JP2015190957A - Internal defect inspection method of ceramic substrate - Google Patents

Internal defect inspection method of ceramic substrate Download PDF

Info

Publication number
JP2015190957A
JP2015190957A JP2014070472A JP2014070472A JP2015190957A JP 2015190957 A JP2015190957 A JP 2015190957A JP 2014070472 A JP2014070472 A JP 2014070472A JP 2014070472 A JP2014070472 A JP 2014070472A JP 2015190957 A JP2015190957 A JP 2015190957A
Authority
JP
Japan
Prior art keywords
light
ceramic substrate
inspection
linearly polarized
internal defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014070472A
Other languages
Japanese (ja)
Other versions
JP6387650B2 (en
Inventor
加藤 浩和
Hirokazu Kato
浩和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014070472A priority Critical patent/JP6387650B2/en
Publication of JP2015190957A publication Critical patent/JP2015190957A/en
Application granted granted Critical
Publication of JP6387650B2 publication Critical patent/JP6387650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for inspecting an internal defect such as a void in a ceramic substrate in a nondestructive fashion that can simply detect the internal defect while downsizing an apparatus for inspection and achieve wide-range efficient inspection.SOLUTION: Light subjected to linear polarization by a light irradiation means is made to radiate on a ceramics substrate. Light reflected by or penetrated the ceramic substrate is made to pass through a polarizer provided in a configuration where linear polarization by the light irradiation means is extinct. Then, an internal defect in the ceramic substrate is detected from the light having passed through the polarizer.

Description

本発明は、大電流、高電圧を制御する半導体装置に用いられるパワーモジュール用基板の絶縁基板として用いられるセラミックス基板に生じるボイド等の内部欠陥を検査する方法に関する。   The present invention relates to a method for inspecting internal defects such as voids generated in a ceramic substrate used as an insulating substrate of a power module substrate used in a semiconductor device that controls a large current and a high voltage.

パワーモジュール用基板で用いられる絶縁基板では、素子の高出力化に伴う発熱密度の増大に対応させるために効率的に放熱する必要がある。一般にこのような基板では、半導体チップがAl、Cu等の金属回路層を介してセラミックス表面に設けられ、セラミックスの裏面には、Al等からなる放熱層、ヒートシンクが設けられた構造になっている。半導体チップが発熱すると、この熱はセラミックスから放熱層を伝わってヒートシンクから放熱される。
このようなセラミックス基板において、セラミックス基板中にボイド(微小な空洞、気孔)、クラック等が存在すると、このボイド等が起点となって部分放電により絶縁破壊が生じるおそれがあり、基板としての信頼性が低くなる。そのため、この種のセラミックス基板では、セラミックス中に含まれるボイド等の内部欠陥を予め検出することが必要になり、この内部欠陥の検出には非破壊によりセラミックス基板を検査する必要がある。
Insulating substrates used for power module substrates need to efficiently dissipate heat in order to cope with an increase in heat generation density associated with higher output of elements. In general, such a substrate has a structure in which a semiconductor chip is provided on a ceramic surface through a metal circuit layer such as Al or Cu, and a heat radiation layer made of Al or the like and a heat sink are provided on the back surface of the ceramic. . When the semiconductor chip generates heat, this heat is transferred from the ceramic through the heat dissipation layer and is radiated from the heat sink.
In such a ceramic substrate, if there are voids (micro cavities, pores), cracks, etc. in the ceramic substrate, there is a risk that dielectric breakdown will occur due to partial discharge from this void, etc., and reliability as a substrate Becomes lower. For this reason, in this type of ceramic substrate, it is necessary to detect internal defects such as voids contained in the ceramic in advance, and in order to detect this internal defect, it is necessary to inspect the ceramic substrate in a non-destructive manner.

従来、対象の試料を非破壊で検査する方法としては、例えば、特許文献1の内部欠陥検査方法が開示されている。この検査方法では、超音波で試料を非破壊検査するものであり、超音波が試料内部に伝搬され、内部欠陥から反射或は透過される超音波の振動が光干渉計により検出される。
一方、特許文献2の非破壊検査方法では、X線により非破壊検査するものであり、セラミック成形体の試料にX線が照射され、このX線でセラミック成形体の内部欠陥が検査されるようになっている。
Conventionally, as a method for inspecting a target sample in a nondestructive manner, for example, an internal defect inspection method disclosed in Patent Document 1 is disclosed. In this inspection method, a sample is nondestructively inspected with ultrasonic waves. Ultrasonic waves are propagated inside the sample, and vibrations of ultrasonic waves reflected or transmitted from internal defects are detected by an optical interferometer.
On the other hand, in the non-destructive inspection method of Patent Document 2, a non-destructive inspection is performed by X-rays. A sample of a ceramic molded body is irradiated with X-rays, and internal defects of the ceramic molded body are inspected by the X-rays. It has become.

特開2012−47607号公報JP 2012-47607 A 特許第3631652号公報Japanese Patent No. 3631652

しかしながら、特許文献1のような超音波検査で用いられる超音波顕微鏡や、特許文献2のようなX線検査で用いられるX線装置は、装置全体が大掛かりになり、内部欠陥を検査する作業も煩雑になる。
さらに、何れの場合にも、広範囲の面積を効率的に検査することが難しく、検査に時間を要する。
However, the ultrasonic microscope used in the ultrasonic inspection as in Patent Document 1 and the X-ray apparatus used in the X-ray inspection as in Patent Document 2 are large in size, and work for inspecting internal defects is also required. It becomes complicated.
Furthermore, in any case, it is difficult to efficiently inspect a wide area, and the inspection takes time.

本発明は、このような事情に鑑みてなされたもので、セラミックス基板のボイド等の内部欠陥を非破壊で検査する方法であり、検査用の装置を小型化しながら簡便に内部欠陥を検出でき、広範囲で効率的に検査することが可能なセラミックス基板の内部欠陥検査方法を提供することを目的とする。   The present invention was made in view of such circumstances, is a method for nondestructively inspecting internal defects such as voids in a ceramic substrate, and can easily detect internal defects while downsizing an inspection device, An object of the present invention is to provide a method for inspecting an internal defect of a ceramic substrate that can be efficiently inspected in a wide range.

本発明のセラミックス基板の内部欠陥検査方法は、光照射手段から直線偏光させた光をセラミックス基板に照射し、このセラミックス基板を反射または透過した光を前記光照射手段の直線偏光を消光する配置に設けた偏光子を通すことにより、該偏光子を通過した光から前記セラミックス基板中の内部欠陥を検出することを特徴とする。   In the method for inspecting an internal defect of a ceramic substrate according to the present invention, the linearly polarized light from the light irradiating means is applied to the ceramic substrate, and the light reflected or transmitted through the ceramic substrate is extinguished by the linearly polarized light of the light irradiating means. By passing the provided polarizer, internal defects in the ceramic substrate are detected from the light that has passed through the polarizer.

直線偏光した光がセラミックス基板を反射または透過するときには、内部欠陥のないセラミックス部分では、内部が均一であるため、直線偏光の状態がほぼ維持された状態で偏光子まで到達する。そのため、この光は偏光子により消光する。
一方、直線偏光をボイド等の内部欠陥が存在する箇所に照射した場合には、セラミックスと内部欠陥との二つの層が存在することになり、その境界付近で光の屈折率が変化することになる。このため、直線偏光した光が内部欠陥の部分で屈折しあるいは反射しながらセラミックス基板内を透過して偏光子まで到達する。この屈折あるいは反射の際に、直線偏光の光の偏光状態に一部歪みが生じ、直線偏光以外の偏光が発生する。この直線偏光以外の偏光状態の光は、直線偏光を消光するための偏光子によって消光されることがなく、偏光子を通過するので、この光を検出することにより内部欠陥の存在を検出することができる。
これにより、直線偏光した光を照射して、偏光子を介して観察するという、簡便かつコンパクトな検査装置により内部欠陥の検出が可能になる。
When linearly polarized light is reflected or transmitted through the ceramic substrate, the interior of the ceramic portion having no internal defect is uniform, so that the linearly polarized light reaches the polarizer in a substantially maintained state. Therefore, this light is quenched by the polarizer.
On the other hand, when linearly polarized light is irradiated to a place where an internal defect such as a void exists, two layers of ceramic and internal defect exist, and the refractive index of light changes near the boundary. Become. For this reason, the linearly polarized light passes through the ceramic substrate while being refracted or reflected at the internal defect portion, and reaches the polarizer. During this refraction or reflection, a part of the polarization state of linearly polarized light is distorted, and polarized light other than linearly polarized light is generated. Light in a polarization state other than the linearly polarized light passes through the polarizer without being quenched by the polarizer for quenching the linearly polarized light, so that the presence of internal defects can be detected by detecting this light. Can do.
As a result, it is possible to detect internal defects with a simple and compact inspection apparatus in which linearly polarized light is irradiated and observed through a polarizer.

本発明のセラミックス基板の内部欠陥検査方法において、前記光照射手段として、非偏光光源と、この非偏光光源からの光を前記セラミックス基板に直線偏光させて照射する光源側偏光子とを用いるとよい。
光照射手段として自然光やハロゲン光源等の人工の光を利用することでコスト的にも有利になる。非偏光を利用した場合、光源側の偏光子と直線偏光を消光する偏光子(検査側偏光子とする)とは、偏光状態が垂直関係になる配置であればよいため、光源側偏光子と検査側偏光子とを同じものを用いてその配置を変えるのみで容易に内部欠陥を検出可能となる。
In the internal defect inspection method for a ceramic substrate according to the present invention, as the light irradiation means, a non-polarized light source and a light source side polarizer that irradiates the ceramic substrate with light linearly polarized on the ceramic substrate may be used. .
Use of artificial light such as natural light or a halogen light source as the light irradiation means is advantageous in terms of cost. When non-polarized light is used, the polarizer on the light source side and the polarizer that extinguishes the linearly polarized light (referred to as the inspection side polarizer) need only be arranged so that the polarization state is in a vertical relationship. Internal defects can be easily detected by simply changing the arrangement of the inspection-side polarizer using the same one.

また、前記光照射手段として、直線偏光されたレーザーを照射するレーザー照射装置を用いてもよい。
レーザー照射装置を用いることで、光照射手段に偏光子を用いなくとも内部欠陥を検出することが可能である。
Further, a laser irradiation apparatus that irradiates a linearly polarized laser may be used as the light irradiation means.
By using a laser irradiation device, it is possible to detect internal defects without using a polarizer as the light irradiation means.

本発明のセラミックス基板の内部欠陥検査方法によれば、セラミックス基板の内部欠陥を非破壊で検査できるとともに、光照射手段と偏光子とを用いた単純な検査装置であり、小型化しながら簡便にボイドやクラック、割れ等の内部欠陥を検出することができる。しかも、一度に照射する直線偏光の光の照射範囲を広くすることで、広範囲にわたって内部欠陥を効率的に検査することも可能である。   According to the method for inspecting an internal defect of a ceramic substrate according to the present invention, the internal defect of the ceramic substrate can be inspected nondestructively and is a simple inspection apparatus using a light irradiation means and a polarizer. Internal defects such as cracks and cracks can be detected. In addition, it is possible to efficiently inspect internal defects over a wide range by widening the irradiation range of linearly polarized light irradiated at a time.

本発明の内部欠陥検査方法による検査装置の一例を示した模式図である。It is the schematic diagram which showed an example of the inspection apparatus by the internal defect inspection method of this invention. セラミックス基板を用いた絶縁基板の一例を示した模式図である。It is the schematic diagram which showed an example of the insulating substrate using the ceramic substrate. 本発明の検査方法を用いたセラミックス基板のボイド検査結果を示した写真である。It is the photograph which showed the void test result of the ceramic substrate using the test | inspection method of this invention. 通常の光を照射してセラミックス基板を観察した場合の写真である。It is the photograph at the time of irradiating normal light and observing a ceramic substrate. 内部欠陥検査方法による検査装置の他の例を示す模式図である。It is a schematic diagram which shows the other example of the inspection apparatus by an internal defect inspection method.

以下、本発明のセラミックス基板の内部欠陥検査方法の実施形態を図面を参照しながら説明する。
図1は、本発明のセラミックス基板の内部欠陥検査方法に使用される検査装置の一例を示している。この検査装置1は、光照射手段2と、検査側偏光子3と、光観察手段4とを備えており、光照射手段2から光をセラミックス基板10に照射し、反射した光をハーフミラー5により取り出し、検査側偏光子3を介して光観察手段4で観察する構成である。
Hereinafter, an embodiment of an internal defect inspection method for a ceramic substrate of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of an inspection apparatus used in an internal defect inspection method for a ceramic substrate according to the present invention. The inspection apparatus 1 includes a light irradiation means 2, an inspection-side polarizer 3, and a light observation means 4. The light irradiation means 2 irradiates the ceramic substrate 10 with light, and the reflected light is a half mirror 5. And is observed by the light observation means 4 through the inspection-side polarizer 3.

この検査装置1において、光照射手段2は、非偏光光源20と、照射側偏光子21とを有している。非偏光光源20は、例えば自然光やハロゲンランプ等の人工光からなり、照射側偏光子21に向けて非偏光の光を照射する。照射側偏光子21は、非偏光光源20からの光を通過させることで、自然光(非偏光)から特定の方向の振動のみを取り出して直線偏光させるものである。したがって、これら非偏光光源20と照射側偏光子21とを組み合わせた光照射手段2により、直線偏光の光を照射することができる。   In this inspection apparatus 1, the light irradiation means 2 has a non-polarized light source 20 and an irradiation side polarizer 21. The non-polarized light source 20 is made of, for example, artificial light such as natural light or a halogen lamp, and irradiates non-polarized light toward the irradiation side polarizer 21. The irradiation-side polarizer 21 allows light from the non-polarized light source 20 to pass through, and extracts only vibration in a specific direction from natural light (non-polarized light) and linearly polarizes it. Therefore, linearly polarized light can be irradiated by the light irradiation means 2 that combines the non-polarized light source 20 and the irradiation side polarizer 21.

一方、検査側偏光子3は、照射側偏光子21と同じ機能を有しつつ、光照射手段2の直線偏光を消光するようにクロスした配置に設けられている。すなわち、例えば、照射側偏光子21から垂直方向の成分のみを有する直線偏光が得られる場合、この直線方向の成分のみを吸収する向きに回転された状態で検査側偏光子3が配置される。また、照射側偏光子21から水平方向の成分のみを有する直線偏光が得られる場合には、水平方向の成分のみを吸収する向きに検査側偏光子3が配置される。   On the other hand, the inspection-side polarizer 3 has the same function as the irradiation-side polarizer 21 and is provided in a crossed arrangement so as to quench the linearly polarized light of the light irradiation means 2. That is, for example, when linearly polarized light having only a component in the vertical direction is obtained from the irradiation side polarizer 21, the inspection side polarizer 3 is arranged in a state of being rotated in a direction to absorb only the component in the linear direction. When linearly polarized light having only a horizontal component is obtained from the irradiation side polarizer 21, the inspection side polarizer 3 is arranged in a direction that absorbs only the horizontal component.

光観察手段4は、検査側偏光子3を通過した光を観察するものであり、この検査側偏光子3が前述したように照射側の直線偏光を消光するように配置されていることから、その直線偏光以外の偏光の光を観察することになる。
この光観察手段4としては、例えば、光学顕微鏡を備えており、この光学顕微鏡で捉えた画像をデジタル処理するコンピューター、その検出状態を表示するモニター等の適宜の構成により設けられる。
The light observation means 4 is for observing light that has passed through the inspection-side polarizer 3, and since the inspection-side polarizer 3 is arranged so as to quench the irradiation-side linearly polarized light as described above, The light of polarized light other than the linearly polarized light is observed.
The light observation means 4 includes, for example, an optical microscope, and is provided with an appropriate configuration such as a computer that digitally processes an image captured by the optical microscope, a monitor that displays a detection state thereof, and the like.

ハーフミラー5は、光照射手段2とセラミックス基板10との間の光の進路上に45°の傾斜角度で配置される。ハーフミラー5は、透過率と反射率とが等しくなる性質を有しており、その反射角度(45°)により光照射手段2からの直線偏光をセラミックス基板10側に透過させ、このセラミックス基板10から反射した光を検査側偏光子3の方向に向きを変えるように設けられる。
なお、図1に示す例では、セラミックス基板10で光を反射させ、その反射光を観察するように構成したが、セラミックス基板10を透過させ、透過した光を観察するようにしてもよい。
The half mirror 5 is disposed at an inclination angle of 45 ° on the light path between the light irradiation means 2 and the ceramic substrate 10. The half mirror 5 has the property that the transmittance and the reflectance are equal, and the linearly polarized light from the light irradiation means 2 is transmitted to the ceramic substrate 10 side by the reflection angle (45 °). Is provided so as to change the direction of the light reflected from the light in the direction of the inspection-side polarizer 3.
In the example shown in FIG. 1, the light is reflected by the ceramic substrate 10 and the reflected light is observed. However, the light transmitted through the ceramic substrate 10 may be observed.

検査装置1により検査されるセラミックス基板10について説明しておくと、図2は、そのセラミックス基板10が用いられた絶縁基板30の一例を示している。
絶縁基板30は、一般的なパワーモジュール基板の構成を成しており、窒化アルミニウム(AlN)、酸化アルミニウム(Al)等からなるセラミックス基板10の一方の面に、Al又はCuからなる回路層31がろう付け等により接合され、セラミックス基板10の他方の面にAl等からなる放熱層32がろう付け等により接合されている。回路層31の上に半導体素子33が搭載され、放熱層32にヒートシンク34が接合される。
The ceramic substrate 10 to be inspected by the inspection apparatus 1 will be described. FIG. 2 shows an example of the insulating substrate 30 in which the ceramic substrate 10 is used.
The insulating substrate 30 has a configuration of a general power module substrate, and is made of Al or Cu on one surface of a ceramic substrate 10 made of aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), or the like. The circuit layer 31 is joined by brazing or the like, and the heat dissipation layer 32 made of Al or the like is joined to the other surface of the ceramic substrate 10 by brazing or the like. A semiconductor element 33 is mounted on the circuit layer 31, and a heat sink 34 is joined to the heat dissipation layer 32.

上記のように構成した検査装置1によってセラミックス基板10の内部欠陥を検査する方法について説明する。
図1に示すように、検査装置1の光照射手段2から直線偏光した光をセラミックス基板10に照射し、このセラミックス基板10の内部を通過し反射して得られる光をハーフミラー5により検査側偏光子3に通し、この検査側偏光子3を通過した光を光観察手段4により観察する。この図1において、破線は、光照射手段2から照射された直線偏光のルートを示しており、矢印は光の進む方向を示している。
A method for inspecting an internal defect of the ceramic substrate 10 by the inspection apparatus 1 configured as described above will be described.
As shown in FIG. 1, light that is linearly polarized from a light irradiating means 2 of an inspection apparatus 1 is irradiated onto a ceramic substrate 10, and light obtained by passing through and reflecting inside the ceramic substrate 10 is reflected by a half mirror 5 on the inspection side. Light that passes through the polarizer 3 and passes through the inspection-side polarizer 3 is observed by the light observation means 4. In FIG. 1, a broken line indicates a route of linearly polarized light irradiated from the light irradiation means 2, and an arrow indicates a direction in which light travels.

セラミックス基板10のボイド等の内部欠陥11が存在しない部分では、セラミックス基板10内が均一であることから、直線偏光が大きく歪んだり回転することなく反射し、直線偏光の状態がほぼ維持された状態で検査側偏光子3に到達する。そして、この光は、直線偏光を消光するための検査側偏光子3を通過することで消光される。
一方、セラミックス基板中10にボイド等の内部欠陥11が存在する場合には、直線偏光はセラミックス基板10内の内部欠陥11に到達したときに、セラミックス基板10と内部欠陥11との境界面で光の屈折率が大きく変わるため、この境界部分で直線偏光の一部がその境界面での屈折や反射により歪められ、直線偏光以外の偏光の光に変化しながら反射することになる。このため、この反射した光が検査側偏光子3を通過する際に、消光しないで通過する光が生じる。
そして、この検査側偏光子3を通過した光を観察することにより、この光をセラミックス基板中10の内部欠陥11として識別することができる。この場合、例えば、光照射手段2によりセラミックス基板10をスキャンしながら、ラインカメラで撮像する、あるいはCCDカメラで全体を面状に撮像する等により、広範囲の検査を行うことができる。
In the portion where the internal defect 11 such as a void of the ceramic substrate 10 does not exist, the inside of the ceramic substrate 10 is uniform, so that the linearly polarized light is reflected without being greatly distorted or rotated, and the state of the linearly polarized light is substantially maintained. To reach the inspection-side polarizer 3. This light is quenched by passing through the inspection-side polarizer 3 for quenching the linearly polarized light.
On the other hand, when the internal defect 11 such as a void is present in the ceramic substrate 10, when the linearly polarized light reaches the internal defect 11 in the ceramic substrate 10, light is emitted at the interface between the ceramic substrate 10 and the internal defect 11. Therefore, a part of the linearly polarized light is distorted by refraction and reflection at the boundary surface, and reflected while changing to light having a polarization other than the linearly polarized light. For this reason, when the reflected light passes through the inspection-side polarizer 3, light that passes without being quenched is generated.
Then, by observing the light that has passed through the inspection-side polarizer 3, this light can be identified as the internal defect 11 in the ceramic substrate 10. In this case, a wide range of inspections can be performed by, for example, taking an image with a line camera while scanning the ceramic substrate 10 with the light irradiation means 2, or taking an image of the entire surface with a CCD camera.

図3は、本発明の検査方法によりセラミックス基板のボイドを検査した結果の写真を示している。セラミックス基板にボイドが存在する場合、このボイドにより偏光状態が変化した光が検査側偏光子を通過し、元の直線偏光の光は消光するので、ボイドのない部分は黒く、ボイドの部分は、その形状に合わせて白い塊状の光として検出される。この図3の写真の場合、ボイドの直径は約100μmであった。   FIG. 3 shows a photograph of the result of inspecting the voids of the ceramic substrate by the inspection method of the present invention. When there is a void in the ceramic substrate, the light whose polarization state has changed due to this void passes through the inspection-side polarizer, and the original linearly polarized light is quenched, so the void-free part is black and the void part is It is detected as white lump light according to the shape. In the case of the photograph in FIG. 3, the diameter of the void was about 100 μm.

この場合、セラミックス基板表面の凹凸や内部の粉末粒子の粒界等により直線偏光が屈折したり散乱しながら反射するが、これら凹凸や内部粒子の場合は、ボイド等の内部欠陥により生じる偏光状態の広範囲の変化に比較して、極わずかな粒子レベルの点状での変化であり、内部欠陥による光との識別は容易になる。さらに、前述のコンピューターによる白黒二値化処理により、内部欠陥によらない微細な光を誤差として取り除くようにしてもよい。   In this case, linearly polarized light is reflected while being refracted or scattered due to irregularities on the surface of the ceramic substrate or grain boundaries of the internal powder particles. In the case of these irregularities and internal particles, the polarization state caused by internal defects such as voids is reflected. Compared to a wide range of changes, the change is a point-like change at a very slight particle level, and it becomes easy to distinguish from light due to internal defects. Furthermore, fine light that does not depend on internal defects may be removed as an error by the above-described computer black-and-white binarization process.

一方、図4は、図3の比較例として、光源側偏光子21及び検査側偏光子3を設けない状態でセラミックス基板に光を照射して観察した写真を示している。この場合、非偏光がセラミックス基板に照射されると、セラミックス基板の単独部分やボイドを含有する部分の何れの場合においても、照射部分全体で光が屈折や散乱するため、表面の凹凸のみが撮像されてボイドを識別することはできない。   On the other hand, FIG. 4 shows, as a comparative example of FIG. 3, a photograph observed by irradiating the ceramic substrate with light in a state where the light source side polarizer 21 and the inspection side polarizer 3 are not provided. In this case, when the non-polarized light is irradiated onto the ceramic substrate, the light is refracted and scattered throughout the irradiated portion regardless of whether it is a single portion of the ceramic substrate or a portion containing a void. The void cannot be identified.

このように、本発明では、直線偏光をセラミックス基板10に照射し、反射または透過した光に対して直線偏光を消光する配置の検査側偏光子3を介在させることで直線偏光を消光させ、かつ、直線偏光以外の偏光状態の光を検出することでボイド等の内部欠陥11を検出しており、大型の超音波顕微鏡やX線装置を用いることなく、コンパクト化した検査装置1によりセラミックス基板1の内部欠陥11を非破壊で簡便に検査することができる。さらに、光をセラミックス基板10表面の所定範囲に照射できることで、一度に照射する直線偏光の範囲を広くして効率的に検査することができ、検査に要する手間を省き、検査時間も短縮できる。   Thus, in the present invention, the linearly polarized light is quenched by irradiating the ceramic substrate 10 with the linearly polarized light and interposing the inspection-side polarizer 3 arranged to quench the linearly polarized light with respect to the reflected or transmitted light, and The internal defect 11 such as a void is detected by detecting light in a polarization state other than linearly polarized light, and the ceramic substrate 1 is used by the compact inspection apparatus 1 without using a large ultrasonic microscope or X-ray apparatus. The internal defects 11 can be easily inspected nondestructively. Furthermore, since the light can be irradiated onto a predetermined range on the surface of the ceramic substrate 10, the range of linearly polarized light irradiated at a time can be widened and the inspection can be efficiently performed, and the labor required for the inspection can be saved and the inspection time can be shortened.

図5は、検査装置の他の例を示している。なお、この例において、上述した実施形態と同一部分は同一符号によって表し、その説明を省略する。
この検査装置40では、光照射手段41がレーザー照射装置からなっており、このレーザー照射装置41により、例えば垂直偏光に直線偏光されたレーザー光を照射可能になっている。
FIG. 5 shows another example of the inspection apparatus. In this example, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted.
In this inspection apparatus 40, the light irradiation means 41 is composed of a laser irradiation apparatus, and the laser irradiation apparatus 41 can irradiate, for example, laser light linearly polarized into vertical polarization.

このようにレーザー照射装置41で直線偏光をセラミックス基板10に直接照射できるため、光源側偏光子を不要にしながら、検査側偏光子3で内部欠陥を検査することができる。
レーザー光を用いて、内部欠陥を検査する場合には、光観察手段4としてラインカメラを用い、ラインカメラの視野をカバーし、かつレーザー光の照射強度分布がほぼ均一になるよう光学系を設けることで、効率的に内部欠陥を検査することができる。
また、この例では、セラミックス基板10から反射した光ではなく、セラミックス基板10を透過させた光を検出するように構成されている。このため、ハーフミラーも必要ない。このように、この検査装置40は、より簡便な構造になり、全体もより小型化できる。この場合、セラミックス基板10が極薄状であることから、光を透過させる場合でも反射の場合と同様にして高精度に内部欠陥11を検査することができる。
In this way, the laser irradiation device 41 can directly irradiate the ceramic substrate 10 with linearly polarized light. Therefore, the inspection-side polarizer 3 can inspect internal defects while eliminating the need for the light-source-side polarizer.
When inspecting internal defects using laser light, a line camera is used as the light observation means 4 to cover the field of view of the line camera and to provide an optical system so that the irradiation intensity distribution of the laser light is substantially uniform. Thus, it is possible to inspect internal defects efficiently.
In this example, the light transmitted through the ceramic substrate 10 is detected instead of the light reflected from the ceramic substrate 10. For this reason, a half mirror is also unnecessary. Thus, the inspection apparatus 40 has a simpler structure and can be further downsized as a whole. In this case, since the ceramic substrate 10 is extremely thin, even when light is transmitted, the internal defect 11 can be inspected with high accuracy as in the case of reflection.

なお、本発明は、上記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, this invention is not limited to the thing of the structure of the said embodiment, In a detailed structure, it is possible to add a various change in the range which does not deviate from the meaning of this invention.

1、40 検査装置
2 光照射手段
3 検査側偏光子
4 光観察手段
10 セラミックス基板
11 ボイド
20 非偏光光源
21 照射側偏光子
41 レーザー照射装置
DESCRIPTION OF SYMBOLS 1,40 Inspection apparatus 2 Light irradiation means 3 Inspection side polarizer 4 Light observation means 10 Ceramic substrate 11 Void 20 Non-polarized light source 21 Irradiation side polarizer 41 Laser irradiation apparatus

Claims (3)

光照射手段から直線偏光させた光をセラミックス基板に照射し、このセラミックス基板を反射または透過した光を前記光照射手段の直線偏光を消光する配置に設けた偏光子を通すことにより、該偏光子を通過した光から前記セラミックス基板中の内部欠陥を検出することを特徴とするセラミックス基板の内部欠陥検査方法。   By irradiating the linearly polarized light from the light irradiating means onto the ceramic substrate and passing the light reflected or transmitted through the ceramic substrate through a polarizer disposed in an arrangement for quenching the linearly polarized light of the light irradiating means, An internal defect inspection method for a ceramic substrate, wherein an internal defect in the ceramic substrate is detected from light that has passed through the ceramic substrate. 前記光照射手段として、非偏光光源と、この非偏光光源からの光を前記セラミックス基板に直線偏光させて照射する光源側偏光子とを用いることを特徴とする請求項1記載のセラミックス基板の内部欠陥検査方法。   2. The interior of a ceramic substrate according to claim 1, wherein the light irradiating means includes a non-polarized light source and a light source side polarizer that irradiates the ceramic substrate with light from the non-polarized light source linearly polarized. Defect inspection method. 前記光照射手段として、直線偏光されたレーザーを照射するレーザー照射装置を用いることを特徴とする請求項1記載のセラミックス基板の内部欠陥検査方法。   2. The method for inspecting an internal defect of a ceramic substrate according to claim 1, wherein a laser irradiation device for irradiating a linearly polarized laser is used as the light irradiation means.
JP2014070472A 2014-03-28 2014-03-28 Internal defect inspection method for ceramic substrates Active JP6387650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014070472A JP6387650B2 (en) 2014-03-28 2014-03-28 Internal defect inspection method for ceramic substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014070472A JP6387650B2 (en) 2014-03-28 2014-03-28 Internal defect inspection method for ceramic substrates

Publications (2)

Publication Number Publication Date
JP2015190957A true JP2015190957A (en) 2015-11-02
JP6387650B2 JP6387650B2 (en) 2018-09-12

Family

ID=54425535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014070472A Active JP6387650B2 (en) 2014-03-28 2014-03-28 Internal defect inspection method for ceramic substrates

Country Status (1)

Country Link
JP (1) JP6387650B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163152A (en) * 1986-12-24 1988-07-06 Hitachi Condenser Co Ltd Method and apparatus for inspecting transparent substrate or translucent substrate
JPH0210256A (en) * 1988-06-29 1990-01-16 Ishikawajima Kensa Keisoku Kk Method for detecting flaw in ceramic board
JPH06281589A (en) * 1993-03-26 1994-10-07 Mitsui Mining & Smelting Co Ltd Defect evaluating apparatus
JPH09311109A (en) * 1996-05-22 1997-12-02 Matsushita Electric Ind Co Ltd Defect inspection method and device utilizing light
JP2001099789A (en) * 1999-10-04 2001-04-13 Tosoh Corp Method of observing sintered compact, ito sintered compact, and manufacturing method of its sputtering target and ito sintered compact
JP2004012239A (en) * 2002-06-05 2004-01-15 Canon Inc Method and system for defect inspection
JP2011075551A (en) * 2009-09-04 2011-04-14 Nippon Shokubai Co Ltd Method for inspecting ceramic sheet and method for manufacturing ceramic sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163152A (en) * 1986-12-24 1988-07-06 Hitachi Condenser Co Ltd Method and apparatus for inspecting transparent substrate or translucent substrate
JPH0210256A (en) * 1988-06-29 1990-01-16 Ishikawajima Kensa Keisoku Kk Method for detecting flaw in ceramic board
JPH06281589A (en) * 1993-03-26 1994-10-07 Mitsui Mining & Smelting Co Ltd Defect evaluating apparatus
US5424536A (en) * 1993-03-26 1995-06-13 Mitsui Mining & Smelting Co., Ltd. Substrate internal defect and external particle detecting apparatus using s-polarized and p-polarized light
JPH09311109A (en) * 1996-05-22 1997-12-02 Matsushita Electric Ind Co Ltd Defect inspection method and device utilizing light
JP2001099789A (en) * 1999-10-04 2001-04-13 Tosoh Corp Method of observing sintered compact, ito sintered compact, and manufacturing method of its sputtering target and ito sintered compact
JP2004012239A (en) * 2002-06-05 2004-01-15 Canon Inc Method and system for defect inspection
JP2011075551A (en) * 2009-09-04 2011-04-14 Nippon Shokubai Co Ltd Method for inspecting ceramic sheet and method for manufacturing ceramic sheet

Also Published As

Publication number Publication date
JP6387650B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
CN106030292B (en) Apparatus and method for combined bright field, dark field and photothermal inspection
JP4001862B2 (en) System and method for a wafer inspection system using multiple angle and multiple wavelength illumination
JP5639169B2 (en) Dark field inspection system and method for configuring dark field inspection system
JP6884202B2 (en) Manufacturing method of defect inspection equipment and semiconductor equipment
JP5957852B2 (en) Inspection apparatus and inspection method for semiconductor device
TWI700487B (en) System and method for inspecting object
JPH09311109A (en) Defect inspection method and device utilizing light
JP2018503244A (en) Detection enhanced inspection system and technology
JP2008058270A (en) Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus
JP2009068903A (en) Surface inspection method and surface inspection device
TWI695164B (en) Broadband wafer defect detection system and broadband wafer defect detection method
JP2010054395A (en) Defect inspection method and defect inspection device
US11714055B2 (en) Method for laser stimulated lock-in thermography for micro-crack detection
JP2013134247A (en) Nondestructive defect inspection device and defect inspection method using the same
US9255793B2 (en) Defect inspection method and device thereof
JP2012002648A (en) Wafer detect inspection device
JP2006184177A (en) Infrared inspection device and method
JPH09269298A (en) Method and device for examining end part defect
JP2011247735A (en) Method of measuring in-plane distribution of heat characteristics of metal/ceramic bonded substrate by laser pulse excitation infrared camera measurement method
JP6387650B2 (en) Internal defect inspection method for ceramic substrates
JP6119784B2 (en) Foreign object inspection method
JP2008016778A (en) Semiconductor testing device and testing method
KR20170087328A (en) Vision inspection module and Vision inspection method
JP2017020880A (en) Film thickness unevenness inspection device
KR101575895B1 (en) Apparatus and method for inspecting wafer using light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6387650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150