JP2015199075A - Cooling structure and metal mold cooling device - Google Patents

Cooling structure and metal mold cooling device Download PDF

Info

Publication number
JP2015199075A
JP2015199075A JP2014078108A JP2014078108A JP2015199075A JP 2015199075 A JP2015199075 A JP 2015199075A JP 2014078108 A JP2014078108 A JP 2014078108A JP 2014078108 A JP2014078108 A JP 2014078108A JP 2015199075 A JP2015199075 A JP 2015199075A
Authority
JP
Japan
Prior art keywords
hole
cooling
mold
conducting member
heat conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014078108A
Other languages
Japanese (ja)
Other versions
JP6376812B2 (en
Inventor
克洋 竹馬
Katsuhiro Takeuma
克洋 竹馬
秀治 稲垣
Hideji Inagaki
秀治 稲垣
直幸 砂原
Naoyuki Sunahara
直幸 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOYAMA STEEL Ltd
Thermo Graphitics Co Ltd
Original Assignee
KOYAMA STEEL Ltd
Thermo Graphitics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOYAMA STEEL Ltd, Thermo Graphitics Co Ltd filed Critical KOYAMA STEEL Ltd
Priority to JP2014078108A priority Critical patent/JP6376812B2/en
Publication of JP2015199075A publication Critical patent/JP2015199075A/en
Application granted granted Critical
Publication of JP6376812B2 publication Critical patent/JP6376812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To improve the cooling effect of a casting metal mold and a steel material during molding and reduce a cooling temperature difference thereby preventing cracks, distortion, and deformation caused by heat stress.SOLUTION: A metal mold cooling device 10 includes: a metal mold 11; a heat conduction member 13; and a refrigerant supply part 20. An attachment seat 12 is provided on an upper surface of a female mold 11A of the metal mold 11. A hole part 16 is formed from a bottom part 15A of the attachment hole 15 of the attachment seat 12 toward the lower side. The heat conduction member 13 is made of graphite and fills the hole part 16. The refrigerant supply part 20 is attached to the opening side of the hole part 16 and supplies a coolant to an exposed surface 13B of the heat conduction member 13, which is exposed from the hole part 16, in a circulation manner.

Description

本発明は、鋳造用金型などの冷却対象を冷却するための冷却構造、及び金型冷却装置に関する。   The present invention relates to a cooling structure for cooling a cooling target such as a casting mold, and a mold cooling apparatus.

従来、冷却対象である蓄熱体の熱を移動させて放熱する素子として、グラフェンシートが積層された構造を有するグラファイトを利用したものが知られている。例えば、特許文献1には、冷却対象からの熱を受ける受熱部としてグラファイトよりも熱伝導率の劣る金属を設け、その金属がグラファイトの一部に埋め込まれた熱伝導体が開示されている。   2. Description of the Related Art Conventionally, an element that uses graphite having a structure in which graphene sheets are stacked is known as an element that dissipates heat by moving heat of a heat storage body that is a cooling target. For example, Patent Document 1 discloses a heat conductor in which a metal having a thermal conductivity lower than that of graphite is provided as a heat receiving portion that receives heat from an object to be cooled, and the metal is embedded in a part of graphite.

また、従来、金型などの鋼材を冷却する手法として、鋼材に形成された孔部に冷却水を循環供給して前記鋼材を冷却する方法や、孔部に挿入された銅パイプ内に冷却水を流して前記鋼材を冷却する方法(特許文献2参照)が知られている。   Conventionally, as a method of cooling a steel material such as a mold, cooling water is circulated and supplied to a hole formed in the steel material to cool the steel material, or cooling water is inserted into a copper pipe inserted in the hole. There is known a method for cooling the steel material by flowing a gas (see Patent Document 2).

特開2008−28283号公報JP 2008-28283 A 特開2007−136512号公報JP 2007-136512 A

しかしながら、グラファイトは、一般に組成が脆く崩れ安い性質を有しているため、特許文献1の熱伝導体では、金属との接触部分が崩れ易く、熱伝導体としての寿命が短いという問題がある。また、受熱部としてグラファイトよりも熱伝導率の劣る金属を介在させているため、グラファイトを受熱部とする熱伝導体に比べて効率のよい熱伝導を実現できない。   However, since graphite is generally brittle in composition and has a property of being easily broken, the thermal conductor of Patent Document 1 has a problem that the contact portion with the metal is easily broken and the lifetime as the thermal conductor is short. In addition, since a metal having a lower thermal conductivity than graphite is interposed as the heat receiving portion, it is not possible to realize efficient heat conduction compared to a heat conductor using graphite as the heat receiving portion.

また、孔部に冷却水などの冷媒を供給して金型を冷却する方法は、孔部の深部に至るまでの部分の熱が冷却水に吸収されるため、孔部の深部における冷却効果が低いという問題がある。特に、溶融金属を成型する鋳造用の金型においては、成型品と金型との凝着を防止するためにキャビティを冷却させる必要があり、そのため、孔部はキャビティ付近まで形成されている。それにもかかわらず、孔部の深部における冷却効果が低いため、キャビティが十分に冷却されず、成型品と金型との凝着を確実に防止することができない。また、従来の冷却方法では、成型後に前記孔部の深部以外の部分が先に急激に冷却されるため、前記深部とそれ以外の部分との間に過大な温度差が生じる。この過大な温度差は、金型に過大な熱応力を生じせる。このため、前記熱応力によって金型に割れや歪み、変形が生じるおそれがある。特に、金型によって溶融金属の成型品を連続して形成する場合、金型に対して加熱及び冷却が繰り返して行われるため、熱応力による割れや歪み、変形が生じ易い。   In addition, in the method of cooling the mold by supplying a coolant such as cooling water to the hole, the heat of the part up to the deep part of the hole is absorbed by the cooling water, so the cooling effect in the deep part of the hole is effective. There is a problem that it is low. In particular, in a casting mold for molding molten metal, it is necessary to cool the cavity in order to prevent adhesion between the molded product and the mold, and therefore the hole is formed to the vicinity of the cavity. Nevertheless, since the cooling effect in the deep part of the hole is low, the cavity is not sufficiently cooled, and adhesion between the molded product and the mold cannot be reliably prevented. Moreover, in the conventional cooling method, since parts other than the deep part of the hole are rapidly cooled first after molding, an excessive temperature difference is generated between the deep part and the other part. This excessive temperature difference causes excessive thermal stress in the mold. For this reason, there exists a possibility that a crack, distortion, and a deformation | transformation may arise in a metal mold | die with the said thermal stress. In particular, when a molten metal molded product is continuously formed using a mold, cracking, distortion, and deformation due to thermal stress are likely to occur because the mold is repeatedly heated and cooled.

そこで、本発明は前記事情に鑑みてなされたものであり、その目的は、加熱される鋼材や成型時の鋳造用金型の冷却効果を高めるとともに冷却温度差を抑えて熱応力による割れや歪み、変形を防止することが可能な冷却構造、及び鋳造用金型を提供することにある。   Therefore, the present invention has been made in view of the above circumstances, and its purpose is to increase the cooling effect of the steel material to be heated and the casting mold at the time of molding, and to suppress the cooling temperature difference and to crack and strain due to thermal stress. Another object of the present invention is to provide a cooling structure capable of preventing deformation and a casting mold.

本発明の冷却構造は、孔部と、熱伝導部材と、冷媒供給部とを備える。前記孔部は、冷却対象である鋳造用金型の表面から内部へ向けて形成されている。前記熱伝導部材は、グラファイトで構成されており、前記孔部に充填されている。前記冷媒供給部は、前記孔部の開口側に装着され、前記孔部から露出する前記熱伝導部材の露出面に対して冷媒を循環供給する。   The cooling structure of the present invention includes a hole, a heat conducting member, and a refrigerant supply unit. The hole is formed from the surface of the casting mold to be cooled toward the inside. The heat conducting member is made of graphite and fills the hole. The refrigerant supply unit is mounted on the opening side of the hole and circulates and supplies the refrigerant to the exposed surface of the heat conducting member exposed from the hole.

本発明の冷却構造は、冷却対象である鋼材の表面から内部へ向けて形成された孔部と、前記孔部に充填されたグラファイトから成る熱伝導部材と、前記孔部の開口側に装着され、前記孔部から露出する前記熱伝導部材の露出部に対して冷媒を循環供給する冷媒供給部と、を備える。   The cooling structure of the present invention is attached to a hole formed from the surface of a steel material to be cooled toward the inside, a heat conductive member made of graphite filled in the hole, and an opening side of the hole. And a refrigerant supply part that circulates and supplies the refrigerant to the exposed part of the heat conducting member exposed from the hole part.

本発明の金型冷却装置は、金型と、熱伝導部材と、冷媒供給部と、を備える。前記金型は、表面から内部へ向けて形成された孔部を有する。前記熱伝導部材は、グラファイトで構成されており、前記孔部に充填されている。前記冷媒供給部は、前記孔部の開口側に装着され、前記孔部から露出する前記熱伝導部材の露出面に対して冷媒を循環供給する。   The mold cooling apparatus of this invention is equipped with a metal mold | die, a heat conductive member, and a refrigerant | coolant supply part. The mold has a hole formed from the surface toward the inside. The heat conducting member is made of graphite and fills the hole. The refrigerant supply unit is mounted on the opening side of the hole and circulates and supplies the refrigerant to the exposed surface of the heat conducting member exposed from the hole.

このように冷却構造が構成されているため、孔部の深部における熱が熱伝導部材を通じて冷媒供給部へ効率的に移動する。そして、冷媒供給部において循環供給される冷媒によってその熱が熱交換される。これにより、孔部の深部を効率よく冷却することができる。   Since the cooling structure is configured in this way, the heat in the deep part of the hole is efficiently transferred to the refrigerant supply part through the heat conducting member. And the heat is heat-exchanged by the refrigerant | coolant supplied by circulation in a refrigerant | coolant supply part. Thereby, the deep part of a hole can be cooled efficiently.

前記冷却構造及び前記金型冷却装置において、前記熱伝導部材は、前記孔部の深さ方向に直交する方向にグラフェンシートが積層された層構造体であることが好ましい。   In the cooling structure and the mold cooling apparatus, the heat conducting member is preferably a layer structure in which graphene sheets are stacked in a direction perpendicular to the depth direction of the hole.

この構成であれば、孔部において深部に至るまでの熱の吸収が抑制され、孔部の深部の熱が効率よく熱伝導部材によって冷媒供給部へ熱伝導される。これにより、金型において過大な温度差が生じにくくなり、熱応力が抑えられるため、熱応力による割れや歪み、変形の発生を防止できる。   If it is this structure, absorption of the heat | fever until it reaches a deep part in a hole is suppressed, and the heat of the deep part of a hole is efficiently heat-transferred to a refrigerant | coolant supply part by a heat conductive member. This makes it difficult for an excessive temperature difference to occur in the mold and suppresses thermal stress, thereby preventing cracks, distortion, and deformation due to thermal stress.

また、前記冷却構造及び前記金型冷却装置において、前記熱伝導部材は、前記孔部の内面に密着した状態で前記孔部に充填されていることが好ましい。   Moreover, in the cooling structure and the mold cooling apparatus, it is preferable that the heat conducting member is filled in the hole portion in close contact with the inner surface of the hole portion.

本発明によれば、成型時の鋳造用金型の冷却効果を高めるとともに冷却温度差を抑えて熱応力による割れや歪み、変形を防止することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to raise the cooling effect of the casting metal mold | die at the time of shaping | molding, and to suppress a cooling temperature difference and to prevent the crack, distortion, and deformation | transformation by a thermal stress.

図1は、本発明の実施形態に係る金型冷却装置の構成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of a mold cooling apparatus according to an embodiment of the present invention. 図2は、図1における金型冷却装置の中央断面図である。FIG. 2 is a central sectional view of the mold cooling apparatus in FIG. 図3は、図1における金型冷却装置の金型に対する冷却効果確認試験の方法を説明するための図である。FIG. 3 is a diagram for explaining a cooling effect confirmation test method for the mold of the mold cooling apparatus in FIG. 1. 図4は、図1における金型に対する冷却効果確認試験後の温度の変化を示すグラフである。FIG. 4 is a graph showing a change in temperature after the cooling effect confirmation test for the mold in FIG.

以下、図1〜図4を参照して本発明の実施形態について説明する。なお、以下に説明される実施形態は本発明を具体化した一例にすぎず、本発明の要旨を変更しない範囲で、本発明の実施形態は適宜変更できる。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The embodiment described below is merely an example embodying the present invention, and the embodiment of the present invention can be changed as appropriate without departing from the scope of the present invention.

本発明の実施形態に係る金型冷却装置10(図1参照)は、溶融金属の成型品を連続して成型するために用いられる鋳造用の金型11を冷却するための装置である。図1に示されるように、金型冷却装置10は、金型11と、熱伝導部材13と、冷媒供給部20と、を備えている。   The mold cooling apparatus 10 (refer FIG. 1) which concerns on embodiment of this invention is an apparatus for cooling the metal mold | die 11 for casting used in order to shape | mold the molded product of a molten metal continuously. As shown in FIG. 1, the mold cooling apparatus 10 includes a mold 11, a heat conducting member 13, and a refrigerant supply unit 20.

金型11は、SKD鋼材などの鉄鋼材料(鋼材)で構成されている。金型11は、メス型11Aとオス型11Bとを有している。メス型11A及びオス型11Bそれぞれには凹部が形成されており、メス型11Aとオス型11Bとが上下に接合されることにより、各凹部によってキャビティ14(図2参照)が形成される。キャビティ14は、成型品に応じた形状に形成されている。溶融させた金属(溶湯)がキャビティ14に直接に注ぎ込まれ、その後、冷やして固められることにより、金属製の成型品が形成される。なお、図1及び図2においては、円柱形状の金型11を有する金型冷却装置10が示されているが、これは、説明の便宜のために模式化して表したものであり、本発明の金型冷却装置10がこのような形状に限定されるものではない。   The mold 11 is made of a steel material (steel material) such as SKD steel. The mold 11 has a female mold 11A and a male mold 11B. Each of the female mold 11A and the male mold 11B is formed with a recess, and the cavity 14 (see FIG. 2) is formed by each recess by joining the female mold 11A and the male mold 11B up and down. The cavity 14 is formed in a shape corresponding to the molded product. The molten metal (molten metal) is poured directly into the cavity 14, and then cooled and hardened to form a metal molded product. 1 and 2, a mold cooling device 10 having a cylindrical mold 11 is shown, but this is schematically shown for convenience of explanation, and the present invention. The mold cooling apparatus 10 is not limited to such a shape.

金型11のメス型11Aの上面には、冷媒供給部20を取り付けるための取り付け座12が設けられている。取り付け座12は、メス型11Aの上面の中央に設けられており、また、メス型11Aに一体に形成されている。図2に示されるように、取り付け座12の上面の中央には取り付け穴15が形成されている。取り付け穴15は、冷媒供給部20を金型11に取り付けるためのものであり、その深さ方向の底部はメス型11Aの上面付近に達している。そして、更に、取り付け穴15の底部15Aから下方へ向けて孔部16が形成されている。孔部16は、上下方向へ長く、取り付け穴13よりも小さい径に形成されている。孔部16は、底部15Aから下方へ向けて延びており、その下端部(深部)16Aがキャビティ14の付近まで達している縦孔である。孔部16は、断面が円形の筒形状に形成されており、その下端部16Aは半球状に形成されている。この孔部16は、金型11を冷却するために用いられる。なお、孔部16の形状は円形の筒形状に限られず、例えば上下方向に長い四角柱形状であってもよい。   A mounting seat 12 for mounting the coolant supply unit 20 is provided on the upper surface of the female mold 11A of the mold 11. The mounting seat 12 is provided at the center of the upper surface of the female die 11A, and is integrally formed with the female die 11A. As shown in FIG. 2, a mounting hole 15 is formed in the center of the upper surface of the mounting seat 12. The attachment hole 15 is for attaching the refrigerant supply unit 20 to the mold 11, and the bottom in the depth direction reaches the vicinity of the upper surface of the female die 11 </ b> A. Further, a hole 16 is formed downward from the bottom 15A of the attachment hole 15. The hole 16 is long in the vertical direction and has a smaller diameter than the mounting hole 13. The hole portion 16 is a vertical hole that extends downward from the bottom portion 15 </ b> A and has a lower end portion (deep portion) 16 </ b> A reaching the vicinity of the cavity 14. The hole 16 is formed in a cylindrical shape with a circular cross section, and its lower end 16A is formed in a hemispherical shape. The hole 16 is used for cooling the mold 11. The shape of the hole 16 is not limited to a circular cylindrical shape, and may be, for example, a quadrangular prism shape that is long in the vertical direction.

鋳造用として用いられる金型11においては、溶融金属と接する面(キャビティ14の内面)の温度変化が大きい。また、連続して成型品が形成されることにより、加熱と冷却とが頻繁に繰り返される。そのため、キャビティ14の内面にヒートラックと称される熱疲労による亀裂が生じたり、キャビティ14の内面と成型品とが凝着する場合がある。また、成型時に、金型11全体における温度差が過大となり、その温度差による熱応力が発生して、熱応力によって金型11に割れや歪み、変形が発生する場合がある。そのため、本実施形態では、孔部16に熱伝導部材13が充填されている。   In the mold 11 used for casting, the temperature change of the surface (the inner surface of the cavity 14) in contact with the molten metal is large. Moreover, heating and cooling are repeated frequently by forming a molded article continuously. For this reason, cracks due to thermal fatigue called heat tracks may occur on the inner surface of the cavity 14, or the inner surface of the cavity 14 and the molded product may adhere. Further, during molding, the temperature difference in the entire mold 11 becomes excessive, and thermal stress due to the temperature difference is generated, and the mold 11 may be cracked, distorted, or deformed by the thermal stress. Therefore, in this embodiment, the hole 16 is filled with the heat conducting member 13.

熱伝導部材13は、グラファイトで構成されており、上述したように、孔部16に充填されている。熱伝導部材13は、孔部16の形状に対応する形状、つまり、断面が円形状であり、その下端部13Aは半球状に形成されている。このため、熱伝導部材13が孔部16に装着されると、熱伝導部材13は、孔部16の内面に密着した状態で孔部16に充填される。なお、孔部16の内面と熱伝導部材13との間が密着せずに隙間が生じる場合は、熱伝導性の高い充填材を後部16の内面に付着させた上で熱伝導部材13を孔部16に装着してもよい。   The heat conducting member 13 is made of graphite and fills the hole 16 as described above. The heat conducting member 13 has a shape corresponding to the shape of the hole 16, that is, the cross section is circular, and its lower end 13A is formed in a hemispherical shape. For this reason, when the heat conducting member 13 is mounted in the hole 16, the heat conducting member 13 is filled in the hole 16 in a state of being in close contact with the inner surface of the hole 16. When the gap between the inner surface of the hole portion 16 and the heat conducting member 13 is not in close contact, a high heat conductive filler is attached to the inner surface of the rear portion 16, and then the heat conducting member 13 is removed. It may be attached to the part 16.

熱伝導部材13は、孔部16の深さ方向に直交する方向(図2おいて左右方向)にグラフェンシートが積層された層構造体である。熱伝導部材13は、六員環が共有結合して形成されたグラフェンシートが一方向に沿って複数積層された結晶構造を有するグラファイトで構成されている。各グラフェンシートの層間は、ファンデルワールス力で結合されているため、グラフェンシートは剥がれ易い性質を有している。一方、グラフェンシートの層面に沿う方向(図2において上下方向)の熱伝導率は、グラフェンシートの層面に直交する方向の熱伝導率よりも極めて大きい。そのため、孔部16の深さ方向に直交する方向にグラフェンシートが積層された層構造とすることにより、熱伝導部材13は、孔部16において上方の開口から下端部16Aに至るまでの部分の熱を吸収しにくい構造となっており、また、孔部16の下端部16Aにおける熱を効率よく孔部16の外側へ熱伝導することができる。   The heat conducting member 13 is a layered structure in which graphene sheets are laminated in a direction perpendicular to the depth direction of the hole 16 (left and right direction in FIG. 2). The heat conducting member 13 is made of graphite having a crystal structure in which a plurality of graphene sheets formed by covalently bonding six-membered rings are stacked along one direction. Since the layers of each graphene sheet are bonded by van der Waals force, the graphene sheet has a property of being easily peeled off. On the other hand, the thermal conductivity in the direction along the layer surface of the graphene sheet (the vertical direction in FIG. 2) is extremely larger than the thermal conductivity in the direction orthogonal to the layer surface of the graphene sheet. Therefore, by adopting a layer structure in which graphene sheets are laminated in a direction orthogonal to the depth direction of the hole portion 16, the heat conducting member 13 has a portion from the upper opening to the lower end portion 16 </ b> A in the hole portion 16. It has a structure that hardly absorbs heat, and heat at the lower end 16A of the hole 16 can be efficiently conducted to the outside of the hole 16.

本実施形態では、熱伝導部材13の材質として、一般的なグラファイトよりも高い熱伝導性を有する高配向性熱分解グラファイトが採用されている。具体的には、熱伝導部材13は、米国MINTEQ International Inc.製の商品名「PYROID HT」で構成されている。この高配向性熱分解グラファイトにおいては、グラフェンシートの層面に直交する方向の熱伝導率よりも層面に沿う方向の熱伝導率が極めて高く、詳細には、層面に沿う方向の熱伝導率は1500W/mk以上であり、層面に直交する方向の熱伝導率は5〜10W/mkである。   In the present embodiment, highly oriented pyrolytic graphite having higher thermal conductivity than general graphite is employed as the material of the heat conducting member 13. Specifically, the heat conducting member 13 is manufactured by US MINTEQ International Inc. The product name “PYROID HT” is manufactured. In this highly oriented pyrolytic graphite, the thermal conductivity in the direction along the layer surface is much higher than the thermal conductivity in the direction orthogonal to the layer surface of the graphene sheet. Specifically, the thermal conductivity in the direction along the layer surface is 1500 W. The thermal conductivity in the direction perpendicular to the layer surface is 5 to 10 W / mk.

冷媒供給部20は、孔部16の開口側に装着されており、孔部16から露出する熱伝導部材13の露出面13Bに対して冷却水(冷媒)を循環供給する。具体的には、冷媒供給部20は、取り付け座12の取り付け穴15に装着される第1ジョイント21と、第1ジョイント21の上端に取り付けられる第2ジョイント22を有する。更に、冷媒供給部20の内部には、冷却水を通水するためのパイプ29が設けられている。第1ジョイント21の側面には給水口27が形成されており、第2ジョイント22の側面には排水口28が形成されている。第2ジョイント22には給水口27から連続する貫通孔22Aが形成されており、パイプ29の上端は、貫通孔22の出口側(図2における下端部)に装着されている。第1ジョイント21にはパイプ29が挿通可能なサイズの貫通孔21Aが形成されている。貫通孔21Aに排水口28が連通している。   The refrigerant supply unit 20 is mounted on the opening side of the hole 16 and circulates and supplies cooling water (refrigerant) to the exposed surface 13B of the heat conducting member 13 exposed from the hole 16. Specifically, the refrigerant supply unit 20 includes a first joint 21 that is attached to the attachment hole 15 of the attachment seat 12 and a second joint 22 that is attached to the upper end of the first joint 21. Furthermore, a pipe 29 for passing cooling water is provided inside the refrigerant supply unit 20. A water supply port 27 is formed on the side surface of the first joint 21, and a drain port 28 is formed on the side surface of the second joint 22. The second joint 22 is formed with a through hole 22 </ b> A continuous from the water supply port 27, and the upper end of the pipe 29 is attached to the outlet side of the through hole 22 (lower end in FIG. 2). The first joint 21 is formed with a through hole 21 </ b> A having a size into which the pipe 29 can be inserted. A drain port 28 communicates with the through hole 21A.

第2ジョイント22は、貫通孔21Aにパイプ29が挿入されるようにして、第1ジョイント21に連結されている。第1ジョイント21及び第2ジョイント22が連結された状態で、パイプ29の内孔が給水口27から露出面13Bに至る給水路33(図1参照)を構成している。また、パイプ29の外周面と貫通孔21Aの内面との隙間は、パイプ29の下方の開口29Aから露出面13Aを通って熱交換された冷却水を排水口28へ導く排水路34(図1参照)を構成している。図1に示されるように、給水口27には、給水パイプ25が軸継手23によって連結されており、排水口28には、排水パイプ26が軸継手24によって連結されている。   The second joint 22 is connected to the first joint 21 such that the pipe 29 is inserted into the through hole 21A. In a state where the first joint 21 and the second joint 22 are connected, the inner hole of the pipe 29 constitutes a water supply path 33 (see FIG. 1) from the water supply port 27 to the exposed surface 13B. Further, a gap between the outer peripheral surface of the pipe 29 and the inner surface of the through-hole 21A is a drainage channel 34 (see FIG. 1) that guides the cooling water heat-exchanged from the opening 29A below the pipe 29 through the exposed surface 13A to the drainage port 28. Reference). As shown in FIG. 1, a water supply pipe 25 is connected to the water supply port 27 by a shaft coupling 23, and a drainage pipe 26 is connected to the drainage port 28 by a shaft coupling 24.

上述したように構成された金型冷却装置10において、金型11を冷却する場合、給水パイプ25から冷却水が供給される。供給された冷却水は、給水路33を通って取り付け穴15の底部15Aに運ばれて、熱伝導部材13の露出面13Bに接触しつつ、露出面13Bとの間で熱交換を行う。その後、熱交換によって温められた冷却水は、排水路34を通って排水口28へ運ばれて、排水パイプ26から排出される。   In the mold cooling apparatus 10 configured as described above, when the mold 11 is cooled, cooling water is supplied from the water supply pipe 25. The supplied cooling water is conveyed to the bottom 15A of the mounting hole 15 through the water supply channel 33, and exchanges heat with the exposed surface 13B while being in contact with the exposed surface 13B of the heat conducting member 13. Thereafter, the cooling water warmed by heat exchange is conveyed to the drain outlet 28 through the drainage channel 34 and discharged from the drainage pipe 26.

このように、本実施形態では、孔部16に冷却水を循環供給する従来の構成とは異なり、グラファイトで構成された熱伝導部材13が孔部16に充填されて、その露出面13Bに対して冷却水が循環供給される構成が採用されている。また、上述したように、熱伝導部材13は、孔部16において下端部16Aに至るまでの部分の熱伝導率が低く、孔部16の下端部16Aにおける熱に対して熱伝導率が高い構成となっている。したがって、熱伝導部材13の露出面13Bに対して冷却水が循環供給されることによって、熱伝導部材13を伝達された孔部16の下端部16Aの熱が冷却水に熱交換される。これにより、金型11の他の部分を極端に冷却させることなく、孔部16の下端部16A付近の熱だけを効率よく冷却することが可能となる。その結果、冷却水との熱交換によって成型時の金型11の冷却効果を高めることができ、且つ、金型11の全体における冷却温度差を縮小させて、熱応力による割れや歪み、変形を防止することが可能になる。   As described above, in the present embodiment, unlike the conventional configuration in which the cooling water is circulated and supplied to the hole 16, the heat conductive member 13 made of graphite is filled in the hole 16 and the exposed surface 13 </ b> B is filled. The cooling water is circulated and supplied. In addition, as described above, the heat conductive member 13 has a configuration in which the portion of the hole 16 extending to the lower end 16A has a low thermal conductivity and has a high thermal conductivity with respect to the heat at the lower end 16A of the hole 16. It has become. Therefore, when the cooling water is circulated and supplied to the exposed surface 13B of the heat conducting member 13, the heat of the lower end portion 16A of the hole 16 transmitted through the heat conducting member 13 is exchanged with the cooling water. Thereby, it is possible to efficiently cool only the heat in the vicinity of the lower end portion 16A of the hole 16 without extremely cooling the other portion of the mold 11. As a result, the cooling effect of the mold 11 at the time of molding can be enhanced by heat exchange with the cooling water, and the cooling temperature difference in the entire mold 11 is reduced, so that cracks, distortion, and deformation due to thermal stress are reduced. It becomes possible to prevent.

以下、図3及び図4を参照して、金型冷却装置10による冷却時の金型11のメス型11Aの冷却効果について説明する。図3は、メス型11Aに対する冷却効果確認試験の方法を説明するための図である。図4(A)は、メス型11Aの位置P1における温度変化を示すグラフである。図4(B)は、メス型11Aの位置P2における温度変化を示すグラフである。なお、図3では、説明の便宜上、冷媒供給部20の図示が省略されている。   Hereinafter, the cooling effect of the female mold 11A of the mold 11 during cooling by the mold cooling apparatus 10 will be described with reference to FIGS. FIG. 3 is a view for explaining a cooling effect confirmation test method for the female die 11A. FIG. 4A is a graph showing a temperature change at the position P1 of the female die 11A. FIG. 4B is a graph showing a temperature change at the position P2 of the female die 11A. In FIG. 3, the refrigerant supply unit 20 is not shown for convenience of explanation.

図3に示されるように、前記冷却効果確認試験は、最初に、金型11のメス型11Aの底面を600度のヒーター35によって直接に加熱する。そして、メス型11Aの底面の温度が470度になると、ヒーター35をオフして、メス型11Aからヒーター35を取り外し、冷却水の通水を開始して、冷却水を60秒間循環供給する。熱伝導部材13が孔部16に充填されてないメス型11A、及び熱伝導部材13が孔部16に充填されたメス型11Aそれぞれに対して上述の試験を行い、それぞれにおけるメス型11Aの温度変化を測定した。測定箇所は、孔部16の下端部16Aの直下の位置P1と、孔部16の上下方向の中央部よりも少し上側の位置P2の2箇所とした。それぞれの位置P1,P2までメス型11Aの側面から横穴を形成し、位置P1,P2それぞれに熱伝対を設けて温度を測定した。   As shown in FIG. 3, in the cooling effect confirmation test, first, the bottom surface of the female die 11 </ b> A of the mold 11 is directly heated by the heater 35 of 600 degrees. When the temperature of the bottom surface of the female die 11A reaches 470 degrees, the heater 35 is turned off, the heater 35 is removed from the female die 11A, the cooling water flow is started, and the cooling water is circulated and supplied for 60 seconds. The above test is performed on each of the female die 11A in which the hole 16 is not filled with the heat conducting member 13 and the female die 11A in which the heat conducting member 13 is filled in the hole 16, and the temperature of the female die 11A in each of them. Changes were measured. The measurement locations were two locations: a position P1 directly below the lower end portion 16A of the hole portion 16 and a position P2 slightly above the center portion in the vertical direction of the hole portion 16. A horizontal hole was formed from the side surface of the female die 11A to each position P1, P2, and a thermocouple was provided at each of the positions P1, P2 to measure the temperature.

図4(A)及び図4(B)において、点線で示されるグラフ41は熱伝導部材13が孔部16に充填されて露出面13Bに冷却水が循環供給されたメス型11Aの温度変化を示し、実線で示されるグラフ42は熱伝導部材13が充填されずに孔部16に冷却水が循環供給されたメス型11Aの温度変化を示す。図4(A)に示されるように、いずれのグラフ41,42も、冷却開始前に位置P1の温度が500度であったが、冷却開始後に緩やかに温度が低下しており、60秒の冷却後は、グラフ41では400度まで低下しており、グラフ42では350度まで低下している。試験後の位置P1の温度に50度程度の差があり、熱伝導部材13が充填されたメス型11Aのほうが若干冷却効果が低いが、双方ともに、概ね同様の低下率で温度が低下しているといえる。   4A and 4B, a graph 41 indicated by a dotted line shows a temperature change of the female die 11A in which the heat conductive member 13 is filled in the hole 16 and the cooling water is circulated and supplied to the exposed surface 13B. A graph 42 indicated by a solid line shows a temperature change of the female die 11A in which the cooling water is circulated and supplied to the hole 16 without being filled with the heat conducting member 13. As shown in FIG. 4A, in each of the graphs 41 and 42, the temperature at the position P1 was 500 degrees before the start of cooling, but the temperature gradually decreased after the start of cooling. After cooling, the graph 41 decreases to 400 degrees and the graph 42 decreases to 350 degrees. There is a difference of about 50 degrees in the temperature of the position P1 after the test, and the cooling effect is slightly lower in the female die 11A filled with the heat conducting member 13, but both the temperatures are lowered at substantially the same reduction rate. It can be said that.

一方、図4(B)に示されるように、グラフ41については、冷却開始前に位置P2の温度が500度であったが、冷却開始後に緩やかに温度が低下しており、60秒の冷却後は、400度まで低下している。熱伝導部材13では、位置P2の熱の冷却が抑えられていることを意味する。これに対して、グラフ42については、冷却開始前に位置P2の温度が600度であったが、冷却開始後に急激に冷却されて、冷却10秒後には310度まで低下し、冷却30秒後には200度まで低下しており、そこから緩やかに温度が低下して、60秒の冷却後は180度まで低下している。これは、孔部16を通水された冷却水によって位置P2の熱が急激に冷やされたことを示す。   On the other hand, as shown in FIG. 4B, in the graph 41, the temperature at the position P2 was 500 degrees before the start of cooling, but the temperature gradually decreased after the start of cooling, and the cooling for 60 seconds. After that, it drops to 400 degrees. In the heat conductive member 13, it means that the cooling of the heat | fever of the position P2 is suppressed. On the other hand, regarding the graph 42, the temperature at the position P2 was 600 degrees before the start of cooling, but it was rapidly cooled after the start of cooling, and decreased to 310 degrees after 10 seconds of cooling, and after 30 seconds of cooling. The temperature decreases to 200 degrees, the temperature gradually decreases from there, and decreases to 180 degrees after 60 seconds of cooling. This indicates that the heat at the position P2 is rapidly cooled by the cooling water that has passed through the hole 16.

図4(A)及び図4(B)から理解できるように、熱伝導部材13が充填されていないメス型11Aの場合は、孔部16への冷却水による冷却によって、メス型11Aにおける温度差が170度もあるため、メス型11Aに過大な熱応力が生じやすく、前記熱応力によってメス型11Aに割れや歪み、変形が生じるおそれがある。しかしながら、熱伝導部材13が充填されたメス型11Aの場合は、孔部16の周辺の熱は熱伝導部材13が吸収し、露出面13Bから冷却水によって熱交換がされるため、メス型11Aにおける温度差がほとんど無く、そのため、メス型11Aに熱応力が生じず、前記熱応力によるメス型11Aの割れや歪み、変形などといった問題も生じない。   As can be understood from FIGS. 4A and 4B, in the case of the female die 11A not filled with the heat conducting member 13, the temperature difference in the female die 11A is caused by cooling the hole 16 with cooling water. Since there is 170 degrees, excessive thermal stress is likely to be generated in the female die 11A, and the thermal stress may cause cracking, distortion, and deformation in the female die 11A. However, in the case of the female die 11A filled with the heat conducting member 13, the heat around the hole 16 is absorbed by the heat conducting member 13 and heat exchange is performed by the cooling water from the exposed surface 13B. There is almost no temperature difference between them, so that no thermal stress is generated in the female die 11A, and problems such as cracking, distortion and deformation of the female die 11A due to the thermal stress do not occur.

なお、上述では、本発明の実施形態として金型冷却装置10を例示して説明したが、本発明は、孔部16、熱伝導部材13、及び冷媒供給部20からなる冷却構造として捉えることもできる。また、前記冷却構造は、金型11の冷却に限られず、加熱された鋼材の冷却にも適用することが可能である。   In the above description, the mold cooling device 10 is illustrated and described as an embodiment of the present invention. However, the present invention may be understood as a cooling structure including the hole 16, the heat conduction member 13, and the refrigerant supply unit 20. it can. Further, the cooling structure is not limited to the cooling of the mold 11 and can also be applied to the cooling of a heated steel material.

10:金型冷却装置
11:金型
12:取り付け座
13:熱伝導部材
14:キャビティ
16:孔部
20:冷媒供給部
10: Mold cooling device 11: Mold 12: Mounting seat 13: Heat conduction member 14: Cavity 16: Hole 20: Refrigerant supply unit

Claims (7)

冷却対象である鋳造用金型の表面から内部へ向けて形成された孔部と、
前記孔部に充填されたグラファイトから成る熱伝導部材と、
前記孔部の開口側に装着され、前記孔部から露出する前記熱伝導部材の露出面に対して冷媒を循環供給する冷媒供給部と、を備える冷却構造。
A hole formed from the surface of the casting mold to be cooled toward the inside;
A heat conducting member made of graphite filled in the hole;
A cooling structure comprising: a refrigerant supply unit that is mounted on the opening side of the hole and that circulates and supplies the refrigerant to the exposed surface of the heat conducting member exposed from the hole.
前記熱伝導部材は、前記孔部の深さ方向に直交する方向にグラフェンシートが積層された層構造体である請求項1に記載の冷却構造。   The cooling structure according to claim 1, wherein the heat conducting member is a layered structure in which graphene sheets are laminated in a direction orthogonal to the depth direction of the hole. 前記熱伝導部材は、前記孔部の内面に密着した状態で前記孔部に充填されている請求項1または2に記載の冷却構造。   The cooling structure according to claim 1, wherein the heat conducting member is filled in the hole in a state of being in close contact with the inner surface of the hole. 冷却対象である鋼材の表面から内部へ向けて形成された孔部と、
前記孔部に充填されたグラファイトから成る熱伝導部材と、
前記孔部の開口に装着され、前記孔部から露出する前記熱伝導部材の露出部に対して冷媒を循環供給する冷媒供給部と、を備える冷却構造。
A hole formed from the surface of the steel material to be cooled toward the inside;
A heat conducting member made of graphite filled in the hole;
A cooling structure comprising: a refrigerant supply unit that is attached to the opening of the hole part and circulates and supplies the refrigerant to the exposed part of the heat conducting member that is exposed from the hole part.
表面から内部へ向けて形成された孔部を有する金型と、
前記孔部に充填されたグラファイトから成る熱伝導部材と、
前記孔部の開口側に装着され、前記孔部から露出する前記熱伝導部材の露出面に対して冷媒を循環供給する冷媒供給部と、を備える金型冷却装置。
A mold having a hole formed from the surface toward the inside;
A heat conducting member made of graphite filled in the hole;
A mold cooling device, comprising: a refrigerant supply unit that is mounted on the opening side of the hole and that circulates and supplies the refrigerant to the exposed surface of the heat conducting member exposed from the hole.
前記熱伝導部材は、前記孔部の深さ方向に直交する方向にグラフェンシートが積層された層構造体である請求項5に記載の金型冷却装置。   The mold cooling apparatus according to claim 5, wherein the heat conducting member is a layer structure in which graphene sheets are laminated in a direction orthogonal to the depth direction of the hole. 前記熱伝導部材は、前記孔部の内面に密着した状態で前記孔部に充填されている請求項5または6に記載の金型冷却装置。   The mold cooling device according to claim 5 or 6, wherein the heat conducting member is filled in the hole in a state of being in close contact with an inner surface of the hole.
JP2014078108A 2014-04-04 2014-04-04 Cooling structure and mold cooling device Active JP6376812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078108A JP6376812B2 (en) 2014-04-04 2014-04-04 Cooling structure and mold cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078108A JP6376812B2 (en) 2014-04-04 2014-04-04 Cooling structure and mold cooling device

Publications (2)

Publication Number Publication Date
JP2015199075A true JP2015199075A (en) 2015-11-12
JP6376812B2 JP6376812B2 (en) 2018-08-22

Family

ID=54550892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078108A Active JP6376812B2 (en) 2014-04-04 2014-04-04 Cooling structure and mold cooling device

Country Status (1)

Country Link
JP (1) JP6376812B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280724A (en) * 2019-07-25 2019-09-27 盐城泰欧昌机械有限公司 A kind of high efficiency and heat radiation core pins

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035046A (en) * 1989-05-31 1991-01-10 Sumitomo Metal Mining Co Ltd Graphite mold device for continuously casting metal cast billet
JP2002079359A (en) * 2000-09-06 2002-03-19 U Mold Co Ltd Metallic mold for forming aluminum wheel
JP2007136512A (en) * 2005-11-18 2007-06-07 Asia Engineering Kk Tight fitting copper pipe to die hole for water-cooling
JP2008028283A (en) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd Heat conductor
JP2013245826A (en) * 2012-05-23 2013-12-09 Heian Seisakusho:Kk Heat exchanger
JP2014050868A (en) * 2012-09-07 2014-03-20 Suguro Tekko:Kk Casting metal mold and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035046A (en) * 1989-05-31 1991-01-10 Sumitomo Metal Mining Co Ltd Graphite mold device for continuously casting metal cast billet
JP2002079359A (en) * 2000-09-06 2002-03-19 U Mold Co Ltd Metallic mold for forming aluminum wheel
JP2007136512A (en) * 2005-11-18 2007-06-07 Asia Engineering Kk Tight fitting copper pipe to die hole for water-cooling
JP2008028283A (en) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd Heat conductor
JP2013245826A (en) * 2012-05-23 2013-12-09 Heian Seisakusho:Kk Heat exchanger
JP2014050868A (en) * 2012-09-07 2014-03-20 Suguro Tekko:Kk Casting metal mold and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280724A (en) * 2019-07-25 2019-09-27 盐城泰欧昌机械有限公司 A kind of high efficiency and heat radiation core pins

Also Published As

Publication number Publication date
JP6376812B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
TWI588281B (en) Cylindrical sputtering target and its manufacturing method
TW201033388A (en) Target structure and method for manufacturing target structure
JP6236081B2 (en) Injection molding apparatus and method with mold cavity surface with thermally controllable array
JP6376812B2 (en) Cooling structure and mold cooling device
KR102576798B1 (en) Manufacturing methods for improving the long-term stabilization of the overall thermal conduction of block coolers with cast-in coolant pipes and for long-term stabilization
CN105208835B (en) A kind of processing technology for bending aluminum pipe water-cooling die casting cavity body
JP2014069224A (en) Casting apparatus, method of manufacturing casting apparatus, and method of manufacturing cast article
JP2012030522A (en) Die apparatus for resin molded article and method for manufacturing the same
TWI484056B (en) Bonding device
JP2018027632A (en) Molding die for resin molded body
US20130168439A1 (en) Thermal Processing Method for Welding Area on Branched Pipes
JP2012152800A (en) Metal mold cooling structure and manufacturing method therefor
JP2011020390A (en) Die heating/cooling structure and resin molding method
JP2008179016A (en) Mold device
TW201417984A (en) Uniformly rapid heating of the mold equipment
TWI495512B (en) Nozzle device
CN105636415A (en) Novel water-cooling radiating plate
JP6417171B2 (en) Exhaust gas purification reducing agent thawing device
JP4375735B2 (en) Superplastic forming device
TW201302411A (en) Mold equipment with uniform and fast heating
JP5295030B2 (en) Molding equipment
JP5012454B2 (en) Method for machining parting surface of molding apparatus
JP2005034867A (en) Die casting device
CN204356366U (en) The erosion protection system of flue
JP2010064413A (en) Hot plate and thermal transfer press apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180724

R150 Certificate of patent or registration of utility model

Ref document number: 6376812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250