JP2011247735A - Method of measuring in-plane distribution of heat characteristics of metal/ceramic bonded substrate by laser pulse excitation infrared camera measurement method - Google Patents

Method of measuring in-plane distribution of heat characteristics of metal/ceramic bonded substrate by laser pulse excitation infrared camera measurement method Download PDF

Info

Publication number
JP2011247735A
JP2011247735A JP2010120887A JP2010120887A JP2011247735A JP 2011247735 A JP2011247735 A JP 2011247735A JP 2010120887 A JP2010120887 A JP 2010120887A JP 2010120887 A JP2010120887 A JP 2010120887A JP 2011247735 A JP2011247735 A JP 2011247735A
Authority
JP
Japan
Prior art keywords
amplitude
infrared camera
laser
degrees
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010120887A
Other languages
Japanese (ja)
Inventor
Motoharu Fukazawa
元晴 深澤
Mitsuyoshi Iwasa
光芳 岩佐
Tetsuo Kaga
鉄夫 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010120887A priority Critical patent/JP2011247735A/en
Publication of JP2011247735A publication Critical patent/JP2011247735A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the in-plane distribution of heat characteristics of a metal/ceramic bonded substrate without forming a blackening film on a surface.SOLUTION: The in-plane distribution of the heat characteristics of the metal/ceramic bonded substrate is measured by measuring the plane distribution of transient temperature time change generated by radiating the high output laser pulse of the output of 100 W or more and the pulse length of 10-500 milliseconds so as to be exposed to the entire main surface of a subject, with a high speed infrared camera of the sampling rate of 0.01 second or lower.

Description

本発明は、熱特性測定方法に関するものである。   The present invention relates to a method for measuring thermal characteristics.

金属/セラミックス接合基板は熱伝導率が高いため、大電流用の基板として使用されている。金属とセラミックスの接合部に剥離やボイドなどの異常部があると半導体素子から発生した熱をヒートシンクに逃がすことができず、半導体素子の故障原因となる。このため、熱特性の面内分布を知ることは重要である。   Metal / ceramic bonding substrates are used as substrates for large currents because of their high thermal conductivity. If there is an abnormal part such as peeling or void at the joint between the metal and ceramic, the heat generated from the semiconductor element cannot be released to the heat sink, causing a failure of the semiconductor element. For this reason, it is important to know the in-plane distribution of thermal characteristics.

金属とセラミックスの接合部状態は、超音波探傷法による測定が多く用いられてきた。超音波探傷法は被検体を水没させ超音波探傷針を走査することで、金属とセラミックスの界面の状態を観察する方法であり、剥離やボイドなどの異常部を検出できる(特許文献1)。しかしながら、この文献ではボイドの直径や数を計測しているものの、実際の放熱特性は計測しておらず、ボイドの直径や数と熱特性の関係はわからなかった。また、超音波探傷法は被検体を水没させる必要があるため、検査後に被検体を乾燥させる必要があるなど非破壊検査方法としては効率的ではなかった。   The measurement by ultrasonic flaw detection has been frequently used for the joint state of metal and ceramics. The ultrasonic flaw detection method is a method of observing the state of the interface between a metal and a ceramic by submerging the subject and scanning the ultrasonic flaw detection needle, and can detect abnormal portions such as peeling and voids (Patent Document 1). However, in this document, although the diameter and number of voids are measured, the actual heat radiation characteristics are not measured, and the relationship between the diameter and number of voids and the thermal characteristics is unknown. In addition, since the ultrasonic flaw detection method needs to submerge the subject, it is not efficient as a non-destructive inspection method because the subject needs to be dried after the inspection.

熱特性を測定する方法として、レーザーフラッシュ法が一般的に用いられているが、この方法では熱特性の面内分布は測定できなかった。熱特性の面内分布を測定する方法として、被検体表面に黒化膜を形成した後、表面に高出力レーザーパルスで熱を瞬間的に与え、裏面より熱画像装置で過渡的温度上昇の面内分布を測定することにより垂直方向の熱的特性分布を測定方法が提案されている(特許文献2)。熱伝導率の高い材料においては黒化膜の熱抵抗の影響が相対的に大きくなり、熱特性の評価に際して主要な誤差要因になることが知られている(非特許文献1)。このため、黒化膜の均一性を向上させる方法も提案されている(特許文献3)ものの、カーボンなどを被検体の表面に塗装すると検査後に洗浄する必要があるため効率的ではなかった。   As a method for measuring thermal characteristics, a laser flash method is generally used. However, in this method, in-plane distribution of thermal characteristics cannot be measured. As a method of measuring the in-plane distribution of thermal characteristics, after forming a blackened film on the surface of the subject, heat is instantaneously applied to the surface with a high-power laser pulse, and a surface where the temperature rises transiently with a thermal imaging device from the back A method for measuring the thermal characteristic distribution in the vertical direction by measuring the internal distribution has been proposed (Patent Document 2). It is known that the effect of the thermal resistance of the blackened film becomes relatively large in a material having a high thermal conductivity, and becomes a major error factor in evaluating thermal characteristics (Non-patent Document 1). For this reason, although a method for improving the uniformity of the blackened film has been proposed (Patent Document 3), if carbon or the like is coated on the surface of the specimen, it is not efficient because it needs to be cleaned after the inspection.

また、焦点を絞ったレーザー光を走査することで微小部位の熱特性の面分布を測定する方法も提案されているが(特許文献4)、表面に金属薄膜を形成する必要があること、表面の熱特性しか測定できないなどの問題があった。   In addition, although a method for measuring the surface distribution of the thermal characteristics of a minute part by scanning a focused laser beam has been proposed (Patent Document 4), it is necessary to form a metal thin film on the surface, There were problems such as being able to measure only the thermal characteristics.

被検体全体を覆うようにレーザーパルスを照射したときに発生する赤外線を赤外線カメラで受光することで、電子部品の接合部を検査する方法が提案されている(特許文献5)。出力が24Wのレーザーを66.7ミリ秒間照射して、照射開始後33.3〜66.7ミリ秒(フレームレート30Hzの1コマ目と2コマ目)の範囲で撮影することにより、プリント配線基板(ガラエポ基板)へのはんだ付け部のボイドを検出することが例示されている。樹脂基板(熱伝導率:1〜20W/m・K程度)やはんだ(熱伝導率:20〜70W/m・K程度)は熱伝導率が低く、熱の拡散が遅いため例示されている測定方法でも欠陥部の測定が可能であるが、金属/セラミックス接合基板(熱伝導率:150〜200W/m・K)では赤外線カメラのサンプリングレートよりも熱の拡散速度が速いため、このような方法では欠陥部の検出ができなかった。   There has been proposed a method of inspecting a joint portion of an electronic component by receiving infrared rays generated by irradiating a laser pulse so as to cover the entire subject with an infrared camera (Patent Document 5). Printed wiring by irradiating a laser with an output of 24 W for 66.7 milliseconds and shooting in the range of 33.3 to 66.7 milliseconds (first and second frames at a frame rate of 30 Hz) after the start of irradiation. It is exemplified that a void in a soldered portion on a substrate (glass epoxy substrate) is detected. Resin substrates (thermal conductivity: about 1 to 20 W / m · K) and solder (thermal conductivity: about 20 to 70 W / m · K) have low thermal conductivity and slow heat diffusion, and are exemplified in the measurement. Although it is possible to measure the defect portion by this method, the metal / ceramic bonding substrate (thermal conductivity: 150 to 200 W / m · K) has a higher heat diffusion rate than the sampling rate of the infrared camera. Then, the defective part could not be detected.

特開2007−81429号公報JP 2007-81429 A 特開平4−76446号公報JP-A-4-76446 特開2007−327851号公報JP 2007-327851 A 特開2000−121585号公報JP 2000-121585 A 特開平5−52785号公報Japanese Patent Laid-Open No. 5-52785

洪、馬場、新里、半球面鏡式レーザーフラッシュ法による低放射率材料の熱拡散率測定、熱物性 vol.11−2(1997)p.136Hong, Baba, Niisato, Measurement of thermal diffusivity of low emissivity materials by hemispherical mirror laser flash method, thermophysical properties vol. 11-2 (1997) p. 136

解決しようとする問題点は、金属/セラミックス接合基板の様に熱伝導率の高い材料の熱特性の広範囲の面分布を、短時間で計測する方法が従来なかった点である。   The problem to be solved is that there has not been a method for measuring in a short time a surface distribution over a wide range of thermal characteristics of a material having high thermal conductivity such as a metal / ceramic bonding substrate.

本発明は、被検体に前処理を施すことなく、レーザーパルス励起赤外線カメラ測定法により、被検体の熱特性の広範囲な面内分布を測定することを主要な特徴とする。   The main feature of the present invention is to measure a wide range of in-plane distribution of the thermal characteristics of a subject by laser pulse excitation infrared camera measurement without performing pretreatment on the subject.

本発明で用いられる測定方法は、熱源としてパルス長をミリ秒オーダーで制御できるYAGレーザー、ダイオードレーザーあるいはファイバーレーザーなどの高出力レーザーが用いられる。レーザーにはビームホモジナイザー等の空間エネルギー密度の分布を均一化することが好ましい。レーザーは検査対象部位全体に広げて照射される。検出器としては高速サンプリングレートの赤外線カメラが用いられる。赤外線カメラでは、赤外線の輻射量が得られるので、赤外線の輻射量を温度に換算しても良いが、熱特性の面内分布を計測するだけであれば温度に換算しなくてもよい。 In the measurement method used in the present invention, a high-power laser such as a YAG laser, a diode laser, or a fiber laser whose pulse length can be controlled on the order of milliseconds is used as a heat source. The laser preferably has a uniform spatial energy density distribution such as a beam homogenizer. The laser is applied to the entire area to be examined. An infrared camera with a high sampling rate is used as the detector. An infrared camera can obtain the amount of infrared radiation, so the amount of infrared radiation may be converted to temperature. However, if only the in-plane distribution of thermal characteristics is measured, it may not be converted to temperature.

レーザー出力、パルス長や赤外線カメラのサンプリングレート、レーザーやカメラと被検体の測定角度を最適化することで、金属/セラミックス接合基板などのように光の反射率が高く、また、赤外線輻射率が低い表面を持ち、熱伝導率の高い物体の過渡的熱特性の面分布を観測することができる。レーザー出力を100W以上で、パルス長を10〜500ミリ秒で基板表面を熱励起したときの温度の経時変化を赤外線カメラのサンプリングレートを0.01秒以下とすることで、過渡的な温度変化を観測することができる。レーザー出力が100W未満だと、金属/セラミックス接合基板の表面が十分に加熱されないため、剥離やボイドなどの異常部の検出が十分ではない。パルス長が10ミリ秒未満であると加熱が不十分となり、また、500ミリ秒を超えると、加熱されすぎ照射面の表面状態が変化する恐れがある。赤外線カメラのサンプリングレートが0.01秒より大きいと、生じる熱の拡散現象を撮影することができない。好ましい測定条件は、レーザー出力が100W以上、より好ましくは、500W以上、カメラのサンプリングレートは、0.01秒以下、より好ましくは、0.005秒以下である。 By optimizing the laser output, pulse length, sampling rate of the infrared camera, and measurement angle between the laser and camera and the subject, the reflectivity of the light is high as in metal / ceramic bonding substrates, and the infrared radiation rate is also high. It is possible to observe the surface distribution of the transient thermal properties of an object with a low surface and high thermal conductivity. Transient temperature change by changing the temperature change with time when the laser output is 100 W or more, the pulse length is 10 to 500 milliseconds and the substrate surface is thermally excited, and the infrared camera sampling rate is 0.01 seconds or less. Can be observed. If the laser output is less than 100 W, the surface of the metal / ceramic bonding substrate is not sufficiently heated, so that abnormal portions such as peeling and voids are not sufficiently detected. If the pulse length is less than 10 milliseconds, heating is insufficient, and if it exceeds 500 milliseconds, the surface state of the irradiated surface may change due to overheating. If the sampling rate of the infrared camera is longer than 0.01 seconds, the resulting heat diffusion phenomenon cannot be photographed. The preferable measurement conditions are a laser output of 100 W or more, more preferably 500 W or more, and a camera sampling rate of 0.01 seconds or less, more preferably 0.005 seconds or less.

被検体の一つの主面全体にあたるようにレーザーパルスを照射し、照射面と反対の主面の過渡的温度変化の分布を赤外線カメラで観測することで(透過配置)、被検体内部を通過してくる熱特性(熱拡散率)に関する情報が得られる。また、被検体の一つの主面にレーザーパルスを照射し、該面の過渡的温度変化の分布を観測することで(反射配置)、被検体照射面の熱特性(熱浸透率)に関する情報が得られる。これらを組み合わせことで、被検体内部や金属/セラミックス接合界面の熱特性分布が得られる。   By irradiating a laser pulse so that it covers the entire main surface of the subject and observing the distribution of transient temperature changes on the main surface opposite to the irradiated surface with an infrared camera (transmission arrangement), it passes through the inside of the subject. Information on the incoming thermal properties (thermal diffusivity) can be obtained. In addition, by irradiating one main surface of the subject with a laser pulse and observing the distribution of the transient temperature change on the surface (reflection arrangement), information on the thermal characteristics (thermal permeability) of the subject irradiation surface can be obtained. can get. By combining these, it is possible to obtain the thermal characteristic distribution inside the object and the metal / ceramic bonding interface.

レーザー光は被検体の一つの主面の垂線方向から10度以上傾けて配置する。被検体表面が金属であり光の反射率が高いため、反射光がレーザー出力口に逆流し不安定化することを避けるためである。また、赤外線カメラも被検体主面の垂線方向から10度以上傾けて配置する方がよい。被検体表面の反射率が高いため、カメラ自身の影が写りこむことを避けるためである。また、入射レーザーの直接光や正反射光が赤外線カメラに入ことを防ぐため、赤外線カメラはレーザー光の直接光や反射光の光路上に配置しない方が良い。この様にレーザー、被検体、カメラを配置することで、金属/セラミックス接合基板の様な光を反射し易い被検体の表面に黒化膜を形成することなく、熱特性の面分布を測定することが可能となる。 The laser light is disposed at an angle of 10 degrees or more from the normal direction of one main surface of the subject. This is because the surface of the object is metal and the reflectance of light is high, so that the reflected light is prevented from flowing back to the laser output port and becoming unstable. In addition, it is preferable that the infrared camera is also arranged at an angle of 10 degrees or more from the direction perpendicular to the subject main surface. This is because the reflectance of the object surface is high, so that the shadow of the camera itself is not reflected. Also, in order to prevent direct light or specularly reflected light from the incident laser from entering the infrared camera, it is better not to place the infrared camera on the optical path of the direct laser light or reflected light. By arranging the laser, subject, and camera in this way, the surface distribution of thermal characteristics is measured without forming a blackening film on the surface of the subject that easily reflects light, such as a metal / ceramic bonding substrate. It becomes possible.

一般的には、パルス加熱により生じた温度の時間変化をハーフタイム法などで解析することで熱拡散率を算出する方法がとられている(特許文献2)。あるいは、非特許文献2のように、温度の経時変化を式に当てはめて各部位の熱拡散率や熱損失パラメーターBiot数を算出する方法がとられている。対象が金属とセラミックスの接合材料であり均質ではないため、これらの方法を適用して各位置での熱伝導率を計測することは難しい。しかしながら、得られた温度の時間変化をフーリエ変換することで、温度の時間変化を位相および振幅に変換し、熱伝導の差を位相の遅れや振幅の違いとして表すことができる。フーリエ変換により得られた、位相あるいは振幅の面内分布を図示することで、面内の熱特性の面内の分布が求められる。フーリエ変換する時間領域を、レーザーパルス照射中の時間領域とすることで、温度上昇時の熱特性に関する情報が得られ、レーザーパルス照射終了後の時間領域とすることで、温度降下時の熱特性に関する情報が得られる。
馬場哲也「レーザーフラッシュ法におけるデータ解析の高度化 カーブフィッティング法による熱拡散率の算出と評価」第17回日本熱物性シンポジウム論文集(1996)379
In general, a method of calculating a thermal diffusivity by analyzing a temporal change in temperature caused by pulse heating by a half-time method or the like is employed (Patent Document 2). Alternatively, as in Non-Patent Document 2, a method of calculating the thermal diffusivity and the heat loss parameter Biot number of each part by applying the change with temperature to the equation is used. Since the target is a metal-ceramic bonding material and is not homogeneous, it is difficult to measure the thermal conductivity at each position by applying these methods. However, the obtained temporal change in temperature is Fourier transformed to convert the temporal change in temperature into a phase and amplitude, and a difference in heat conduction can be expressed as a phase delay or amplitude difference. By illustrating the in-plane distribution of the phase or amplitude obtained by Fourier transform, the in-plane distribution of the in-plane thermal characteristics can be obtained. By setting the time domain to be Fourier transformed as the time domain during laser pulse irradiation, information on the thermal characteristics at the time of temperature rise can be obtained, and by setting the time domain after laser pulse irradiation as the time domain, the thermal characteristics at the time of temperature drop Information about
Tetsuya Baba “Sophistication of Data Analysis in Laser Flash Method Calculation and Evaluation of Thermal Diffusivity by Curve Fitting Method” Proceedings of the 17th Japan Thermophysical Properties Symposium (1996) 379

本発明のレーザーパルス励起赤外線測定法は、被検体の一つの主面を高出力レーザーパルスで励起し、照射面と反対の主面の温度分布の経時変化を赤外線カメラで観測するため、被検体の広範囲の熱特性の面分布を計測できる利点がある。   The laser pulse excitation infrared measurement method of the present invention excites one main surface of a subject with a high-power laser pulse and observes a temporal change in temperature distribution of the main surface opposite to the irradiation surface with an infrared camera. There is an advantage that can measure the surface distribution of a wide range of thermal characteristics.

図1は一部剥離した被検体の超音波探傷画像を反転したものである。通常、超音波探傷は反射法で測定される。本発明は透過法なので、画像を比較するため反転させて表示した。FIG. 1 is a reverse image of an ultrasonic flaw detection image of a partially peeled object. Usually, ultrasonic flaw detection is measured by a reflection method. Since the present invention is a transmission method, the images are displayed inverted for comparison. 図2は図1と同じ被検体を本発明による方法で測定した熱特性画像である。FIG. 2 is a thermal characteristic image obtained by measuring the same subject as in FIG. 図3は剥離のない被検体を本発明による方法で測定した熱特性画像である。FIG. 3 is a thermal characteristic image obtained by measuring a specimen without peeling by the method according to the present invention.

本発明は前記各種の課題を解決するため、レーザーパルスと赤外線カメラを用いて、金属/セラミックス接合基板のような高熱伝導部材の熱特性の面分布を測定できるようにしたものである。   In order to solve the above-described various problems, the present invention is capable of measuring the surface distribution of the thermal characteristics of a high thermal conductive member such as a metal / ceramic bonding substrate using a laser pulse and an infrared camera.

本発明で測定される金属/セラミックス接合基板は、セラミックス部材はAlN、Si、Alなどであり、また、金属板部材はアルミニウムや銅などである。セラミックス部材と金属部材はTi、Zr、Hf、Nbなどを含有するAg/Cu系ロウ材やAl合金を介し、加圧しながら真空雰囲気下あるいは不活性ガス雰囲気下で加熱することで接合されている。一般的には、セラミックス部材の厚みは0.2〜2mmであり、金属板部材は0.1〜1mm、接合層は10〜100μmである。大きさは最大で10cm×10cm程度である。 In the metal / ceramic bonding substrate measured by the present invention, the ceramic member is AlN, Si 3 N 4 , Al 2 O 3 or the like, and the metal plate member is aluminum or copper. The ceramic member and the metal member are joined by heating in a vacuum atmosphere or an inert gas atmosphere while applying pressure through an Ag / Cu-based brazing material or Al alloy containing Ti, Zr, Hf, Nb or the like. . In general, the thickness of the ceramic member is 0.2 to 2 mm, the metal plate member is 0.1 to 1 mm, and the bonding layer is 10 to 100 μm. The maximum size is about 10 cm × 10 cm.

AlNセラミックスにAl板を接合する際に、接合材を一部除去することで、セラミックスと金属板の一部が剥離した被検体を作製した。この被検体について、超音波探傷装置(日立エンジニアリングアンドサービス社製超音波探傷装置)にて被検体の超音波探傷画像を得た。剥離の無いものについては、接合材を除去することなく作製した。 When the Al plate was bonded to the AlN ceramic, a part of the bonding material was removed to prepare a specimen in which a part of the ceramic and the metal plate was peeled off. For this subject, an ultrasonic flaw detection image of the subject was obtained with an ultrasonic flaw detector (Hitachi Engineering & Service Co., Ltd. ultrasonic flaw detector). Those without peeling were prepared without removing the bonding material.

[実施例1]
レーザー光源として浜松ホトニクス社製ダイオードレーザー(波長:940nm、定格出力:2500W)を用い、赤外線カメラとしてFLIR社製SC−5000シリーズ(表示画素数:320×256、フルフレームレート:380Hz)を用いた。これらをe/de/vis社製PT/visシステムにより接続し、パルス励起熱画像ソフトにより解析した。レーザー出力を500Wとし、パルス長を100ミリ秒とし、赤外線カメラのサンプリングレートを0.003秒とした。被検体全面にレーザー光が照射され、被検体面の垂線から20度傾けてレーザーを配置した。レーザー照射面の裏面に、被検体面の垂線からレーザー光路とは反対方向に20度傾けて赤外線カメラを配置した。レーザー照射0.1秒前からレーザー照射終了後1秒の各画素での温度の経時変化曲線を得た。
[Example 1]
A diode laser (wavelength: 940 nm, rated output: 2500 W) was used as a laser light source, and an SC-5000 series (display pixel number: 320 × 256, full frame rate: 380 Hz) manufactured by FLIR was used as an infrared camera. . These were connected by a PT / vis system manufactured by e / de / vis and analyzed by pulse excitation thermal image software. The laser output was 500 W, the pulse length was 100 milliseconds, and the sampling rate of the infrared camera was 0.003 seconds. The entire surface of the subject was irradiated with laser light, and the laser was placed at an angle of 20 degrees from the perpendicular to the subject surface. An infrared camera was disposed on the back surface of the laser irradiation surface, tilted by 20 degrees from the perpendicular to the subject surface in the direction opposite to the laser light path. A temperature change curve was obtained for each pixel from 0.1 seconds before laser irradiation to 1 second after the completion of laser irradiation.

下記の数式1のように、フーリエ変換により時間の関数であるf(t)を周波数の関数であるF(ω)が得られる。また、数式2のようにF(ω)は実数部と虚数部を含む複素数として得られるので、数式3により振幅が、数式4により位相が計算されることが数学的にわかっている。   As shown in Equation 1 below, f (t), which is a function of time, is obtained by Fourier transform, and F (ω), which is a function of frequency. Further, since F (ω) is obtained as a complex number including a real part and an imaginary part as in Expression 2, it is mathematically known that the amplitude is calculated by Expression 3 and the phase is calculated by Expression 4.





数式で用いられる記号は下記の通りである。
t :時間
f(t) :時間関数
ω :周波数
j :虚数単位
F(ω) :周波数関数
ReF(ω) :周波数関数の実数部
ImF(ω) :周波数関数の虚数部
|F(ω)| :振幅
α :位相
The symbols used in the mathematical formula are as follows.
t: time f (t): time function ω: frequency j: imaginary unit F (ω): frequency function ReF (ω): real part of frequency function ImF (ω): imaginary part of frequency function | F (ω) | : Amplitude α: Phase

一般的な高速フーリエ変換や短時間フーリエ変換を用いて、温度の経時変化f(t)より、振幅|F(ω)|と位相αが得られる。 The amplitude | F (ω) | and the phase α can be obtained from the temperature change f (t) using general fast Fourier transform and short-time Fourier transform.

レーザー照射終了直後からの100ミリ秒間の温度曲線をフーリエ変換することで、各位置の位相および振幅を計算した。各位置での位相あるいは振幅を合わせることで、画像が得られる。 The phase and amplitude of each position were calculated by Fourier transforming a temperature curve for 100 milliseconds immediately after the end of laser irradiation. An image is obtained by matching the phase or amplitude at each position.

本発明の方法により得た画像と超音波探傷装置で得られた画像を比較する。これらの画像はフーリエ変換した後の振幅の画像である。一部剥離した被検体の中央部が接合部であり周辺部が剥離部であり、超音波探傷画像と本発明の方法により得られた画像はよく一致している。接合部と剥離部の振幅が異なっており、熱の伝達が接合部と剥離部で異なることを示している。剥離していない被検体では、一様な画像が得られた。レーザー照射面からの熱が均一に裏側に伝達していることが分かる。接合部の振幅は0.05〜0.06であり、剥離部の振幅は0.1〜0.2であった。接合部と剥離部の振幅の差が0.04以上あるため、剥離部と接合部が分けられた。ここで、剥離部と接合部の振幅の差が0.02以上あると画像を目視により分けられる。一方、接合部の位相は80〜90度であり、剥離部は100〜140度であった。接合部と剥離部の位相の差が10度あるため、接合部と剥離部が分けられた。ここで、接合部と剥離部の位相の差が10度以上あると目視で分けられる。 The image obtained by the method of the present invention is compared with the image obtained by the ultrasonic flaw detector. These images are amplitude images after Fourier transform. The central part of the partially peeled specimen is a bonded part and the peripheral part is a peeled part, and the ultrasonic flaw detection image and the image obtained by the method of the present invention are in good agreement. The amplitudes of the bonded portion and the peeled portion are different, indicating that the heat transfer is different between the bonded portion and the peeled portion. A uniform image was obtained for the unexfoliated specimen. It can be seen that the heat from the laser irradiation surface is uniformly transferred to the back side. The amplitude of the bonded portion was 0.05 to 0.06, and the amplitude of the peeled portion was 0.1 to 0.2. Since the difference in amplitude between the bonded portion and the peeled portion is 0.04 or more, the peeled portion and the bonded portion are separated. Here, when the difference in amplitude between the peeled portion and the joint portion is 0.02 or more, the images can be visually divided. On the other hand, the phase of the bonded portion was 80 to 90 degrees, and the peeled portion was 100 to 140 degrees. Since the phase difference between the bonded portion and the peeled portion is 10 degrees, the bonded portion and the peeled portion are separated. Here, when there is a phase difference of 10 degrees or more between the bonded portion and the peeled portion, it is visually divided.

[実施例2]
レーザー出力を100Wとした以外は、実施例1と同様にして熱特性の面分布画像を得た。接合部の振幅は0.01〜0.02であり、剥離部の振幅は0.04〜0.09であり、接合部と剥離部の振幅の差が0.02以上あるため、剥離部と接合部が分けられた。接合部の位相は80〜90度であり、剥離部は100〜130度であった。接合部と剥離部の位相の差が10度あるため、接合部と剥離部が分けられた。
[Example 2]
A surface distribution image of thermal characteristics was obtained in the same manner as in Example 1 except that the laser output was 100 W. The amplitude of the bonded portion is 0.01 to 0.02, the amplitude of the peeled portion is 0.04 to 0.09, and the difference in amplitude between the bonded portion and the peeled portion is 0.02 or more. The joint was separated. The phase of the bonded portion was 80 to 90 degrees, and the peeled portion was 100 to 130 degrees. Since the phase difference between the bonded portion and the peeled portion is 10 degrees, the bonded portion and the peeled portion are separated.

[実施例3]
パルス長を10ミリ秒とした以外は、実施例1と同様にして熱特性の面分布画像を得た。接合部の振幅は0.01〜0.03であり、剥離部の振幅は0.05〜0.12であり、接合部と剥離部の振幅の差が0.02以上あるため、剥離部と接合部が分けられた。接合部の位相は80〜90度であり、剥離部は100〜130度であった。接合部と剥離部の位相の差が10度あるため、接合部と剥離部が分けられた。
[Example 3]
A surface distribution image of thermal characteristics was obtained in the same manner as in Example 1 except that the pulse length was set to 10 milliseconds. The amplitude of the bonded portion is 0.01 to 0.03, the amplitude of the peeled portion is 0.05 to 0.12, and the difference in amplitude between the bonded portion and the peeled portion is 0.02 or more. The joint was separated. The phase of the bonded portion was 80 to 90 degrees, and the peeled portion was 100 to 130 degrees. Since the phase difference between the bonded portion and the peeled portion is 10 degrees, the bonded portion and the peeled portion are separated.

[実施例4]
パルス長を500ミリ秒とした以外は、実施例1と同様にして熱特性の面分布画像を得た。接合部の振幅は0.1〜0.2であり、剥離部の振幅は0.3〜0.8であり、接合部と剥離部の振幅の差が0.1以上あるため、剥離部と接合部が分けられた。接合部の位相は80〜90度であり、剥離部は100〜140度であった。接合部と剥離部の位相の差が10度あるため、接合部と剥離部が分けられた。
[Example 4]
A surface distribution image of thermal characteristics was obtained in the same manner as in Example 1 except that the pulse length was 500 milliseconds. The amplitude of the joined portion is 0.1 to 0.2, the amplitude of the peeled portion is 0.3 to 0.8, and the difference in amplitude between the joined portion and the peeled portion is 0.1 or more. The joint was separated. The phase of the bonded portion was 80 to 90 degrees, and the peeled portion was 100 to 140 degrees. Since the phase difference between the bonded portion and the peeled portion is 10 degrees, the bonded portion and the peeled portion are separated.

[実施例5]
赤外線カメラのサンプリング時間を0.01秒とした以外は、実施例1と同様にして熱特性の面分布画像を得た。接合部の振幅は0.02〜0.03であり、剥離部の振幅は0.05〜0.12であり、接合部と剥離部の振幅の差が0.02以上あるため、明確に剥離部と接合部が分けられた。接合部の位相は80〜90度であり、剥離部は100〜130度であった。接合部と剥離部の位相の差が10度あるため、接合部と剥離部が分けられた。
[Example 5]
A surface distribution image of thermal characteristics was obtained in the same manner as in Example 1 except that the sampling time of the infrared camera was set to 0.01 seconds. The amplitude of the bonded portion is 0.02 to 0.03, the amplitude of the peeled portion is 0.05 to 0.12, and the difference between the amplitude of the bonded portion and the peeled portion is 0.02 or more. The part and the joint were separated. The phase of the bonded portion was 80 to 90 degrees, and the peeled portion was 100 to 130 degrees. Since the phase difference between the bonded portion and the peeled portion is 10 degrees, the bonded portion and the peeled portion are separated.

[実施例6]
被検体面の垂線から10度傾けてレーザーを配置し、レーザー照射面の裏面に、被検体面の垂線から10度傾けて赤外線カメラを配置した。レーザーの直接光を避けるため、赤外線カメラはレーザー光路から20度傾いている。上記配置以外は実施例1と同様にして熱特性の面分布画像を得た。接合部の振幅は0.07〜0.09であり、剥離部の振幅は0.13〜0.25であり、接合部と剥離部の振幅の差が0.02以上あるため、明確に剥離部と接合部が分けられた。接合部の位相は80〜90度であり、剥離部は100〜140度であった。接合部と剥離部の位相の差が10度あるため、接合部と剥離部が分けられた。
[Example 6]
The laser was disposed at a tilt of 10 degrees from the normal to the subject surface, and an infrared camera was disposed at the back of the laser irradiation surface at a tilt of 10 degrees from the normal to the subject surface. To avoid direct laser light, the infrared camera is tilted 20 degrees from the laser light path. A surface distribution image of thermal characteristics was obtained in the same manner as in Example 1 except for the above arrangement. The amplitude of the bonded portion is 0.07 to 0.09, the amplitude of the peeled portion is 0.13 to 0.25, and the difference between the amplitude of the bonded portion and the peeled portion is 0.02 or more. The part and the joint were separated. The phase of the bonded portion was 80 to 90 degrees, and the peeled portion was 100 to 140 degrees. Since the phase difference between the bonded portion and the peeled portion is 10 degrees, the bonded portion and the peeled portion are separated.

[実施例7]
被検体面の垂線から40度傾けてレーザーを配置し、レーザー照射面の裏面に、被検体面の垂線から40度傾けて赤外線カメラを配置した。レーザーの直接光を避けるため、赤外線カメラはレーザー光路から80度傾いている。上記配置以外は実施例1と同様にして熱特性の面分布画像を得た。接合部の振幅は0.02〜0.05であり、剥離部の振幅は0.08〜0.17であり、接合部と剥離部の振幅の差が0.02以上あるため、明確に剥離部と接合部が分けられた。接合部の位相は80〜90度であり、剥離部は100〜140度であった。接合部と剥離部の位相の差が10度あるため、接合部と剥離部が分けられた。
[Example 7]
The laser was disposed at a tilt of 40 degrees from the normal to the subject surface, and an infrared camera was disposed at the back of the laser irradiation surface at a tilt of 40 degrees from the normal to the subject surface. In order to avoid direct laser light, the infrared camera is tilted 80 degrees from the laser light path. A surface distribution image of thermal characteristics was obtained in the same manner as in Example 1 except for the above arrangement. The amplitude of the bonded portion is 0.02 to 0.05, the amplitude of the peeled portion is 0.08 to 0.17, and the difference between the amplitude of the bonded portion and the peeled portion is 0.02 or more. The part and the joint were separated. The phase of the bonded portion was 80 to 90 degrees, and the peeled portion was 100 to 140 degrees. Since the phase difference between the bonded portion and the peeled portion is 10 degrees, the bonded portion and the peeled portion are separated.

[比較例1]
レーザー出力を50Wとした以外は、実施例1と同様にして熱特性の面分布画像を得た。ノイズが増え、接合部の振幅は0.005〜0.008であり、剥離部の振幅は0.01〜0.03であり、接合部と剥離部の振幅の差が0.02以下であるため、剥離部と接合部を分けることができなかった。接合部の位相は80〜90度であり、剥離部は90〜130度であった。接合部と剥離部の位相が重複しているため、接合部と剥離部が分けることができなかった。
[Comparative Example 1]
A surface distribution image of thermal characteristics was obtained in the same manner as in Example 1 except that the laser output was 50 W. Noise increases, the amplitude of the bonded portion is 0.005 to 0.008, the amplitude of the peeled portion is 0.01 to 0.03, and the difference in amplitude between the bonded portion and the peeled portion is 0.02 or less. For this reason, it was not possible to separate the peeled portion and the bonded portion. The phase of the bonded portion was 80 to 90 degrees, and the peeled portion was 90 to 130 degrees. Since the phases of the bonding portion and the peeling portion overlap each other, the bonding portion and the peeling portion cannot be separated.

[比較例2]
パルス長を5ミリ秒とした以外は実施例1と同様にして熱特性の面分布画像を得た。接合部の振幅は0.005〜0.01であり、剥離部の振幅は0.01〜0.02であり、剥離部と接合の振幅の範囲が重複しているため、剥離部と接合部を分けることができなかった。接合部の位相は80〜90度であり、剥離部は90〜120度であった。接合部と剥離部の位相が重複しているため、接合部と剥離部が分けることができなかった。
[Comparative Example 2]
A surface distribution image of thermal characteristics was obtained in the same manner as in Example 1 except that the pulse length was 5 milliseconds. The amplitude of the bonded portion is 0.005 to 0.01, the amplitude of the peeled portion is 0.01 to 0.02, and the range of the amplitude of the peeled portion and the bonded portion overlaps, so the peeled portion and the bonded portion Could not be separated. The phase of the bonded portion was 80 to 90 degrees, and the peeled portion was 90 to 120 degrees. Since the phases of the bonding portion and the peeling portion overlap each other, the bonding portion and the peeling portion cannot be separated.

[比較例3]
赤外線カメラのサンプリングレートを0.033秒とした以外は、実施例1と同様にして、熱特性の面分布画像を得た。接合部の振幅は0.05〜0.06であり、剥離部の振幅は0.06〜0.2であり、剥離部と接合の振幅の範囲が重複しているため、明確に剥離部と接合部を分けることができなかった。接合部の位相は80〜90度であり、剥離部は90〜140度であった。接合部と剥離部の位相が重複しているため、接合部と剥離部が分けることができなかった。
[Comparative Example 3]
A surface distribution image of thermal characteristics was obtained in the same manner as in Example 1 except that the sampling rate of the infrared camera was set to 0.033 seconds. The amplitude of the bonded portion is 0.05 to 0.06, the amplitude of the peeled portion is 0.06 to 0.2, and the range of the amplitude of the peeled portion and the bonded portion overlaps. The joint could not be separated. The phase of the bonded portion was 80 to 90 degrees, and the peeled portion was 90 to 140 degrees. Since the phases of the bonding portion and the peeling portion overlap each other, the bonding portion and the peeling portion cannot be separated.

[比較例4]
実施例1で得られたデータより、フーリエ変換することなく、レーザー照射始後0.033秒の画像を得た。剥離部と接合部の強度はともに10300程度であり、剥離部と接合の強度が重複しているため、剥離部を分けられなかった。
[Comparative Example 4]
From the data obtained in Example 1, an image of 0.033 seconds after the start of laser irradiation was obtained without Fourier transform. The strength of the peeled portion and the bonded portion was about 10300, and the peeled portion and the bonded strength overlapped, so the peeled portion could not be separated.

実施例1〜7、比較例1〜3の各条件と測定結果を表1にまとめた。 Table 1 summarizes the conditions and measurement results of Examples 1 to 7 and Comparative Examples 1 to 3.


金属/セラミックス接合基板のように熱伝導率の高い材料の熱特性の面分布を、表面に黒化膜形成などの前処理をすることなく、非破壊的に計測する用途に適用できる。   The present invention can be applied to non-destructive measurement of the surface distribution of the thermal characteristics of a material having a high thermal conductivity such as a metal / ceramic bonding substrate without performing a pretreatment such as blackening film formation on the surface.

1 一部剥離した被検体の超音波探傷画像における接合部
2 一部剥離した被検体の超音波探傷画像における剥離部
3 一部剥離した被検体のレーザーパルス励起赤外線カメラ画像における接合部
4 一部剥離した被検体のレーザーパルス励起赤外線カメラ画像における剥離部
5 剥離していない被検体のレーザーパルス励起赤外線カメラ画像における接合部
DESCRIPTION OF SYMBOLS 1 Junction part in ultrasonic flaw detection image of partially peeled specimen 2 Separation part in ultrasonic flaw detection image of partially peeled specimen 3 Junction part 4 in laser pulse excitation infrared camera image of partially peeled specimen Separation part 5 in the laser pulse excitation infrared camera image of the peeled specimen Joint part in the laser pulse excitation infrared camera image of the specimen not peeled

Claims (1)

出力が100W以上である高出力レーザーのパルス長を10〜500ミリ秒とし、被検体の一つの主面全体にあたるようにレーザーパルスを広げ、該面の垂線から10度以上傾けて照射し、サンプリングレートが0.01秒以下である高速赤外線カメラを、照射面と反対の主面の垂線から10度以上傾けて配置して、レーザーパルス照射後の温度の時間変化の面分布を求め、各位置での温度の時間変化をフーリエ変換により位相および振幅に変換し、位相および振幅の面分布を測定することで金属/セラミックス接合基板の熱特性の面分布を被検体表面に黒化膜を形成することなく測定する方法。

The pulse length of a high-power laser with an output of 100 W or more is set to 10 to 500 milliseconds, the laser pulse is extended so as to hit one whole main surface of the subject, and irradiated at an angle of 10 degrees or more from the perpendicular to the surface, sampling A high-speed infrared camera with a rate of 0.01 seconds or less is placed at an angle of 10 degrees or more from the normal of the main surface opposite to the irradiation surface, and the surface distribution of the time change of the temperature after laser pulse irradiation is obtained. A time-dependent change in temperature is converted into phase and amplitude by Fourier transform, and the surface distribution of the thermal characteristics of the metal / ceramic bonding substrate is formed on the surface of the specimen by measuring the surface distribution of the phase and amplitude. How to measure without.

JP2010120887A 2010-05-26 2010-05-26 Method of measuring in-plane distribution of heat characteristics of metal/ceramic bonded substrate by laser pulse excitation infrared camera measurement method Pending JP2011247735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010120887A JP2011247735A (en) 2010-05-26 2010-05-26 Method of measuring in-plane distribution of heat characteristics of metal/ceramic bonded substrate by laser pulse excitation infrared camera measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010120887A JP2011247735A (en) 2010-05-26 2010-05-26 Method of measuring in-plane distribution of heat characteristics of metal/ceramic bonded substrate by laser pulse excitation infrared camera measurement method

Publications (1)

Publication Number Publication Date
JP2011247735A true JP2011247735A (en) 2011-12-08

Family

ID=45413174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120887A Pending JP2011247735A (en) 2010-05-26 2010-05-26 Method of measuring in-plane distribution of heat characteristics of metal/ceramic bonded substrate by laser pulse excitation infrared camera measurement method

Country Status (1)

Country Link
JP (1) JP2011247735A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085075A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Non-destructive inspection method, non-destructive inspection system, and non-destructive inspection control apparatus
JP2013122414A (en) * 2011-12-12 2013-06-20 Honda Motor Co Ltd Nondestructive inspection system
JP2016003959A (en) * 2014-06-17 2016-01-12 株式会社Ihi Non-destructive inspection device
JPWO2013187207A1 (en) * 2012-06-14 2016-02-04 三菱電機株式会社 Power module deterioration detector
WO2018212087A1 (en) * 2017-05-15 2018-11-22 三菱電機株式会社 Defect inspection apparatus and defect inspection method
JP2020008424A (en) * 2018-07-09 2020-01-16 株式会社アドウェルズ Joining rigidity evaluation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085075A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Non-destructive inspection method, non-destructive inspection system, and non-destructive inspection control apparatus
JP2013122414A (en) * 2011-12-12 2013-06-20 Honda Motor Co Ltd Nondestructive inspection system
JPWO2013187207A1 (en) * 2012-06-14 2016-02-04 三菱電機株式会社 Power module deterioration detector
JP2016003959A (en) * 2014-06-17 2016-01-12 株式会社Ihi Non-destructive inspection device
US10242436B2 (en) 2014-06-17 2019-03-26 Ihi Corporation Non-destructive inspection apparatus
WO2018212087A1 (en) * 2017-05-15 2018-11-22 三菱電機株式会社 Defect inspection apparatus and defect inspection method
JPWO2018212087A1 (en) * 2017-05-15 2019-11-07 三菱電機株式会社 Defect inspection apparatus and defect inspection method
JP2020008424A (en) * 2018-07-09 2020-01-16 株式会社アドウェルズ Joining rigidity evaluation device
JP7190725B2 (en) 2018-07-09 2022-12-16 株式会社ベテル Bonding strength evaluation device

Similar Documents

Publication Publication Date Title
Favro et al. Infrared imaging of defects heated by a sonic pulse
JP2011247735A (en) Method of measuring in-plane distribution of heat characteristics of metal/ceramic bonded substrate by laser pulse excitation infrared camera measurement method
Schmidt et al. Characterization of thin metal films via frequency-domain thermoreflectance
Lu et al. A novel approach for flip chip solder joint inspection based on pulsed phase thermography
JP6884202B2 (en) Manufacturing method of defect inspection equipment and semiconductor equipment
US10488354B2 (en) Method of examining a substrate and corresponding device
US7705978B2 (en) Method and apparatus for inspection of multi-junction solar cells
JPS60154224A (en) Thermal wave microscope
CN107958847B (en) Inspection wafer and method for using inspection wafer
JP4648373B2 (en) Inspection method for small metal joints
TW201514483A (en) LIT method and system for determining material layer parameters of a sample
Raghu et al. Thermal properties of paint coatings on different backings using a scanning photo acoustic technique
US20020050566A1 (en) Arrangement and a method for inspection
JP5580251B2 (en) Wafer bonding strength inspection apparatus and method
Wargulski et al. Inline failure analysis of electronic components by infrared thermography without high-emissivity spray coatings
Pacheco et al. Advanced Fault Isolation and Failure Analysis Techniques for Future Package Technologies.
Dreher et al. Non-destructive imaging of defects in Ag-sinter die attach layers–A comparative study including X-ray, scanning acoustic microscopy and thermography
CN116539564A (en) Method and system for nondestructive in-situ testing of thermal conductivity and interface thermal resistance of solder
Wargulski et al. Inspection of silver-sinter die attaches by pulsed and lock-in infrared thermography with flash lamp and laser excitation
Panahandeh et al. Inline failure analysis of sintered layers in power modules using infrared thermography
Wargulski et al. Comparative die-attach failure analysis by thermoreflectance, infrared thermography and scanning acoustic microscopy
Mamchur et al. Thermography investigation of soldered joints for LED mounting
Zhou et al. Research on life evaluation method of solder joint based on eddy current pulse thermography
Donovan et al. Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance
Panahandeh et al. Laser Lock-in Thermography for Inspection of Silver-Sintered Die Attaches