高収縮する結果、コークス塊内には亀裂が生成される。生成された亀裂は、コークス強度を低下させる要因となる。
上記問題に対しては、非微粘結炭を粉砕することで、コークス強度を向上させている。具体的には、非微粘結炭を粉砕して、非微粘結炭の粒子サイズを小さくする。これにより、非微粘結炭の高収縮によって生成されるコークス塊内の亀裂サイズが低下するため、結果として、亀裂生成に起因するコークス強度の低下を抑制できる。
In the production of coke, it is desired to use a large amount of non-slightly caking coal that is an inexpensive raw material. Since non-slightly caking coal has a high volatile content, the (semi) coke shrinkage after softening and melting and resolidification is high. As a result of the high shrinkage of the non-slightly caking coal, cracks are generated in the coke mass. The generated crack becomes a factor of reducing the coke strength.
The coke strength is improved by pulverizing non-slightly caking coal for the above problem. Specifically, the non-slightly caking coal is pulverized to reduce the particle size of the non-slightly caking coal. Thereby, since the crack size in the coke lump produced | generated by the high shrinkage | contraction of a non-slightly caking coal falls, as a result, the fall of the coke intensity | strength resulting from a crack production | generation can be suppressed.

一方で、非微粘結炭は、過粉砕して、粒度が小さくなると、膨張性が低下することが知られている。
このように、非微粘結炭を細粒に粉砕すると、コークス強度は向上するが、過粉砕すると膨張性が低下してしまい、かえって、コークス強度は低下すると考えられる。
従って、膨張性の低下によるコークス強度の低下を引き起こさずに、粉砕による効果を享受することが望まれている。
On the other hand, it is known that the non-slightly caking coal is excessively pulverized and the expansibility is lowered when the particle size is reduced.
As described above, when the non-coking coal is pulverized into fine particles, the coke strength is improved. However, when the pulverized coal is excessively pulverized, the expansibility is lowered, and on the contrary, the coke strength is considered to be decreased.
Therefore, it is desired to enjoy the effect of pulverization without causing a decrease in coke strength due to a decrease in expansibility.

非微粘結炭の粉砕粒度を規定する手法として、以下のようなものが開示されている。
平均反射率0.6%以上1.1%以下、かつ、膨張率−10%以上の弱粘結炭を粒度2mm以下90質量%以上に粉砕する方法が開示されている(特許文献1)。従来の技術範囲(3mm以下60質量%〜90質量%)よりも細かく粉砕することで、亀裂抑制効果が大きく、コークス強度が向上するとしている。
また、粘結炭、非粘結炭を問わず、0.6mm以上の最大長さを有する粗大イナート組織を区分化し、区分毎に粉砕し、石炭粉砕に伴う粒径0.3mm以下の微粉炭の増加による配合炭全体の嵩密度の低下を抑制することで、安定的かつ効果的にコークス強度を高める高炉用コークスの製造方法が開示されている(特許文献2)。
更に、石炭は過粉砕により膨張性が低下することから、非微粘結炭の最適粒度の決定に石炭の膨張性の指標である比容積を指標とし、石炭を粉砕したときの比容積の低下度合いによって石炭の粒度を調整する方法が開示されている(特許文献3)。
The following is disclosed as a method for defining the pulverized particle size of non-slightly caking coal.
A method is disclosed in which weakly caking coal having an average reflectance of 0.6% to 1.1% and an expansion rate of -10% or more is pulverized to a particle size of 2 mm or less and 90% by mass or more (Patent Document 1). By pulverizing finer than the conventional technical range (3 mm or less, 60 mass% to 90 mass%), the crack suppression effect is great and the coke strength is improved.
Regardless of caking coal or non-caking coal, coarse inert structures having a maximum length of 0.6 mm or more are sectioned, pulverized into sections, and pulverized coal having a particle size of 0.3 mm or less accompanying coal pulverization. A method for producing coke for blast furnace that increases the coke strength stably and effectively by suppressing the decrease in the bulk density of the entire blended coal due to the increase in the amount of coal is disclosed (Patent Document 2).
Furthermore, since the expansibility of coal decreases due to over-pulverization, the specific volume of coal is crushed using the specific volume, which is an index of the expansibility of coal, as an index for determining the optimum particle size of non-slightly caking coal. A method of adjusting the particle size of coal according to the degree is disclosed (Patent Document 3).

特開2002−121567号公報JP 2002-121567 A 特許第4551494号公報Japanese Patent No. 4551494 特許第4102015号公報Japanese Patent No. 4102015

特許文献1は、弱粘結炭を粒度2mm以下90質量%以上に粉砕しているが、粉砕により発生する微粉及び配合炭の膨張性に対する影響に関しての記載がない。
特許文献2は、石炭の性状に対応した粉砕方法を提案し、粗大イナート組織に着目して、その特性に応じて粉砕している。しかし、上記特許文献1と同様に、非微粘結炭の粉砕に伴う膨張性の変化についての記述はない。
特許文献3では、非微粘結炭を粉砕したときの膨張性の変化に着目している。しかし、非微粘結炭を2〜3mmかつ平均粒径2.5mmに粉砕した場合の比容積を基準としており、そのような粒度分布に非微粘結炭を粉砕することは難しい。また実操業で得られる非微粘結炭の粒度分布は上述のような狭いものではなく、現実的な方法とはいえない。
Patent Document 1 pulverizes weakly caking coal to a particle size of 2 mm or less and 90% by mass or more, but there is no description regarding the influence on the expansibility of fine powder and blended coal generated by pulverization.
Patent Document 2 proposes a pulverization method corresponding to the properties of coal, and focuses on the coarse inert structure and pulverizes according to the characteristics. However, as with Patent Document 1, there is no description of the change in expansibility associated with the pulverization of non-slightly caking coal.
In Patent Document 3, attention is paid to a change in expansibility when non-slightly caking coal is pulverized. However, the specific volume when the non-slightly caking coal is pulverized to 2 to 3 mm and an average particle size of 2.5 mm is a standard, and it is difficult to pulverize the non-slightly caking coal to such a particle size distribution. Moreover, the particle size distribution of the non-slightly caking coal obtained by actual operation is not narrow as mentioned above, and cannot be said to be a realistic method.

本発明の目的は、このような状況を鑑み、非微粘結炭を配合炭の一部として使用するにあたって、より高強度のコークスを簡便に得ることが可能な、コークスの製造方法を提供することである。   In view of such circumstances, the object of the present invention is to provide a method for producing coke that can easily obtain higher-strength coke when using non-slightly caking coal as part of the blended coal. That is.

本発明者らは、非微粘結炭の粒度毎の膨張特性に着目し、膨張性を阻害する変動率が所定の値以下となるように非微粘結炭の粉砕粒度を決定することで、より高強度のコークスを簡便に製造することができることを見出した。   The present inventors pay attention to the expansion characteristics for each particle size of the non-slightly caking coal, and by determining the pulverized particle size of the non-slightly caking coal so that the rate of change that inhibits the expandability is a predetermined value or less. The present inventors have found that coke with higher strength can be easily produced.

本発明の要旨とするところは、以下のとおりである。
(1)揮発分が30質量%以上で、ジラトメーター測定による全膨張率が40%以下、ギーセラー流動度(ddpm)の対数値が1.5以下の非微粘結炭を粉砕して配合炭の一部としてコークスを製造するにあたり、膨張性阻害変動率が所定の値以下になるように前記非微粘結炭の粉砕粒度を決定することを特徴とするコークスの製造方法。
ここで、前記膨張性阻害変動率は、次の方法により求める。即ち、前記非微粘結炭を3mm篩下比率65質量%以上85質量%以下に粉砕した場合の1mm〜3mm粒度の石炭の膨張性阻害指数(IFC)を求める。次に、前記1mm〜3mm粒度の石炭を粉砕して生ずる粒度iについて、粒度i毎に石炭の膨張性阻害指数(IFC)を算出することで前記IFCからの増加係数(ΔIFC)を算出しておく。次に、前記非微粘結炭のIFCを算出した粉砕粒度以上に粉砕した場合の1mm篩下における粒度区分毎に粒度iの質量比率増分(ΔFC)を求める。なお、前記ΔFCは、前記非微粘結炭の全量に対する粒度iにおける質量比率増分である。前記ΔIFCと前記ΔFCとを掛け合わせて、それぞれの粒度i毎に合計し、Σ(ΔIFC×ΔFC)を算出する。最後に、算出した前記Σ(ΔIFC×ΔFC)に、乾留試験に供する配合炭での前記非微粘結炭の配合割合αを掛け、膨張性阻害変動率とする。
(2)前記膨張性阻害変動率が0.02以下となるように前記非微粘結炭の粉砕粒度を決定することを特徴とする(1)に記載のコークスの製造方法。
The gist of the present invention is as follows.
(1) Non-slightly caking coal with a volatile content of 30% by mass or more, a total expansion rate of 40% or less as measured by dilatometer, and a logarithmic value of Gieseller fluidity (ddpm) of 1.5 or less is pulverized. In producing coke as a part, a method for producing coke is characterized in that the pulverized particle size of the non-coking coal is determined so that the expansion inhibition fluctuation rate is a predetermined value or less.
Here, the expansion inhibiting fluctuation rate is obtained by the following method. That is, the expansion inhibition index (IFC 0 ) of coal having a particle size of 1 mm to 3 mm when the non-finely caking coal is pulverized to a ratio of 65% by mass to 85% by mass of a 3 mm sieving ratio is obtained. Next, an increase coefficient (ΔIFC i ) from the IFC 0 is calculated by calculating an expansion inhibition index (IFC i ) of the coal for each particle size i for the particle size i generated by pulverizing the coal having a particle size of 1 mm to 3 mm. Calculate it. Next, the mass ratio increment (ΔFC i ) of the particle size i is obtained for each particle size classification under a 1 mm sieve when the IFC 0 of the non-slightly caking coal is crushed to the calculated pulverized particle size or more. Incidentally, the? Fc i is the mass ratio increment in the particle size i the total amount of the non- or slightly caking coal. The ΔIFC i and the ΔFC i are multiplied and totaled for each granularity i to calculate Σ (ΔIFC i × ΔFC i ). Finally, the calculated Σ (ΔIFC i × ΔFC i ) is multiplied by the blending ratio α of the non-slightly caking coal in the blended coal to be subjected to the dry distillation test to obtain an expansion inhibition variation rate.
(2) The method for producing coke according to (1), wherein the pulverized particle size of the non-slightly caking coal is determined so that the expansion inhibition fluctuation rate is 0.02 or less.

本発明によれば、非微粘結炭を配合炭の一部として使用するにあたって、非微粘結炭の粉砕粒度を決定することで、より高強度のコークスを簡便に得ることができる。   According to the present invention, when using non-slightly caking coal as a part of blended coal, it is possible to easily obtain higher strength coke by determining the pulverized particle size of non-slightly caking coal.

非微粘結炭の粒度とI型強度並びに配合炭の膨張比容積との関係を示す図。The figure which shows the relationship between the particle size of non-caking coal, I type intensity | strength, and the expansion specific volume of a combination coal. 非微粘結炭の粒度と膨張性阻害指数(IFC)との関係を示す図。The figure which shows the relationship between the particle size of non-coking coal, and an expansibility inhibition index (IFC). 実施例1における、非微粘結炭の粒度分布を示す図。The figure which shows the particle size distribution of the non-slightly caking coal in Example 1. FIG. 実施例1における、非微粘結炭の粒度低下による膨張性阻害指数(IFC)の変化を示す図。The figure which shows the change of the expansibility inhibition index (IFC) by the particle size fall of the non-slightly caking coal in Example 1. FIG. 実施例1における、非微粘結炭Cの粉砕強化による粒度分布の変化を示す図。The figure which shows the change of the particle size distribution by the grinding | pulverization reinforcement | strengthening of the non-slightly caking coal C in Example 1. FIG. 実施例1における、非微粘結炭の粒度とドラム強度の関係を示す図。The figure which shows the relationship between the particle size of non-slightly caking coal and drum strength in Example 1. FIG. 実施例1における、膨張性阻害変動率に関する図であり、(A)は膨張性阻害変動率とドラム強度の関係を示す図、(B)は膨張性阻害変動率と粉砕レベルの関係を示す図。It is a figure regarding the expansion | swelling inhibition fluctuation rate in Example 1, (A) is a figure which shows the relationship between expansion | swelling inhibition fluctuation | variation rate and drum strength, (B) is a figure which shows the relationship between expansion | swelling inhibition fluctuation | variation rate and a grinding | pulverization level. .

以下、本発明の実施形態を図面に基づいて詳細に説明する。
本実施形態において、粉砕対象となる非微粘結炭は、揮発分が30質量%以上で、ジラトメーター測定による全膨張率が40%以下、ギーセラー流動度(ddpm)の対数値が1.5以下のものをいう。
先ず、非微粘結炭の粒度毎のコークス強度と配合炭の膨張性について調査した。
この調査で使用した非微粘結炭並びに粘結炭の性状を以下の表1に示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the present embodiment, the non-slightly caking coal to be pulverized has a volatile content of 30% by mass or more, a total expansion rate by dilatometer measurement of 40% or less, and a logarithmic value of Gieseller fluidity (ddpm) of 1.5 or less. Means things.
First, the coke strength for each particle size of the non-slightly caking coal and the expansibility of the blended coal were investigated.
The properties of the non-slightly caking coal and caking coal used in this investigation are shown in Table 1 below.

Figure 2015203045
Figure 2015203045

非微粘結炭を、3mm篩下比率が75質量%となるように粉砕した。そして粉砕物を、7mm,5mm,3mm,1mm,0.6mm,0.3mm,0.1mmの篩で7つの粒度区分に篩い分けた。
次に、篩い分け後の各粒度の非微粘結炭と、1mm篩下比率が100質量%の粘結炭とを混合して、各粒度毎に配合炭を作製した。配合炭の割合は、非微粘結炭30乾質量%、粘結炭70乾質量%とした。
次に、配合炭100gを試験コークス炉に装入し、3℃/minの昇温速度で1000℃まで昇温し、1000℃で30分保持して配合炭を乾留することにより、コークスを作製した。なお、試験コークス炉には、石炭装炭容積144cm(W40mm、L60mm、H60mm)の小型の乾留装置を使用した。
The non-slightly caking coal was pulverized so that the 3 mm sieving ratio was 75% by mass. Then, the pulverized product was sieved into 7 particle size categories with 7 mm, 5 mm, 3 mm, 1 mm, 0.6 mm, 0.3 mm, and 0.1 mm sieves.
Next, non-finely caking coal of each particle size after sieving and caking coal having a 1 mm sieving ratio of 100% by mass were mixed to prepare blended coal for each particle size. The proportions of the blended charcoal were 30 dry mass% non-caking coal and 70 dry mass caking coal.
Next, 100 g of the blended coal was charged into a test coke oven, heated to 1000 ° C. at a rate of 3 ° C./min, held at 1000 ° C. for 30 minutes, and the coal blend was dry-distilled to produce coke. did. The test coke oven used a small dry distillation apparatus with a coal loading capacity of 144 cm 3 (W 40 mm, L 60 mm, H 60 mm).

得られたコークスの強度をI型強度試験により測定した。
I型強度試験は、円筒状容器にサンプルを入れ、この円筒状容器を所定速度で回転させることにより衝撃を加えた後、サンプルの9.52mm篩上残存率を求めるものである。円筒状容器の回転は、円筒状容器の長さ中央部に回転軸を設け、この回転軸を中心に1分間に20回の回転速度で合計600回転させることにより行った。
また、本試験では、内径132mm×長さ600mmの円筒状容器を用い、サンプルには、上記得られたコークスのうち、略72cm、略40gのコークスを用いた。
The strength of the obtained coke was measured by a type I strength test.
In the I-type strength test, a sample is put in a cylindrical container, and the cylindrical container is rotated at a predetermined speed, and an impact is applied. Then, the residual rate of the sample on a 9.52 mm sieve is obtained. The rotation of the cylindrical container was performed by providing a rotation axis at the center of the length of the cylindrical container and rotating the rotation at a rotation speed of 20 times per minute around the rotation axis for a total of 600 rotations.
In this test, a cylindrical container having an inner diameter of 132 mm and a length of 600 mm was used, and about 72 cm 3 and about 40 g of coke obtained above were used as samples.

また、コークス作製前の配合炭について、膨張性の指標として、以下の方法に基づき、膨張比容積を求めた。膨張比容積は、石炭質量に対する石炭膨張後の体積である。
先ず、JIS M8801に規定された細管に、配合炭を粉体のまま、所定の装入密度(0.85[dry,g/cm])で高さ60mmに装入した。次に、細管内の配合炭の上にピストンを装入し、ピストンを装入した状態で細管を3.0±0.1℃/minの昇温速度で300℃から600℃まで加熱し、加熱終了した後の配合炭の高さを測定した。なお、この調査においては、ピストンが配合炭に及ぼす荷重は約110gとした。加熱終了後の配合炭高さをL[mm]とした。そして、以下の式(1)から膨張比容積[cm/g]を求めた。
膨張比容積 =L/(60×0.85) …(1)
Moreover, the expansion specific volume was calculated | required based on the following method as an expansion | swelling parameter | index about the combination charcoal before coke preparation. The expansion specific volume is the volume after the coal expansion relative to the coal mass.
First, the blended charcoal was charged as powder into a thin tube defined in JIS M8801 at a predetermined charging density (0.85 [dry, g / cm 3 ]) to a height of 60 mm. Next, the piston is charged on the blended coal in the narrow tube, and the thin tube is heated from 300 ° C. to 600 ° C. at a temperature increase rate of 3.0 ± 0.1 ° C./min with the piston loaded. The height of the blended coal after completion of heating was measured. In this investigation, the load that the piston exerts on the blended coal was about 110 g. The height of the blended coal after the heating was set to L [mm]. And expansion specific volume [cm < 3 > / g] was calculated | required from the following formula | equation (1).
Expansion specific volume = L / (60 × 0.85) (1)

非微粘結炭の粒度とI型強度並びに配合炭の膨張比容積との関係を図1に示す。
図1に示すように、非微粘結炭が1mm〜3mm粒度のときに、コークス強度は最大となる結果が得られた。従って、粗大な非微粘結炭粒子は、1〜3mm程度の粒度にまで粉砕することによって、セミコークスの収縮率差に起因する亀裂サイズを低下させることができ、その結果、コークス強度が向上すると考えられる。
一方で、1mm以下の粒度では、コークス強度が大幅に低下した。このことから、粒度を1mmよりも小さくしても亀裂サイズの低下によるコークス強度の向上効果は小さいと考えられる。また、1mm以下の粒度のコークス強度の低下は、膨張比容積が低下していることが原因として考えられる。
上記結果から、粉砕によるコークス強度の向上効果を得るには、非微粘結炭を1mm〜3mmの範囲となるように粉砕することが望ましい。しかしながら、実際の粉砕操作においては、必然的に1mmよりも小さい微粉が発生する。そして、粒度が1mm以下の微粉が及ぼすコークス強度への影響は非常に大きいと推察される。
FIG. 1 shows the relationship between the particle size of non-caking coal, type I strength, and expansion specific volume of blended coal.
As shown in FIG. 1, when the non-slightly caking coal had a particle size of 1 mm to 3 mm, a result that the coke strength was maximized was obtained. Therefore, coarse non-coking coal particles can be reduced to a crack size due to the difference in shrinkage of semi-coke by pulverizing to a particle size of about 1 to 3 mm, resulting in improved coke strength. I think that.
On the other hand, at a particle size of 1 mm or less, the coke strength was significantly reduced. From this, it is considered that even if the particle size is smaller than 1 mm, the effect of improving the coke strength due to the decrease in crack size is small. Further, the decrease in coke strength with a particle size of 1 mm or less is considered to be caused by a decrease in the expansion specific volume.
From the above results, in order to obtain the effect of improving the coke strength by pulverization, it is desirable to pulverize the non-slightly caking coal to be in the range of 1 mm to 3 mm. However, in an actual pulverization operation, fine powder smaller than 1 mm is inevitably generated. And it is guessed that the influence with respect to the coke strength which the fine powder with a particle size of 1 mm or less exerts is very large.

そこで、粒度が1mm以下の微粉が及ぼす膨張性への影響を評価した。
この調査で使用した非微粘結炭並びに粘結炭の性状を以下の表2に示す。
Then, the influence on the expansibility which fine powder with a particle size of 1 mm or less exerts was evaluated.
The properties of the non-slightly caking coal and caking coal used in this investigation are shown in Table 2 below.

Figure 2015203045
Figure 2015203045

異なる銘柄の非微粘結炭において、3mm篩下比率75質量%となるように粉砕した際の、3mm以下の粒度数区分における膨張性阻害指数(IFC)を算出した。
ここで、膨張性阻害指数(IFC)とは、例えば特許第5402369号に開示されている、下記式(2)に示すイナートファクターIFを算出する際の定数fを指す。
イナートファクターIF=−f×x+1.00 …(2)
上記式中、xは低石炭化度炭配合率である。
膨張性阻害指数(IFC)では、非微粘結炭が粒度区分によって膨張性をどの程度阻害しているかが判る。
The non-slightly caking coals of different brands were calculated to have an expansion inhibition index (IFC) in a particle size number category of 3 mm or less when pulverized to a 75% by mass ratio of 3 mm under sieve.
Here, the expansivity inhibition index (IFC) refers to a constant f when calculating an inert factor IF shown in the following formula (2), which is disclosed in, for example, Japanese Patent No. 5402369.
Inert factor IF = −f × x + 1.00 (2)
In the above formula, x is a low coal content ratio.
In the expansibility inhibition index (IFC), it can be seen how much non-slightly caking coal inhibits expansibility by particle size classification.

膨張性阻害指数(IFC)の算出方法では、先ず、非微粘結炭と、粘結炭と、非微粘結炭及び粘結炭を配合させた配合炭との膨張比容積をそれぞれ算出した。なお、膨張比容積は、前述の方法を用いて式(1)から算出した。次に、非微粘結炭及び粘結炭の配合率に基づく加重平均値による配合炭の膨張比容積を求めた。そして、加重平均による膨張比容積と、実測の配合炭膨張比容積との差分を、配合炭に添加した非微粘結炭のパーセントで割ることによって求めた。
即ち、膨張性阻害指数(IFC)は、下記式(3)で表される。
In the method for calculating the expansion inhibition index (IFC), first, the specific expansion volumes of non-slightly caking coal, caking coal, and coal blended with non-slightly caking coal and caking coal were respectively calculated. . In addition, the expansion specific volume was computed from Formula (1) using the above-mentioned method. Next, the expansion specific volume of the blended coal by the weighted average value based on the blending ratio of the non-slightly caking coal and the caking coal was determined. And it calculated | required by dividing the difference of the expansion specific volume by a weighted average, and the actual mixing coal expansion specific volume by the percentage of the non-slightly caking coal added to the mixing coal.
That is, the expansibility inhibition index (IFC) is represented by the following formula (3).

Figure 2015203045

非微粘結炭の粒度と膨張性阻害指数(IFC)との関係を図2に示す。
図2に示すように、非微粘結炭の粒度が低下するに従ってIFCは高くなる傾向にあり、粒度が1mm以下の微粉が膨張性に影響を与えていることを明らかとした。なお、IFCの増加度合いは非微粘結炭の銘柄によって異なっており、全膨張率が40%と高い非微粘結炭AのIFCの増加度合いは低く、全膨張率が0%のほとんど膨張しない非微粘結炭Dの増加度合いが高い結果が得られた。
Figure 2015203045

FIG. 2 shows the relationship between the particle size of non-coking coal and the expansibility inhibition index (IFC).
As shown in FIG. 2, the IFC tends to increase as the particle size of the non-slightly caking coal decreases, and it has been clarified that fine powder having a particle size of 1 mm or less has an effect on expansibility. The degree of increase in IFC differs depending on the brand of non-slightly caking coal, and the rate of increase in IFC for non-slightly caking coal A, which is as high as 40%, is low, and the expansion rate is almost 0%. The result which the increase degree of the non-slightly caking coal D which does not do was high was obtained.

そこで、1mm〜3mm粒子の非微粘結炭を粉砕して、粒径を1mm以下での粒度iまで低下させたときの、IFCからの増加係数(ΔIFC)を求めた。なお、銘柄による膨張性阻害指数(IFC)の差が小さい1mm〜3mm粒子の膨張性阻害指数を基準とした。この基準とした1mm〜3mm粒子の膨張性阻害指数をIFCとする。
ΔIFCは、1mm〜3mm粒子の非微粘結炭を粉砕して生ずる粒度iについて、粒度i毎に算出する膨張性阻害指数(IFC)とIFCとの差により算出される(ΔIFC=IFC−IFC)。
即ち、IFCからの増加係数(ΔIFC)は、下記式(4)で表される。
Therefore, an increase coefficient (ΔIFC i ) from IFC 0 was determined when non-slightly caking coal of 1 mm to 3 mm particles was pulverized to reduce the particle size to a particle size i of 1 mm or less. In addition, the expansion | swelling inhibition index of 1 mm-3 mm particle | grains with a small difference of the expansion | swelling inhibition index (IFC) by a brand was made into the reference | standard. The expansion inhibition index of 1 mm to 3 mm particles based on this standard is defined as IFC 0 .
ΔIFC i is calculated based on the difference between the expansion inhibition index (IFC i ) calculated for each particle size i and IFC 0 for the particle size i generated by pulverizing 1 to 3 mm non-coking coal (ΔIFC i = IFC i -IFC 0 ).
That is, the increase coefficient (ΔIFC i ) from IFC 0 is expressed by the following equation (4).

Figure 2015203045

ΔIFCは、増分が大きいほど、非微粘結炭の粉砕強化によって、配合炭の膨張性をより低下させることを意味している。このため、銘柄毎のΔIFCの違いによって、どの程度にまで粉砕強化することが可能かの指標になるといえる。
Figure 2015203045

ΔIFC i means that the larger the increment, the lower the expansibility of the blended coal by pulverizing and strengthening the non-slightly caking coal. For this reason, it can be said that it is an index of how much crushing and strengthening can be performed by the difference in ΔIFC i for each brand.

また、銘柄毎に膨張性阻害指数を算出しておけば、コークス製造に用いる配合炭で、その都度、膨張性を評価する手間を省くことができるため、作業を簡素化でき、迅速に最適な粉砕粒度を決定することができる。
なお、膨張性阻害指数(IFC)を算出する際には、膨張性の変化が確認できるように、膨張比容積を測定する際に、配合炭に配合する粘結炭には十分な膨張性を有していることが望まれる。
In addition, if an expansibility inhibition index is calculated for each brand, the blended coal used for coke production can save time and effort for evaluating the expansibility each time. The grinding particle size can be determined.
In addition, when calculating the expansion inhibition index (IFC), when measuring the expansion specific volume, when the expansion specific volume is measured, sufficient expansion is required for the caking coal blended with the blended coal. It is desirable to have it.

一方で、粉砕強化によって、1mm以下の粒度の微粉がどのような傾向で増加するかを評価した。
ここでは、非微粘結炭を3mm篩下比率75質量%から粉砕強化をした際の粒度分布を測定した。そして、1mm篩下をいくつかの粒度iに区分し、粒度区分毎に粒度iの質量比率増分(ΔFC)を算出した。このΔFCにより、粉砕強化によって、非微粘結炭の全量に対して、どの粒度が、どの程度の質量で占めているのかが判る。なお、ΔFCは、非微粘結炭の全量に対する粒度iにおける質量比率増分である。
そして、ΔIFCとΔFCとを掛け合わせ、このΔIFC×ΔFCをそれぞれの粒度i毎に合計し、Σ(ΔIFC×ΔFC)を算出した。
ΔIFC×ΔFCによって、粒度iの非微粘結炭が、非微粘結炭の全量に対して、どの程度の膨張性を阻害しているかが判り、これらを合計することで、1mm篩下の微粉が非微粘結炭の全量に対して、どの程度の膨張性を阻害しているかを指標化できる。
On the other hand, it was evaluated how the fine powder having a particle size of 1 mm or less increases by pulverization strengthening.
Here, the particle size distribution was measured when the non-finely caking coal was pulverized and strengthened from a 3 mm sieving ratio of 75% by mass. Then, the 1 mm sieve was divided into several particle sizes i, and the mass ratio increment (ΔFC i ) of the particle size i was calculated for each particle size category. From this ΔFC i , it can be understood which particle size occupies with what mass with respect to the total amount of non-slightly caking coal by pulverization strengthening. Incidentally,? Fc i is the mass ratio increment in the particle size i the total amount of non- or slightly caking coal.
Then, ΔIFC i and ΔFC i were multiplied and this ΔIFC i × ΔFC i was summed for each particle size i to calculate Σ (ΔIFC i × ΔFC i ).
By ΔIFC i × ΔFC i , it is understood how much the non-slightly caking coal of particle size i inhibits the expandability with respect to the total amount of the non-slightly caking coal. It is possible to index how much the lower fine powder inhibits the expansibility with respect to the total amount of non-slightly caking coal.

更に、算出したΣ(ΔIFC×ΔFC)に、乾留試験に供する際の配合炭における非微粘結炭の配合割合αを掛けることで得られる、Σ(ΔIFC×ΔFC)×αを膨張性阻害変動率とした。
この膨張性阻害変動率を求めることで、非微粘結炭を粉砕強化したときの配合炭の膨張性の低下度合いを予測できる。つまり、膨張性阻害変動率が小さい程、非微粘結炭を粉砕しても配合炭の膨張性低下は小さい、すなわち非微粘結炭の粉砕を強化できるということを意味する。
Furthermore, Σ (ΔIFC i × ΔFC i ) × α, which is obtained by multiplying the calculated Σ (ΔIFC i × ΔFC i ) by the blending ratio α of non-slightly caking coal in the blended coal used in the dry distillation test, It was set as the swelling inhibition variation rate.
By obtaining the expansion inhibition variation rate, it is possible to predict the degree of decrease in the expansion of the blended coal when non-slightly caking coal is pulverized and strengthened. That is, the smaller the expansion inhibition variation rate, the smaller the decrease in expansibility of the blended coal even if the non-slightly caking coal is pulverized, that is, the pulverization of the non-slightly caking coal can be strengthened.

非微粘結炭を粉砕するとコークス塊内の亀裂サイズを低下させ、コークス強度が向上するが、過粉砕すると膨張性阻害度合いが増大し、かえってコークス強度を低下させる。
ここで膨張性阻害とは、他の石炭(主に粘結炭)の膨張を阻害する要因である。
非微粘結炭の粉砕によるコークス強度の影響は、その他に、粗粒炭(3mmオーバー)の減少によるもの、粉砕による非微粘結炭自体の膨張比容積の減少によるものもあり、複雑である。
本実施形態のコークスの製造方法では、非微粘結炭の膨張性阻害要因の効果が大きいことに着目し、上記膨張性阻害変動率が所定の値以下になるように、非微粘結炭の粉砕粒度を決定した。具体的には、0.02以下になるように、非微粘結炭の粉砕粒度を決定した。そして、決定した粉砕粒度で非微粘結炭を粉砕して、配合炭の一部としてコークスを製造する。
このように、1mm以下の粒度の膨張性低下の影響を考慮し、この影響が最小限となるように粉砕することで、膨張性の低下を起因とするコークス強度の低下を抑制できる。
また、非微粘結炭を粉砕して、非微粘結炭の粒子サイズを小さくすることよって亀裂生成に起因するコークス強度の低下を抑制できる。
なお、粉砕による粉砕後の非微粘結炭自身の膨張性の低下も考慮する必要はあるが、本実施形態の粉砕対象となる非微粘結炭であれば、粉砕後の非微粘結炭自身の膨張性の低下は、ほぼ無視してよい。
結果として、本実施形態のコークスの製造方法によれば、より高強度のコークスを簡便に得ることができる。
なお、本実施形態では、3mm篩下比率75質量%に粉砕した場合の1mm〜3mm粒度の石炭の膨張性阻害指数をIFCとしたが、IFCは、3mm篩下比率が65質量%以上85質量%以下の範囲内に粉砕した場合の1mm〜3mm粒度の石炭から算出することが可能である。3mm篩下比率が上記範囲内であれば、銘柄による膨張性阻害指数(IFC)の差が小さいため、ΔIFCの算出の基準とすることができる。
Crushing the non-slightly caking coal reduces the crack size in the coke mass and improves the coke strength. However, over-pulverization increases the degree of expansion inhibition and reduces the coke strength.
Here, expansibility inhibition is a factor which inhibits expansion of other coal (mainly caking coal).
The influence of coke strength due to the pulverization of non-slightly caking coal is also complicated by the reduction of coarse coal (over 3 mm) and the expansion specific volume of non-slightly caking coal itself due to pulverization. is there.
In the coke production method of the present embodiment, attention is paid to the fact that the effect of the expansion inhibiting factor of the non-slightly caking coal is large, and the non-slightly caking coal is set so that the expansion inhibiting fluctuation rate is not more than a predetermined value. Was determined. Specifically, the pulverized particle size of the non-slightly caking coal was determined to be 0.02 or less. Then, the non-coking coal is pulverized with the determined pulverized particle size to produce coke as part of the blended coal.
In this way, considering the influence of the expansion of the particle size of 1 mm or less, and pulverizing so as to minimize this influence, the reduction of the coke strength due to the decrease of the expansion can be suppressed.
Moreover, the reduction | decrease of the coke intensity | strength resulting from a crack production | generation can be suppressed by grind | pulverizing non-slightly caking coal and making the particle size of non-slightly caking coal small.
In addition, although it is necessary to consider the decrease in the expandability of the non-slightly caking coal itself after pulverization by pulverization, if it is a non-slightly caking coal to be pulverized in this embodiment, the non-slightly caking after pulverization The reduction in the expansion of the charcoal itself can be almost ignored.
As a result, according to the coke production method of the present embodiment, coke having a higher strength can be easily obtained.
In this embodiment, the expansion inhibition index of coal having a particle size of 1 mm to 3 mm when pulverized to a 3 mm sieving ratio of 75% by mass is IFC 0 , but IFC 0 has a 3 mm sieving ratio of 65% by mass or more. It can be calculated from coal having a particle size of 1 mm to 3 mm when pulverized within the range of 85% by mass or less. If the 3 mm sieving ratio is within the above range, the difference in expansibility inhibition index (IFC) depending on the brand is small, so that it can be used as a reference for calculating ΔIFC i .

次に、実施例を挙げて本発明を更に詳しく説明する。なお、本発明はこれらの実施例の記載内容に何ら制限されるものではない。   Next, the present invention will be described in more detail with reference to examples. In addition, this invention is not restrict | limited to the description content of these Examples at all.

<実施例1>
非微粘結炭A,B,C,Dの性状を以下の表3に、粒度分布を以下の表4並びに図3に示す。
<Example 1>
The properties of non-coking coals A, B, C and D are shown in Table 3 below, and the particle size distribution is shown in Table 4 below and FIG.

Figure 2015203045
Figure 2015203045

Figure 2015203045
Figure 2015203045

先ず、非微粘結炭A,B,C,Dのそれぞれを3mm篩下比率が75質量%となるように粉砕した。粉砕した粒子から1mm〜3mm粒度の粒子を採取し、その膨張比容積を前述の方法を用いて上記式(1)から算出した。
そして、更にその1mm〜3mm粒度の粒子を、あらかじめ膨張比容積の値が既知である粘結炭(1mm篩下比率が100質量%)に、30質量%の割合で添加し、この配合炭の膨張比容積を測定することで、膨張性阻害指数(IFC)を算出した。この粘結炭の全膨張率は79%である。
更に、上述の1mm〜3mm粒度の粒子を手粉砕にて0.3mm〜0.6mmもしくは0.1mm以下に粉砕した。粉砕した粒子を上記と同様に、粘結炭に添加して、その配合炭の膨張比容積を測定した。この膨張比容積から、各粒度の膨張性阻害指数を算出した。非微粘結炭の粒度低下による膨張性阻害指数(IFC)の変化を図4に示す。
図4に示すように、IFCは、非微粘結炭の粒度が低下するに従って高くなる傾向にあり、その増加度合いは非微粘結炭の銘柄によって異なることが確認できる。
First, each of the non-slightly caking coals A, B, C, and D was pulverized so that the 3 mm sieving ratio was 75% by mass. Particles having a particle size of 1 mm to 3 mm were collected from the pulverized particles, and the expansion specific volume was calculated from the above formula (1) using the method described above.
Further, the particles having a particle size of 1 to 3 mm are added to caking coal (1 mm sieving ratio is 100% by mass) whose expansion specific volume is known in advance at a rate of 30% by mass. By measuring the expansion specific volume, the expansion inhibition index (IFC 0 ) was calculated. The total expansion rate of this caking coal is 79%.
Furthermore, the above-mentioned particles having a particle size of 1 to 3 mm were pulverized by hand to 0.3 to 0.6 mm or 0.1 mm or less. The pulverized particles were added to caking coal in the same manner as described above, and the expansion specific volume of the blended coal was measured. From this expansion specific volume, the expansibility inhibition index for each particle size was calculated. FIG. 4 shows the change in the expansion inhibition index (IFC) due to the particle size reduction of the non-slightly caking coal.
As shown in FIG. 4, IFC tends to increase as the particle size of non-slightly caking coal decreases, and it can be confirmed that the degree of increase differs depending on the brand of non-slightly caking coal.

また、非微粘結炭を3mm篩下比率が75質量%、85質量%、95質量%となるようにそれぞれ粉砕し、得られた粉砕物の粒度分布を篩い分けによって測定した。一例として、非微粘結炭Cの粉砕強化による粒度分布の変化を図5に示す。
図5に示すように、非微粘結炭の3mm篩下比率を75質量%から、85質量%、95質量%と粉砕強化することで、粒径が1mm以下の微粉が増加する傾向がみられる。
Moreover, the non-slightly caking coal was grind | pulverized so that a 3 mm sieving ratio might be 75 mass%, 85 mass%, and 95 mass%, respectively, and the particle size distribution of the obtained ground material was measured by sieving. As an example, FIG. 5 shows a change in particle size distribution due to pulverization and strengthening of non-slightly caking coal C.
As shown in FIG. 5, there is a tendency for fine powder having a particle size of 1 mm or less to increase by crushing and strengthening the 3 mm sieving ratio of non-slightly caking coal from 75 mass% to 85 mass% and 95 mass%. It is done.

次に、上記粉砕して得られた粉砕物のうち、1mm以下の微粉を、4粒度区分(1mm〜0.6mm、0.6mm〜0.3mm、0.3mm〜0.1mm、0.1mm以下)に分け、粒度区分毎に質量比率増分(ΔFC)を算出した。
また、図4に示す、隣接するプロット間を直線でそれぞれ繋いだ線に基づき、上記4粒度区分の中央値におけるΔIFC(ΔIFC=IFC−IFC)を推定した。
次に、上記得られたΔIFCとΔFCとを掛け合わせて、それぞれの粒度i毎に合計し、Σ(ΔIFC×ΔFC)を算出した。
Next, among the pulverized product obtained by pulverization, fine particles of 1 mm or less are divided into four particle sizes (1 mm to 0.6 mm, 0.6 mm to 0.3 mm, 0.3 mm to 0.1 mm, 0.1 mm). The mass ratio increment (ΔFC i ) was calculated for each particle size category.
Also, ΔIFC i (ΔIFC i = IFC i -IFC 0 ) at the median value of the four granularity sections was estimated based on the lines connecting adjacent plots with straight lines shown in FIG.
Next, ΔIFC i obtained above and ΔFC i were multiplied and totaled for each particle size i to calculate Σ (ΔIFC i × ΔFC i ).

また、非微粘結炭を25質量%配合した配合炭約80kgを用意した。そして、炭化室内寸法がW450mm×L500mm×H500mmの試験コークス炉に、嵩密度0.87t/mで配合炭を装入し、乾留温度1000℃で21時間乾留を行った。
排出後のコークスは、窒素流通下で冷却し、その後JIS−K2151に規定のドラム強度(DI150 15)測定試験に供した。図6にドラム強度試験の結果を示す。
図6に示すように、粉砕強化によって、ドラム強度が向上する例や、低下する例があり、銘柄によって結果が大きく異なっていた。
図4並びに図6から、粒度が1mm以下の粒子が強度に及ぼす影響の度合い(膨張性阻害指数;IFC)は、銘柄により、また、粒度が1mm以下の粒子の粒度区分により大きく異なることが判る。
Moreover, about 80 kg of blended coal containing 25% by mass of non-slightly caking coal was prepared. Then, the coal blend was charged at a bulk density of 0.87 t / m 3 into a test coke oven having a carbonization chamber size of W450 mm × L500 mm × H500 mm, and subjected to dry distillation at a dry distillation temperature of 1000 ° C. for 21 hours.
The discharged coke was cooled under nitrogen flow, and then subjected to a drum strength (DI 150 15 ) measurement test specified in JIS-K2151. FIG. 6 shows the result of the drum strength test.
As shown in FIG. 6, there are examples in which the drum strength is improved or decreased by pulverization strengthening, and the results are greatly different depending on the brand.
4 and 6, it can be seen that the degree of influence (expansion inhibition index; IFC) of particles having a particle size of 1 mm or less greatly varies depending on the brand and the particle size classification of particles having a particle size of 1 mm or less. .

次に、上記算出したΣ(ΔIFC×ΔFC)に、上記作製したコークスの配合炭中の非微粘結炭の配合割合(α=25)を掛けることで、膨張性阻害変動率Σ(ΔIFC×ΔFC)×αを求めた。
膨張性阻害変動率とドラム強度の関係を図7(A)に、膨張性阻害変動率と粉砕レベルの関係を図7(B)に示す。図7(A)は、非微粘結炭の粒度が3mm篩下75質量%のときのDI150 15を基準に、非微粘結炭を粉砕強化したときのDI150 15の変化をΔDIとし、膨張性阻害変動率に対し、ΔDIをプロットした図である。
図7(A)に示すように、膨張性阻害変動率が0.02より大きくなるとΔDIが負になっていることが判る。つまり、膨張性阻害の影響が大きくなり、粉砕を強化することによってDIが低下したといえる。また、図7(A)と図7(B)から、粉砕レベルが強化されるにつれて膨張性阻害変動率が大きい非微粘結炭はドラム強度が低下する傾向がみてとれる。
Next, by multiplying the calculated Σ (ΔIFC i × ΔFC i ) by the blending ratio (α = 25) of non-slightly caking coal in the blended coal of the coke produced above, the expansion inhibition fluctuation rate Σ ( ΔIFC i × ΔFC i ) × α was determined.
FIG. 7A shows the relationship between the expansion inhibition fluctuation rate and the drum strength, and FIG. 7B shows the relationship between the expansion inhibition fluctuation rate and the grinding level. FIG. 7 (A) shows the change of DI 150 15 when non-slightly caking coal is pulverized and strengthened as ΔDI, based on DI 150 15 when the particle size of non-slightly caking coal is 75% by mass under a 3 mm sieve. FIG. 6 is a diagram in which ΔDI is plotted against the rate of expansion inhibition fluctuation.
As shown in FIG. 7 (A), it can be seen that ΔDI is negative when the expansion inhibition fluctuation rate is greater than 0.02. That is, it can be said that the influence of expansion | swelling inhibition became large and DI fell by strengthening a grinding | pulverization. Moreover, from FIG. 7 (A) and FIG. 7 (B), the non-slightly caking coal with a large expansion | swelling inhibition fluctuation | variation rate can see the tendency for drum strength to fall as a grinding | pulverization level is strengthened.

非微粘結炭を配合炭の一部として多量に使用する際のコークスの製造に利用することができる。   It can be used for the production of coke when a large amount of non-coking coal is used as part of the blended coal.

Claims (2)

揮発分が30質量%以上で、ジラトメーター測定による全膨張率が40%以下、ギーセラー流動度(ddpm)の対数値が1.5以下の非微粘結炭を粉砕して配合炭の一部としてコークスを製造するにあたり、
膨張性阻害変動率が所定の値以下になるように前記非微粘結炭の粉砕粒度を決定することを特徴とするコークスの製造方法。
ここで、前記膨張性阻害変動率は、次の方法により求める。即ち、
前記非微粘結炭を3mm篩下比率65質量%以上85質量%以下に粉砕した場合の1mm〜3mm粒度の石炭の膨張性阻害指数(IFC)を求める。
次に、前記1mm〜3mm粒度の石炭を粉砕して生ずる粒度iについて、粒度i毎に石炭の膨張性阻害指数(IFC)を算出することで前記IFCからの増加係数(ΔIFC)を算出しておく。
次に、前記非微粘結炭のIFCを算出した粉砕粒度以上に粉砕した場合の1mm篩下における粒度区分毎に粒度iの質量比率増分(ΔFC)を求める。なお、前記ΔFCは、前記非微粘結炭の全量に対する粒度iにおける質量比率増分である。
前記ΔIFCと前記ΔFCとを掛け合わせて、それぞれの粒度i毎に合計し、Σ(ΔIFC×ΔFC)を算出する。
最後に、算出した前記Σ(ΔIFC×ΔFC)に、乾留試験に供する配合炭での前記非微粘結炭の配合割合αを掛け、膨張性阻害変動率とする。
Non-slightly caking coal with a volatile content of 30% by mass or more, a dilatometer measurement with a total expansion rate of 40% or less, and a logarithmic value of Gieseller fluidity (ddpm) of 1.5 or less is used as part of the blended coal In making coke,
A method for producing coke, wherein the pulverized particle size of the non-slightly caking coal is determined so that the expansion inhibition fluctuation rate is a predetermined value or less.
Here, the expansion inhibiting fluctuation rate is obtained by the following method. That is,
The expansion inhibition index (IFC 0 ) of coal having a particle size of 1 mm to 3 mm when the non-slightly caking coal is pulverized to a ratio of 65% by mass to 85% by mass of the 3 mm sieving ratio is obtained.
Next, an increase coefficient (ΔIFC i ) from the IFC 0 is calculated by calculating an expansion inhibition index (IFC i ) of the coal for each particle size i for the particle size i generated by pulverizing the coal having a particle size of 1 mm to 3 mm. Calculate it.
Next, the mass ratio increment (ΔFC i ) of the particle size i is obtained for each particle size classification under a 1 mm sieve when the IFC 0 of the non-slightly caking coal is crushed to the calculated pulverized particle size or more. Incidentally, the? Fc i is the mass ratio increment in the particle size i the total amount of the non- or slightly caking coal.
The ΔIFC i and the ΔFC i are multiplied and totaled for each granularity i to calculate Σ (ΔIFC i × ΔFC i ).
Finally, the calculated Σ (ΔIFC i × ΔFC i ) is multiplied by the blending ratio α of the non-slightly caking coal in the blended coal to be subjected to the dry distillation test to obtain an expansion inhibition variation rate.
前記膨張性阻害変動率が0.02以下となるように前記非微粘結炭の粉砕粒度を決定することを特徴とする請求項1に記載のコークスの製造方法。   The method for producing coke according to claim 1, wherein the pulverized particle size of the non-slightly caking coal is determined so that the expansion inhibition fluctuation rate is 0.02 or less.
JP2014081951A 2014-04-11 2014-04-11 Coke production method Active JP6115509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014081951A JP6115509B2 (en) 2014-04-11 2014-04-11 Coke production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081951A JP6115509B2 (en) 2014-04-11 2014-04-11 Coke production method

Publications (2)

Publication Number Publication Date
JP2015203045A true JP2015203045A (en) 2015-11-16
JP6115509B2 JP6115509B2 (en) 2017-04-19

Family

ID=54596707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081951A Active JP6115509B2 (en) 2014-04-11 2014-04-11 Coke production method

Country Status (1)

Country Link
JP (1) JP6115509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544237A (en) * 2019-03-15 2021-10-22 杰富意钢铁株式会社 Method for evaluating coal, method for producing coal blend, and method for producing coke

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017271A (en) * 1998-07-03 2000-01-18 Nippon Steel Corp Estimation method of total expansion ratio
JP2010209310A (en) * 2009-02-16 2010-09-24 Nippon Steel Corp Method for measuring specific volume of blended coal, estimation method of coke surface fracture strength and coal blending method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017271A (en) * 1998-07-03 2000-01-18 Nippon Steel Corp Estimation method of total expansion ratio
JP2010209310A (en) * 2009-02-16 2010-09-24 Nippon Steel Corp Method for measuring specific volume of blended coal, estimation method of coke surface fracture strength and coal blending method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544237A (en) * 2019-03-15 2021-10-22 杰富意钢铁株式会社 Method for evaluating coal, method for producing coal blend, and method for producing coke

Also Published As

Publication number Publication date
JP6115509B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5737002B2 (en) Method for producing blended coal for coke oven charging
JP6265015B2 (en) Coke manufacturing method
JP6379934B2 (en) Coke strength estimation method
JP6260260B2 (en) Coke production method
JP6115509B2 (en) Coke production method
WO2014007184A1 (en) Coke and method for producing same
JP2008133383A (en) Method for producing high strength coke
JP6874524B2 (en) Coke strength estimation method
JP6075354B2 (en) Coke production method
JP5686052B2 (en) Coke production method
JP2004277709A (en) Crushing method of coal for coke oven
JP2017088794A (en) Estimation method of coke strength
JP4890200B2 (en) Manufacturing method of high strength coke
JP6007958B2 (en) Coke production method
JP6107374B2 (en) Coke production method
JP2016148019A (en) Manufacturing method of coke
JP6795314B2 (en) How to make coke
JP4899390B2 (en) Coke production method
TWI789870B (en) Coal or caking material preparation method and coke manufacturing method
JP5434214B2 (en) Coke production method
JP5087911B2 (en) Coke production method
JP2018039868A (en) Manufacturing method of coke
JP4625253B2 (en) Method for producing blast furnace coke
JP6227482B2 (en) Method for producing blast furnace coke and blast furnace coke
JP5942971B2 (en) Coke production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R151 Written notification of patent or utility model registration

Ref document number: 6115509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350