JP2015191055A - Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system - Google Patents

Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system Download PDF

Info

Publication number
JP2015191055A
JP2015191055A JP2014067071A JP2014067071A JP2015191055A JP 2015191055 A JP2015191055 A JP 2015191055A JP 2014067071 A JP2014067071 A JP 2014067071A JP 2014067071 A JP2014067071 A JP 2014067071A JP 2015191055 A JP2015191055 A JP 2015191055A
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
conditional expression
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014067071A
Other languages
Japanese (ja)
Other versions
JP6337565B2 (en
Inventor
拓 松尾
Taku Matsuo
拓 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2014067071A priority Critical patent/JP6337565B2/en
Priority to CN201580016773.1A priority patent/CN106164734B/en
Priority to PCT/JP2015/001717 priority patent/WO2015146175A1/en
Priority to CN201910456452.3A priority patent/CN110297321B/en
Priority to EP15769538.8A priority patent/EP3125010A4/en
Publication of JP2015191055A publication Critical patent/JP2015191055A/en
Priority to US15/256,740 priority patent/US10663704B2/en
Application granted granted Critical
Publication of JP6337565B2 publication Critical patent/JP6337565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system having excellent optical performance, an imaging apparatus, and a method for manufacturing the variable power optical system.SOLUTION: A variable power optical system includes, in order from an object side: a first lens group G1 having positive refractive power; a second lens group G2 having negative refractive power, a third lens group G3 having negative refractive power, and a fourth lens group G4 having positive refractive power. The variable power optical system performs focusing by moving at least a portion of the third lens group G3 in an optical axis direction and satisfies the following conditional expression (1): (1) 0.249<fw/f1<2.00, where fw is the focal length of the entire system in a wide angle end state and f1 is the focal length of the first lens group G1.

Description

本発明は、変倍光学系、撮像装置及び変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an imaging apparatus, and a method for manufacturing the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開昭63−298210号公報JP-A-63-298210

近年、より良好な光学性能である変倍光学系が求められている。   In recent years, a variable magnification optical system having better optical performance has been demanded.

本発明は、このような問題に鑑みてなされたものであり、良好な光学性能を有する変倍光学系、撮像装置及び変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a variable magnification optical system, an imaging apparatus, and a method for manufacturing the variable magnification optical system having good optical performance.

このような目的を達成するため、本発明に係る変倍光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、前記第3レンズ群の少なくとも一部を光軸方向に沿って移動させることにより合焦を行い、次の条件式を満足する。   In order to achieve such an object, a variable magnification optical system according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, arranged in order from the object side, A third lens group having a negative refractive power and a fourth lens group having a positive refractive power, and focusing is achieved by moving at least a part of the third lens group along the optical axis direction. And satisfy the following conditional expression.

0.249 < fw/f1 < 2.00
但し、
fw:広角端状態における全系の焦点距離、
f1:前記第1レンズ群の焦点距離。
0.249 <fw / f1 <2.00
However,
fw: focal length of the entire system in the wide-angle end state,
f1: Focal length of the first lens group.

本発明に係る変倍光学系は、変倍に際し、前記第1レンズ群と前記第2レンズ群との空気間隔と、前記第2レンズ群と前記第3レンズ群との空気間隔と、前記第3レンズ群と前記第4レンズ群との空気間隔とを変化させることが好ましい。   The zoom optical system according to the present invention has an air gap between the first lens group and the second lens group, an air gap between the second lens group and the third lens group, It is preferable to change the air gap between the three lens groups and the fourth lens group.

本発明に係る変倍光学系は、変倍に際し、前記第1レンズ群と前記第2レンズ群との空気間隔を拡大させ、前記第3レンズ群と前記第4レンズ群との空気間隔を縮小させることが好ましい。   The zoom optical system according to the present invention enlarges the air gap between the first lens group and the second lens group and reduces the air gap between the third lens group and the fourth lens group during zooming. It is preferable to make it.

本発明に係る変倍光学系は、次の条件式を満足することが好ましい。   The variable magnification optical system according to the present invention preferably satisfies the following conditional expression.

0.80 < fw/f4 < 3.00
但し、
f4:前記第4レンズ群の焦点距離。
0.80 <fw / f4 <3.00
However,
f4: focal length of the fourth lens group.

本発明に係る変倍光学系は、変倍に際し、前記第1レンズ群を光軸に沿って移動させることが好ましい。   The zoom optical system according to the present invention preferably moves the first lens group along the optical axis during zooming.

本発明に係る変倍光学系は、次の条件式を満足することが好ましい。   The variable magnification optical system according to the present invention preferably satisfies the following conditional expression.

0.10 < f1/(−f3) < 2.00
但し、
f3:前記第3レンズ群の焦点距離。
0.10 <f1 / (− f3) <2.00
However,
f3: focal length of the third lens group.

本発明に係る変倍光学系は、次の条件式を満足することが好ましい。   The variable magnification optical system according to the present invention preferably satisfies the following conditional expression.

0.80 < (−f2)/f4 < 5.00
但し、
f2:前記第2レンズ群の焦点距離、
f4:前記第4レンズ群の焦点距離。
0.80 <(− f2) / f4 <5.00
However,
f2: focal length of the second lens group,
f4: focal length of the fourth lens group.

本発明に係る変倍光学系において、前記第3レンズ群は、1枚のレンズからなることが好ましい。   In the zoom optical system according to the present invention, it is preferable that the third lens group includes a single lens.

本発明に係る変倍光学系において、前記第3レンズ群は、物体側に凹面を向けた負メニスカスレンズ成分からなることが好ましい(但し、前記レンズ成分とは、単レンズまたは接合レンズを示す)。   In the zoom optical system according to the present invention, it is preferable that the third lens group includes a negative meniscus lens component having a concave surface directed toward the object side (where the lens component indicates a single lens or a cemented lens). .

本発明に係る変倍光学系において、前記第2レンズ群は、2枚の負レンズと、1枚の正レンズとからなることが好ましい。   In the variable magnification optical system according to the present invention, it is preferable that the second lens group includes two negative lenses and one positive lens.

本発明に係る変倍光学系において、前記第2レンズ群は、物体側から順に並んだ、負レンズと、負レンズと、正レンズとからなることが好ましい。   In the zoom optical system according to the present invention, it is preferable that the second lens group includes a negative lens, a negative lens, and a positive lens arranged in order from the object side.

本発明に係る変倍光学系において、前記第1レンズ群は、1つの接合レンズからなることが好ましい。   In the zoom optical system according to the present invention, it is preferable that the first lens group includes one cemented lens.

本発明に係る変倍光学系において、前記第4レンズ群は、少なくとも4つのレンズ成分からなることが好ましい(但し、前記レンズ成分とは、単レンズまたは接合レンズを示す)。   In the zoom optical system according to the present invention, it is preferable that the fourth lens group includes at least four lens components (provided that the lens component indicates a single lens or a cemented lens).

本発明に係る変倍光学系は、次の条件式を満足することが好ましい。   The variable magnification optical system according to the present invention preferably satisfies the following conditional expression.

30.00° <ωw< 80.00°
但し、
ωw:広角端状態における半画角。
30.00 ° <ωw <80.00 °
However,
ωw: Half angle of view in the wide-angle end state.

本発明に係る変倍光学系は、次の条件式を満足することが好ましい。   The variable magnification optical system according to the present invention preferably satisfies the following conditional expression.

2.00 <ft/fw< 15.00
但し、
ft:望遠端状態における全系の焦点距離。
2.00 <ft / fw <15.00
However,
ft: focal length of the entire system in the telephoto end state.

本発明に係る撮像装置は、上記いずれかの変倍光学系を備える。   An imaging apparatus according to the present invention includes any one of the above-described variable magnification optical systems.

本発明に係る変倍光学系の製造方法は、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、前記第3レンズ群の少なくとも一部を光軸方向に沿って移動させることにより合焦を行い、次の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。   A variable magnification optical system manufacturing method according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power, and a positive lens power. A variable power optical system having a fourth lens group having a refractive power of at least one of the third lens group, moving at least a part of the third lens group along the optical axis direction, Each lens is arranged in the lens barrel so as to satisfy the conditional expression.

0.249 < fw/f1 < 2.00
但し、
fw:広角端状態における全系の焦点距離、
f1:前記第1レンズ群の焦点距離。
0.249 <fw / f1 <2.00
However,
fw: focal length of the entire system in the wide-angle end state,
f1: Focal length of the first lens group.

本発明によれば、良好な光学性能を有する変倍光学系、撮像装置及び変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable magnification optical system, an imaging apparatus, and a method for manufacturing the variable magnification optical system having good optical performance.

第1実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 1st Example. 第1実施例に係る変倍光学系の広角端状態(f=18.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。FIG. 4A is an aberration diagram in the wide-angle end state (f = 18.50) of the variable magnification optical system according to the first example. FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. (A correction angle θ = 0.30 °) is a coma aberration diagram, and (c) is an aberration diagram when focusing on a short distance (shooting distance R = 1 m for the entire system). 第1実施例に係る変倍光学系の中間焦点距離状態(f=29.99)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。FIG. 3A is an aberration diagram in an intermediate focal length state (f = 29.99) of the variable magnification optical system according to the first example, FIG. A coma aberration diagram when correction is performed (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing on a short distance (shooting distance R = 1 m for the entire system). 第1実施例に係る変倍光学系の望遠端状態(f=53.29)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。FIG. 6A is an aberration diagram in the telephoto end state (f = 53.29) of the variable magnification optical system according to the first example. FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. (A correction angle θ = 0.30 °) is a coma aberration diagram, and (c) is an aberration diagram when focusing on a short distance (shooting distance R = 1 m for the entire system). 第2実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 2nd Example. 第2実施例に係る変倍光学系の広角端状態(f=18.57)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。FIG. 6A is an aberration diagram in the wide-angle end state (f = 18.57) of the zoom optical system according to Example 2; FIG. 5A is a diagram illustrating aberrations at the time of focusing on infinity, and FIG. (A correction angle θ = 0.30 °) is a coma aberration diagram, and (c) is an aberration diagram when focusing on a short distance (shooting distance R = 1 m for the entire system). 第2実施例に係る変倍光学系の中間焦点距離状態(f=30.16)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。FIG. 6A is an aberration diagram in an intermediate focal length state (f = 30.16) of the variable magnification optical system according to the second example. FIG. 5A is an aberration diagram at the time of focusing on infinity, and FIG. A coma aberration diagram when correction is performed (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing on a short distance (shooting distance R = 1 m for the entire system). 第2実施例に係る変倍光学系の望遠端状態(f=53.65)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。FIG. 6A is an aberration diagram in the telephoto end state (f = 53.65) of the variable magnification optical system according to the second example. FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. (A correction angle θ = 0.30 °) is a coma aberration diagram, and (c) is an aberration diagram when focusing on a short distance (shooting distance R = 1 m for the entire system). 第3実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 3rd Example. 第3実施例に係る変倍光学系の広角端状態(f=18.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。FIG. 10 is an aberration diagram in the wide-angle end state (f = 18.50) of the variable magnification optical system according to Example 3, (a) Various aberration diagrams when focusing on infinity, and (b) Image blur correction when focusing on infinity. (A correction angle θ = 0.30 °) is a coma aberration diagram, and (c) is an aberration diagram when focusing on a short distance (shooting distance R = 1 m for the entire system). 第3実施例に係る変倍光学系の中間焦点距離状態(f=30.00)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。FIG. 6A is an aberration diagram in the intermediate focal length state (f = 30.00) of the variable magnification optical system according to the third example. FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when correction is performed (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing on a short distance (shooting distance R = 1 m for the entire system). 第3実施例に係る変倍光学系の望遠端状態(f=53.30)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。FIG. 6A is an aberration diagram in the telephoto end state (f = 53.30) of the zoom optical system according to Example 3; FIG. 5A is a diagram illustrating aberrations at the time of focusing on infinity, and FIG. (A correction angle θ = 0.30 °) is a coma aberration diagram, and (c) is an aberration diagram when focusing on a short distance (shooting distance R = 1 m for the entire system). 本実施形態に係るカメラの構成を示す略断面図である。It is a schematic sectional drawing which shows the structure of the camera which concerns on this embodiment. 本実施形態に係る変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the variable magnification optical system which concerns on this embodiment.

以下、本実施形態について、図面を参照しながら説明する。本実施形態に係る変倍光学系ZLは、図1に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とを有し、第3レンズ群G3の少なくとも一部(例えば、図1の物体側に凹面を向けた負メニスカスレンズL31)を光軸方向に沿って移動させることにより合焦を行う。   Hereinafter, the present embodiment will be described with reference to the drawings. As shown in FIG. 1, the variable magnification optical system ZL according to this embodiment includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power, which are arranged in order from the object side. A third lens group G3 having a negative refractive power and a fourth lens group G4 having a positive refractive power, and at least a part of the third lens group G3 (for example, a concave surface on the object side in FIG. 1). Focusing is performed by moving the negative meniscus lens L31) facing the direction of the optical axis.

この構成により、鏡筒の小型化と、合焦時の収差変動(例えば、球面収差や像面湾曲など)の良好な補正を実現することができる。   With this configuration, it is possible to achieve downsizing of the lens barrel and good correction of aberration fluctuations during focusing (for example, spherical aberration and curvature of field).

そして、上記構成のもと、変倍光学系ZLは、次の条件式(1)を満足する。   Under the above configuration, the variable magnification optical system ZL satisfies the following conditional expression (1).

0.249 < fw/f1 < 2.00 …(1)
但し、
fw:広角端状態における全系の焦点距離、
f1:第1レンズ群G1の焦点距離。
0.249 <fw / f1 <2.00 (1)
However,
fw: focal length of the entire system in the wide-angle end state,
f1: Focal length of the first lens group G1.

条件式(1)は、広角端状態における全系の焦点距離と、第1レンズ群G1の焦点距離との比を規定するものである。条件式(1)の下限値を下回ると、第1レンズ群G1の屈折力が弱くなり、小型化が困難となる。小型化のために、第2レンズ群G2と第4レンズ群G4の屈折力を強めると、球面収差、コマ収差の補正が困難となる。条件式(1)の上限値を上回ると、第1レンズ群G1の屈折力が強くなり、コマ収差、像面湾曲の補正が困難となる。   Conditional expression (1) defines the ratio between the focal length of the entire system in the wide-angle end state and the focal length of the first lens group G1. If the lower limit value of conditional expression (1) is not reached, the refractive power of the first lens group G1 becomes weak and it becomes difficult to reduce the size. If the refractive powers of the second lens group G2 and the fourth lens group G4 are increased in order to reduce the size, it becomes difficult to correct spherical aberration and coma aberration. If the upper limit of conditional expression (1) is exceeded, the refractive power of the first lens group G1 will become strong, and it will be difficult to correct coma and field curvature.

条件式(1)の下限値を0.260に設定することにより、より良好な収差補正が可能になる。条件式(1)の下限値を0.270に設定することにより、さらに良好な収差補正が可能になる。また、条件式(1)の下限値を0.280に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the lower limit of conditional expression (1) to 0.260, better aberration correction becomes possible. By setting the lower limit of conditional expression (1) to 0.270, better aberration correction becomes possible. Further, by setting the lower limit value of conditional expression (1) to 0.280, the effect of the present embodiment can be maximized.

条件式(1)の上限値を1.00に設定することにより、さらに良好な収差補正が可能になる。条件式(1)の上限値を0.50に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the upper limit of conditional expression (1) to 1.00, better aberration correction becomes possible. By setting the upper limit value of conditional expression (1) to 0.50, the effect of the present embodiment can be maximized.

本実施形態に係る変倍光学系ZLは、変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔と、第3レンズ群G3と第4レンズ群G4との空気間隔とを変化させることが好ましい。   The zoom optical system ZL according to the present embodiment has an air gap between the first lens group G1 and the second lens group G2 and an air gap between the second lens group G2 and the third lens group G3 during zooming. It is preferable to change the air gap between the third lens group G3 and the fourth lens group G4.

この構成により、変倍時において、望遠端状態におけるコマ収差と、広角端状態における像面湾曲とを良好に補正することができる。   With this configuration, the coma aberration in the telephoto end state and the field curvature in the wide-angle end state can be favorably corrected during zooming.

本実施形態に係る変倍光学系ZLは、変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔を拡大させ、第3レンズ群G3と第4レンズ群G4との空気間隔を縮小させることが好ましい。   The zoom optical system ZL according to the present embodiment enlarges the air gap between the first lens group G1 and the second lens group G2 during zooming, and the air gap between the third lens group G3 and the fourth lens group G4. Is preferably reduced.

この構成により、変倍時において、望遠端状態におけるコマ収差と、広角端状態における像面湾曲とを良好に補正することができる。   With this configuration, the coma aberration in the telephoto end state and the field curvature in the wide-angle end state can be favorably corrected during zooming.

本実施形態に係る変倍光学系ZLは、次の条件式(2)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (2).

0.80 < fw/f4 < 3.00 …(2)
但し、
f4:第4レンズ群G4の焦点距離。
0.80 <fw / f4 <3.00 (2)
However,
f4: focal length of the fourth lens group G4.

条件式(2)は、広角端状態における全系の焦点距離と、第4レンズ群G4の焦点距離との比を規定するものである。条件式(2)の下限値を下回ると、第4レンズ群G4の屈折力が弱くなり、小型化が困難となる。小型化のために、第1レンズ群G1と第2レンズ群G2の屈折力を強めると、コマ収差、非点収差、像面湾曲の補正が困難となる。条件式(2)の上限値を上回ると、第4レンズ群G4の屈折力が強くなり、球面収差、コマ収差の補正が困難となる。   Conditional expression (2) defines the ratio between the focal length of the entire system in the wide-angle end state and the focal length of the fourth lens group G4. If the lower limit of conditional expression (2) is not reached, the refractive power of the fourth lens group G4 becomes weak, and it becomes difficult to reduce the size. If the refractive powers of the first lens group G1 and the second lens group G2 are increased in order to reduce the size, it becomes difficult to correct coma, astigmatism, and field curvature. If the upper limit value of conditional expression (2) is exceeded, the refractive power of the fourth lens group G4 becomes strong, and it becomes difficult to correct spherical aberration and coma aberration.

条件式(2)の下限値を0.83に設定することにより、さらに良好な収差補正が可能になる。   By setting the lower limit value of conditional expression (2) to 0.83, even better aberration correction can be achieved.

条件式(2)の上限値を2.00に設定することにより、さらに良好な収差補正が可能になる。   By setting the upper limit value of conditional expression (2) to 2.00, even better aberration correction becomes possible.

本実施形態に係る変倍光学系ZLは、変倍に際し、第1レンズ群G1を光軸に沿って移動させることが好ましい。   The zoom optical system ZL according to the present embodiment preferably moves the first lens group G1 along the optical axis during zooming.

この構成により、鏡筒の小型化と、望遠端状態における球面収差とコマ収差とを良好に補正することができる。   With this configuration, it is possible to satisfactorily correct the downsizing of the lens barrel and the spherical aberration and coma aberration in the telephoto end state.

本実施形態に係る変倍光学系ZLは、次の条件式(3)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (3).

0.10 < f1/(−f3) < 2.00 …(3)
但し、
f3:第3レンズ群G3の焦点距離。
0.10 <f1 / (− f3) <2.00 (3)
However,
f3: focal length of the third lens group G3.

条件式(3)は、第1レンズ群G1の焦点距離と、第3レンズ群G3の焦点距離との比を規定するものである。条件式(3)の下限値を下回ると、第1レンズ群G1の屈折力が強くなり、コマ収差、非点収差、像面湾曲の補正が困難となる。条件式(3)の上限値を上回ると、第3レンズ群G3の屈折力が強くなり、至近時の像面湾曲の変動の補正が困難となる。   Conditional expression (3) defines the ratio between the focal length of the first lens group G1 and the focal length of the third lens group G3. If the lower limit value of conditional expression (3) is not reached, the refractive power of the first lens group G1 becomes strong, and it becomes difficult to correct coma, astigmatism, and field curvature. If the upper limit value of conditional expression (3) is exceeded, the refractive power of the third lens group G3 will become strong, and it will be difficult to correct the variation in curvature of field at the closest point.

条件式(3)の下限値を0.50に設定することにより、良好な収差補正が可能になる。条件式(3)の下限値を1.00に設定することにより、さらに良好な収差補正が可能になる。条件式(3)の下限値を1.25に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the lower limit of conditional expression (3) to 0.50, good aberration correction can be performed. By setting the lower limit of conditional expression (3) to 1.00, better aberration correction can be performed. By setting the lower limit of conditional expression (3) to 1.25, the effect of this embodiment can be maximized.

条件式(3)の上限値を1.80に設定することにより、さらに良好な収差補正が可能になる。条件式(3)の上限値を1.70に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the upper limit value of the conditional expression (3) to 1.80, it is possible to perform better aberration correction. By setting the upper limit value of conditional expression (3) to 1.70, the effect of this embodiment can be maximized.

本実施形態に係る変倍光学系ZLは、次の条件式(4)を満足することが好ましい。   The variable magnification optical system ZL according to the present embodiment preferably satisfies the following conditional expression (4).

0.80 < (−f2)/f4 < 5.00 …(4)
但し、
f2:第2レンズ群G2の焦点距離、
f4:第4レンズ群G4の焦点距離。
0.80 <(− f2) / f4 <5.00 (4)
However,
f2: focal length of the second lens group G2,
f4: focal length of the fourth lens group G4.

条件式(4)は、第2レンズ群G2の焦点距離と、第4レンズ群G4の焦点距離との比を規定するものである。条件式(4)の下限値を下回ると、第2レンズ群G2の屈折力が強くなり、コマ収差、非点収差の補正が困難となる。条件式(4)の上限値を上回ると、第4レンズ群G4の屈折力が強くなり、望遠端状態における球面収差、コマ収差の補正が困難となる。   Conditional expression (4) defines the ratio between the focal length of the second lens group G2 and the focal length of the fourth lens group G4. If the lower limit value of conditional expression (4) is not reached, the refractive power of the second lens group G2 becomes strong, and it becomes difficult to correct coma and astigmatism. If the upper limit value of conditional expression (4) is exceeded, the refractive power of the fourth lens group G4 becomes strong, and it becomes difficult to correct spherical aberration and coma aberration in the telephoto end state.

条件式(4)の下限値を0.90に設定することにより、さらに良好な収差補正が可能になる。条件式(4)の下限値を1.00に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the lower limit value of conditional expression (4) to 0.90, it becomes possible to perform better aberration correction. By setting the lower limit of conditional expression (4) to 1.00, the effect of this embodiment can be maximized.

条件式(4)の上限値を3.00に設定することにより、良好な収差補正が可能になる。条件式(4)の上限値を2.00に設定することにより、さらに良好な収差補正が可能になる。条件式(4)の上限値を1.50に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the upper limit value of conditional expression (4) to 3.00, good aberration correction can be achieved. By setting the upper limit of conditional expression (4) to 2.00, better aberration correction can be achieved. By setting the upper limit value of conditional expression (4) to 1.50, the effect of this embodiment can be maximized.

本実施形態に係る変倍光学系ZLにおいて、第3レンズ群G3は、1枚のレンズからなることが好ましい。   In the zoom optical system ZL according to the present embodiment, it is preferable that the third lens group G3 is composed of one lens.

この構成により、合焦群である第3レンズ群G3が軽量であるため、早いフォーカスが可能である。また、簡素な構成であるため、組立調整が容易となり、組立調整の誤差による光学性能の劣化を防ぐことができる。   With this configuration, the third lens group G3, which is the focusing group, is lightweight, so that quick focusing is possible. In addition, the simple configuration facilitates assembly adjustment, and can prevent deterioration of optical performance due to errors in assembly adjustment.

本実施形態に係る変倍光学系ZLにおいて、第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズ成分からなることが好ましい(但し、前記レンズ成分とは、単レンズまたは接合レンズを示す)。   In the variable magnification optical system ZL according to the present embodiment, the third lens group G3 is preferably composed of a negative meniscus lens component having a concave surface facing the object side (however, the lens component is a single lens or a cemented lens). Show).

この構成により、コマ収差、像面湾曲を良好に補正することができる。   With this configuration, coma and field curvature can be corrected well.

本実施形態に係る変倍光学系ZLにおいて、第2レンズ群G2は、2枚の負レンズと、1枚の正レンズとからなることが好ましい。   In the variable magnification optical system ZL according to the present embodiment, it is preferable that the second lens group G2 includes two negative lenses and one positive lens.

この構成により、広角端状態におけるコマ収差、像面湾曲を良好に補正することができる。   With this configuration, coma aberration and field curvature in the wide-angle end state can be corrected well.

本実施形態に係る変倍光学系ZLにおいて、第2レンズ群G2は、物体側から順に並んだ、負レンズと、負レンズと、正レンズとからなることが好ましい。   In the zoom optical system ZL according to the present embodiment, it is preferable that the second lens group G2 includes a negative lens, a negative lens, and a positive lens arranged in order from the object side.

この構成により、広角端状態におけるコマ収差、像面湾曲を良好に補正することができる。   With this configuration, coma aberration and field curvature in the wide-angle end state can be corrected well.

本実施形態に係る変倍光学系ZLにおいて、第1レンズ群G1は、1つの接合レンズからなることが好ましい。   In the zoom optical system ZL according to this embodiment, it is preferable that the first lens group G1 includes one cemented lens.

この構成により、鏡筒の小型化と、望遠端状態における倍率色収差の良好な補正を達成できる。   With this configuration, it is possible to achieve downsizing of the lens barrel and good correction of lateral chromatic aberration in the telephoto end state.

本実施形態に係る変倍光学系ZLにおいて、第4レンズ群G4は、少なくとも4つのレンズ成分からなることが好ましい(但し、前記レンズ成分とは、単レンズまたは接合レンズを示す)。   In the variable magnification optical system ZL according to the present embodiment, the fourth lens group G4 preferably includes at least four lens components (however, the lens component indicates a single lens or a cemented lens).

この構成により、球面収差、コマ収差を良好に補正することができる。   With this configuration, spherical aberration and coma can be favorably corrected.

本実施形態に係る変倍光学系ZLは、次の条件式(5)を満足することが好ましい。   The variable magnification optical system ZL according to the present embodiment preferably satisfies the following conditional expression (5).

30.00° <ωw< 80.00° …(5)
但し、
ωw:広角端状態における半画角。
30.00 ° <ωw <80.00 ° (5)
However,
ωw: Half angle of view in the wide-angle end state.

条件式(5)は、広角端状態における半画角の値を規定する条件である。この条件式(5)を満足することにより、広い画角を有しつつ、コマ収差、歪曲収差、像面湾曲を良好に補正することができる。   Conditional expression (5) is a condition that defines the value of the half angle of view in the wide-angle end state. By satisfying this conditional expression (5), coma aberration, distortion aberration, and field curvature can be favorably corrected while having a wide angle of view.

条件式(5)の下限値を33.00°に設定することにより、さらに良好な収差補正が可能になる。条件式(5)の下限値を36.00°に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the lower limit value of conditional expression (5) to 33.00 °, it is possible to perform better aberration correction. By setting the lower limit value of conditional expression (5) to 36.00 °, the effect of the present embodiment can be maximized.

条件式(5)の上限値を77.00°に設定することにより、さらに良好な収差補正が可能になる。   By setting the upper limit value of conditional expression (5) to 77.00 °, it becomes possible to perform better aberration correction.

本実施形態に係る変倍光学系ZLは、次の条件式(6)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (6).

2.00 <ft/fw< 15.00 …(6)
但し、
ft:望遠端状態における全系の焦点距離。
2.00 <ft / fw <15.00 (6)
However,
ft: focal length of the entire system in the telephoto end state.

条件式(6)は、望遠端状態の全系の焦点距離と、広角端状態の全系の焦点距離との比を規定する条件である。この条件式(6)を満足することにより、高いズーム比を得ることができるとともに、球面収差、コマ収差を良好に補正することができる。   Conditional expression (6) defines the ratio between the focal length of the entire system in the telephoto end state and the focal length of the entire system in the wide-angle end state. By satisfying the conditional expression (6), a high zoom ratio can be obtained, and spherical aberration and coma aberration can be corrected well.

条件式(6)の下限値を2.30に設定することにより、良好な収差補正が可能になる。条件式(6)の下限値を2.50に設定することにより、さらに良好な収差補正が可能になる。条件式(6)の下限値を2.70に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the lower limit value of conditional expression (6) to 2.30, it is possible to correct aberrations satisfactorily. By setting the lower limit value of conditional expression (6) to 2.50, better aberration correction can be achieved. By setting the lower limit of conditional expression (6) to 2.70, the effect of the present embodiment can be maximized.

条件式(6)の上限値を10.00に設定することにより、さらに良好な収差補正が可能になる。条件式(6)の上限値を7.00に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the upper limit value of conditional expression (6) to 10.00, even better aberration correction can be achieved. By setting the upper limit value of conditional expression (6) to 7.00, the effect of the present embodiment can be maximized.

以上のような本実施形態によれば、良好な光学性能を有する変倍光学系ZLを実現することができる。   According to the present embodiment as described above, a variable magnification optical system ZL having good optical performance can be realized.

次に、図13を参照しながら、上述の変倍光学系ZLを備えたカメラ(撮像装置)1について説明する。カメラ1は、図13に示すように、撮影レンズ2として上述の変倍光学系ZLを備えたレンズ交換式のカメラ(所謂ミラーレスカメラ)である。   Next, a camera (imaging device) 1 including the above-described variable magnification optical system ZL will be described with reference to FIG. As shown in FIG. 13, the camera 1 is an interchangeable lens camera (so-called mirrorless camera) provided with the above-described variable magnification optical system ZL as the photographing lens 2.

カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光され、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより、撮影者はEVF4を介して被写体を観察することができる。   In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2, and the subject is placed on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) not shown. Form an image. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は、本カメラ1による被写体の撮影を行うことができる。   When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

カメラ1に撮影レンズ2として搭載した本実施形態に係る変倍光学系ZLは、後述の各実施例からも分かるように、その特徴的なレンズ構成によって、良好な光学性能を有している。したがって、本カメラ1によれば、良好な光学性能を有する撮像装置を実現することができる。   The variable magnification optical system ZL according to this embodiment mounted on the camera 1 as the photographing lens 2 has good optical performance due to its characteristic lens configuration, as can be seen from each example described later. Therefore, according to the present camera 1, it is possible to realize an imaging device having good optical performance.

なお、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに、上述の変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。また、ビデオカメラに、上述の変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Even when the above-described variable magnification optical system ZL is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. Further, even when the above-described variable magnification optical system ZL is mounted on a video camera, the same effects as the camera 1 can be obtained.

続いて、図14を参照しながら、上記構成の変倍光学系ZLの製造方法について概説する。まず、レンズ鏡筒内に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とを有するように、各レンズを配置する(ステップST10)。このとき、第3レンズ群G3の少なくとも一部を光軸方向に沿って移動させることにより合焦を行うように、レンズ鏡筒内に各レンズを配置する(ステップST20)。そして、次の条件式(1)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST30)。   Next, an outline of a method for manufacturing the variable magnification optical system ZL having the above configuration will be described with reference to FIG. First, in the lens barrel, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, a third lens group G3 having a negative refractive power, and a positive refraction. Each lens is arranged so as to have the fourth lens group G4 having power (step ST10). At this time, each lens is arranged in the lens barrel so as to perform focusing by moving at least a part of the third lens group G3 along the optical axis direction (step ST20). Then, each lens is arranged in the lens barrel so as to satisfy the following conditional expression (1) (step ST30).

0.249 < fw/f1 < 2.00 …(1)
但し、
fw:広角端状態における全系の焦点距離、
f1:第1レンズ群G1の焦点距離。
0.249 <fw / f1 <2.00 (1)
However,
fw: focal length of the entire system in the wide-angle end state,
f1: Focal length of the first lens group G1.

本実施形態におけるレンズ配置の一例を挙げると、図1に示すように、第1レンズ群G1として、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12とからなる接合レンズを配置する。第2レンズ群G2として、物体側から順に、像側に凹面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23とを配置する。第3レンズ群G3(合焦群)として、物体側に凹面を向けた負メニスカスレンズL31を配置する。第4レンズ群G4として、物体側から順に、両凸レンズL41と、両凸レンズL42と両凹レンズL43とからなる接合レンズと、像側に凸面を向けた正メニスカスレンズL44と物体側に凹面を向けた負メニスカスレンズL45とからなる接合レンズと、両凸レンズL46とを配置する。また、各レンズは、条件式(1)を満足するように配置する(条件式(1)の対応値は0.250)。   As an example of the lens arrangement in this embodiment, as shown in FIG. 1, as the first lens group G1, in order from the object side, a negative meniscus lens L11 having a concave surface on the image side and a convex surface on the object side are directed. A cemented lens including the positive meniscus lens L12 is disposed. As the second lens group G2, in order from the object side, a negative meniscus lens L21 having a concave surface directed toward the image side, a biconcave lens L22, and a biconvex lens L23 are disposed. As the third lens group G3 (focusing group), a negative meniscus lens L31 having a concave surface facing the object side is disposed. As the fourth lens group G4, in order from the object side, a biconvex lens L41, a cemented lens composed of a biconvex lens L42 and a biconcave lens L43, a positive meniscus lens L44 having a convex surface on the image side, and a concave surface on the object side A cemented lens including a negative meniscus lens L45 and a biconvex lens L46 are disposed. Each lens is disposed so as to satisfy the conditional expression (1) (the corresponding value of the conditional expression (1) is 0.250).

以上のような本実施形態に係る変倍光学系の製造方法によれば、良好な光学性能を有する変倍光学系ZLを得ることができる。   According to the method for manufacturing a variable magnification optical system according to the present embodiment as described above, a variable magnification optical system ZL having good optical performance can be obtained.

以下、本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1〜表3を示すが、これらは第1実施例〜第3実施例における各諸元の表である。   Hereinafter, each example according to the present embodiment will be described with reference to the drawings. Tables 1 to 3 are shown below, but these are tables of specifications in the first to third examples.

図1、図5及び図9は、各実施例に係る変倍光学系ZL(ZL1〜ZL3)の構成を示す断面図である。これら変倍光学系ZL1〜ZL3の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群G1〜G4の光軸に沿った移動軌跡を矢印で示す。   1, FIG. 5 and FIG. 9 are cross-sectional views showing a configuration of a variable magnification optical system ZL (ZL1 to ZL3) according to each example. In the cross-sectional views of the zoom optical systems ZL1 to ZL3, the movement trajectory along the optical axis of each lens group G1 to G4 when zooming from the wide-angle end state (W) to the telephoto end state (T) is indicated by an arrow. .

第1実施例に係る図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。   Each reference code for FIG. 1 according to the first embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference code. Therefore, even if the same reference numerals as those in the drawings according to the other embodiments are given, they are not necessarily in the same configuration as the other embodiments.

各実施例では収差特性の算出対象として、d線(波長587.5620nm)、g線(波長435.8350nm)を選んでいる。   In each embodiment, d-line (wavelength 587.5620 nm) and g-line (wavelength 435.8350 nm) are selected as the calculation targets of the aberration characteristics.

表中の[レンズデータ]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、νdは光学部材の材質のd線を基準とするアッベ数、ndは光学部材の材質のd線に対する屈折率を示す。また、(可変)は可変の面間隔、曲率半径の「∞」は平面又は開口、(絞りS)は開口絞りSを示す。空気の屈折率(d線)「1.000000」は省略する。光学面が非球面である場合には、面番号の左側に「*」を付し、曲率半径Rの欄には近軸曲率半径を示す。   In [Lens data] in the table, the surface number is the order of the optical surfaces from the object side along the traveling direction of the light beam, r is the radius of curvature of each optical surface, D is the next optical surface from each optical surface (or The distance between the surfaces on the optical axis to the image plane), νd is the Abbe number based on the d-line of the material of the optical member, and nd is the refractive index of the material of the optical member with respect to the d-line. Further, (variable) indicates a variable surface interval, “∞” of the radius of curvature indicates a plane or an aperture, and (aperture S) indicates an aperture aperture S. The refractive index of air (d-line) “1.000000” is omitted. When the optical surface is an aspherical surface, “*” is attached to the left side of the surface number, and the paraxial radius of curvature is indicated in the column of the radius of curvature R.

表中の[非球面データ]では、[レンズデータ]に示した非球面について、その形状を次式(a)で示す。ここで、yは光軸に垂直な方向の高さ、X(y)は高さyにおける光軸方向の変位量(サグ量)、rは基準球面の曲率半径(近軸曲率半径)、κは円錐定数、Anは第n次の非球面係数を示す。なお、「E-n」は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。 In [Aspherical data] in the table, the shape of the aspherical surface shown in [Lens data] is shown by the following equation (a). Here, y is the height in the direction perpendicular to the optical axis, X (y) is the amount of displacement (sag amount) in the optical axis direction at height y, r is the radius of curvature of the reference sphere (paraxial radius of curvature), κ Denotes a conic constant, and An denotes an nth-order aspheric coefficient. “E-n” represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”.

X(y)=(y2/r)/[1+{1−κ(y2/r2)}1/2]+A4×y4+A6×y6+A8×y8+A10×y10 …(a) X (y) = (y 2 / r) / [1+ {1−κ (y 2 / r 2 )} 1/2 ] + A 4 × y 4 + A 6 × y 6 + A 8 × y 8 + A 10 × y 10 (a)

表中の[各種データ]において、fはレンズ全系の焦点距離、FnoはFナンバー、ωは半画角(単位:°)、Yは像高、TLはレンズ系の全長(光軸上でのレンズ最前面から像面Iまでの距離)、Bfはバックフォーカス(光軸上でのレンズ最終面から像面Iまでの距離)を示す。   In [Various data] in the table, f is the focal length of the entire lens system, Fno is the F number, ω is the half angle of view (unit: °), Y is the image height, TL is the total length of the lens system (on the optical axis) Bf represents the back focus (distance from the last lens surface to the image plane I on the optical axis).

表中の[可変間隔データ]において、fはレンズ全系の焦点距離、Rは撮影距離、D0は物体面から第1面までの距離、Di(但し、iは整数)は第i面と第(i+1)面の可変間隔を示す。   In [Variable interval data] in the table, f is the focal length of the entire lens system, R is the shooting distance, D0 is the distance from the object surface to the first surface, and Di (where i is an integer) is the i-th surface and the first surface. The variable interval of (i + 1) plane is shown.

表中の[レンズ群データ]において、群初面に各群の始面番号(最も物体側の面番号)、群焦点距離に各群の焦点距離を示す。   In [Lens Group Data] in the table, the starting surface number (most surface number on the object side) of each group is shown on the first group surface, and the focal length of each group is shown on the group focal length.

表中の[条件式対応値]において、上記の条件式(1)〜(6)に対応する値を示す。   In [Values for Conditional Expressions] in the table, values corresponding to the conditional expressions (1) to (6) are shown.

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。   Hereinafter, in all the specification values, “mm” is generally used for the focal length f, the radius of curvature r, the surface interval D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.

ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。   The description of the table so far is common to all the embodiments, and the description below is omitted.

(第1実施例)
第1実施例について、図1〜図4及び表1を用いて説明する。第1実施例に係る変倍光学系ZL(ZL1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する持つ第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成される。
(First embodiment)
A first embodiment will be described with reference to FIGS. As shown in FIG. 1, the variable magnification optical system ZL (ZL1) according to the first example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative lens group G1. The second lens group G2 having a refractive power, the third lens group G3 having a negative refractive power, and the fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12とからなる接合レンズからなる。   The first lens group G1 includes a cemented lens that is arranged in order from the object side and includes a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23とからなる。   The second lens group G2 includes a negative meniscus lens L21 having a concave surface directed toward the image side, a biconcave lens L22, and a biconvex lens L23, which are arranged in order from the object side.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31とからなる。   The third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side.

第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、両凸レンズL42と両凹レンズL43とからなる接合レンズと、Fナンバーを決定する開口絞りSと、像側に凸面を向けた正メニスカスレンズL44と物体側に凹面を向けた負メニスカスレンズL45とからなる接合レンズと、両凸レンズL46とからなる。正メニスカスレンズL44の物体側面は、非球面である。   The fourth lens group G4 has a biconvex lens L41, a cemented lens composed of a biconvex lens L42 and a biconcave lens L43, an aperture stop S that determines the F number, and a convex surface directed to the image side, which are arranged in order from the object side. It consists of a cemented lens composed of a positive meniscus lens L44 and a negative meniscus lens L45 having a concave surface facing the object side, and a biconvex lens L46. The object side surface of the positive meniscus lens L44 is aspheric.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

第1実施例に係る変倍光学系ZL1は、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔と、第3レンズ群G3と第4レンズ群G4との空気間隔とを変化させることにより、広角端状態から望遠端状態への変倍を行う。このとき、像面Iに対して、第1レンズ群G1〜第4レンズ群G4は物体側へ移動する。開口絞りSは、変倍に際して、第4レンズ群G4と一体となって、物体側へ移動する。   The variable magnification optical system ZL1 according to the first example includes an air gap between the first lens group G1 and the second lens group G2, an air gap between the second lens group G2 and the third lens group G3, and a third lens. By changing the air gap between the group G3 and the fourth lens group G4, zooming from the wide-angle end state to the telephoto end state is performed. At this time, the first lens group G1 to the fourth lens group G4 move toward the object side with respect to the image plane I. The aperture stop S moves to the object side together with the fourth lens group G4 during zooming.

第1実施例に係る変倍光学系ZL1は、第3レンズ群G3を光軸方向に沿って移動させることにより合焦を行う構成であり、図1の矢印に示すように、無限遠物体に合焦した状態から近距離物体へ合焦する状態に変化させたときに、第3レンズ群G3は像側から物体側へ移動する。   The variable magnification optical system ZL1 according to the first example is configured to focus by moving the third lens group G3 along the optical axis direction, and as shown by the arrows in FIG. When the in-focus state is changed to the in-focus state to the near object, the third lens group G3 moves from the image side to the object side.

像ブレ発生時には、防振レンズ群として、第4レンズ群G4の両凸レンズL41を光軸と垂直方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。   When image blurring occurs, image blur correction (anti-shake) on the image plane I is performed by moving the biconvex lens L41 of the fourth lens group G4 so as to have a component perpendicular to the optical axis. Do.

下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1〜22が、図1に示すm1〜m22の各光学面に対応している。   Table 1 below shows the values of each item in the first example. Surface numbers 1 to 22 in Table 1 correspond to the optical surfaces m1 to m22 shown in FIG.

(表1)
[レンズデータ]
面番号 r D νd nd
1 43.6089 0.8000 56.06 1.846663
2 26.7076 8.7676 27.04 1.804199
3 168.7089 D3(可変)
4 60.1788 0.8000 41.64 1.903658
5 13.1274 6.8449
6 -40.4915 0.8000 23.57 1.739905
7 22.2763 0.2000
8 20.5255 3.7229 64.97 1.922860
9 -63.7521 D9(可変)
10 -21.8570 0.8000 38.96 1.806099
11 -58.8880 D11(可変)
12 2824.2386 1.3308 27.04 1.804199
13 -46.2898 0.2000
14 19.5419 2.8008 28.71 1.785897
15 -21.4622 0.8000 56.06 1.846663
16 88.8419 1.0643
17 ∞ 13.9355 (絞りS)
*18 -164.5357 5.8435 17.31 1.487496
19 -10.4013 0.8000 33.08 1.758900
20 -44.2438 0.2000
21 42.0115 2.6551 33.02 1.890489
22 -765.8628 Bf(可変)

[非球面データ]
第18面
κ = 1.0000
A4 = -3.13683E-05
A6 = -3.13787E-08
A8 = -1.62732E-09
A10= 3.69350E-12

[各種データ]
f 18.50 29.99 53.29
Fno 3.27 4.24 4.65
ω 41.98 26.95 15.03
TL 87.66 92.68 113.67
Bf 19.36 32.55 38.06
Y 14.25 14.25 14.25

[可変間隔データ]
(無限遠) (撮影距離 1m)
広角端 中間 望遠端 広角端 中間 望遠端
f&β 18.50490 29.99155 53.29045 -0.01970 -0.03208 -0.05496
D0 0.0000 0.0000 0.0000 912.3355 907.3154 886.3268
D3 0.20000 0.53995 18.55691 0.20000 0.53995 18.55691
D9 2.68588 2.97437 4.48690 2.20641 2.48985 3.43365
D11 13.05009 4.25341 0.20000 13.52956 4.73793 1.25325
Bf 19.36323 32.55157 38.06404 19.36323 32.55157 38.06404

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 73.938
G2 4 -26.003
G3 10 -43.538
G4 12 22.176

[条件式対応値]
条件式(1):fw/f1 = 0.250
条件式(2):fw/f4 = 0.834
条件式(3):f1/(−f3) = 1.698
条件式(4):(−f2)/f4 = 1.173
条件式(5):ωw = 41.98
条件式(6):ft/fw = 2.880
(Table 1)
[Lens data]
Surface number r D νd nd
1 43.6089 0.8000 56.06 1.846663
2 26.7076 8.7676 27.04 1.804199
3 168.7089 D3 (variable)
4 60.1788 0.8000 41.64 1.903658
5 13.1274 6.8449
6 -40.4915 0.8000 23.57 1.739905
7 22.2763 0.2000
8 20.5255 3.7229 64.97 1.922860
9 -63.7521 D9 (variable)
10 -21.8570 0.8000 38.96 1.806099
11 -58.8880 D11 (variable)
12 2824.2386 1.3308 27.04 1.804199
13 -46.2898 0.2000
14 19.5419 2.8008 28.71 1.785897
15 -21.4622 0.8000 56.06 1.846663
16 88.8419 1.0643
17 ∞ 13.9355 (Aperture S)
* 18 -164.5357 5.8435 17.31 1.487496
19 -10.4013 0.8000 33.08 1.758900
20 -44.2438 0.2000
21 42.0115 2.6551 33.02 1.890489
22 -765.8628 Bf (variable)

[Aspherical data]
18th surface κ = 1.0000
A4 = -3.13683E-05
A6 = -3.13787E-08
A8 = -1.62732E-09
A10 = 3.69350E-12

[Various data]
f 18.50 29.99 53.29
Fno 3.27 4.24 4.65
ω 41.98 26.95 15.03
TL 87.66 92.68 113.67
Bf 19.36 32.55 38.06
Y 14.25 14.25 14.25

[Variable interval data]
(Infinity) (shooting distance 1m)
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f & β 18.50490 29.99155 53.29045 -0.01970 -0.03208 -0.05496
D0 0.0000 0.0000 0.0000 912.3355 907.3154 886.3268
D3 0.20000 0.53995 18.55691 0.20000 0.53995 18.55691
D9 2.68588 2.97437 4.48690 2.20641 2.48985 3.43365
D11 13.05009 4.25341 0.20000 13.52956 4.73793 1.25325
Bf 19.36323 32.55157 38.06404 19.36323 32.55157 38.06404

[Lens group data]
Group number Group first surface Group focal length G1 1 73.938
G2 4 -26.003
G3 10 -43.538
G4 12 22.176

[Conditional expression values]
Conditional expression (1): fw / f1 = 0.250
Conditional expression (2): fw / f4 = 0.834
Conditional expression (3): f1 / (− f3) = 1.698
Conditional expression (4): (−f2) /f4=1.173
Conditional expression (5): ωw = 41.98
Conditional expression (6): ft / fw = 2.880

表1から、第1実施例に係る変倍光学系ZL1は、上記条件式(1)〜(6)を満たすことが分かる。   From Table 1, it is understood that the variable magnification optical system ZL1 according to the first example satisfies the conditional expressions (1) to (6).

図2は、第1実施例に係る変倍光学系ZL1の広角端状態(f=18.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。図3は、第1実施例に係る変倍光学系ZL1の中間焦点距離状態(f=29.99)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。図4は、第1実施例に係る変倍光学系ZL1の望遠端状態(f=53.29)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。本実施例では、防振時の光学性能を、図2(b)、図3(b)及び図4(b)のように、像高y=0.0を中心に、上下プラスマイナスの像高10.0に対応したコマ収差図で示す。   2A and 2B are aberration diagrams of the variable magnification optical system ZL1 according to the first example in the wide-angle end state (f = 18.50). FIG. A coma aberration diagram when image blur correction is performed at the time of focus (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing at a short distance (shooting distance R = 1 m for the entire system). FIG. 3 is an aberration diagram in the intermediate focal length state (f = 29.99) of the variable magnification optical system ZL1 according to the first example, (a) various aberration diagrams at the time of focusing on infinity, and (b) at infinity. A coma aberration diagram when image blur correction is performed at the time of focusing (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing at a short distance (shooting distance R = 1 m of the entire system). 4A and 4B are aberration diagrams in the telephoto end state (f = 53.29) of the variable magnification optical system ZL1 according to the first example. FIG. 4A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when image blur correction is performed at the time of focus (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing at a short distance (shooting distance R = 1 m for the entire system). In this embodiment, the optical performance at the time of image stabilization is shown in FIG. 2 (b), FIG. 3 (b) and FIG. 4 (b). A coma aberration diagram corresponding to is shown.

各収差図において、FNOはFナンバー、Yは像高、dはd線における収差、gはg線における収差を示す。d、gの記載のないものは、d線における収差を示す。球面収差図において、最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では像高の最大値を示す。非点収差図において、実線はサジタル像面、破線はメリジオナル像面を示す。コマ収差図において、実線はメリジオナルコマ、破線はサジタルコマを示す。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。   In each aberration diagram, FNO is the F number, Y is the image height, d is the aberration at the d-line, and g is the aberration at the g-line. Those without d and g indicate aberration at the d-line. In the spherical aberration diagram, the F-number value corresponding to the maximum aperture is shown, and in the astigmatism diagram and the distortion diagram, the maximum image height is shown. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the coma aberration diagram, a solid line indicates a meridional coma, and a broken line indicates a sagittal coma. The explanation of the above aberration diagrams is the same in the other examples, and the explanation is omitted.

図2〜図4に示す各収差図から、第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態にわたり諸収差が良好に補正され、高い結像性能を有することが分かる。また、像ブレ補正時にも高い結像性能を有することが分かる。   2 to 4, it can be seen that the variable magnification optical system ZL1 according to the first example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that the image forming performance is high even when image blur correction is performed.

(第2実施例)
第2実施例について、図5〜図8及び表2を用いて説明する。第2実施例に係る変倍光学系ZL(ZL2)は、図5に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する持つ第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成される。
(Second embodiment)
A second embodiment will be described with reference to FIGS. As shown in FIG. 5, the variable magnification optical system ZL (ZL2) according to the second example includes a first lens group G1 having a positive refractive power and arranged in order from the object side along the optical axis. The second lens group G2 having a refractive power, the third lens group G3 having a negative refractive power, and the fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12とからなる接合レンズからなる。   The first lens group G1 includes a cemented lens that is arranged in order from the object side and includes a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23とからなる。   The second lens group G2 includes a negative meniscus lens L21 having a concave surface directed toward the image side, a biconcave lens L22, and a biconvex lens L23, which are arranged in order from the object side.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31とからなる。   The third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side.

第4レンズ群G4は、物体側から順に並んだ、像側に凸面を向けた正メニスカスレンズL41と、両凸レンズL42と両凹レンズL43とからなる接合レンズと、Fナンバーを決定する開口絞りSと、両凸レンズL44と物体側に凹面を向けた負メニスカスレンズL45とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL46とからなる。両凸レンズL44の物体側面は、非球面である。   The fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a convex surface directed toward the image side, a cemented lens including a biconvex lens L42 and a biconcave lens L43, and an aperture stop S that determines an F number. And a cemented lens including a biconvex lens L44 and a negative meniscus lens L45 having a concave surface facing the object side, and a positive meniscus lens L46 having a convex surface facing the object side. The object side surface of the biconvex lens L44 is aspheric.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

第2実施例に係る変倍光学系ZL2は、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔と、第3レンズ群G3と第4レンズ群G4との空気間隔とを変化させることにより、広角端状態から望遠端状態への変倍を行う。このとき、像面Iに対して、第1レンズ群G1〜第4レンズ群G4は物体側へ移動する。開口絞りSは、変倍に際して、第4レンズ群G4と一体となって、物体側へ移動する。   The variable magnification optical system ZL2 according to the second example includes an air gap between the first lens group G1 and the second lens group G2, an air gap between the second lens group G2 and the third lens group G3, and a third lens. By changing the air gap between the group G3 and the fourth lens group G4, zooming from the wide-angle end state to the telephoto end state is performed. At this time, the first lens group G1 to the fourth lens group G4 move toward the object side with respect to the image plane I. The aperture stop S moves to the object side together with the fourth lens group G4 during zooming.

第2実施例に係る変倍光学系ZL2は、第3レンズ群G3を光軸方向に沿って移動させることにより合焦を行う構成であり、図5の矢印に示すように、無限遠物体に合焦した状態から近距離物体へ合焦する状態に変化させたときに、第3レンズ群G3は像側から物体側へ移動する。   The variable magnification optical system ZL2 according to the second example is configured to perform focusing by moving the third lens group G3 along the optical axis direction. As shown by the arrows in FIG. When the in-focus state is changed to the in-focus state to the near object, the third lens group G3 moves from the image side to the object side.

像ブレ発生時には、防振レンズ群として、第4レンズ群G4の正メニスカスレンズL41を光軸と垂直方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。   When image blurring occurs, image blur correction (antivibration) on the image plane I is performed by moving the positive meniscus lens L41 of the fourth lens group G4 so as to have a component perpendicular to the optical axis. I do.

下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1〜22が、図5に示すm1〜m22の各光学面に対応している。   Table 2 below shows the values of each item in the second embodiment. Surface numbers 1 to 22 in Table 2 correspond to the optical surfaces m1 to m22 shown in FIG.

(表2)
[レンズデータ]
面番号 r D νd nd
1 36.2988 0.8000 56.06 1.846663
2 22.9300 6.9961 26.97 1.816000
3 114.2134 D3(可変)
4 35.9155 0.8000 36.55 1.910822
5 10.5558 7.1298
6 -82.0417 0.8000 25.39 1.743197
7 20.5024 0.2000
8 17.2134 3.1607 64.97 1.922860
9 -4490.3075 D9(可変)
10 -29.7462 0.8000 38.96 1.806099
11 -109.4759 D11(可変)
12 -377.5996 1.0745 27.04 1.804199
13 -63.0373 0.2000
14 13.6966 2.6756 25.19 1.772500
15 -24.3635 0.8000 56.06 1.846663
16 116.0533 1.0643
17 ∞ 7.5048 (絞りS)
*18 65996.0514 2.4131 24.74 1.658440
19 -9.9097 0.8000 31.23 1.883000
20 -696.0403 5.3367
21 28.8802 2.0264 22.66 1.680436
22 93.8568 Bf(可変)

[非球面データ]
第18面
κ = -0.6712E+09
A4 = -1.46479E-04
A6 = -5.44840E-07
A8 = -2.43857E-08
A10= -1.48292E-10

[各種データ]
f 18.57 30.16 53.65
Fno 3.86 5.01 5.71
ω 38.88 25.76 14.66
TL 77.82 82.22 98.84
Bf 17.65 28.15 34.48
Y 14.25 14.25 14.25

[可変間隔データ]
(無限遠) (撮影距離 1m)
広角端 中間 望遠端 広角端 中間 望遠端
f&β 18.56510 30.16136 53.64561 -0.01959 -0.03187 -0.05511
D0 0.0000 0.0000 0.0000 922.1816 917.7766 901.1552
D3 0.20000 1.76658 15.19035 0.20000 1.76658 15.19035
D9 4.00268 3.19861 4.39731 3.50042 2.64674 3.29926
D11 11.38347 4.52189 0.19742 11.88573 5.07376 1.29547
Bf 17.65025 28.15431 34.47771 17.65025 28.15431 34.47771

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 64.373
G2 4 -21.741
G3 10 -50.897
G4 12 19.226

[条件式対応値]
条件式(1):fw/f1 = 0.288
条件式(2):fw/f4 = 0.966
条件式(3):f1/(−f3) = 1.265
条件式(4):(−f2)/f4 = 1.131
条件式(5):ωw = 38.88
条件式(6):ft/fw = 2.890
(Table 2)
[Lens data]
Surface number r D νd nd
1 36.2988 0.8000 56.06 1.846663
2 22.9300 6.9961 26.97 1.816000
3 114.2134 D3 (variable)
4 35.9155 0.8000 36.55 1.910822
5 10.5558 7.1298
6 -82.0417 0.8000 25.39 1.743197
7 20.5024 0.2000
8 17.2134 3.1607 64.97 1.922860
9 -4490.3075 D9 (variable)
10 -29.7462 0.8000 38.96 1.806099
11 -109.4759 D11 (variable)
12 -377.5996 1.0745 27.04 1.804199
13 -63.0373 0.2000
14 13.6966 2.6756 25.19 1.772500
15 -24.3635 0.8000 56.06 1.846663
16 116.0533 1.0643
17 ∞ 7.5048 (Aperture S)
* 18 65996.0514 2.4131 24.74 1.658440
19 -9.9097 0.8000 31.23 1.883000
20 -696.0403 5.3367
21 28.8802 2.0264 22.66 1.680436
22 93.8568 Bf (variable)

[Aspherical data]
18th surface κ = -0.6712E + 09
A4 = -1.46479E-04
A6 = -5.44840E-07
A8 = -2.43857E-08
A10 = -1.48292E-10

[Various data]
f 18.57 30.16 53.65
Fno 3.86 5.01 5.71
ω 38.88 25.76 14.66
TL 77.82 82.22 98.84
Bf 17.65 28.15 34.48
Y 14.25 14.25 14.25

[Variable interval data]
(Infinity) (shooting distance 1m)
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f & β 18.56510 30.16136 53.64561 -0.01959 -0.03187 -0.05511
D0 0.0000 0.0000 0.0000 922.1816 917.7766 901.1552
D3 0.20000 1.76658 15.19035 0.20000 1.76658 15.19035
D9 4.00268 3.19861 4.39731 3.50042 2.64674 3.29926
D11 11.38347 4.52189 0.19742 11.88573 5.07376 1.29547
Bf 17.65025 28.15431 34.47771 17.65025 28.15431 34.47771

[Lens group data]
Group number Group first surface Group focal length G1 1 64.373
G2 4 -21.741
G3 10 -50.897
G4 12 19.226

[Conditional expression values]
Conditional expression (1): fw / f1 = 0.288
Conditional expression (2): fw / f4 = 0.966
Conditional expression (3): f1 / (− f3) = 1.265
Conditional expression (4): (−f2) /f4=1.131
Conditional expression (5): ωw = 38.88
Conditional expression (6): ft / fw = 2.890

表2から、第2実施例に係る変倍光学系ZL2は、上記条件式(1)〜(6)を満たすことが分かる。   From Table 2, it can be seen that the variable magnification optical system ZL2 according to the second example satisfies the conditional expressions (1) to (6).

図6は、第2実施例に係る変倍光学系ZL2の広角端状態(f=18.57)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。図7は、第2実施例に係る変倍光学系ZL2の中間焦点距離状態(f=30.16)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。図8は、第2実施例に係る変倍光学系ZL2の望遠端状態(f=53.65)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。本実施例では、防振時の光学性能を、図6(b)、図7(b)及び図8(b)のように、像高y=0.0を中心に、上下プラスマイナスの像高10.0に対応したコマ収差図で示す。   6A and 6B are aberration diagrams in the wide-angle end state (f = 18.57) of the variable magnification optical system ZL2 according to the second example. FIG. 6A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when image blur correction is performed at the time of focus (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing at a short distance (shooting distance R = 1 m for the entire system). FIG. 7 is an aberration diagram in the intermediate focal length state (f = 30.16) of the variable magnification optical system ZL2 according to the second example, (a) various aberration diagrams at the time of focusing on infinity, and (b) at infinity. A coma aberration diagram when image blur correction is performed at the time of focusing (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing at a short distance (shooting distance R = 1 m of the entire system). 8A and 8B are aberration diagrams in the telephoto end state (f = 53.65) of the variable magnification optical system ZL2 according to the second example. FIG. 8A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when image blur correction is performed at the time of focus (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing at a short distance (shooting distance R = 1 m for the entire system). In this embodiment, the optical performance at the time of image stabilization is shown in FIG. 6 (b), FIG. 7 (b) and FIG. 8 (b). A coma aberration diagram corresponding to is shown.

図6〜図8に示す各収差図から、第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態にわたり諸収差が良好に補正され、高い結像性能を有することが分かる。また、像ブレ補正時にも高い結像性能を有することが分かる。   6 to 8 show that the variable magnification optical system ZL2 according to the second example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that the image forming performance is high even when image blur correction is performed.

(第3実施例)
第3実施例について、図9〜図12及び表3を用いて説明する。第3実施例に係る変倍光学系ZL(ZL3)は、図9に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する持つ第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成される。
(Third embodiment)
A third embodiment will be described with reference to FIGS. 9 to 12 and Table 3. FIG. As shown in FIG. 9, the variable magnification optical system ZL (ZL3) according to the third example includes a first lens group G1 having positive refractive power arranged in order from the object side along the optical axis, and a negative lens group G1. The second lens group G2 having a refractive power, the third lens group G3 having a negative refractive power, and the fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12とからなる接合レンズからなる。正メニスカスレンズL12の像側面は、非球面である。   The first lens group G1 includes a cemented lens that is arranged in order from the object side and includes a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side. The image side surface of the positive meniscus lens L12 is aspheric.

第2レンズ群G2は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23とからなる。   The second lens group G2 includes a negative meniscus lens L21 having a concave surface directed toward the image side, a biconcave lens L22, and a biconvex lens L23, which are arranged in order from the object side.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31とからなる。   The third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side.

第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と両凹レンズL42とからなる接合レンズと、Fナンバーを決定する開口絞りSと、物体側に凸面を向けた正メニスカスレンズL43と、両凸レンズL44と両凹レンズL45とからなる接合レンズと、像側に凸面を向けた正メニスカスレンズL46とからなる。両凸レンズL44の物体側面は、非球面である。   The fourth lens group G4 includes, in order from the object side, a cemented lens including a biconvex lens L41 and a biconcave lens L42, an aperture stop S that determines an F number, and a positive meniscus lens L43 with a convex surface facing the object side. And a cemented lens composed of a biconvex lens L44 and a biconcave lens L45, and a positive meniscus lens L46 having a convex surface facing the image side. The object side surface of the biconvex lens L44 is aspheric.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

第3実施例に係る変倍光学系ZL3は、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔と、第3レンズ群G3と第4レンズ群G4との空気間隔とを変化させることにより、広角端状態から望遠端状態への変倍を行う。このとき、像面Iに対して、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は、物体側へ移動する。第2レンズ群は、像側に凸状の軌跡を描くように光軸に沿って移動する。開口絞りSは、変倍に際して、第4レンズ群G4と一体となって、物体側へ移動する。   The variable magnification optical system ZL3 according to the third example includes an air gap between the first lens group G1 and the second lens group G2, an air gap between the second lens group G2 and the third lens group G3, and a third lens. By changing the air gap between the group G3 and the fourth lens group G4, zooming from the wide-angle end state to the telephoto end state is performed. At this time, the first lens group G1, the third lens group G3, and the fourth lens group G4 move toward the object side with respect to the image plane I. The second lens group moves along the optical axis so as to draw a convex locus on the image side. The aperture stop S moves to the object side together with the fourth lens group G4 during zooming.

第3実施例に係る変倍光学系ZL3は、第3レンズ群G3を光軸方向に沿って移動させることにより合焦を行う構成であり、図9の矢印に示すように、無限遠物体に合焦した状態から近距離物体へ合焦する状態に変化させたときに、第3レンズ群G3は像側から物体側へ移動する。   The variable magnification optical system ZL3 according to the third example is configured to perform focusing by moving the third lens group G3 along the optical axis direction. As shown by the arrows in FIG. When the in-focus state is changed to the in-focus state to the near object, the third lens group G3 moves from the image side to the object side.

像ブレ発生時には、防振レンズ群として、第4レンズ群G4の正メニスカスレンズL43を光軸と垂直方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。   When image blurring occurs, image blur correction (anti-vibration) on the image plane I is performed by moving the positive meniscus lens L43 of the fourth lens group G4 so as to have a component perpendicular to the optical axis as a vibration-proof lens group. I do.

下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1〜22が、図9に示すm1〜m22の各光学面に対応している。   Table 3 below shows values of various specifications in the third example. Surface numbers 1 to 22 in Table 3 correspond to the optical surfaces m1 to m22 shown in FIG.

(表3)
[レンズデータ]
面番号 r D νd nd
1 35.1980 0.8000 56.15 1.846660
2 24.4358 7.3655 22.71 1.729160
*3 211.9356 D3(可変)
4 82.8733 0.8000 31.23 1.883000
5 10.8309 6.4839
6 -75.6483 0.8000 26.51 1.788000
7 27.8532 0.2000
8 19.3959 3.8899 56.15 1.846660
9 -68.0805 D9(可変)
10 -27.8595 0.8000 38.96 1.806099
11 -122.2398 D11(可変)
12 12.8893 3.0252 23.57 1.741000
13 -32.2900 0.8000 56.06 1.846663
14 422.4616 0.8347
15 ∞ 2.6582 (絞りS)
16 24.2267 1.3307 27.81 1.795000
17 72.2003 1.3014
*18 56.1806 2.7586 23.57 1.741000
19 -8.2233 0.8000 31.23 1.883000
20 23.9411 1.71720
21 -25.3892 1.3324 38.58 1.647690
22 -17.5029 Bf(可変)

[非球面データ]
第3面
κ =-39.7100
A4 = -9.89369E-09
A6 = -2.05283E-09
A8 = 1.18853E-11
A10= -1.78987E-14

第18面
κ = 4.8409
A4 = -1.61115E-04
A6 = 1.91543E-07
A8 = -6.86409E-08
A10= 1.23380E-09

[各種データ]
f 18.50 30.00 53.30
Fno 3.63 4.27 5.55
ω 38.65 24.10 14.09
TL 76.66 83.75 96.53
Bf 22.79 28.26 39.05
Y 14.25 14.25 14.25

[可変間隔データ]
(無限遠) (撮影距離 1m)
広角端 中間 望遠端 広角端 中間 望遠端
f&β 18.50000 30.00231 53.29585 -0.01949 -0.03121 -0.05478
D0 0.0000 0.0000 0.0000 923.3407 916.2461 903.4746
D3 0.80000 8.47829 14.74203 0.80000 8.47829 14.74203
D9 4.20131 2.95126 4.23229 3.76248 2.28904 3.28726
D11 11.16869 6.36877 0.80000 11.60752 7.03100 1.74503
Bf 22.79163 28.25792 39.05340 22.79163 28.25792 39.05340

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 61.828
G2 4 -24.305
G3 10 -44.933
G4 12 22.921

[条件式対応値]
条件式(1):fw/f1 = 0.299
条件式(2):fw/f4 = 1.032
条件式(3):f1/(−f3) = 1.376
条件式(4):(−f2)/f4 = 1.356
条件式(5):ωw = 38.65
条件式(6):ft/fw = 2.881
(Table 3)
[Lens data]
Surface number r D νd nd
1 35.1980 0.8000 56.15 1.846660
2 24.4358 7.3655 22.71 1.729160
* 3 211.9356 D3 (variable)
4 82.8733 0.8000 31.23 1.883000
5 10.8309 6.4839
6 -75.6483 0.8000 26.51 1.788000
7 27.8532 0.2000
8 19.3959 3.8899 56.15 1.846660
9 -68.0805 D9 (variable)
10 -27.8595 0.8000 38.96 1.806099
11 -122.2398 D11 (variable)
12 12.8893 3.0252 23.57 1.741000
13 -32.2900 0.8000 56.06 1.846663
14 422.4616 0.8347
15 ∞ 2.6582 (Aperture S)
16 24.2267 1.3307 27.81 1.795000
17 72.2003 1.3014
* 18 56.1806 2.7586 23.57 1.741000
19 -8.2233 0.8000 31.23 1.883000
20 23.9411 1.71720
21 -25.3892 1.3324 38.58 1.647690
22 -17.5029 Bf (variable)

[Aspherical data]
Third surface κ = -39.7100
A4 = -9.89369E-09
A6 = -2.05283E-09
A8 = 1.18853E-11
A10 = -1.78987E-14

18th surface κ = 4.8409
A4 = -1.61115E-04
A6 = 1.91543E-07
A8 = -6.86409E-08
A10 = 1.23380E-09

[Various data]
f 18.50 30.00 53.30
Fno 3.63 4.27 5.55
ω 38.65 24.10 14.09
TL 76.66 83.75 96.53
Bf 22.79 28.26 39.05
Y 14.25 14.25 14.25

[Variable interval data]
(Infinity) (shooting distance 1m)
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f & β 18.50000 30.00231 53.29585 -0.01949 -0.03121 -0.05478
D0 0.0000 0.0000 0.0000 923.3407 916.2461 903.4746
D3 0.80000 8.47829 14.74203 0.80000 8.47829 14.74203
D9 4.20131 2.95126 4.23229 3.76248 2.28904 3.28726
D11 11.16869 6.36877 0.80000 11.60752 7.03100 1.74503
Bf 22.79163 28.25792 39.05340 22.79163 28.25792 39.05340

[Lens group data]
Group number Group first surface Group focal length G1 1 61.828
G2 4 -24.305
G3 10 -44.933
G4 12 22.921

[Conditional expression values]
Conditional expression (1): fw / f1 = 0.299
Conditional expression (2): fw / f4 = 1.032
Conditional expression (3): f1 / (− f3) = 1.376
Conditional expression (4): (−f2) /f4=1.356
Conditional expression (5): ωw = 38.65
Conditional expression (6): ft / fw = 2.881

表3から、第3実施例に係る変倍光学系ZL3は、上記条件式(1)〜(6)を満たすことが分かる。   From Table 3, it can be seen that the variable magnification optical system ZL3 according to the third example satisfies the conditional expressions (1) to (6).

図10は、第3実施例に係る変倍光学系ZL3の広角端状態(f=18.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。図11は、第3実施例に係る変倍光学系ZL3の中間焦点距離状態(f=30.00)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。図12は、第3実施例に係る変倍光学系ZL3の望遠端状態(f=53.30)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図、(c)は近距離合焦時(全系の撮影距離R=1m)の諸収差図を示す。本実施例では、防振時の光学性能を、図10(b)、図11(b)及び図12(b)のように、像高y=0.0を中心に、上下プラスマイナスの像高10.0に対応したコマ収差図で示す。   FIG. 10 is an aberration diagram in the wide-angle end state (f = 18.50) of the variable magnification optical system ZL3 according to Example 3, (a) Various aberration diagrams at the time of focusing on infinity, and (b) of FIG. A coma aberration diagram when image blur correction is performed at the time of focus (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing at a short distance (shooting distance R = 1 m for the entire system). FIG. 11 is an aberration diagram in the intermediate focal length state (f = 30.00) of the variable magnification optical system ZL3 according to the third example. (A) Various aberration diagrams at the time of focusing on infinity, and (b) is infinity. A coma aberration diagram when image blur correction is performed at the time of focusing (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing at a short distance (shooting distance R = 1 m of the entire system). 12A and 12B are aberration diagrams in the telephoto end state (f = 53.30) of the variable magnification optical system ZL3 according to the third example. FIG. 12A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when image blur correction is performed at the time of focus (correction angle θ = 0.30 °), and (c) shows various aberration diagrams when focusing at a short distance (shooting distance R = 1 m for the entire system). In this embodiment, the optical performance at the time of image stabilization is shown in FIG. 10B, FIG. 11B, and FIG. A coma aberration diagram corresponding to is shown.

図10〜図12に示す各収差図から、第3実施例に係る変倍光学系ZL3は、広角端状態から望遠端状態にわたり諸収差が良好に補正され、高い結像性能を有することが分かる。また、像ブレ補正時にも高い結像性能を有することが分かる。   10 to 12, it is understood that the variable magnification optical system ZL3 according to the third example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that the image forming performance is high even when image blur correction is performed.

以上の各実施例によれば、良好な光学性能を有する変倍光学系が実現できる。   According to each of the embodiments described above, a variable magnification optical system having good optical performance can be realized.

なお、上記の各実施例は、本実施形態に係る変倍光学系の一具体例を示しているものであり、本実施形態に係る変倍光学系はこれらに限定されるものではない。本実施形態において、下記の内容は光学性能を損なわない範囲で適宜採用可能である。   Each of the above examples shows a specific example of the variable magnification optical system according to the present embodiment, and the variable magnification optical system according to the present embodiment is not limited to these. In the present embodiment, the following contents can be appropriately adopted as long as the optical performance is not impaired.

本実施形態の数値実施例では、4群構成を示したが、5群等の他の群構成にも適用可能である。例えば、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時又は合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   In the numerical examples of the present embodiment, a four-group configuration is shown, but the present invention can also be applied to other group configurations such as a five-group configuration. For example, a configuration in which a lens or a lens group is added closest to the object side, or a configuration in which a lens or a lens group is added closest to the image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes at the time of zooming or focusing.

本実施形態において、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。特に、第3レンズ群G3の少なくとも一部を合焦レンズ群とするのが好ましい。   In the present embodiment, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a short distance object. The focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like). In particular, it is preferable that at least a part of the third lens group G3 is a focusing lens group.

本実施形態において、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第4レンズ群G4の少なくとも一部を防振レンズ群とするのが好ましい。   In this embodiment, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or rotated (swinged) in the in-plane direction including the optical axis, and is caused by camera shake. A vibration-proof lens group that corrects image blur may be used. In particular, it is preferable that at least a part of the fourth lens group G4 is an anti-vibration lens group.

本実施形態において、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   In the present embodiment, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. If the lens surface is aspherical, the aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface that is formed of glass with an aspherical shape, or a composite type nonspherical surface that is formed of a resin on the surface of glass. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

本実施形態において、開口絞りSは、第4レンズ群G4の中又は近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずにレンズ枠でその役割を代用してもよい。   In the present embodiment, the aperture stop S is preferably arranged in or near the fourth lens group G4. However, the role may be substituted by a lens frame without providing a member as the aperture stop.

本実施形態において、各レンズ面には、フレアやゴーストを軽減して高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。   In this embodiment, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

本実施形態の変倍光学系ZLは、変倍比が2〜7程度である。   The variable magnification optical system ZL of this embodiment has a variable magnification ratio of about 2 to 7.

ZL(ZL1〜ZL3) 変倍光学系
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
S 開口絞り
I 像面
1 カメラ(撮像装置)
2 撮影レンズ(変倍光学系)
ZL (ZL1 to ZL3) Variable magnification optical system G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group S Aperture stop I Image plane 1 Camera (imaging device)
2 Shooting lens (variable magnification optical system)

Claims (17)

物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
前記第3レンズ群の少なくとも一部を光軸方向に沿って移動させることにより合焦を行い、
以下の条件式を満足することを特徴とする変倍光学系。
0.249 < fw/f1 < 2.00
但し、
fw:広角端状態における全系の焦点距離、
f1:前記第1レンズ群の焦点距離。
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power, and a first lens group having a positive refractive power, arranged in order from the object side. 4 lens groups,
Focusing by moving at least a part of the third lens group along the optical axis direction;
A zoom optical system characterized by satisfying the following conditional expression:
0.249 <fw / f1 <2.00
However,
fw: focal length of the entire system in the wide-angle end state,
f1: Focal length of the first lens group.
変倍に際し、前記第1レンズ群と前記第2レンズ群との空気間隔と、前記第2レンズ群と前記第3レンズ群との空気間隔と、前記第3レンズ群と前記第4レンズ群との空気間隔とを変化させることを特徴とする請求項1に記載の変倍光学系。   Upon zooming, the air gap between the first lens group and the second lens group, the air gap between the second lens group and the third lens group, the third lens group and the fourth lens group, The variable magnification optical system according to claim 1, wherein the air spacing is changed. 変倍に際し、前記第1レンズ群と前記第2レンズ群との空気間隔を拡大させ、前記第3レンズ群と前記第4レンズ群との空気間隔を縮小させることを特徴とする請求項1又は2に記載の変倍光学系。   2. The zoom lens according to claim 1, wherein, upon zooming, an air gap between the first lens group and the second lens group is enlarged, and an air gap between the third lens group and the fourth lens group is reduced. The zoom optical system according to 2. 以下の条件式を満足することを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。
0.80 < fw/f4 < 3.00
但し、
f4:前記第4レンズ群の焦点距離。
The zoom lens system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.80 <fw / f4 <3.00
However,
f4: focal length of the fourth lens group.
変倍に際し、前記第1レンズ群を光軸に沿って移動させることを特徴とする請求項1〜4のいずれか一項に記載の変倍光学系。   5. The zoom optical system according to claim 1, wherein the first lens unit is moved along an optical axis during zooming. 6. 以下の条件式を満足することを特徴とする請求項1〜5のいずれか一項に記載の変倍光学系。
0.10 < f1/(−f3) < 2.00
但し、
f3:前記第3レンズ群の焦点距離。
The zoom lens system according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
0.10 <f1 / (− f3) <2.00
However,
f3: focal length of the third lens group.
以下の条件式を満足することを特徴とする請求項1〜6のいずれか一項に記載の変倍光学系。
0.80 < (−f2)/f4 < 5.00
但し、
f2:前記第2レンズ群の焦点距離、
f4:前記第4レンズ群の焦点距離。
The zoom lens system according to claim 1, wherein the following conditional expression is satisfied.
0.80 <(− f2) / f4 <5.00
However,
f2: focal length of the second lens group,
f4: focal length of the fourth lens group.
前記第3レンズ群は、1枚のレンズからなることを特徴とする請求項1〜7のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 7, wherein the third lens group includes one lens. 前記第3レンズ群は、物体側に凹面を向けた負メニスカスレンズ成分からなることを特徴とする請求項1〜8のいずれか一項に記載の変倍光学系(但し、前記レンズ成分とは、単レンズまたは接合レンズを示す)。   9. The variable magnification optical system according to claim 1, wherein the third lens group includes a negative meniscus lens component having a concave surface facing the object side. , Indicating single lens or cemented lens). 前記第2レンズ群は、2枚の負レンズと、1枚の正レンズとからなることを特徴とする請求項1〜9のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 9, wherein the second lens group includes two negative lenses and one positive lens. 前記第2レンズ群は、物体側から順に並んだ、負レンズと、負レンズと、正レンズとからなることを特徴とする請求項1〜10のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 10, wherein the second lens group includes a negative lens, a negative lens, and a positive lens arranged in order from the object side. 前記第1レンズ群は、1つの接合レンズからなることを特徴とする請求項1〜11のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 11, wherein the first lens group includes one cemented lens. 前記第4レンズ群は、少なくとも4つのレンズ成分からなることを特徴とする請求項1〜12のいずれか一項に記載の変倍光学系(但し、前記レンズ成分とは、単レンズまたは接合レンズを示す)。   The variable-power optical system according to claim 1, wherein the fourth lens group includes at least four lens components (provided that the lens component is a single lens or a cemented lens). Showing). 以下の条件式を満足することを特徴とする請求項1〜13のいずれか一項に記載の変倍光学系。
30.00° <ωw< 80.00°
但し、
ωw:広角端状態における半画角。
The zoom lens system according to any one of claims 1 to 13, wherein the following conditional expression is satisfied.
30.00 ° <ωw <80.00 °
However,
ωw: Half angle of view in the wide-angle end state.
以下の条件式を満足することを特徴とする請求項1〜14のいずれか一項に記載の変倍光学系。
2.00 <ft/fw< 15.00
但し、
ft:望遠端状態における全系の焦点距離。
The zoom lens system according to any one of claims 1 to 14, wherein the following conditional expression is satisfied.
2.00 <ft / fw <15.00
However,
ft: focal length of the entire system in the telephoto end state.
請求項1〜15のいずれか一項に記載の変倍光学系を備えたことを特徴とする撮像装置。   An imaging apparatus comprising the variable magnification optical system according to any one of claims 1 to 15. 正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、
前記第3レンズ群の少なくとも一部を光軸方向に沿って移動させることにより合焦を行い、
以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置することを特徴とする変倍光学系の製造方法。
0.249 < fw/f1 < 2.00
但し、
fw:広角端状態における全系の焦点距離、
f1:前記第1レンズ群の焦点距離。
A variable lens having a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power. A method of manufacturing a double optical system,
Focusing by moving at least a part of the third lens group along the optical axis direction;
A variable magnification optical system manufacturing method, wherein each lens is arranged in a lens barrel so as to satisfy the following conditional expression:
0.249 <fw / f1 <2.00
However,
fw: focal length of the entire system in the wide-angle end state,
f1: Focal length of the first lens group.
JP2014067071A 2014-03-27 2014-03-27 Variable magnification optical system and imaging apparatus Active JP6337565B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014067071A JP6337565B2 (en) 2014-03-27 2014-03-27 Variable magnification optical system and imaging apparatus
CN201580016773.1A CN106164734B (en) 2014-03-27 2015-03-26 Zoom lens and photographic device
PCT/JP2015/001717 WO2015146175A1 (en) 2014-03-27 2015-03-26 Zoom lens, imaging device, and zoom lens production method
CN201910456452.3A CN110297321B (en) 2014-03-27 2015-03-26 Zoom lens and image pickup apparatus
EP15769538.8A EP3125010A4 (en) 2014-03-27 2015-03-26 Zoom lens, imaging device, and zoom lens production method
US15/256,740 US10663704B2 (en) 2014-03-27 2016-09-06 Zoom lens, imaging device and method for manufacturing the zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067071A JP6337565B2 (en) 2014-03-27 2014-03-27 Variable magnification optical system and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2015191055A true JP2015191055A (en) 2015-11-02
JP6337565B2 JP6337565B2 (en) 2018-06-06

Family

ID=54425605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067071A Active JP6337565B2 (en) 2014-03-27 2014-03-27 Variable magnification optical system and imaging apparatus

Country Status (1)

Country Link
JP (1) JP6337565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049645A (en) * 2017-09-11 2019-03-28 キヤノン株式会社 Zoom lens and image capturing device having the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344615A (en) * 1986-08-12 1988-02-25 Minolta Camera Co Ltd Compact zoom lens for video camera
JP2000028923A (en) * 1998-07-08 2000-01-28 Canon Inc Zoom lens and optical equipment having it
JP2009251113A (en) * 2008-04-02 2009-10-29 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
JP2010175954A (en) * 2009-01-30 2010-08-12 Panasonic Corp Zoom lens system, interchangeable lens apparatus, and camera system
WO2011099248A1 (en) * 2010-02-10 2011-08-18 パナソニック株式会社 Zoom lens system, interchangeable lens apparatus, and camera system
JP2011203420A (en) * 2010-03-25 2011-10-13 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system
JP2012141598A (en) * 2010-12-17 2012-07-26 Nikon Corp Optical system, imaging apparatus, and manufacturing method of optical system
JP2013024936A (en) * 2011-07-15 2013-02-04 Ricoh Co Ltd Zoom lens, camera, and portable information terminal device
JP2013210398A (en) * 2012-02-29 2013-10-10 Ricoh Co Ltd Zoom lens, image capturing device, and mobile information terminal device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344615A (en) * 1986-08-12 1988-02-25 Minolta Camera Co Ltd Compact zoom lens for video camera
JP2000028923A (en) * 1998-07-08 2000-01-28 Canon Inc Zoom lens and optical equipment having it
JP2009251113A (en) * 2008-04-02 2009-10-29 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
JP2010175954A (en) * 2009-01-30 2010-08-12 Panasonic Corp Zoom lens system, interchangeable lens apparatus, and camera system
WO2011099248A1 (en) * 2010-02-10 2011-08-18 パナソニック株式会社 Zoom lens system, interchangeable lens apparatus, and camera system
JP2011203420A (en) * 2010-03-25 2011-10-13 Panasonic Corp Zoom lens system, interchangeable lens device, and camera system
JP2012141598A (en) * 2010-12-17 2012-07-26 Nikon Corp Optical system, imaging apparatus, and manufacturing method of optical system
JP2013024936A (en) * 2011-07-15 2013-02-04 Ricoh Co Ltd Zoom lens, camera, and portable information terminal device
JP2013210398A (en) * 2012-02-29 2013-10-10 Ricoh Co Ltd Zoom lens, image capturing device, and mobile information terminal device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049645A (en) * 2017-09-11 2019-03-28 キヤノン株式会社 Zoom lens and image capturing device having the same
JP7046535B2 (en) 2017-09-11 2022-04-04 キヤノン株式会社 Zoom lens and image pickup device with it

Also Published As

Publication number Publication date
JP6337565B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP2015191065A (en) Zoom lens, imaging apparatus, and method for manufacturing the zoom lens
JP6354257B2 (en) Variable magnification optical system and imaging apparatus
JP6880544B2 (en) Zoom lenses and optics
JP6098176B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5906759B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP6354256B2 (en) Variable magnification optical system and imaging apparatus
JP6446820B2 (en) Magnification optical system and optical equipment
JP6205858B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP6337565B2 (en) Variable magnification optical system and imaging apparatus
JP6511722B2 (en) Variable power optical system and imaging apparatus
JP6446821B2 (en) Magnification optical system and optical equipment
JP2018200472A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6265022B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6372058B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5305177B2 (en) Zoom lens, imaging apparatus, and zoom lens manufacturing method
JP6435620B2 (en) Magnification optical system and imaging device
JP2016156901A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP5267956B2 (en) Zoom lens, imaging apparatus, and zoom lens manufacturing method
JP2015191062A (en) Zoom lens, imaging apparatus, and method for manufacturing the zoom lens
JP6524607B2 (en) Zoom lens and imaging device
JP6205856B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP6205850B2 (en) Zoom lens and optical device
JP6205855B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP6160251B2 (en) Zoom lens and optical device
WO2015146175A1 (en) Zoom lens, imaging device, and zoom lens production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R150 Certificate of patent or registration of utility model

Ref document number: 6337565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250