JP2015195658A - power supply system - Google Patents

power supply system Download PDF

Info

Publication number
JP2015195658A
JP2015195658A JP2014071602A JP2014071602A JP2015195658A JP 2015195658 A JP2015195658 A JP 2015195658A JP 2014071602 A JP2014071602 A JP 2014071602A JP 2014071602 A JP2014071602 A JP 2014071602A JP 2015195658 A JP2015195658 A JP 2015195658A
Authority
JP
Japan
Prior art keywords
power
generator
current
additional control
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071602A
Other languages
Japanese (ja)
Other versions
JP6169517B2 (en
Inventor
誉夫 進士
Yoshio Shinshi
誉夫 進士
塚田 龍也
Tatsuya Tsukada
龍也 塚田
治良 三宅
Haruyoshi Miyake
治良 三宅
貴大 八木
Takahiro Yagi
貴大 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2014071602A priority Critical patent/JP6169517B2/en
Publication of JP2015195658A publication Critical patent/JP2015195658A/en
Application granted granted Critical
Publication of JP6169517B2 publication Critical patent/JP6169517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately supply power to a load facility from a power generation unit capable of reception power constant control without wasting resources such as a current converter and a power generator control unit comprised from the beginning in the power generation unit regardless of the state of the load facility and an installation environment.SOLUTION: A power supply system 200 comprises: a power generator 12 that is connected with a power supply path 20 from a power company and a load facility 22, and supplies power to the load facility; an extension current converter 130 through which the power supply path passes and which converts a current value on the power supply path into a measurement value; a transmission unit 132 that transmits the measurement value obtained through conversion by the extension current converter through a communication line; a reception unit 134 that receives the measurement value from the transmission unit; an additional control unit 110 that has control current flow through an additional control path according to the measurement value received by the reception unit; a power generator current converter 14 that converts a current value on the additional control path into a measurement value; and a power generator control unit 16 that controls output power from the power generator so that the measurement value obtained through conversion by the power generator current converter is a prescribed value.

Description

本発明は、受電電力一定制御が可能な発電ユニットから負荷設備に電力を供給する電力供給システムに関する。   The present invention relates to a power supply system that supplies power to a load facility from a power generation unit capable of constant control of received power.

電力事業者からの電力(商用電力)を受け得る状態で、構内の負荷設備の消費電力を同構内の発電機で賄う手段として、受電電力一定制御が可能な発電ユニットが用いられている。かかる受電電力一定制御では、電力事業者からの電力供給路と、発電機と、負荷設備とを結線し、受電点における電力事業者から供給される電力(受電電力)が所定値(例えば0)になるように発電機の出力電力を制御することで、負荷設備の負荷変動を発電機で吸収することが可能となる。   A power generation unit capable of constant control of received power is used as a means to cover the power consumption of a load facility on the premises with a generator in the premises while receiving power (commercial power) from an electric power company. In the received power constant control, the power supply path from the power company, the generator, and the load facility are connected, and the power (received power) supplied from the power company at the power receiving point is a predetermined value (for example, 0). By controlling the output power of the generator so as to become, it becomes possible to absorb the load fluctuation of the load facility by the generator.

このような受電電力一定制御が可能な発電ユニットにおいて、発電機の稼働率を向上する技術が知られている(例えば、特許文献1)。   In such a power generation unit capable of constant control of received power, a technique for improving the operating rate of the generator is known (for example, Patent Document 1).

特開平10−224992号公報JP-A-10-224992

このような受電電力一定制御が可能な発電ユニット、すなわち、受電点に設置する変流器(CT:Current Transformer)と、その変流器で変成した計測値が所定値となるように発電機の出力を制御する発電機制御部とが発電機に組み合わされた発電ユニットは、汎用性が高く、様々な用途の負荷設備に適用されている。   Such a power generation unit capable of constant control of received power, that is, a current transformer (CT: Current Transformer) installed at a power receiving point, and a generator so that a measured value transformed by the current transformer becomes a predetermined value. A power generation unit in which a generator control unit that controls output is combined with a generator has high versatility, and is applied to load facilities for various purposes.

ただし、発電ユニットは量産品であるため、変流器と、発電機制御部とを結ぶ結線の長さが制限される場合が多い。したがって、受電点と発電機とが近い場合、問題は生じないが、負荷設備が複数離隔して設けられ、受電点と発電機とが物理的に遠くなる場合、受電点に変流器を設置できない場合がある。また、変流器の設置環境の制約、例えば、設置場所が紫外線に晒されていたり、塩害が生じ易い等の理由により、変流器を設置できない場合もある。変流器を設置できないと、そもそも、受電電力一定制御を行うことはできない。   However, since the power generation unit is a mass-produced product, the length of the connection between the current transformer and the generator control unit is often limited. Therefore, there is no problem if the power receiving point and the generator are close to each other. However, if multiple load facilities are provided apart from each other and the power receiving point and the generator are physically separated, a current transformer is installed at the power receiving point. There are cases where it is not possible. In addition, the current transformer may not be installed due to restrictions on the installation environment of the current transformer, for example, because the installation location is exposed to ultraviolet rays or salt damage is likely to occur. If a current transformer cannot be installed, the received power constant control cannot be performed in the first place.

本発明は、このような課題に鑑み、負荷設備の状態や変流器の設置環境に拘わらず、発電ユニットに元々備わる変流器や発電機制御部といった資源を無駄にすることなく、受電電力一定制御が可能な発電ユニットから負荷設備に適切に電力を供給することが可能な電力供給システムを提供することを目的としている。   In view of such a problem, the present invention is capable of receiving power without wasting resources such as a current transformer and a generator control unit originally provided in the power generation unit regardless of the state of the load facility and the installation environment of the current transformer. An object of the present invention is to provide a power supply system capable of appropriately supplying power to a load facility from a power generation unit capable of constant control.

上記課題を解決するために、本発明の電力供給システムは、電力事業者からの電力供給路と負荷設備とに接続され、負荷設備に電力を供給する発電機と、電力供給路が挿通され、電力供給路の電流値を計測値に変成する延長変流器と、延長変流器で変成した計測値を、通信回線を通じて送信する送信部と、送信部から計測値を受信する受信部と、受信部が受信した計測値に応じて追加制御路に制御電流を流す追加制御部と、追加制御路の電流値を計測値に変成する発電機用変流器と、発電機用変流器で変成した計測値が所定値となるように発電機の出力電力を制御する発電機制御部と、を備えることを特徴とする。   In order to solve the above problems, the power supply system of the present invention is connected to a power supply path and a load facility from an electric power company, and a generator that supplies power to the load facility, and the power supply path are inserted, An extension current transformer that transforms the current value of the power supply path into a measurement value, a transmission unit that transmits the measurement value transformed by the extension current transformer through a communication line, and a reception unit that receives the measurement value from the transmission unit, An additional control unit that sends control current to the additional control path according to the measurement value received by the receiver, a current transformer for the generator that transforms the current value of the additional control path into the measurement value, and a current transformer for the generator. And a generator control unit that controls output power of the generator so that the transformed measurement value becomes a predetermined value.

追加制御路は、発電機用変流器の貫通体に3〜30回のうち、いずれかの回数巻回されるとしてもよい。   The additional control path may be wound any number of times from 3 to 30 times around the penetration body of the generator current transformer.

追加制御路は、発電機用変流器の貫通体に3〜30回のうち、いずれかの回数巻回され、かつ、巻回数を可変とする可変部位が形成され、追加制御部は、可変部位の巻回数を変更することで、制御電流を制御してもよい。   The additional control path is formed in a variable part that can be wound any number of times from 3 to 30 times and is variable in the number of turns in the through body of the current transformer for the generator. The control current may be controlled by changing the number of turns of the part.

追加制御路には、抵抗値が可変な可変抵抗が設けられ、追加制御部は、可変抵抗の抵抗値を変更することで、制御電流を制御してもよい。   The additional control path may be provided with a variable resistor having a variable resistance value, and the additional control unit may control the control current by changing the resistance value of the variable resistor.

本発明によれば、負荷設備の状態や変流器の設置環境に拘わらず、発電ユニットに元々備わる変流器や発電機制御部といった資源を無駄にすることなく、受電電力一定制御が可能な発電ユニットから負荷設備に適切に電力を供給することが可能となる。   According to the present invention, it is possible to perform constant control of received power without wasting resources such as a current transformer and a generator control unit originally provided in the power generation unit, regardless of the state of the load equipment and the installation environment of the current transformer. It is possible to appropriately supply power from the power generation unit to the load facility.

受電電力一定制御が可能な発電ユニットを説明するための説明図である。It is explanatory drawing for demonstrating the electric power generation unit in which received electric power constant control is possible. 第1の実施形態における電力供給システムの概略的な構成を示した説明図である。It is explanatory drawing which showed schematic structure of the electric power supply system in 1st Embodiment. 追加制御部による発電機の出力電力の制御を説明するための説明図である。It is explanatory drawing for demonstrating control of the output electric power of a generator by an additional control part. 追加制御部による発電機の出力電力の制御を説明するための説明図である。It is explanatory drawing for demonstrating control of the output electric power of a generator by an additional control part. 第2の実施形態における電力供給システムの概略的な構成を示した説明図である。It is explanatory drawing which showed schematic structure of the electric power supply system in 2nd Embodiment. 追加制御路を説明するための説明図である。It is explanatory drawing for demonstrating an additional control path. 追加制御路を説明するための他の説明図である。It is another explanatory view for explaining an additional control way.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

図1は、受電電力一定制御が可能な発電ユニット10を説明するための説明図である。図1に示すように、発電ユニット10は、発電機12と、発電機用変流器14と、発電機制御部16とを含んで構成される。発電機12は、電力事業者からの電力供給路20と構内に配された負荷設備22とに接続され、他のエネルギーを電気エネルギーに変換して電力を生成し、生成した電力を負荷設備22に供給する。かかる発電機としては、電動機や燃料電池等、他の様々な装置を適用できる。発電機用変流器14は、受電点において一次巻線を配した貫通体(鉄心、コア)に電力供給路20が挿通(クランプ)され、電力供給路20の電流値を計測値に変成して発電機制御部16に送信する。発電機制御部16は、CPUやDSPで構成され、発電機用変流器14で変成した計測値が所定値(例えば0)となるように(受電点が平準化されるように)発電機12の出力電力をフィードバック制御する。   FIG. 1 is an explanatory diagram for explaining a power generation unit 10 capable of constant control of received power. As shown in FIG. 1, the power generation unit 10 is configured to include a generator 12, a generator current transformer 14, and a generator controller 16. The generator 12 is connected to a power supply path 20 from a power company and a load facility 22 arranged on the premises, converts other energy into electric energy to generate electric power, and generates the generated electric power to the load facility 22. To supply. As such a generator, various other devices such as an electric motor and a fuel cell can be applied. In the current transformer 14 for generator, the power supply path 20 is inserted (clamped) into a through body (iron core, core) in which a primary winding is arranged at a power reception point, and the current value of the power supply path 20 is transformed into a measured value. To the generator control unit 16. The generator control unit 16 is composed of a CPU and a DSP, and the generator is configured so that the measurement value transformed by the generator current transformer 14 becomes a predetermined value (for example, 0) (so that the power receiving point is leveled). 12 output power is feedback controlled.

このように、発電ユニット10において、発電機制御部16は、発電機用変流器14で変成した計測値、すなわち、受電点を流れる電流値が、所定値(ここでは仮に0とする)となるように発電機12の出力電力を制御するので、図1の(a)に示す電力推移のように、負荷設備22において負荷変動が生じた場合、図1の(b)に示す電力推移のように、その変動分に相当する電力を発電機12に出力させることができる。こうして、受電点の電力変動は、図1の(c)に示す電力推移のように、理論上0が維持される。ただし、本実施形態においては、説明の便宜上、受電点の電力(電流)を0として説明するが、負荷変動による逆潮流防止等、系統保護の観点から、実際は電力供給路20から電力供給を受ける(買電)ように、所定値として有意な値が設定される。また、所定値は、発電機12の発電容量等に基づいて決定される。   Thus, in the power generation unit 10, the generator control unit 16 determines that the measured value transformed by the generator current transformer 14, that is, the current value flowing through the power receiving point is a predetermined value (assumed to be 0 here). Since the output power of the generator 12 is controlled so that the load fluctuation occurs in the load facility 22 as in the power transition shown in FIG. 1A, the power transition shown in FIG. As described above, the power corresponding to the fluctuation can be output to the generator 12. Thus, the power fluctuation at the power receiving point is theoretically maintained at 0 as in the power transition shown in FIG. However, in the present embodiment, for convenience of explanation, the power (current) at the power receiving point is described as 0. However, from the viewpoint of system protection such as prevention of reverse power flow due to load fluctuations, power is actually supplied from the power supply path 20. As (power purchase), a significant value is set as the predetermined value. The predetermined value is determined based on the power generation capacity of the generator 12 or the like.

本実施形態では、上記のような受電電力一定制御が可能な発電ユニット10に備わる発電機用変流器14や発電機制御部16といった既存の資源を無駄にする(改造する)ことなく、そのまま有効利用し、負荷設備22に適切に電力を供給する技術を前提としている。以下では、このような本実施形態の前提となる電力供給システム100を説明する。   In the present embodiment, existing resources such as the generator current transformer 14 and the generator control unit 16 included in the power generation unit 10 capable of constant control of received power as described above are not wasted (modified) as they are. It is premised on a technique for effectively using and supplying power to the load facility 22 appropriately. Below, the electric power supply system 100 used as the premise of such this embodiment is demonstrated.

(第1の実施形態:電力供給システム100)
図2は、第1の実施形態における電力供給システム100の概略的な構成を示した説明図である。図2に示すように、電力供給システム100は、発電ユニット10(発電機12、発電機用変流器14、発電機制御部16)と、追加制御部110とを含んで構成される。発電ユニット10は、図1を用いて説明したものをそのまま用いる。追加制御部110は、CPUやDSPで構成され、電力供給路20と共に、発電機用変流器14の貫通体に挿通された追加制御路112に制御電流を流し、発電機制御部16を通じて発電機12の出力電力を間接的に制御する。
(First embodiment: power supply system 100)
FIG. 2 is an explanatory diagram showing a schematic configuration of the power supply system 100 according to the first embodiment. As shown in FIG. 2, the power supply system 100 includes a power generation unit 10 (a generator 12, a generator current transformer 14, a generator control unit 16) and an additional control unit 110. The power generation unit 10 is the same as that described with reference to FIG. The additional control unit 110 is configured by a CPU and a DSP. Along with the power supply path 20, the additional control unit 110 supplies a control current to the additional control path 112 inserted through the penetrating body of the generator current transformer 14, and generates power through the generator control unit 16. The output power of the machine 12 is indirectly controlled.

図3および図4は、追加制御部110による発電機12の出力電力の制御を説明するための説明図である。ここで、図3および図4に示す(a)、(b)、(c)の電力推移は、図2の(a)、(b)、(c)の方向の電力推移であり、図3および図4に示す(d)の電流推移は、図2の(d)の方向の電流推移である。   3 and 4 are explanatory diagrams for explaining the control of the output power of the generator 12 by the additional control unit 110. Here, the power transition of (a), (b), (c) shown in FIG. 3 and FIG. 4 is the power transition in the direction of (a), (b), (c) of FIG. And the current transition of (d) shown in FIG. 4 is a current transition of the direction of (d) of FIG.

追加制御部110が、図2(d)の方向に図3(d)に示すような正の電流を追加制御路112に流すと、発電機用変流器14中に追加された分の電流が流れ、発電機制御部16は、その電流の流れを受電点の電力変動によるものと認識することとなる。そうすると、発電機制御部16は、発電機用変流器14で変成した計測値が所定値となるように発電機12の出力電力を制御するので、発電機12の電力出力を高める。したがって、追加制御部110が電流を流している間、図3(b)に示すように、発電機12の電力出力が上昇し、上昇した分(ΔP)と等しい電力が、例えば、図3(c)に示すように、受電点を通って電力供給路20側に出力される。   When the additional control unit 110 causes a positive current as shown in FIG. 3D to flow in the additional control path 112 in the direction of FIG. 2D, a current corresponding to the amount added in the generator current transformer 14 is obtained. The generator control unit 16 recognizes that the current flow is due to power fluctuation at the power receiving point. Then, since the generator control unit 16 controls the output power of the generator 12 so that the measurement value transformed by the generator current transformer 14 becomes a predetermined value, the power output of the generator 12 is increased. Therefore, as shown in FIG. 3B, the power output of the generator 12 is increased while the additional control unit 110 is passing current, and the power equal to the increased amount (ΔP) is, for example, shown in FIG. As shown in c), the electric power is output to the power supply path 20 through the power receiving point.

また、追加制御部110が、図2(d)の方向に図4(d)に示すような負の電流を追加制御路112に流すと、発電機用変流器14中に追加された分の電流が流れ、発電機制御部16は、図3同様、その電流の流れを受電点の電力変動によるものと認識することとなる。そうすると、発電機制御部16は、発電機用変流器14で変成した計測値が所定値となるように発電機12の出力電力を制御するので、発電機12の電力出力を低減する。したがって、追加制御部110が電流を流している間、図4(b)に示すように、発電機12の電力出力が下降し、下降した分(ΔP)と等しい電力が、例えば、図4(c)に示すように、受電点を通って電力供給路20から補充される。   Further, when the additional control unit 110 causes a negative current as shown in FIG. 4D to flow in the additional control path 112 in the direction of FIG. 2D, the amount added to the generator current transformer 14 is increased. Thus, the generator control unit 16 recognizes that the current flow is caused by power fluctuation at the power receiving point, as in FIG. Then, the generator control unit 16 controls the output power of the generator 12 so that the measurement value transformed by the generator current transformer 14 becomes a predetermined value, so that the power output of the generator 12 is reduced. Therefore, as shown in FIG. 4B, while the additional control unit 110 is passing current, the power output of the generator 12 is lowered, and the power equal to the lowered amount (ΔP) is, for example, shown in FIG. As shown in c), it is replenished from the power supply path 20 through the power receiving point.

このように、既存の発電ユニット10を、発電機用変流器14および発電機制御部16を外すことなくそのまま有効利用しつつ、追加制御部110が、発電機用変流器14の貫通体に挿通された追加制御路112に電流を流すことで、発電機制御部16に、電力供給路20の電流が変化したかのように認識させ、発電機12の出力電力を個別に制御することが可能となる。   Thus, while the existing power generation unit 10 is effectively used as it is without removing the generator current transformer 14 and the generator control section 16, the additional control section 110 passes through the generator current transformer 14. By causing a current to flow through the additional control path 112 inserted into the generator, the generator control unit 16 is made to recognize as if the current of the power supply path 20 has changed, and the output power of the generator 12 is individually controlled. Is possible.

上述したような追加制御部110を用いた発電ユニット10の出力電力制御は、様々な用途に適用できる。以下、追加制御部110を用いた発電ユニット10の応用例を示す。   The output power control of the power generation unit 10 using the additional control unit 110 as described above can be applied to various uses. Hereinafter, application examples of the power generation unit 10 using the additional control unit 110 will be described.

(第2の実施形態:電力供給システム200)
発電ユニット10は量産品であるため、発電機用変流器14と発電機制御部16とを結ぶ結線の長さが制限される場合が多い。したがって、図1のように、受電点と発電機12とが近い場合、問題は生じないが、負荷設備22が複数離隔して設けられ、受電点と発電機12とが物理的に遠くなる場合、受電点に発電機用変流器14を設置できない場合がある。また、発電機用変流器14の設置環境の制約、例えば、設置場所が紫外線に晒されていたり、塩害が生じ易い等の理由により、発電機用変流器14を設置できない場合もある。第2の実施形態においては、このような状況下においても、受電点の電力変動を平準化することを目的とする。
(Second embodiment: power supply system 200)
Since the power generation unit 10 is a mass-produced product, the length of the connection connecting the generator current transformer 14 and the generator control unit 16 is often limited. Therefore, as shown in FIG. 1, when the power receiving point and the generator 12 are close to each other, no problem occurs. However, a plurality of load facilities 22 are provided apart from each other, and the power receiving point and the generator 12 are physically far from each other. In some cases, the generator current transformer 14 cannot be installed at the power receiving point. In addition, the generator current transformer 14 may not be installed due to restrictions on the installation environment of the generator current transformer 14, for example, because the installation location is exposed to ultraviolet rays or salt damage is likely to occur. The second embodiment aims to level the power fluctuations at the power receiving point even under such circumstances.

図5は、第2の実施形態における電力供給システム200の概略的な構成を示した説明図である。図5に示すように、電力供給システム200は、発電ユニット10(発電機12、発電機用変流器14、発電機制御部16)と、追加制御部110と、延長変流器130と、送信部132と、受信部134とを含んで構成される。   FIG. 5 is an explanatory diagram showing a schematic configuration of the power supply system 200 according to the second embodiment. As shown in FIG. 5, the power supply system 200 includes a power generation unit 10 (a generator 12, a generator current transformer 14, a generator control unit 16), an additional control unit 110, an extension current transformer 130, A transmission unit 132 and a reception unit 134 are included.

発電ユニット10は、図1を用いて説明したものをそのまま用いる。延長変流器130は、電力供給路20を、一次巻線を配した貫通体に挿通し、電力供給路20の電流値を計測値に変成する。送信部132は、延長変流器130で変成した計測値を、通信回線を通じて送信する。受信部134は、送信部132から計測値を受信する。かかる送信部132と受信部134との通信は有線、無線を問わず、また、その通信方式も任意の通信方式を採用することができる。追加制御部110は、第1の実施形態同様、電力供給路20と共に発電機用変流器14の貫通体に挿通される追加制御路112に制御電流を流して発電機12の出力電力を制御する。ただし、第2の実施形態では、追加制御部110は、受信部134が受信した計測値に応じて追加制御路112に制御電流を流す。   The power generation unit 10 is the same as that described with reference to FIG. The extension current transformer 130 inserts the power supply path 20 into a through body provided with a primary winding, and transforms the current value of the power supply path 20 into a measured value. The transmission part 132 transmits the measured value transformed by the extension current transformer 130 through a communication line. The reception unit 134 receives the measurement value from the transmission unit 132. The communication between the transmission unit 132 and the reception unit 134 may be wired or wireless, and any communication method can be adopted. As in the first embodiment, the additional control unit 110 controls the output power of the generator 12 by causing a control current to flow through the additional control path 112 inserted through the penetration body of the current transformer 14 together with the power supply path 20. To do. However, in the second embodiment, the additional control unit 110 causes a control current to flow through the additional control path 112 according to the measurement value received by the reception unit 134.

ここでは、発電機用変流器14と発電機制御部16とを結ぶ結線が受電点に至るまで満たない距離を、通信によって補う。すなわち、発電機用変流器14の代わりに、延長変流器130によって受電点の電流値を計測し、通信を通じて追加制御部110に計測値を伝達する。そして、伝達された計測値を追加制御路112に流すことで、延長変流器130による計測値を、発電機用変流器14の計測値として再現する。   Here, the distance that the connection between the generator current transformer 14 and the generator control unit 16 does not reach the power reception point is compensated by communication. That is, instead of the generator current transformer 14, the current value at the power receiving point is measured by the extension current transformer 130, and the measured value is transmitted to the additional control unit 110 through communication. And the measured value by the extension current transformer 130 is reproduced as a measured value of the generator current transformer 14 by flowing the transmitted measured value through the additional control path 112.

こうして、受電点と発電機12とが物理的に遠くなる場合であっても、受電点の電力変動、すなわち、複数の負荷設備22と発電機12とを1の系統として総合的にみた場合の他の系統に対する電力変動を平準化することが可能となる。   Thus, even when the power receiving point and the generator 12 are physically distant from each other, the power fluctuation at the power receiving point, that is, the case where the plurality of load equipments 22 and the generator 12 are viewed as a single system as a whole. It becomes possible to level out power fluctuations for other systems.

(追加制御路112)
また、電力供給システム100および電力供給システム200において、発電機12を追加制御部110による制御電流で制御する場合、その制御電流によって発電機用変流器14が受信する電流の変化幅と、電力供給路20によって発電機用変流器14が受信する電流の変化幅を同等としなければならない。このような発電機用変流器14が受信する電流の変化幅を大きくするためには、以下のような手段が考えられる。
(1)追加制御路112に印加する電圧値Vを高める。
(2)追加制御路112の抵抗値Rを小さくする。
(3)追加制御路112を発電機用変流器14の貫通体自体に複数回巻回する。
(Additional control path 112)
Further, in the power supply system 100 and the power supply system 200, when the generator 12 is controlled by the control current by the additional control unit 110, the current change width received by the generator current transformer 14 by the control current, the power The change width of the current received by the generator current transformer 14 through the supply path 20 must be made equal. In order to increase the change width of the current received by the generator current transformer 14, the following means can be considered.
(1) The voltage value V applied to the additional control path 112 is increased.
(2) The resistance value R of the additional control path 112 is reduced.
(3) The additional control path 112 is wound around the penetration body of the generator current transformer 14 a plurality of times.

ただし、(1)や(2)のいずれの手段も、追加制御路112においてジュール熱(V/R)によるエネルギーの消費を伴うため、実用的ではない。また、(1)や(2)の手段では、追加制御部110自体が、そもそも、電力供給路20から供給される電流と同等の電流を生成する能力を有さなければならない。 However, either means (1) or (2) is not practical because it involves energy consumption due to Joule heat (V 2 / R) in the additional control path 112. Further, in the means of (1) and (2), the additional control unit 110 itself must have an ability to generate a current equivalent to the current supplied from the power supply path 20 in the first place.

そこで、ここでは、(3)の追加制御路112を発電機用変流器14の貫通体自体に複数回巻回する手段について検討する。このように、追加制御路112を発電機用変流器14の貫通体自体に複数回巻回することで、ジュール熱によるエネルギーの消費を抑えつつ、制御電流によって発電機用変流器14が受信する電流の変化幅と、電力供給路20によって発電機用変流器14が受信する電流の変化幅のスケールを合わせることができる。   Therefore, here, a means for winding the additional control path 112 of (3) around the penetrating body of the generator current transformer 14 a plurality of times will be examined. In this way, by winding the additional control path 112 around the penetration body of the generator current transformer 14 a plurality of times, the generator current transformer 14 is controlled by the control current while suppressing energy consumption due to Joule heat. The change width of the received current and the scale of the change width of the current received by the generator current transformer 14 through the power supply path 20 can be matched.

図6は、追加制御路112を説明するための説明図である。追加制御路112は、発電機用変流器14の貫通体14aの貫通孔14bに挿通されるように、例えば、5回巻回されている。こうして、電力供給路20の電流に対し、本来必要な制御電流をIとし、巻回数をNとすると、追加制御部110は、I/Nの電流を制御できれば足りる。   FIG. 6 is an explanatory diagram for explaining the additional control path 112. The additional control path 112 is wound, for example, five times so as to be inserted into the through hole 14b of the through body 14a of the current transformer 14 for generator. Thus, with respect to the current in the power supply path 20, assuming that the originally required control current is I and the number of turns is N, it is sufficient that the additional control unit 110 can control the current of I / N.

かかる追加制御路112の巻回数は、説明の便宜上、5回としたが、3〜30回、より望ましくは5〜10回とするとよい。ここで、巻回数を3回以上としているのは、巻回数が1回や2回だと、結局、追加制御路112に流れる電流自体が大きくなって、ジュール熱の消費を抑えられないからである。また、巻回数を30回以下としているのは、30回を超えると、外部からのノイズが巻回数分増幅してから制御電流に乗るため、制御電流がノイズの影響を受けやすくなるからである。   The number of turns of the additional control path 112 is 5 for convenience of explanation, but it is 3 to 30 times, more preferably 5 to 10 times. Here, the number of windings is set to 3 times or more because if the number of windings is 1 or 2 after all, the current itself flowing through the additional control path 112 becomes large and the consumption of Joule heat cannot be suppressed. is there. In addition, the number of windings is set to 30 or less because if the number of windings exceeds 30, the noise from the outside is amplified by the number of windings and then rides on the control current, so that the control current is easily affected by the noise. .

参考として、ノイズの原因としては、例えば、以下の3つが考えられる。
(a)電磁誘導による起電力の影響:巻回数をN、電力供給路20に流れる電流をI、貫通体14aの半径をrとすると、追加制御路112には、起電力ΔV=N/2πr×dI/dtが誘起される。
(b)サージ雑音の電磁接合による影響:電力供給路20の配線と追加制御路112の配線が近接している場合、電力供給路20に流れるサージ雑音が電磁接道により追加制御路112に伝わる。
(c)放射電磁界イミュニティの影響:アマチュア無線機や携帯電話からの電波が、追加制御路112に乗る。
As a reference, for example, the following three may be considered as causes of noise.
(A) Influence of electromotive force due to electromagnetic induction: If the number of turns is N, the current flowing through the power supply path 20 is I 0 , and the radius of the penetrating body 14a is r, the additional control path 112 has an electromotive force ΔV = N / 2πr × dI 0 / dt is induced.
(B) Influence of surge noise due to electromagnetic joining: When the wiring of the power supply path 20 and the wiring of the additional control path 112 are close to each other, the surge noise flowing through the power supply path 20 is transmitted to the additional control path 112 by the electromagnetic contact path. .
(C) Influence of radiated electromagnetic field immunity: Radio waves from amateur radios or mobile phones ride on the additional control path 112.

ところで、追加制御部110は、制御電流を制御する機能を有するが、以下の理由により、制御電流による制御精度が劣る場合がある。
(i)追加制御路112に印加する電圧源として定電圧源、例えば商用の100Vしか利用できない。
(ii)追加制御部110の制御電流の可変幅がそもそも小さい。
(iii)制御電流の分解能がそもそも低い。
By the way, although the additional control part 110 has a function which controls a control current, the control precision by a control current may be inferior for the following reasons.
(I) As a voltage source to be applied to the additional control path 112, only a constant voltage source, for example, a commercial 100V can be used.
(Ii) The variable width of the control current of the additional control unit 110 is small in the first place.
(Iii) The resolution of the control current is low in the first place.

そこで、本実施形態では、追加制御路112の巻回数もしくは抵抗値を可変とすることで、定電圧源であるか否かに拘わらず、制御電流の可変幅を変更したり、分解能を変更する。   Therefore, in the present embodiment, by making the number of turns or the resistance value of the additional control path 112 variable, it is possible to change the variable width of the control current or change the resolution regardless of whether it is a constant voltage source. .

図7は、追加制御路112を説明するための他の説明図である。図7(a)において、追加制御路112は、発電機用変流器14の貫通体14aの貫通孔14bに挿通されるように、貫通体14aに追加制御路112を5回巻回している。そして、追加制御路112の可変部位112aでは、巻回の1ターン毎に接点を設け、その接点の接続態様によって、巻回数を可変する。また、図7(b)のように、追加制御路112に抵抗値が可変な可変抵抗112bを設けることによって、追加制御路112の抵抗値Rを変更し、制御電流(V/R)を可変させることもできる。かかる可変部位112aや可変抵抗112bの変更は、追加制御部110から自動的に行うとしてもよいし、電力の利用態様に応じて手動で行うとしてもよい。   FIG. 7 is another explanatory diagram for explaining the additional control path 112. In FIG. 7 (a), the additional control path 112 is wound around the through body 14a five times so that the additional control path 112 is inserted into the through hole 14b of the through body 14a of the generator current transformer 14. . In the variable portion 112a of the additional control path 112, a contact is provided for each turn of the winding, and the number of windings is varied depending on the connection mode of the contact. Further, as shown in FIG. 7B, by providing the additional control path 112 with a variable resistance 112b having a variable resistance value, the resistance value R of the additional control path 112 is changed, and the control current (V / R) is variable. It can also be made. The change of the variable part 112a and the variable resistor 112b may be automatically performed from the additional control unit 110, or may be manually performed according to the power usage mode.

こうして、追加制御部110の制御電流の可変能力とは独立して、制御電流を可変することで、制御電流の可変幅を、追加制御部110の制御電流の可変能力と、上記可変部位112a等の可変能力とを乗じた範囲に広げることができる。また、可変部位112a等によって、追加制御部110の制御電流の分解能を可変できるので、分解能の必要な制御にも対応可能となる。   In this way, by varying the control current independently of the control current variable capability of the additional control unit 110, the control current variable width can be increased, the control current variable capability of the additional control unit 110, the variable portion 112a, etc. It can be expanded to the range multiplied by the variable ability. In addition, since the resolution of the control current of the additional control unit 110 can be varied by the variable portion 112a or the like, it is possible to deal with control that requires resolution.

以上、説明したように、電力供給システム100、200によって、発電ユニット10に元々備わる発電機用変流器14や発電機制御部16といった資源を無駄にすることなく、受電電力一定制御が可能な発電ユニット10から負荷設備22に適切に電力を供給することが可能となる。   As described above, the power supply systems 100 and 200 enable constant control of received power without wasting resources such as the generator current transformer 14 and the generator control unit 16 originally provided in the power generation unit 10. It is possible to appropriately supply power from the power generation unit 10 to the load facility 22.

また、電力供給システム200によって、負荷設備22の状態や発電機用変流器14の設置環境に拘わらず、受電電力一定制御が可能な発電ユニット10から負荷設備22に適切に電力を供給することが可能となる。   Further, the power supply system 200 appropriately supplies power to the load facility 22 from the power generation unit 10 capable of constant control of received power regardless of the state of the load facility 22 and the installation environment of the current transformer 14 for the generator. Is possible.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、受電電力一定制御が可能な発電ユニットから負荷設備に電力を供給する電力供給システムに利用することができる。   The present invention can be used for a power supply system that supplies power to a load facility from a power generation unit capable of constant control of received power.

10 発電ユニット
12 発電機
14 発電機用変流器
14a 貫通体
16 発電機制御部
20 電力供給路
22 負荷設備
100、200 電力供給システム
110 追加制御部
112 追加制御路
130 延長変流器
132 送信部
134 受信部
DESCRIPTION OF SYMBOLS 10 Power generation unit 12 Generator 14 Current transformer 14a for generator 16 Penetration body 16 Generator control part 20 Power supply path 22 Load equipment 100, 200 Power supply system 110 Additional control part 112 Additional control path 130 Extension current transformer 132 Transmission part 134 Receiver

Claims (4)

電力事業者からの電力供給路と負荷設備とに接続され、該負荷設備に電力を供給する発電機と、
前記電力供給路が挿通され、該電力供給路の電流値を計測値に変成する延長変流器と、
前記延長変流器で変成した計測値を、通信回線を通じて送信する送信部と、
前記送信部から計測値を受信する受信部と、
前記受信部が受信した計測値に応じて追加制御路に制御電流を流す追加制御部と、
前記追加制御路の電流値を計測値に変成する発電機用変流器と、
前記発電機用変流器で変成した計測値が所定値となるように前記発電機の出力電力を制御する発電機制御部と、
を備えることを特徴とする電力供給システム。
A generator connected to a power supply path and a load facility from an electric power company and supplying power to the load facility;
An extension current transformer that is inserted into the power supply path and transforms the current value of the power supply path into a measured value;
A transmitter for transmitting the measurement value transformed by the extension current transformer through a communication line;
A receiving unit for receiving a measurement value from the transmitting unit;
An additional control unit that causes a control current to flow through the additional control path according to the measurement value received by the reception unit;
A current transformer for a generator that transforms the current value of the additional control path into a measured value;
A generator control unit for controlling the output power of the generator so that the measurement value transformed by the generator current transformer becomes a predetermined value;
A power supply system comprising:
前記追加制御路は、前記発電機用変流器の貫通体に3〜30回のうち、いずれかの回数巻回されることを特徴とする請求項1に記載の電力供給システム。   2. The power supply system according to claim 1, wherein the additional control path is wound any number of 3 to 30 times around the penetrating body of the generator current transformer. 前記追加制御路は、前記発電機用変流器の貫通体に3〜30回のうち、いずれかの回数巻回され、かつ、巻回数を可変とする可変部位が形成され、
前記追加制御部は、前記可変部位の巻回数を変更することで、制御電流を制御することを特徴とする請求項1に記載の電力供給システム。
The additional control path is wound around the generator current transformer through 3 to 30 times, any number of times, and a variable part is formed to make the number of turns variable,
The power supply system according to claim 1, wherein the additional control unit controls the control current by changing the number of turns of the variable part.
前記追加制御路には、抵抗値が可変な可変抵抗が設けられ、
前記追加制御部は、前記可変抵抗の抵抗値を変更することで、制御電流を制御することを特徴とする請求項1に記載の電力供給システム。
The additional control path is provided with a variable resistor having a variable resistance value,
The power supply system according to claim 1, wherein the additional control unit controls a control current by changing a resistance value of the variable resistor.
JP2014071602A 2014-03-31 2014-03-31 Power supply system Active JP6169517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071602A JP6169517B2 (en) 2014-03-31 2014-03-31 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071602A JP6169517B2 (en) 2014-03-31 2014-03-31 Power supply system

Publications (2)

Publication Number Publication Date
JP2015195658A true JP2015195658A (en) 2015-11-05
JP6169517B2 JP6169517B2 (en) 2017-07-26

Family

ID=54434272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071602A Active JP6169517B2 (en) 2014-03-31 2014-03-31 Power supply system

Country Status (1)

Country Link
JP (1) JP6169517B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167794A (en) * 2019-03-28 2020-10-08 東京瓦斯株式会社 Power supply facility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519898A (en) * 1978-07-27 1980-02-12 Siemens Ag Transformer for instrument
JPH0638407A (en) * 1992-07-21 1994-02-10 Meidensha Corp Generator for uninterruptible change-over
JPH08115838A (en) * 1994-10-17 1996-05-07 Nissin Electric Co Ltd Current-transformer apparatus
JP2006320082A (en) * 2005-05-11 2006-11-24 Mitsubishi Electric Corp Controller of power supply system, controller of power system, control method of power supply system and control method of power system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519898A (en) * 1978-07-27 1980-02-12 Siemens Ag Transformer for instrument
JPH0638407A (en) * 1992-07-21 1994-02-10 Meidensha Corp Generator for uninterruptible change-over
JPH08115838A (en) * 1994-10-17 1996-05-07 Nissin Electric Co Ltd Current-transformer apparatus
JP2006320082A (en) * 2005-05-11 2006-11-24 Mitsubishi Electric Corp Controller of power supply system, controller of power system, control method of power supply system and control method of power system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167794A (en) * 2019-03-28 2020-10-08 東京瓦斯株式会社 Power supply facility
JP7378946B2 (en) 2019-03-28 2023-11-14 東京瓦斯株式会社 power supply equipment

Also Published As

Publication number Publication date
JP6169517B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
US11355967B2 (en) Method and system of wireless power transfer foreign object detection
US9065423B2 (en) Wireless energy distribution system
US9769869B2 (en) Non-contact type power supply apparatus and non-contact type power supply method
KR102118407B1 (en) Method for distributing of wireless charging power for multiple wireless power receiver
Kim et al. Maximum efficiency point tracking for multiple-transmitter wireless power transfer
US20160294227A1 (en) System and method for selecting power transmitters across a wireless power coupling
KR101350309B1 (en) Wireless power transmission apparatus and method converging wireless power to a specific device
KR102332762B1 (en) Wireless charging apparatus for using wireless charging zone of 3d form
JP2015008608A (en) Non-contact power transmission and reception system
JP2015119577A (en) Wireless power transmission system
JP6169517B2 (en) Power supply system
KR200453596Y1 (en) Aquarium and lighting device using wireless power transmission
WO2017159648A1 (en) Submarine device, submarine cable system, method for controlling submarine device, and storage medium for storing program for submarine device
Menon et al. Efficient wireless power transfer using underground relay coils
JP6211979B2 (en) Power supply system
EP2768105B1 (en) Direct current power delivery system and method
JP2015082893A (en) Charge system and charge station for electric vehicle
CN105576843B (en) Power supply unit of the segmentation overlay from decoupling matrix loop structure
JP6141213B2 (en) Power supply system and power supply control device
Huh et al. Optimal transmitter selection method for maximum power efficiency for wireless power transfer system using multi-transmitter
JP6263433B2 (en) Power supply system
CN207691487U (en) A kind of wireless charging pedestal
US10193432B2 (en) Method for data transfer of electric device configuration, and electric device configuration
KR102304844B1 (en) An apparatus and method for performing wireless charging in vehicle
JP6609445B2 (en) Wireless power transmission device, control circuit and control method thereof, and charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170413

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170628

R150 Certificate of patent or registration of utility model

Ref document number: 6169517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250