JP2015119577A - Wireless power transmission system - Google Patents

Wireless power transmission system Download PDF

Info

Publication number
JP2015119577A
JP2015119577A JP2013262150A JP2013262150A JP2015119577A JP 2015119577 A JP2015119577 A JP 2015119577A JP 2013262150 A JP2013262150 A JP 2013262150A JP 2013262150 A JP2013262150 A JP 2013262150A JP 2015119577 A JP2015119577 A JP 2015119577A
Authority
JP
Japan
Prior art keywords
power
power transmission
unit
transmission device
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013262150A
Other languages
Japanese (ja)
Inventor
井戸 寛
Hiroshi Ido
寛 井戸
宮内 靖
Yasushi Miyauchi
靖 宮内
義弘 戸高
Yoshihiro Todaka
義弘 戸高
吉弘 昌史
Masashi Yoshihiro
昌史 吉弘
大貫 悟
Satoru Onuki
悟 大貫
淳史 田中
Junji Tanaka
淳史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2013262150A priority Critical patent/JP2015119577A/en
Publication of JP2015119577A publication Critical patent/JP2015119577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-power wireless power transmission system capable of ensuring stable operation of the electric apparatus while suppressing electromagnetic noises in particular for transmitting the power to the apparatus including a heat generator and an electric apparatus in a non-contact manner.SOLUTION: The wireless power transmission system includes: a heat generation unit that generates heat with a high electric power; and an electric apparatus that operates with a low electric power. The transmission system includes: a high power transmission unit for transmitting a high electric power; a low electric power transmission unit for transmitting a low electric power. A reception unit includes: a heat generation unit that receives the high electric power; and a low electric power reception unit that receives the low electric power, in which the low electric power reception unit supplies the electric power to the electric apparatus.

Description

本発明は、送電装置と受電装置の間の電力伝送を非接触(ワイヤレス)で行う非接触電力伝送装置に関し、特に、送電装置の送電共振器を構成する送電コイルと、受電装置の受電共振器を構成する受電コイルが、コイルの共振状態を利用して電力伝送を安定して行うための非接触電力伝送装置に関する。   The present invention relates to a contactless power transmission device that performs power transmission between a power transmission device and a power reception device in a contactless (wireless) manner, and in particular, a power transmission coil that constitutes a power transmission resonator of the power transmission device, and a power reception resonator of the power reception device. The non-contact electric power transmission apparatus for the receiving coil which comprises is for performing electric power transmission stably using the resonance state of a coil.

非接触で電力を伝送する方法(以下、無線給電と呼ぶ)として、電磁誘導による電磁誘導方式、電界または磁界の共振を利用した共鳴給電方式、及びマイクロ波を利用したマイクロ波送電方式が知られている。この中で既に実用化されているのは、電磁誘導方式である。これは技術的には相互誘導におよそ位置付けすることができ、従来から様々な検討がされている。安価な回路で構成できるという優位性はあるが、送電距離が短いという課題がある。そこで最近、送電コイルと受電コイルの共振を利用して電力を数m先まで伝送する共鳴給電方式が提案され、この技術を利用した製品開発が、電機メーカーや自動車メーカーを中心に進められている。   As a method for transmitting power without contact (hereinafter referred to as wireless power feeding), an electromagnetic induction method using electromagnetic induction, a resonance power feeding method using resonance of an electric field or a magnetic field, and a microwave power transmission method using a microwave are known. ing. Among them, the electromagnetic induction method has already been put into practical use. This can be technically positioned as a mutual induction, and various studies have been made heretofore. There is an advantage that it can be configured with an inexpensive circuit, but there is a problem that the transmission distance is short. Therefore, recently, a resonance power feeding method that transmits power up to several meters using the resonance of the power transmission coil and the power reception coil has been proposed, and product development using this technology is being promoted mainly by electrical manufacturers and automobile manufacturers. .

ところで、共鳴給電方式において給電の電力を大きくする場合には、周囲に電磁ノイズを漏らさないよう設計することが重要である。例えば、電力伝送の指向性を制御することによって、必要な個所にのみ電力を伝送できれば、電磁ノイズの問題は軽減できる。しかし、通常、無線給電に用いる周波数はマイクロ波以下の周波数であるため指向性に乏しく、電磁ノイズを抑制することは難しい。また、送電コイルと受電コイルが何らかの原因で正対位置からずれた場合には、電磁ノイズの発生が更に大きくなる傾向がある。   By the way, when increasing the power of the power feeding in the resonance power feeding method, it is important to design so as not to leak electromagnetic noise around. For example, the problem of electromagnetic noise can be reduced if electric power can be transmitted only to a necessary location by controlling the directivity of electric power transmission. However, since the frequency used for wireless power feeding is usually a microwave frequency or less, directivity is poor and it is difficult to suppress electromagnetic noise. In addition, when the power transmission coil and the power reception coil are displaced from the directly facing position for some reason, the generation of electromagnetic noise tends to be further increased.

このため非接触電力伝送において、給電の電力を大きくする場合には、電磁波シールドなどを設けて電磁ノイズの漏えいを防ぐ必要がある。   For this reason, in the case of non-contact power transmission, when increasing the power of the power supply, it is necessary to provide an electromagnetic wave shield or the like to prevent leakage of electromagnetic noise.

さらに、環境温度が変化したり、送電装置と受電装置に金属異物が近づいた場合などでは、無線給電に適した周波数が大きな遷移を起こしてしまう問題もある。そのため、外部環境に関わらず適切な電力伝送を行うためには、送電周波数の調整機構を設け、電力伝送を担う送電コイルや受電コイルに対して適切な制御を行う必要がある。稀ではあるが、非接触での電力伝送中に急にコイルが脱落するとコイルに非常に高い電圧が発生する場合があり、最悪の場合、非接触電力伝送装置を壊す可能性もある。これを防ぐためには送電周波数の調整機構を適切に素早く動作させる必要がある。   In addition, when the environmental temperature changes or when a metal foreign object approaches the power transmitting device and the power receiving device, there is a problem that the frequency suitable for wireless power feeding causes a large transition. Therefore, in order to perform appropriate power transmission regardless of the external environment, it is necessary to provide a power transmission frequency adjustment mechanism and perform appropriate control on the power transmission coil and power reception coil that are responsible for power transmission. Although rare, if the coil suddenly drops during non-contact power transmission, a very high voltage may be generated in the coil, and in the worst case, the non-contact power transmission device may be broken. In order to prevent this, it is necessary to operate the transmission frequency adjusting mechanism appropriately and quickly.

ところで、特許文献1に開示されているような移動式の水洗便器があることはよく知られている。住宅内の複数の居室の壁や床に配管接続部を有する給排水設備配管を予め設置しておき、水洗便器を移動させ、水洗便器の室内配管を壁や床に設置した配管接続部に接続することで、水洗便器の使用が可能となる。居住者が要介護状態になり自力でトイレまで行くことが困難になった場合など、高齢化社会を迎え、この移動式水洗便器に対するニーズは大きくなっている。   By the way, it is well known that there is a mobile flush toilet as disclosed in Patent Document 1. Install plumbing pipes with pipe connections on the walls and floors of multiple living rooms in the house, move the flush toilet and connect the plumbing indoor piping to the pipe connections installed on the walls and floor Thus, the use of a flush toilet becomes possible. The need for this mobile flush toilet is increasing with the aging society, such as when it is difficult for residents to go to the toilet by themselves.

そして、特許文献2に開示されているように、加熱可能な便座部と、モーター、電磁弁、各種センサ等の電気機器を搭載した暖房便座装置もよく知られている。便座には、誘導加熱コイルと導電体(発熱部)が設けられており、この誘導加熱コイルから発生する磁界で誘起される渦電流により導電体が発熱する。   Further, as disclosed in Patent Document 2, a heated toilet seat device equipped with a heatable toilet seat portion and electric devices such as a motor, a solenoid valve, and various sensors is well known. The toilet seat is provided with an induction heating coil and a conductor (heat generating portion), and the conductor generates heat due to an eddy current induced by a magnetic field generated from the induction heating coil.

上記特許文献1や特許文献2の特徴を併せ持つ、暖房便座を備えた移動式の水洗便器に電力を供給する際には、長距離で大電力の伝送が可能な共鳴給電方式が有利である。例えば、給排水設備配管を設けた壁や床の近くに送電コイルを設置しておき、移動式の水洗便器に受電コイルを設けておけば、コードレスで水洗便器に電力を供給できる。共鳴給電方式の場合、送電コイルと受電コイルが多少ずれても、高効率で電力を伝送でき、また、自動車のバッテリに給電できる程度の大電力も送電できる点で、他の非接触電力伝送方式よりも優位である。   When supplying electric power to a mobile flush toilet equipped with a heated toilet seat that has the characteristics of Patent Document 1 and Patent Document 2 described above, a resonance power feeding method capable of transmitting a large amount of power over a long distance is advantageous. For example, if a power transmission coil is installed near a wall or floor provided with water supply / drainage equipment piping and a power reception coil is provided in a mobile flush toilet, power can be supplied cordlessly to the flush toilet. In the case of the resonance power feeding method, other non-contact power transmission methods can transmit power with high efficiency even when the power transmission coil and the power receiving coil are slightly shifted, and also can transmit large power that can be fed to the battery of an automobile. Is superior to.

特開2006−336665号公報JP 2006-336665 A 特開2013−146482号公報JP2013-146482A

共鳴給電装置で暖房便座を備えた移動式の水洗便器に電力を供給する際には、便座に設けられた導電体(発熱部)が十分に発熱するように、誘導加熱コイルに大きな電力を与える必要がある。一方、移動式の水洗便器に搭載されたモーター、電磁弁、各種センサ等の電気機器は、小電力で動作できるが、誘導加熱コイルに大きな電力を与える結果、大きな電磁ノイズが発生して、電気機器が誤動作する原因となることが分かった。   When power is supplied to a mobile flush toilet equipped with a heated toilet seat using a resonance power feeding device, a large amount of power is applied to the induction heating coil so that the conductor (heating unit) provided on the toilet seat generates sufficient heat. There is a need. On the other hand, electric devices such as motors, solenoid valves, and various sensors mounted on mobile flush toilets can operate with low power, but as a result of applying large power to the induction heating coil, large electromagnetic noise is generated, It turns out that it causes the equipment to malfunction.

すなわち、誘導加熱コイルに与えられた電力は、導電体で渦電流を発生させる目的にのみ使用され、導電体が発熱しさえすればよいので、誘導加熱コイルに与える電力の品質は問わず、電磁ノイズも問題にならない。一方、モーター、電磁弁、各種センサ等の電気機器は、正確な動作を保証するために、電磁ノイズから保護する必要があると共に、高品質の電力を与える必要があった。   That is, the electric power given to the induction heating coil is used only for the purpose of generating eddy currents in the conductor, and the conductor only needs to generate heat. Noise is not a problem. On the other hand, electric devices such as motors, electromagnetic valves, and various sensors need to be protected from electromagnetic noise and to provide high-quality electric power in order to ensure accurate operation.

さらには、環境温度が変化したり、送電装置と受電装置に金属異物が近づいた場合など、送電条件が所定の範囲外になった場合には、電力伝送を担う送受電コイルに対して適切な制御を行う必要があった。   Furthermore, when the environmental temperature changes, or when a metal foreign object approaches the power transmission device and the power reception device, when the power transmission conditions are out of the predetermined range, it is appropriate for the power transmission / reception coil responsible for power transmission. There was a need to control.

本発明の非接触電力伝送装置は、送電コイル及び共振容量により構成された送電共振器を有する送電装置と、受電コイル及び共振容量により構成された受電共振器を有する受電装置を備え、前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、前記送電装置は、大電力を送電するための大電力送電部と、小電力を送電するための小電力送電部を備え、前記大電力送電部は、大電力送電コイル及び大電力共振容量により構成された大電力送電共振器を備え、前記小電力送電部は、小電力送電コイル及び小電力共振容量により構成された小電力送電共振器を備え、前記受電装置は、前記大電力を受電するための大電力受電部と、前記小電力を受電するための小電力受電部を備え、前記大電力受電部は、大電力受電コイル及び大電力共振容量により構成された大電力受電共振器を備え、前記小電力受電部は、小電力受電コイル及び小電力共振容量により構成された小電力受電共振器を備えることを特徴とする。   A non-contact power transmission apparatus according to the present invention includes a power transmission device having a power transmission resonator configured by a power transmission coil and a resonance capacitor, and a power reception device having a power reception resonator configured by a power reception coil and a resonance capacitor, the power transmission device In the non-contact power transmission device that transmits power from the power receiving device to the power receiving device, the power transmission device includes a large power transmission unit for transmitting large power and a small power transmission unit for transmitting small power, The power transmission unit includes a high power transmission resonator including a high power transmission coil and a high power resonance capacity, and the small power transmission unit includes a small power transmission resonance including a small power transmission coil and a small power resonance capacity. The power receiving device includes a high power receiving unit for receiving the high power and a low power receiving unit for receiving the low power, the high power receiving unit including a high power receiving coil Beauty with large power receiving resonator constituted by high power resonant capacitor, the small power receiving unit is characterized in that it comprises a low-power receiving resonator constituted by small power receiving coil and the low power resonant capacitor.

本発明の非接触電力伝送装置によれば、大電力と小電力を分離して送電することができる。大電力は、例えば熱を発生させる発熱部に供給され、小電力は、例えば高品質な電力を必要とする電気機器に供給される。その結果、大電力を送電するにも関わらず、電気機器への電磁ノイズの拡散を効率的に抑制することができ、安定した高効率な非接触電力伝送装置が実現できる。   According to the non-contact power transmission apparatus of the present invention, high power and low power can be separated and transmitted. High power is supplied to, for example, a heat generating unit that generates heat, and low power is supplied to, for example, an electric device that requires high-quality power. As a result, it is possible to efficiently suppress the diffusion of electromagnetic noise to the electrical equipment despite the transmission of large power, and a stable and highly efficient contactless power transmission device can be realized.

本発明の非接触電力伝送装置を模式的に示した図The figure which showed the non-contact electric power transmission apparatus of this invention typically 発熱部と温度検出部と電磁波シールドを備えた本発明の受電装置の構成を示した図The figure which showed the structure of the power receiving apparatus of this invention provided with the heat generating part, the temperature detection part, and the electromagnetic wave shield 図2Aにさらに電力回収コイルを追加した本発明の受電装置の構成を示した図The figure which showed the structure of the power receiving apparatus of this invention which added the electric power collection coil further to FIG. 2A 図2Aにさらに熱電素子を追加した本発明の受電装置の構成を示した図The figure which showed the structure of the power receiving apparatus of this invention which added the thermoelectric element further to FIG. 2A 図2Aにさらに電池を追加した本発明の受電装置の構成を示した図The figure which showed the structure of the power receiving apparatus of this invention which added the battery further to FIG. 2A 本発明の非接触電力伝送装置における初期動作時のフローチャートFlowchart at the time of initial operation in the non-contact power transmission apparatus of the present invention 本発明の非接触電力伝送装置における通常動作時のフローチャートFlowchart during normal operation in the non-contact power transmission apparatus of the present invention

本発明の非接触電力伝送装置は、上記構成を基本として、以下のような形態をとることができる。   The non-contact power transmission apparatus of the present invention can take the following forms based on the above configuration.

本発明では、2つの経路を用いて無線電力伝送を行う。一方は大電力の無線電力伝送用の経路であり、他方は小電力の無線電力伝送用の経路である。2つの経路の無線電力伝送は、異なる周波数で行ってもよいし、同一の周波数としても良い。同一の周波数を用いる場合、大電力用の経路で余った電力が小電力用の経路に伝わらないように、電磁波シールドなどを用いて構造的な工夫をする必要がある。大電力の経路と小電力の経路を設ける例としては、暖房便座を備えた移動式の水洗便器に非接触で電力を供給する場合がある。   In the present invention, wireless power transmission is performed using two paths. One is a path for high-power wireless power transmission, and the other is a path for low-power wireless power transmission. The wireless power transmission of the two paths may be performed at different frequencies or the same frequency. When the same frequency is used, it is necessary to devise a structure using an electromagnetic wave shield or the like so that excess power in the high power path is not transmitted to the low power path. As an example of providing a high-power path and a low-power path, there is a case where power is supplied in a non-contact manner to a mobile flush toilet equipped with a heated toilet seat.

2つの経路には受電対象となる外部負荷に主な違いがある。大電力用の経路は、例えば電力の品質を問わない熱源に電力を供給する。暖房便座を備えた移動式の水洗便器では、大電力は大電力用送電コイルに与えられ、その電力は発熱体で渦電流を発生させる目的にのみ使用される。発熱体が発熱しさえすればよいので、大電力用の経路には、整流器や電圧変換などの回路は必ずしも必要ではない。但し、大電力をより効率的に受電するために、発熱体は他の部品より送電装置にできるだけ近づけるように配置する。   There are main differences between the two routes in the external load to be received. The high power path supplies power to a heat source regardless of the quality of the power, for example. In a mobile flush toilet equipped with a heated toilet seat, a large amount of electric power is applied to a large power transmission coil, and the electric power is used only for the purpose of generating eddy currents in a heating element. Since the heating element only needs to generate heat, a circuit such as a rectifier or voltage converter is not necessarily required for the path for high power. However, in order to receive large power more efficiently, the heating element is arranged as close as possible to the power transmission device than other components.

一方、小電力用の経路はノイズの少ない高品質の電力を必要とする電気機器に電力を供給する。暖房便座を備えた移動式の水洗便器では、モーター、電磁弁、各種センサ等の電気機器に小電力が供給されるため、小電力用の経路には小電力で送られた電圧を所定の電圧に変換する回路が必要である。   On the other hand, the low-power path supplies power to electrical equipment that requires high-quality power with less noise. In a mobile flush toilet equipped with a heated toilet seat, small electric power is supplied to electrical devices such as motors, solenoid valves, and various sensors. A circuit to convert to is required.

また、大電力経路、特に発熱体の温度を計測できるように受電装置には温度計測装置を備えるようにすることが好ましい。発熱体の温度が所定の温度以上になった場合、受電装置内に配置する受電側通信部から送電装置内に配置する送電側通信部に情報を伝送し、送電装置から受電装置に送られる電力伝送量を調節する。   In addition, it is preferable that the power receiving device is provided with a temperature measuring device so that the temperature of the large power path, particularly the heating element can be measured. When the temperature of the heating element is equal to or higher than a predetermined temperature, power is transmitted from the power receiving side communication unit disposed in the power receiving device to the power transmitting side communication unit disposed in the power transmitting device, and is transmitted from the power transmitting device to the power receiving device. Adjust the transmission volume.

また、前記受電装置内に、電池を組み込んでおき、非接触電力伝送装置の起動時には、電池から通信のための電力を供給することも可能である。   It is also possible to incorporate a battery in the power receiving apparatus and supply power for communication from the battery when the non-contact power transmission apparatus is activated.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の非接触電力伝送装置を、図1に斜視図で模式的に示す。非接触電力伝送装置は、送電装置100と受電装置300で構成される。送電装置100と受電装置300は、隔壁600の両面に対向させて設置され、隔壁600を挟んで電力伝送を行う。例えば、暖房便座を備えた移動式の水洗便器に非接触で電力を伝送する場合を想定すると、受電装置300が水洗便器の内側に設けられる場合には、水洗便器の側壁が隔壁600に相当する。送電装置100が給排水設備配管を設けた壁の屋外側や床の下側に設置される場合には、壁や床が隔壁600に相当する。あるいは、隔壁600は水洗便器の側壁に相当し、かつ、壁や床に相当する場合もある。以下では、説明を簡単かつ一般化するために、いずれの概念も含めた隔壁600を挟んで送電する場合について説明する。   The non-contact power transmission apparatus of the present invention is schematically shown in a perspective view in FIG. The non-contact power transmission device includes a power transmission device 100 and a power reception device 300. The power transmission device 100 and the power reception device 300 are installed to face both surfaces of the partition wall 600 and perform power transmission with the partition wall 600 interposed therebetween. For example, assuming that power is transmitted to a mobile flush toilet equipped with a heated toilet seat in a non-contact manner, the side wall of the flush toilet corresponds to the partition wall 600 when the power receiving device 300 is provided inside the flush toilet. . When the power transmission device 100 is installed on the outdoor side of the wall provided with the water supply / drainage equipment piping or on the lower side of the floor, the wall or floor corresponds to the partition wall 600. Alternatively, the partition wall 600 corresponds to a side wall of a flush toilet and may correspond to a wall or a floor. Hereinafter, in order to simplify and generalize the description, a case where power is transmitted across the partition wall 600 including any concept will be described.

送電装置100は、小電力送電部と大電力送電部と送電側通信部で構成される。小電力送電部は小電力を送るための小電力用送電コイル101、小電力用共振容量を含む小電力用送電回路102で構成される。大電力送電部は大電力を送るための大電力用送電コイル201、大電力用共振容量を含む大電力用送電回路202で構成される。送電側通信部103は、受電装置300との情報通信に用いられる。   The power transmission device 100 includes a low power transmission unit, a high power transmission unit, and a power transmission side communication unit. The low power transmission unit includes a low power transmission coil 101 for transmitting low power and a low power transmission circuit 102 including a low power resonance capacitor. The high power transmission unit includes a high power transmission coil 201 for transmitting high power and a high power transmission circuit 202 including a resonance capacitor for high power. The power transmission side communication unit 103 is used for information communication with the power receiving apparatus 300.

受電装置300は、小電力受電部と発熱部と受電側通信部で構成される。小電力受電部は小電力を受電するための小電力用受電コイル301と、整流し適切な電圧レベルに変換するための受電回路302で構成される。受電回路302は小電力用共振容量も含む。受電側通信部303は送電装置100との情報通信に用いられる。受電回路302から出力される電力は、センサ類などの電気機器に供給される。例えば、暖房便座を備えた移動式の水洗便器に非接触で電力を伝送する場合を想定すると、電気機器としては、モーター、電磁弁、各種センサ等がある。一方、送電装置100の大電力用送電コイル201から出力される電力は発熱部401に吸収され、うず電流を発生させることにより熱となる。   The power receiving device 300 includes a low-power power receiving unit, a heat generating unit, and a power receiving side communication unit. The low power receiving unit includes a low power receiving coil 301 for receiving low power and a power receiving circuit 302 for rectifying and converting to an appropriate voltage level. The power receiving circuit 302 also includes a low-power resonance capacitor. The power receiving side communication unit 303 is used for information communication with the power transmission device 100. The electric power output from the power receiving circuit 302 is supplied to electric devices such as sensors. For example, assuming a case where electric power is transmitted in a non-contact manner to a mobile flush toilet equipped with a heated toilet seat, electric devices include motors, solenoid valves, and various sensors. On the other hand, the power output from the high power power transmission coil 201 of the power transmission apparatus 100 is absorbed by the heat generating portion 401 and becomes heat by generating an eddy current.

本発明では、2つの経路を用いて無線電力伝送を行うことに特徴がある。一方は大電力の無線電力伝送用の経路であり、他方は小電力の無線電力伝送用の経路である。すなわち、送電装置から電力量の異なる2つの電力を送る仕組みと、受電装置で一方の電力を品質の良い電力に変換し、他方は熱源として用いる仕組みを有することに特徴がある。2つの経路を用いて無線電力伝送を行うことにより、送電する電力量に応じて回路構成を適宜変えることができ、また、経路中に用いる部品も電力量に適した部品を選定できる。また、経路ごとに電力伝送周波数を異なるようにしておけば、経路間の相互干渉を低減できる。   The present invention is characterized in that wireless power transmission is performed using two paths. One is a path for high-power wireless power transmission, and the other is a path for low-power wireless power transmission. That is, there is a feature in that there is a mechanism for transmitting two powers having different amounts of power from the power transmission device, and a mechanism for converting one power into a high-quality power in the power receiving device and using the other as a heat source. By performing wireless power transmission using the two routes, the circuit configuration can be changed as appropriate according to the amount of power to be transmitted, and the components used in the route can be selected as appropriate for the amount of power. Also, if the power transmission frequency is different for each path, mutual interference between paths can be reduced.

受電装置は上記のように電力変換を行う場合と発熱部への熱として電力を供給する場合で、以下に示すような構成を取る。   The power receiving device has the following configuration when performing power conversion as described above and when supplying power as heat to the heat generating unit.

図2A乃至図2Dに本発明における受電装置300の構成図のバリエーションを示す。   2A to 2D show variations of the configuration diagram of the power receiving device 300 according to the present invention.

図2Aは、図2A乃至図2Dのバリエーションの基本となる受電装置300Aを示す。発熱部401は、渦電流損失を発生させやすい磁性を持った材料で構成されることが好ましい。中でも、送電装置100の大電力用送電回路202から出力される電力の送電周波数付近で、透磁率の複素成分が大きい材料を用いることが好ましい。透磁率の複素成分の大きさはおよそ渦電流損と比例関係にあるためである。   FIG. 2A shows a power receiving device 300A that is the basis of the variations of FIGS. 2A to 2D. The heat generating part 401 is preferably made of a magnetic material that easily generates eddy current loss. In particular, it is preferable to use a material having a large complex component of permeability near the power transmission frequency of the power output from the high power power transmission circuit 202 of the power transmission device 100. This is because the size of the complex component of permeability is approximately proportional to the eddy current loss.

発熱部401の周囲には熱媒体402を配置する。熱媒体402としては、例えば水を用いることが好ましい。熱媒体402によって温められた水は、水洗便器の温水として利用できる。   A heat medium 402 is disposed around the heat generating portion 401. As the heat medium 402, for example, water is preferably used. The water heated by the heat medium 402 can be used as hot water for a flush toilet.

発熱部401に吸収されなかった電磁波が周囲に拡散するのを防ぐために、発熱部401と熱媒体402の周囲の少なくとも一部に電磁波シールド500を配置する。   In order to prevent the electromagnetic wave that has not been absorbed by the heat generating part 401 from diffusing to the surroundings, the electromagnetic wave shield 500 is disposed at least partly around the heat generating part 401 and the heat medium 402.

発熱部401は受電装置300内の他の部品よりも送電装置100に近い側に配置し、電力を効率良く受け外部に電磁ノイズを発生させないようにする。   The heat generating unit 401 is disposed closer to the power transmission device 100 than the other components in the power reception device 300 so as to efficiently receive power and prevent electromagnetic noise from being generated outside.

温度検出部501は発熱部401の温度や熱媒体402の温度を検出し、その検出温度を受電側通信部303に伝達する。温度検出部501としては、例えばサーミスタを用いることが好ましい。受電側通信部303は検出温度が予め定められた設定温度より高くなると、送電装置100の送電側通信部103に、送電する電力量を減少するか、若しくは送電を停止するように指令を送信する。送電側通信部103はその受信した指令を大電力用送電回路202に送信し、大電力用送電回路202は送電する電力量を減少するか、若しくは送電を停止する。若しくは、受電装置300の受電側通信部303から検出温度を送電装置100の送電側通信部103に送信し、検出温度が予め定められた設定温度より高くなると、送電側通信部103が大電力用送電回路202に送電する電力量を減少するか、若しくは送電を停止する指令を送信してもよい。   The temperature detection unit 501 detects the temperature of the heat generating unit 401 and the temperature of the heat medium 402 and transmits the detected temperature to the power receiving side communication unit 303. As the temperature detection unit 501, for example, a thermistor is preferably used. When the detected temperature becomes higher than a predetermined set temperature, the power receiving side communication unit 303 transmits a command to the power transmission side communication unit 103 of the power transmission apparatus 100 to reduce the amount of power to be transmitted or to stop power transmission. . The power transmission side communication unit 103 transmits the received command to the high power power transmission circuit 202, and the high power power transmission circuit 202 reduces the amount of power transmitted or stops power transmission. Alternatively, when the detected temperature is transmitted from the power receiving side communication unit 303 of the power receiving device 300 to the power transmitting side communication unit 103 of the power transmitting device 100 and the detected temperature becomes higher than a predetermined set temperature, the power transmitting side communication unit 103 is used for high power. You may transmit the instruction | command which reduces the electric energy transmitted to the power transmission circuit 202, or stops power transmission.

送電側通信部103及び受電側通信部303を実現するための通信手段としては、例えば、ZigBee(登録商標)やBluetooth(登録商標)を用いることができ、若しくは、小電力無線局や微弱無線を用いてもよい。なお、送電側通信部103及び受電側通信部303を備えなくとも、例えば小電力送電部に負荷通信制御機能を持たせることにより通信することも可能である。   As communication means for realizing the power transmission side communication unit 103 and the power reception side communication unit 303, for example, ZigBee (registered trademark) or Bluetooth (registered trademark) can be used, or a low-power radio station or weak radio is used. It may be used. Even if the power transmission side communication unit 103 and the power reception side communication unit 303 are not provided, for example, it is possible to perform communication by providing a low power power transmission unit with a load communication control function.

以下では、図2Aに基づいた受信装置300のバリエーションについて詳説する。   Below, the variation of the receiver 300 based on FIG. 2A is explained in full detail.

図2Bは、図2Aの構成に電力回収コイル502を追加した受信装置300Bを示す。電力回収コイル502は、発熱部401に吸収されなかった電磁波を電力として再度回収する機能を有する。電力回収コイル502で受けた電力は受電回路302にて適正な整流や電圧変換された後、受電回路302から受電側通信部303やセンサ類などの電気機器に供給される。   FIG. 2B shows a receiving device 300B in which a power recovery coil 502 is added to the configuration of FIG. 2A. The power recovery coil 502 has a function of recovering again the electromagnetic waves that have not been absorbed by the heat generating portion 401 as electric power. The power received by the power recovery coil 502 is appropriately rectified and voltage-converted by the power receiving circuit 302, and then supplied from the power receiving circuit 302 to electrical devices such as the power receiving communication unit 303 and sensors.

一方、図2Bにおいて、電力回収コイル502からは積極的に電力を回収せず、電力回収コイル502を補助コイルとして配置することも可能である。電力回収コイル502を補助コイルとして配置した場合には、大電力用送電コイル201と補助コイルの間に均一磁場の受電空間を形成できるので、発熱体の発熱効率をさらに向上させることができる。なお、補助コイルの詳細については、特開2013−85436公報に記載されている。   On the other hand, in FIG. 2B, it is also possible to arrange the power recovery coil 502 as an auxiliary coil without actively recovering the power from the power recovery coil 502. When the power recovery coil 502 is arranged as an auxiliary coil, a power receiving space with a uniform magnetic field can be formed between the high power power transmission coil 201 and the auxiliary coil, so that the heat generation efficiency of the heating element can be further improved. The details of the auxiliary coil are described in JP2013-85436A.

図2Cは、図2Aの構成に熱電素子503を追加した受信装置300Cを示す。高温となる発熱部401と、発熱部401と比較して低温となる熱媒体402の温度差により電力を発生し、その電力を受電装置300Cの受電回路302に供給する。その電力は受電回路302にて適正な整流や電圧変換された後、受電回路302から受電側通信部303やセンサ類などの電気機器に供給される。   FIG. 2C shows a receiving apparatus 300C in which a thermoelectric element 503 is added to the configuration of FIG. 2A. Electric power is generated by a temperature difference between the heat generating unit 401 that is high temperature and the heat medium 402 that is low in temperature compared to the heat generating unit 401, and the electric power is supplied to the power receiving circuit 302 of the power receiving device 300C. The electric power is appropriately rectified and voltage-converted by the power receiving circuit 302 and then supplied from the power receiving circuit 302 to an electric device such as a power receiving side communication unit 303 and sensors.

図2Dは、図2Aの構成に電池504を追加した受信装置300Dを示す。電池504は、例えば初期動作時において電力が送電装置100から受電装置300に送られない時に、受電側通信部303に電力を供給する。すなわち、電池504は、受電装置300の状態を送電装置100の送電側通信部103に情報を送信するための電源として働かせる。   FIG. 2D shows a receiving device 300D in which a battery 504 is added to the configuration of FIG. 2A. The battery 504 supplies power to the power receiving communication unit 303 when, for example, power is not transmitted from the power transmitting device 100 to the power receiving device 300 during the initial operation. That is, the battery 504 causes the state of the power receiving device 300 to act as a power source for transmitting information to the power transmission side communication unit 103 of the power transmission device 100.

なお、図2A乃至図2Dにおける電気機器の具体例としては、例えば、暖房便座を備えた移動式の水洗便器に非接触で電力を伝送する場合を想定すると、モーター、電磁弁、各種センサ等が挙げられる。   2A to 2D, specific examples of the electrical equipment include a motor, a solenoid valve, various sensors, etc., assuming that power is transmitted to a mobile flush toilet equipped with a heated toilet seat without contact. Can be mentioned.

図3Aは本発明の非接触電力伝送装置の初期動作時のフローチャートを示し、図3Bは通常動作時のフローチャートで示した図である。初期動作時は、電源ON時の装置確認モードと、その時異常が検知された場合には、ユーザーに装置起動動作のエラーを伝える装置アラームモードの2つを用意する。通常動作時は、発熱部401と熱媒体402の温度をモニターしつつPID制御を働かせることにより送電装置100から受電装置300に送られる電力を適正に制御する。また、省電力化するために一時的に電力を切る待機モードを用意して、ユーザーが別途設定する温度を保つ制御を行う。   FIG. 3A shows a flowchart during initial operation of the non-contact power transmission apparatus of the present invention, and FIG. 3B shows a flowchart during normal operation. In the initial operation, two modes are prepared: a device confirmation mode when the power is turned on, and a device alarm mode that informs the user of an error in the device activation operation when an abnormality is detected at that time. During normal operation, the power sent from the power transmitting apparatus 100 to the power receiving apparatus 300 is appropriately controlled by applying PID control while monitoring the temperatures of the heat generating unit 401 and the heat medium 402. In order to save power, a standby mode for temporarily turning off the power is prepared, and control is performed to maintain a temperature set separately by the user.

なお、上記では、送電装置100の大電力用送電コイル201から出力される電力は、直接、発熱部401に吸収される構成を例として説明したが、受電装置300に大電力受電部を設けて、大電力受電部で大電力を受電してから、大電力受電部が発熱部401に給電する構成としてもかまわない。   In the above description, the power output from the high-power power transmission coil 201 of the power transmission device 100 is directly absorbed by the heat generating unit 401 as an example. However, the power reception device 300 is provided with a high power power reception unit. The high power receiving unit may receive power from the high power receiving unit, and then the high power receiving unit may supply power to the heat generating unit 401.

本発明の非接触電力伝送装置は、品質を問わない大電力と高品質の小電力を分けて伝送するので、通常だと大電力化に伴い回路構成が大きくなるところを、大幅に簡素化できる。また、大電力で発生する電磁ノイズが小電力に漏れ込むことや装置外部に漏えいすることを効果的に防止でき、安定した動作が要求される非接触電力伝送に好適である。   The non-contact power transmission device of the present invention transmits large power regardless of quality and small power of high quality separately, so that it is possible to greatly simplify the situation where the circuit configuration increases with increasing power normally. . In addition, it is possible to effectively prevent electromagnetic noise generated by high power from leaking into low power or leaking outside the apparatus, and is suitable for non-contact power transmission that requires stable operation.

100 送電装置
101 小電力用送電コイル
102 小電力用送電回路
103 送電側通信部
201 大電力用送電コイル
202 大電力用送電回路
300 受電装置
300A 受電装置A
300B 受電装置B
300C 受電装置C
300D 受電装置D
301 小電力用受電コイル
302 小電力用受電回路
303 受電側通信部
401 発熱部
500 電磁波シールド
501 温度検出部
502 電力回収コイル
503 熱電素子
504 電池
600 隔壁
DESCRIPTION OF SYMBOLS 100 Power transmission apparatus 101 Low power power transmission coil 102 Low power power transmission circuit 103 Power transmission side communication unit 201 High power power transmission coil 202 High power power transmission circuit 300 Power receiving apparatus 300A Power receiving apparatus A
300B Power receiving device B
300C Power receiving device C
300D Power receiving device D
301 Power receiving coil for low power 302 Power receiving circuit for low power 303 Power receiving side communication unit 401 Heat generating unit 500 Electromagnetic wave shield 501 Temperature detecting unit 502 Power recovery coil 503 Thermoelectric element 504 Battery 600 Bulkhead

Claims (10)

送電コイル及び共振容量により構成された送電共振器を有する送電装置と、受電コイル及び共振容量により構成された受電共振器を有する受電装置を備え、前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、
前記送電装置は、大電力を送電するための大電力送電部と、小電力を送電するための小電力送電部を備え、
前記大電力送電部は、大電力送電コイル及び大電力共振容量により構成された大電力送電共振器を備え、前記小電力送電部は、小電力送電コイル及び小電力共振容量により構成された小電力送電共振器を備え、
前記受電装置は、前記大電力を受電するための大電力受電部と、前記小電力を受電するための小電力受電部を備え、
前記大電力受電部は、大電力受電コイル及び大電力共振容量により構成された大電力受電共振器を備え、前記小電力受電部は、小電力受電コイル及び小電力共振容量により構成された小電力受電共振器を備えることを特徴とする非接触電力伝送装置。
A power transmission device having a power transmission resonator composed of a power transmission coil and a resonance capacitor, and a power reception device having a power reception resonator composed of a power reception coil and a resonance capacitor, and transmitting power from the power transmission device to the power reception device In the contact power transmission device,
The power transmission device includes a high power transmission unit for transmitting large power and a low power transmission unit for transmitting small power,
The high power transmission unit includes a high power transmission resonator including a high power transmission coil and a high power resonance capacitor, and the low power transmission unit includes a small power including a small power transmission coil and a small power resonance capacitor. With power transmission resonator
The power receiving device includes a high power power receiving unit for receiving the high power and a low power power receiving unit for receiving the low power,
The high-power receiving unit includes a high-power receiving resonator configured by a high-power receiving coil and a high-power resonant capacitor, and the low-power receiving unit is configured by a small-power receiving coil and a small-power resonant capacitor. A non-contact power transmission device comprising a power receiving resonator.
前記大電力送電共振器と前記大電力受電共振器で構成される大電力系と、前記小電力送電共振器と前記小電力受電共振器で構成される小電力系では、共振周波数が異なることを特徴とする請求項1に記載の非接触電力伝送装置。   The resonance frequency is different between the high power system composed of the high power transmission resonator and the high power reception resonator and the low power system composed of the small power transmission resonator and the small power reception resonator. The contactless power transmission device according to claim 1, wherein 前記非接触電力伝送装置は発熱部と電気機器を備え、
前記大電力受電部が発熱部であり、前記小電力受電部が前記電気機器に前記小電力を供給することを特徴とする請求項1又は2に記載の非接触電力伝送装置。
The non-contact power transmission device includes a heat generating part and an electric device,
The non-contact power transmission apparatus according to claim 1, wherein the large power receiving unit is a heat generating unit, and the small power receiving unit supplies the small power to the electric device.
前記発熱部から発生する電磁ノイズが前記電気機器に漏洩しないように、前記発熱部の外周の少なくとも一部に電磁波シールドが設けられていることを特徴とする請求項3に記載の非接触電力伝送装置。   The non-contact power transmission according to claim 3, wherein an electromagnetic wave shield is provided on at least a part of an outer periphery of the heat generating part so that electromagnetic noise generated from the heat generating part does not leak to the electric device. apparatus. 前記送電装置は送電側通信部を備え、
前記受電装置は受電側通信部と温度検出部を備え、
前記発熱部の周囲には熱媒体が配置され、
前記温度検出部は、前記発熱部若しくは前記熱媒体の温度を検出し、
前記受電側通信部は前記検出温度が予め定められた設定温度より高くなると、前記送電装置の送電側通信部に、送電する電力量を調節する指令を送信し、
前記送電側通信部はその受信した指令を前記大電力用送電回路に送信し、
前記大電力用送電回路は前記指令に基づいて送電する電力量を調節することを特徴とする請求項4に記載の非接触電力伝送装置。
The power transmission device includes a power transmission side communication unit,
The power receiving device includes a power receiving side communication unit and a temperature detection unit,
A heat medium is arranged around the heat generating part,
The temperature detection unit detects the temperature of the heating unit or the heat medium,
When the detected temperature becomes higher than a predetermined set temperature, the power receiving side communication unit transmits a command to adjust the amount of power to be transmitted to the power transmission side communication unit of the power transmission device,
The power transmission side communication unit transmits the received command to the high power power transmission circuit,
The non-contact power transmission device according to claim 4, wherein the high-power transmission circuit adjusts an amount of power transmitted based on the command.
前記送電装置は送電側通信部を備え、
前記受電装置は受電側通信部と温度検出部を備え、
前記発熱部の周囲には熱媒体が配置され、
前記温度検出部は、前記発熱部若しくは前記熱媒体の温度を検出し、
前記受電側通信部は前記検出温度を前記送電装置の送電側通信部に送信し、
前記送電側通信部は受信した前記検出温度が予め定められた設定温度より高くなると、前記大電力用送電回路に送電する電力量を調節する指令を送信し、
前記大電力用送電回路は前記指令に基づいて送電する電力量を調節することを特徴とする請求項4に記載の非接触電力伝送装置。
The power transmission device includes a power transmission side communication unit,
The power receiving device includes a power receiving side communication unit and a temperature detection unit,
A heat medium is arranged around the heat generating part,
The temperature detection unit detects the temperature of the heating unit or the heat medium,
The power reception side communication unit transmits the detected temperature to a power transmission side communication unit of the power transmission device,
When the detected temperature received is higher than a preset temperature, the power transmission side communication unit transmits a command to adjust the amount of power transmitted to the high power power transmission circuit,
The non-contact power transmission device according to claim 4, wherein the high-power transmission circuit adjusts an amount of power transmitted based on the command.
前記発熱部の前記送電装置とは反対側に電力回収コイルを配置し、前記電力回収コイルが前記発熱部で吸収されなかった電磁波を回収電力に変換し、前記回収電力が前記受電側通信部又は前記電気機器の少なくとも一方に供給されることを特徴とする請求項5又は6に記載の非接触電力伝送装置。   A power recovery coil is disposed on the opposite side of the heat generating unit to the power transmission device, the power recovery coil converts electromagnetic waves that are not absorbed by the heat generating unit into recovered power, and the recovered power is transmitted to the power receiving side communication unit or The contactless power transmission device according to claim 5, wherein the contactless power transmission device is supplied to at least one of the electrical devices. 前記発熱部の前記送電装置とは反対側に補助コイルを配置し、前記大電力送電コイルと前記補助コイルの間に形成された受電空間に前記発熱部が配置されることを特徴とする請求項5又は6に記載の非接触電力伝送装置。   The auxiliary coil is disposed on the opposite side of the heat generating portion from the power transmission device, and the heat generating portion is disposed in a power receiving space formed between the high power power transmitting coil and the auxiliary coil. The contactless power transmission device according to 5 or 6. 前記発熱部に近接して熱電素子を配置し、前記熱電素子が前記発熱部と前記熱媒体の温度差によって発電し、前記発電によって得られた電力が前記受電側通信部又は前記電気機器の少なくとも一方に供給されることを特徴とする請求項5又は6に記載の非接触電力伝送装置。   A thermoelectric element is disposed in the vicinity of the heat generating part, the thermoelectric element generates power due to a temperature difference between the heat generating part and the heat medium, and the electric power obtained by the power generation is at least in the power receiving side communication part or the electric device. The non-contact power transmission device according to claim 5 or 6, wherein the non-contact power transmission device is supplied to one side. 前記受電装置に電池を配置し、前記電池が受電側通信部に電力を供給することを特徴とする請求項5又は6に記載の非接触電力伝送装置。   The contactless power transmission device according to claim 5, wherein a battery is disposed in the power receiving device, and the battery supplies power to the power receiving side communication unit.
JP2013262150A 2013-12-19 2013-12-19 Wireless power transmission system Pending JP2015119577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262150A JP2015119577A (en) 2013-12-19 2013-12-19 Wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262150A JP2015119577A (en) 2013-12-19 2013-12-19 Wireless power transmission system

Publications (1)

Publication Number Publication Date
JP2015119577A true JP2015119577A (en) 2015-06-25

Family

ID=53531854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262150A Pending JP2015119577A (en) 2013-12-19 2013-12-19 Wireless power transmission system

Country Status (1)

Country Link
JP (1) JP2015119577A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787245A (en) * 2017-01-04 2017-05-31 青岛众海汇智能源科技有限责任公司 For the electric power system and intelligent closestool of intelligent closestool
JP2017172286A (en) * 2016-03-25 2017-09-28 株式会社Lixil Toilet system
JP2017227058A (en) * 2016-06-23 2017-12-28 株式会社Lixil Toilet device
KR20190109808A (en) * 2018-03-19 2019-09-27 공주대학교 산학협력단 Wireless power transfer system through walls
JP2020171125A (en) * 2019-04-03 2020-10-15 株式会社Lixil Housing box
JP2022073760A (en) * 2020-11-02 2022-05-17 トヨタ自動車株式会社 Control device, contactless power supply program, and contactless power supply system
WO2023095428A1 (en) * 2021-11-24 2023-06-01 株式会社Lixil Wireless power transmission device and wireless power transmission system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10687677B2 (en) 2016-03-25 2020-06-23 Lixil Corporation Toilet system
JP2017172286A (en) * 2016-03-25 2017-09-28 株式会社Lixil Toilet system
WO2017164360A1 (en) * 2016-03-25 2017-09-28 株式会社Lixil Toilet system
US20190038090A1 (en) * 2016-03-25 2019-02-07 Lixil Corporation Toilet system
JP2017227058A (en) * 2016-06-23 2017-12-28 株式会社Lixil Toilet device
US20190203455A1 (en) * 2016-06-23 2019-07-04 Lixil Corporation Toilet device
US10934699B2 (en) * 2016-06-23 2021-03-02 Lixil Corporation Toilet
CN106787245A (en) * 2017-01-04 2017-05-31 青岛众海汇智能源科技有限责任公司 For the electric power system and intelligent closestool of intelligent closestool
KR20190109808A (en) * 2018-03-19 2019-09-27 공주대학교 산학협력단 Wireless power transfer system through walls
KR102075577B1 (en) * 2018-03-19 2020-02-10 공주대학교 산학협력단 Wireless power transfer system through walls
JP2020171125A (en) * 2019-04-03 2020-10-15 株式会社Lixil Housing box
JP7304189B2 (en) 2019-04-03 2023-07-06 株式会社Lixil Storage box
JP2022073760A (en) * 2020-11-02 2022-05-17 トヨタ自動車株式会社 Control device, contactless power supply program, and contactless power supply system
JP7409288B2 (en) 2020-11-02 2024-01-09 トヨタ自動車株式会社 Control device, contactless power transfer program, and contactless power transfer system
WO2023095428A1 (en) * 2021-11-24 2023-06-01 株式会社Lixil Wireless power transmission device and wireless power transmission system

Similar Documents

Publication Publication Date Title
JP2015119577A (en) Wireless power transmission system
JP5921625B2 (en) Adaptive power control for wireless charging
EP2761723B1 (en) Wireless power transmitter, wirless power repeater and wireless power transmission method
KR101243544B1 (en) Wireless power transfer for appliances and equipments
US10687677B2 (en) Toilet system
US20180212453A1 (en) Wireless Charging Device for Vehicle
KR20140008975A (en) Wireless power transmitter, wireless power receiver and method for controlling each thereof
CN110249502A (en) The wireless charging system negotiated with starting
KR20180064238A (en) Method and electronic device for wireless charging
KR101785648B1 (en) Method for wireless power transmission and apparatus therefor
JP5681594B2 (en) Wireless power operation type equipment
US20190140699A1 (en) Multi-mode antenna integrated with circuit board, and device using same
KR20140129917A (en) Apparatus and method for transmitting wireless power
US20140035390A1 (en) Power transmitter, repeater, power receiver, and wireless power transmission system
JP2023052509A (en) Power supply assembly for plumbing fixture
KR200453596Y1 (en) Aquarium and lighting device using wireless power transmission
JP2010536212A (en) Module comprising radio transceiver and actuator, system and method comprising this module and central unit
KR20140111881A (en) Apparatus and method wireless power transmission, and wireless power transmission system using the same
US20180166905A1 (en) Wireless power transmission apparatus and control method therefor, method for controlling wireless power reception apparatus, and wireless power transmission system and wireless power transmission method therefor
CN103746464A (en) An electric water heater and a wireless power supply control method thereof
JP5699960B2 (en) Non-contact power transmission device
KR20180036010A (en) A wireless power transmitter and thereof operation method
JP2013219971A (en) House power supply system
KR20190083584A (en) Noise Reduction Wireless Power Transmission Method and Apparatus
JP7077476B2 (en) Wireless power supply system