JP2015190277A - Manufacturing method of large-sized artificial stone - Google Patents
Manufacturing method of large-sized artificial stone Download PDFInfo
- Publication number
- JP2015190277A JP2015190277A JP2014070525A JP2014070525A JP2015190277A JP 2015190277 A JP2015190277 A JP 2015190277A JP 2014070525 A JP2014070525 A JP 2014070525A JP 2014070525 A JP2014070525 A JP 2014070525A JP 2015190277 A JP2015190277 A JP 2015190277A
- Authority
- JP
- Japan
- Prior art keywords
- artificial stone
- thickness
- index
- cutting
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/26—Artificial reefs or seaweed; Restoration or protection of coral reefs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Revetment (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
Abstract
Description
本発明は、例えば港湾工事における護岸用被覆石、漁礁や藻礁マウンド等に用いられる厚さ50cm超100cm以下の大型人工石材の製造方法に関する。 The present invention relates to a method for producing a large artificial stone material having a thickness of more than 50 cm and not more than 100 cm used for, for example, covering stones for revetment in harbor construction, fishing reefs, algal reef mounds, and the like.
近年、天然資源保護の観点から、石材の採取規制が強まり、とりわけ石積み岸壁、護岸、護岸張り石、被覆石等に用いる良質な岩石から切り出される大型石材の採取が厳しくなっており、これに代わる種々の材料が用いられている。
コンクリートで形成される護岸ブロックや被覆ブロックは、所定の形状をした型枠内にコンクリートを充填成形して形成されるため、安定した寸法形状を保持できる、耐波浪性を確保するのに必要な任意の重量のブロックを製造できる等の利点があるが、型枠の損料に加え、型枠の組立・解体やコンクリート打設後の養生管理に手間を要すため、石材に比べて大幅にコストが高く、施設の建設費の増大を招く欠点がある。そのため、波浪の大きな場所や地域等で、その土地で入手可能な石材の重量で対応しきれない場合に適用が限定されている。以上のことから、安価に大型石材を供給できる人工石材の製造方法が求められている。
In recent years, from the viewpoint of protecting natural resources, stone collection regulations have been strengthened. Various materials are used.
The revetment block and covering block made of concrete are formed by filling and molding concrete into a mold with a predetermined shape, so it is necessary to maintain a stable dimensional shape and ensure wave resistance. There are advantages such as the ability to manufacture blocks of any weight, but in addition to the loss of molds, it requires much labor for the assembly and disassembly of molds and the curing management after placing concrete, so it is significantly more expensive than stone. However, there is a drawback that increases the construction cost of the facility. Therefore, application is limited in places and areas where waves are large and when the weight of stones available on the land is not enough. From the above, there is a demand for a method for producing artificial stone that can supply large stones at low cost.
コンクリート等の水硬性材料を用いて製造される人工石材は、一般には、平らな、若しくは石材の厚み分を掘り込んだ平面を形成した敷地に混練物を流し込み、強度が発現するまで一定期間養生したのち、ジャイアントブレーカー等の破砕機を用いて破砕して製造されている。破砕を行う強度の目安としては、一般的に圧縮強度が5N/mm2に到達した時点であることが、例えば非特許文献1等で推奨されている。しかし、このような方法では、破砕時の石材の大きさの制御が難しいため、指定粒径の範囲が広い石材の製造では問題ないものの、指定粒径の範囲が狭い石材を製造する場合や重さ800kg/個以上の大型の石材を製造する場合には、破砕時のロスが多く、歩留りが著しく劣るという問題があった。
Artificial stone manufactured using hydraulic materials such as concrete is generally cured for a certain period of time until the strength is developed by pouring the kneaded material into a flat or flat site where the thickness of the stone is dug. After that, it is manufactured by crushing using a crusher such as a giant breaker. As a standard of strength for crushing, it is generally recommended, for example, in Non-patent
そこで、前記の課題を解決する方法として、鉄鋼スラグ水和固化体等の水硬性材料による人工石材において、効率よく大量に一定粒径範囲の人工石材を製造する技術が開示されている。例えば特許文献1から3には、平坦に整地した地面上に大量に打設し、硬化までの間に行う破砕や分割を、より効率的に行うための方法や技術が開示されている。
Thus, as a method for solving the above-described problem, a technique for efficiently producing a large number of artificial stone materials having a fixed particle size range in a large amount in an artificial stone material made of a hydraulic material such as a steel slag hydrated solidified body is disclosed. For example,
特許文献1には、コンクリート等の混練物を平面上に置き、上から型枠を押し付けてその後に脱型することで、混練物を1辺が10cm以上50cm以下に分割してブロックを製造する方法について記載されている。
In
特許文献2には、混練物を打設する敷地に土砂等で石材の厚み分の高さを有する畝を設け、その畝の内部に鉄鋼スラグ水和固化体を流し込み、硬化するまでにブレーカー等を用いて破砕し人工石を製造することについて記載されている。
In
特許文献3には、鉄鋼スラグを含む水硬性材料の混練物を平地に敷き均し転圧した後、所定の大きさのブロックに分割するため切欠きを打ち込みそのまま養生し、養生後の混練物の固化体をブロック状に分割した後に、破砕し路盤材を製造する鉄鋼スラグ路盤材の製造方法及び鉄鋼スラグ路盤材が開示されている。
In
しかしながら、従来の人工石材の製造方法では、以下のような問題があった。
特許文献1では、製品の厚みが10cm以上50cm以下の石材ブロックを対象とし、スランプ値が0〜5cmの混練物を用いて平面に打設し、上面部材、側面部材を有する型枠材を押し付け所定寸法のブロックを製造することとしている。すなわち、スランプ値が0〜5cmの混練物は流動性が小さく充填が十分にできないため、上面部材、側面部材を有する型枠材を押し付けることで、締め固めを行っている。本技術を用いて、厚さ50cm超100cm以下の大型の人工石材の製造しようとすると、型枠材が大型となり、押し付け深さが深くなるため、押し付けそのものが困難となり締め固め不良ができるとともに、製品内部に空隙が残り、強度的に弱く、脆い石材しか製造することができない問題があり、その点で改善の余地があった。また、型枠材を用いることが必須であるため、製品の表面性状は平滑なものしかできず、噛み合わせや藻等の付着性を向上させるために、破砕したような凹凸面を求められる石材製造には適さないという課題もある。
However, the conventional method for manufacturing an artificial stone has the following problems.
In
一方、特許文献2では、畝の設置に多大な敷地面積を要するため、大量の製造には不向きであり、また生産効率が低いという問題があった。しかも、畝は製造の度に必要となるので、設置に手間やコストがかかる。さらに、畝を土やバラスで形成して直に混練物を打設すると、製品表面に土やバラスが付着し、著しく製品の美観を損ねるため、離型と付着防止を兼ねた素材を混練物と畝との間に設ける必要があり、さらに手間とコストが増大する。
On the other hand,
さらに、特許文献3では、専用の切込み器具を刺し込んだ後にそれを引き抜いて切込み溝を形成するが、この際、混練物の粘性が高いと混練物が切込み器具と一緒に共上がりを起こしたり、表面割れが発生してしまいブロック形状が悪くなったり、材料ロスが多く発生して歩留りが悪くなるという問題があった。一方、混練物の粘性が低いと、時に引き抜く際の前記共上りや表面割れは防げるが、切込み溝が消失してしまい所望の大きさへの破砕ができなくなるという問題があった。港湾工事における護岸用被覆石、漁礁や藻礁マウンド等に用いられる厚さ50cm超100cm以下の大型人工石材を安定的に製造する場合は、切込み溝の深さをより深くする必要があるため、上述した引き抜き時の問題が特に顕著になり、形状の劣化や材料ロスの増大を招くという問題があった。
Furthermore, in
本発明は、上述する問題点に鑑みてなされたもので、切込み溝の形成時において打設した水硬性材料の共上がりや表面割れを防止することができ、高精度な大型人工石材を大量にかつ効率的に製造することができる大型人工石材の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and can prevent the hydraulic material placed at the time of forming the cut groove from rising together and surface cracks, and a large amount of high-precision large-sized artificial stone materials. An object of the present invention is to provide a method for producing a large artificial stone that can be produced efficiently.
上記目的を達成するため、本発明に係る大型人工石材の製造方法では、水硬性材料を用いて製作される厚さ50cm超100cm以下の人工石材の製造方法であって、平面敷地内に人工石材の厚み以上の高さを有し、上面視で矩形状に囲う外周型枠を設置する工程と、該外周型枠の内部にスランプ値5cm超12cm以下の水硬性材料を充填・成形する工程と、前記外周型枠内への充填中、又は充填完了後の水硬性材料の表面硬度aと、形成しようとしている切込み深さDの人工石材厚みHの比c(=D/H)との積(a×c)で示される切込み指数を管理指標として、該切込み指数が一定範囲内となるように、前記人工石材の所望の平面寸法に区画された仕切り板を、重機を用いて打設面の上面から下方へ向けて貫入して切込み深さDの切込み溝を形成する工程と、養生後の水和硬化体の一軸圧縮強度σと、前記人工石材厚みHから前記切込み深さDを減じた残存厚さAの人工石材厚みHとの比e(=A/H)と、の積(σ×e)で示される残存部強度指数が、(1)式を満足する強度となった時点で、破砕機を用いて前記人工石材に形成された前記切込み溝に沿って破砕する工程と、を有することを特徴としている。 In order to achieve the above object, the method for producing a large artificial stone according to the present invention is a method for producing an artificial stone having a thickness of more than 50 cm and not more than 100 cm manufactured using a hydraulic material, wherein A step of installing an outer periphery mold having a height equal to or greater than the above and enclosing in a rectangular shape when viewed from above, and a step of filling and molding a hydraulic material having a slump value of more than 5 cm and not more than 12 cm in the outer periphery mold The product of the surface hardness a of the hydraulic material during filling into the outer peripheral formwork or after completion of filling and the ratio c (= D / H) of the artificial stone thickness H of the cutting depth D to be formed Using the cutting index indicated by (a × c) as a management index, a partition plate partitioned into a desired plane dimension of the artificial stone material so that the cutting index is within a certain range is placed using a heavy machine. Cut from the upper surface of the metal to the bottom with a cutting depth D Ratio e () between the step of forming the groove, the uniaxial compressive strength σ of the hydrated cured body after curing, and the artificial stone thickness H of the remaining thickness A obtained by subtracting the cutting depth D from the artificial stone thickness H = A / H), and when the remaining portion strength index indicated by the product (σ × e) reaches the strength satisfying the formula (1), the crusher is used to form the artificial stone. And crushing along the cut groove.
本発明では、厚さ50cm超100cm以下の人工石材を製作する際、スランプ値5cm超12cm以下の水硬性材料を打設し、水硬性材料の表面硬度aと、設けようとする切込み深さDの人工石材厚みHとの比cが一定範囲となるように、切込み深さDの切込み溝を形成し、その後、一軸圧縮強度σと、人工石材厚みHから切込み深さDを減じた残存厚さAの人工石材厚みHとの比eの積が、上述した(1)式を満足する強度以上となった時点で切込み線に沿って破砕することで、人工石材を大量にかつ効率的に製造することができる。つまり、硬化中の水硬性材料を分割するための切込み溝を形成する際、表面割れや共上りのない切込み溝を形成しつつ、切込み線に沿って所望の形状、大きさの人工石材を破砕ロスなく製造することができ、作業効率と歩留りの向上を図ることができる。 In the present invention, when manufacturing an artificial stone material having a thickness of more than 50 cm and not more than 100 cm, a hydraulic material having a slump value of more than 5 cm and not more than 12 cm is placed, and the surface hardness a of the hydraulic material and the depth of cut D to be provided are provided. In order to maintain the ratio c of the artificial stone material thickness H within a certain range, a notch groove having a cutting depth D is formed, and then the residual thickness obtained by subtracting the cutting depth D from the uniaxial compressive strength σ and the artificial stone material thickness H. When the product of the ratio e to the thickness H of the artificial stone material of A is equal to or higher than the strength satisfying the above-described equation (1), the artificial stone material is efficiently produced in large quantities by crushing along the cutting line. Can be manufactured. In other words, when forming a cut groove to divide the hydraulic material being cured, crush the artificial stone of the desired shape and size along the cut line while forming a cut groove with no surface cracks or co-ups. It can be manufactured without loss, and work efficiency and yield can be improved.
表面硬度aは、棒状あるいは筒状の機器を水硬性材料に押し付け、その時の抵抗値が測定できるものであれば、種々のものが適用できるが、特に土壌の締め固め後の土の硬度を測定するコーンペネトロメータを用いる手法が有効である。すなわち、コーンペネトロメータによるコーン指数a1を測定し、切込み深さDと人工石材厚みHの比c(=D/H)との積(a1×c)で示される切込み指数を(2)式の時に切込み溝を形成することで、共上りも表面割れもない生じない切込み溝を形成することができる。 Various surface hardness a can be applied as long as the resistance value at that time can be measured by pressing a rod-shaped or cylindrical device against the hydraulic material, and the soil hardness after soil compaction is measured. A technique using a cone penetrometer is effective. That is, the cone index a1 is measured by a cone penetrometer, and the cut index indicated by the product (a1 × c) of the ratio c (= D / H) of the cut depth D and the artificial stone material thickness H is expressed by equation (2). By forming the cut groove at this time, it is possible to form the cut groove that does not cause any rise or surface crack.
また、表面硬度aの測定には、土壌の硬度を測定する山中式土壌硬度計を用いる手法も有効である。すなわち、表面硬度aを山中式土壌硬度計による硬度a2で測定し、切込み深さDと人工石材厚みHの比c(=D/H)との積(a2×c)で示される切込み指数を(3)式の時に切込み溝を形成することで、共上りも表面割れもない生じない切込み溝を形成することができる。 In addition, for the measurement of the surface hardness a, a technique using a Yamanaka type soil hardness meter that measures the hardness of the soil is also effective. That is, the surface hardness a is measured by a hardness a2 by a Yamanaka type soil hardness meter, and the cutting index indicated by the product (a2 × c) of the cutting depth D and the ratio c (= D / H) of the artificial stone thickness H is obtained. By forming the cut groove at the time of the formula (3), it is possible to form a cut groove that does not cause both rising and surface cracking.
この方法によれば、切込み溝を入れるための仕切り板は専用のものである必要がないため、厚さ50cm超100cm以下の任意の大きさの人工石材への対応を容易に行うことができる。 According to this method, since the partition plate for inserting the cut groove does not need to be a dedicated one, it is possible to easily cope with an artificial stone material having a thickness of more than 50 cm and not more than 100 cm.
また、本発明に係る大型人工石材の製造方法では、前記水硬性材料の容積率は、製鋼スラグが64〜71vol%、セメント、高炉セメント、高炉スラグ微粉末の合計量が9〜12vol%、水が15〜18vol%、空気量4〜6vol%の混合物であることを特徴としている。 Further, in the method for producing a large artificial stone according to the present invention, the volume ratio of the hydraulic material is such that the steelmaking slag is 64 to 71 vol%, the total amount of cement, blast furnace cement and blast furnace slag fine powder is 9 to 12 vol%, water Is characterized by being a mixture of 15-18 vol% and air volume 4-6 vol%.
さらに、本発明に係る大型人工石材の製造方法では、前記水硬性材料の容積率は、製鋼スラグと高炉水砕スラグの合計量が66〜69vol%、セメント、高炉セメント、高炉スラグ微粉末の合計量が10〜12vol%、水が15〜18vol%、空気量4〜6vol%の混合物であることを特徴としている。 Furthermore, in the method for producing a large artificial stone according to the present invention, the volume ratio of the hydraulic material is such that the total amount of steelmaking slag and granulated blast furnace slag is 66 to 69 vol%, and the total of cement, blast furnace cement, and blast furnace slag fine powder. It is characterized by being a mixture of 10 to 12% by volume, 15 to 18% by volume of water, and 4 to 6% by volume of air.
本発明による大型人工石材の製造方法によれば、製鋼スラグを用いた水硬性材料(水和固化体等)により大型の人工石材を製造することができ、製鉄所で副産する製鋼スラグや高炉水砕スラグを有効活用した安価な人工石材を製造することができる。製鋼スラグは、成分中に鉄分やカルシウム分、シリカ分等のミネラル成分を含むため、水硬性材料に用いることで、海水中でこれらが溶出して生物の生育を促す。また、本発明で製造された人工石材の破砕面は、海藻類の着生がし易い凹凸面を有することから、藻礁基質として適しており、藻礁用の大型人工石材として安価に提供できる。 According to the method for producing a large artificial stone material according to the present invention, a large artificial stone material can be produced from a hydraulic material (such as a hydrated solid body) using steel slag, and a steelmaking slag or blast furnace produced as a by-product at a steelworks. An inexpensive artificial stone material that effectively utilizes granulated slag can be produced. Steelmaking slag contains mineral components such as iron, calcium, and silica in its components, so when used as a hydraulic material, it elutes in seawater and promotes the growth of organisms. In addition, since the crushing surface of the artificial stone material produced in the present invention has an uneven surface on which seaweeds tend to settle, it is suitable as an algal reef substrate and can be provided at a low cost as a large artificial stone material for algal reefs. .
本発明の大型人工石材の製造方法によれば、切込み溝の形成過程において、水硬性材料の表面硬度に適した切込み深さを選定することで共上りや表面割れのない破砕に有効な切込み溝を形成することができ、また人工石材の厚みから切込み深さを差し引いた残存厚と、破砕時の水硬性材料の強度とを破砕に好適な条件に設定することで、破砕時のロスが少なく、形状安定性に富んだ人工石材を製造でき、高精度な人工石材を大量にかつ効率的に製造することができる。また、この製造法をもとに鉄鋼スラグを用いた水和硬化体に適用することで、表面凹凸に富む表面性状と、鉄鋼スラグの有するミネラル溶出特性を有した藻床用の大型石材を安価に製造することが可能となる。 According to the method for producing a large artificial stone material of the present invention, in the process of forming the cut groove, the cut groove that is effective for crushing without side-up or surface cracking by selecting a cut depth suitable for the surface hardness of the hydraulic material By setting the remaining thickness obtained by subtracting the cutting depth from the thickness of the artificial stone and the strength of the hydraulic material during crushing to conditions suitable for crushing, the loss during crushing is reduced. Therefore, it is possible to produce an artificial stone material rich in shape stability, and to produce a high-precision artificial stone material in a large amount and efficiently. In addition, by applying this method to a hydrated hardened body using steel slag, it is possible to reduce the cost of large stones for algae beds that have surface properties rich in surface irregularities and mineral elution characteristics of steel slag. Can be manufactured.
以下、本発明の実施の形態による大型人工石材の製造方法について、図面に基づいて説明する。 Hereinafter, the manufacturing method of the large sized artificial stone material by embodiment of this invention is demonstrated based on drawing.
本実施の形態による大型人工石材の製造方法は、経時的に硬化していく水硬性材料Cを用いて製作される厚さ50cm超100cm以下の人工石材1を製造するための方法であり、図1に示すように、所定の平面敷地において、四方を囲うように移動可能な外枠ブロック2(外周型枠)を設置し、その外枠ブロック2内に水硬性材料Cを充填する。
The method for producing a large artificial stone material according to the present embodiment is a method for producing an
外枠ブロック2は、複数に分割された石材からなるブロックであって、これらブロックを適宜組み合わせることによって任意の大きさの外枠を形成することができる。本実施の形態では、上から見て縦長の長方形状に形成されている。そして、本実施の形態では、外枠ブロック2の内側に打設されることによって製造される人工石材1は、短辺方向に4列、長辺方向に8列で合計32個が製造されることになる。なお、人工石材1は、例えば縦横高さがそれぞれ1mの寸法である。
外枠ブロック2は、平面の敷地内に人工石材1の厚み以上の高さを有するとともに、上面視で矩形状に囲うものである。
The
The
外枠ブロック2内に打設される水硬性材料Cは、スランプ値で5〜12cmに調合される。表1には、水硬性材料Cとしてコンクリートと水和固化体を用いて充填試験を行った結果を示している。ここで表1には、14種類の配合例が記載されている。表中に記載したスランプ値は、試験中に行った複数回の試験結果の範囲を記載している。また、表中の各No.の下段に記載した容積比率(vol%)は、空気量を含めた合計容積を100とした時の、それぞれの配合材料の容積比率を記載している。No.1〜4はコンクリートであるが、スランプが5cm未満(No.1)では充填密度が悪く、またスランプ13cm超(No.2)では打設厚さの保持できず、材料が流動崩壊して、その上に重機を用いた重ね打設が難しくなっているのに対し、スランプ5〜12cmの範囲(No.3、4)では、充填密度の確保、打設厚さの保持も問題なくできている。この状況は、No.5〜14の水和固化体を用いた結果においても同様である。すなわち、スランプが5cm未満(No.5)では充填密度が悪く、またスランプ13cm超(No.6)では打設厚さを保持できず、材料が流動崩壊して、その上に重機を用いた重ね打設が難しくなっているのに対し、スランプ5〜12cmの範囲(No.7〜14)では、充填密度の確保、打設厚さの保持も問題なくできている。水和固化体を用いた試験配合の内、No.7〜10は、製鋼スラグが64〜71vol%、セメント、高炉セメント、高炉スラグ微粉末の合計量が12〜9vol%、水が18〜15vol%の水硬性混合物である。また、No.11〜14は、製鋼スラグと高炉水砕スラグの合計量が66〜69vol%、セメント、高炉セメント、高炉スラグ微粉末の合計量が10〜12vol%、水が18〜15vol%の水硬性混合物である。
The hydraulic material C placed in the
そして、本実施の形態による大型人工石材の製造方法では、外枠ブロック2内で所定高さまで打設した水硬性材料Cを、パワーショベルのバケット等を使用して転圧し、打設面を均す。次に、所定の硬度まで硬化した時点で、重機のアタッチメントとして装着された図2に示す切込み器具3を使用して、外枠ブロック2内に打設した水硬性材料Cの上面から所定の深さまで切り込みを行って切込み溝Kを形成する。
Then, in the method for manufacturing a large artificial stone material according to the present embodiment, the hydraulic material C cast to a predetermined height in the
切込み器具3は、図2及び図3(a)、(b)に示すように、横板31(仕切り板)と、横板31の一方面に垂設されるとともに製造される人工石材1の略幅寸法に相当する距離を開けて配列された4枚の縦板32(仕切り板)と、を備えている。この切込み器具3は、横板31及び縦板32のそれぞれの面を上下方向に向けた状態で水硬性材料C内に挿し込まれることで、該水硬性材料Cに所定深さD(図4及び図5参照)の切込み溝Kが切り込まれることになる。横板31及び縦板32は、図示は省略するが、上から下に向かうに従い漸次厚みが小さくなっている。つまり、本実施の形態の切込み器具3では、1回の切込みで、一方向に3つの人工石材1を区画することができる。
As shown in FIG. 2 and FIGS. 3A and 3B, the
切込み器具3の切込み部分の図3(a)に示す長さ寸法Lは、人工石材の厚み内で所望の深さの切込みを行うため、人工石材の厚み程度を確保することが望ましい。
The length L shown in FIG. 3A of the incision portion of the
切込みによって切込み溝Kを形成するタイミングは、貫入時に動的な力を加えなくても切込みが形成でき、かつ切込みを入れたのちに切込みが消失しない程度の硬さを保ちつつ、切込み器具引き抜きの際に材料の共上りによる表面割れが生じない深さと時期とする必要がある。そこで、このタイミングとして、打設後の水硬性材料の表面硬度と切込み溝の深さの関係を適正範囲にすることで、貫入抵抗が比較的小さい状態で、切込み溝の消失や共上りによる表面割れのない切込み溝を形成し得ることから、これを切込み指数(後述する(2)式、及び(3)式)で規定する。 The timing of forming the cut groove K by cutting is such that the cut can be formed without applying dynamic force at the time of penetration, and the cutting tool can be pulled out while maintaining a hardness that does not disappear after the cut is made. At this time, it is necessary to set the depth and timing so that surface cracking due to the co-up of materials does not occur. Therefore, at this timing, by setting the relationship between the surface hardness of the hydraulic material after placement and the depth of the cut groove to an appropriate range, the surface caused by the disappearance of the cut groove and the rising up in a state where the penetration resistance is relatively small. Since it is possible to form a cut groove without cracks, this is defined by a cut index (formulas (2) and (3) described later).
まず水硬性材料の凝結・硬化過程における表面硬度を測定する手法は種々考えられ、製造現場条件に適したものを選定すればよい。たとえば、コンクリートの凝結時間の測定法である、JIS A 1147「コンクリートの凝結時間試験方法」に示されるプロクター貫入抵抗測定器等が挙げられる。そして、種々の測定法を検証し、大型人工石材の切込み溝形成の管理に用いる手法として、コーンペネトロメータによるコーン指数や山中式土壌硬度計による硬度を用いる管理手法を採用した。 First, there are various methods for measuring the surface hardness of the hydraulic material in the setting / curing process, and a method suitable for the production site conditions may be selected. Examples thereof include a proctor penetration resistance measuring instrument shown in JIS A 1147 “Concrete setting time test method”, which is a method for measuring the setting time of concrete. Then, various measuring methods were verified, and a management method using a cone index with a cone penetrometer or a hardness with a Yamanaka soil hardness tester was adopted as a method for managing the formation of a cut groove in a large artificial stone.
これらの手法を水硬性材料に適用した場合には、両者には図6に示すような線形の関係がある。そして、表面硬度と貫入抵抗、切込み溝の消失度、共上りによる表面割れの程度の関係から、良好な切込み溝を形成しうる条件を求めた。具体例として、コーンペネトロメータによるコーン指数や山中式土壌硬度計による硬度をもとに、良好な切込み溝を形成し得る条件について説明する。 When these methods are applied to hydraulic materials, both have a linear relationship as shown in FIG. And the conditions which can form a favorable cut groove | channel were calculated | required from the relationship between the surface hardness, penetration resistance, the loss | disappearance degree of a cut groove | channel, and the degree of the surface crack by co-up. As a specific example, the conditions under which a good cut groove can be formed will be described based on the cone index by a cone penetrometer and the hardness by a Yamanaka type soil hardness meter.
先ず、コーン指数による硬度に基づく、切込み溝の形成条件について説明する。
表2は、切込み溝の形成状況の評価をコーン指数で行ったものである。打設後一定時間経過した後のコーン指数a1を、コーンペネトロメータを用いて時間経過ごとに測定し、コーン指数a1を測定した時と同時期に切込み器具を用いて切込み溝を、切込み深さDを変化させて行った。人工石材の総厚Hに対する切込み溝の深さDの比(切込み深さ比)をc=D/Hとし、a1×cを切込み指数と定義して、これと切込み溝の形成状況の関係を調べた。
First, conditions for forming the cut groove based on the hardness based on the cone index will be described.
Table 2 shows the evaluation of the formation condition of the cut groove by the cone index. The cone index a1 after a certain time has elapsed after placement is measured for each time using a cone penetrometer, and at the same time as the cone index a1 is measured, the cutting groove is formed by using a cutting tool. This was done by changing D. The ratio of the depth D of the cut groove to the total thickness H of the artificial stone (cut depth ratio) is c = D / H, and a1 × c is defined as the cut index, and the relationship between this and the formation condition of the cut groove Examined.
切込み溝の形成状況の評価は、貫入抵抗の大小、切込み溝の消失度、共上りによる表面割れの有無で行い、問題がある場合を0.5、さらに0.5よりも問題が大きい場合を0.25とし、問題ない場合を1.0として評点を与え、全てにおいて問題が生じない状態(全評点の掛け算が1.0となる状態)を整理した。これらをまとめたものが表2であり、さらに切込み指数と切込み溝の評点の関係を整理したのが図7である。これより、コーン指数a1を用いる場合は、(2)式を満足する範囲であれば、良好な切込み溝が形成し得る。 The evaluation of the formation condition of the cut groove is performed based on the penetration resistance size, the disappearance degree of the cut groove, and the presence or absence of surface cracks due to co-upping. The case where there is a problem is 0.5, and the case where the problem is larger than 0.5. The score was given as 0.25, 1.0 when there was no problem, and the state where no problem occurred in all (state where multiplication of all scores was 1.0) was arranged. These are summarized in Table 2, and FIG. 7 shows the relationship between the cut index and the score of the cut groove. Accordingly, when the cone index a1 is used, a good cut groove can be formed as long as the expression (2) is satisfied.
表2に基づいて(2)式を定義した根拠について、さらに具体的に説明する。
ここで、良好な切込みは、上述したように切込み治具を用いて挿入した切込み溝が消失せずに、共上がりや衝撃による表面割れが起こらない範囲であって、できるだけ深く入れることにより形成される。一方で、切込み溝の切込み深さ比cが0.2程度で浅い場合には、破砕時に切込み溝に沿った破砕が難しく所望の寸法の石材ができないことが確認されている。
また、切込み溝が消失しないためには、水硬性材料の凝結硬化がある程度進む必要がある。コーン指数a1が500kN/m2程度を下回る領域では、水硬性材料が軟らか過ぎとなり、切込み溝が消失するため、コーン指数a1が500kN/m2程度を下回る領域は対象外とする。
The basis for defining equation (2) based on Table 2 will be described more specifically.
Here, a good incision is formed by making it as deep as possible within the range where the notch groove inserted using the incision jig does not disappear as described above and surface cracks due to co-up and impact do not occur. The On the other hand, when the cutting depth ratio c of the cutting groove is about 0.2 and shallow, it has been confirmed that crushing along the cutting groove is difficult at the time of crushing, and that a stone material having a desired size cannot be formed.
Further, in order to prevent the cut groove from disappearing, the condensation hardening of the hydraulic material needs to proceed to some extent. In the region where the cone index a1 is less than about 500 kN / m 2 , the hydraulic material becomes too soft and the cut groove disappears. Therefore, the region where the cone index a1 is less than about 500 kN / m 2 is excluded.
(2)式の切込み指数(a1×c)の下限値は、表2を根拠とする。つまり、表2のケースNo.1−7において、コーン指数a1が744kN/m2、切込み指数483.6となり、評点が1となって、貫入抵抗の大小、切込み溝の消失度、共上りによる表面割れの有無に関する問題なしとなる。そして、ケースNo.1−4において、コーン指数が449kN/m2、切込み指数が404.1となり、評点が0.5で問題ありとなる。そのため、(2)式における切込み指数の下限値は、上記両者の略中間値をとり440に設定した。つまり、切込み指数が440より小さいときには、水硬性材料が軟らか過ぎとなり、切込み溝が消失する。 The lower limit value of the cutting index (a1 × c) in equation (2) is based on Table 2. That is, Case No. In 1-7, the cone index a1 was 744 kN / m 2 , the cutting index 483.6, the rating was 1, and there was no problem regarding the magnitude of penetration resistance, the disappearance of the cutting groove, and the presence or absence of surface cracks due to coup. Become. Case no. In 1-4, the cone index is 449 kN / m 2 , the cutting index is 404.1, and the rating is 0.5, which is problematic. Therefore, the lower limit value of the cutting index in the equation (2) is set to 440, which is a substantially intermediate value between the two. That is, when the cutting index is smaller than 440, the hydraulic material is too soft and the cutting groove disappears.
次に、切込み指数(a1×c)の上限値の根拠について説明する。
表面割れを起こさず、深い溝(目途として切込み深さ比cで0.5以上)を入れるには、水硬性材料の凝結硬度が過度に進んでいないことが必要である。そして、硬くなるほど、治具挿入時の抵抗が大きく、引き抜く時の摩擦抵抗も大きくなるため、表面割れが生じ易いことが確認されている。
例えば、ほぼ石材の厚さに等しいD/H=0.8〜0.9で良好な切込み溝を入れる条件は、コーン指数で700〜1700kN/m2程度であり、1700kN/m2程度を(2)式の上限値の条件に設定する。これ以上硬くなった領域では、深い溝の場合に表面割れが生じるため、割れのない溝を形成するには、浅い溝にするしかない。コーン指数3000kN/m2であればD/H=0.5〜0.6、4000kN/m2であればD/H=0.3〜0.4が得られ、これが(2)式の上限値の根拠となる。
Next, the basis of the upper limit value of the cutting index (a1 × c) will be described.
In order to form a deep groove (as a target, the cutting depth ratio c is 0.5 or more) without causing surface cracks, it is necessary that the setting hardness of the hydraulic material does not advance excessively. And it has been confirmed that surface cracking is likely to occur because the harder the resistance at the time of jig insertion and the higher the frictional resistance at the time of extraction.
For example, the condition for inserting a good slit at D / H = 0.8 to 0.9 which is substantially equal to the thickness of the stone is about 700 to 1700 kN / m 2 in terms of cone index, and about 1700 kN / m 2 ( 2) Set to the condition of the upper limit of the equation. In regions harder than this, surface cracks occur in the case of deep grooves, so the only way to form a crack-free groove is to make it shallow. If the cone index is 3000 kN / m 2 , D / H = 0.5 to 0.6, and if 4000 kN / m 2 , D / H = 0.3 to 0.4 is obtained, which is the upper limit of the formula (2). This is the basis for the value.
具体的には、表2において、コーン指数a1で1733kN/m2を上限としたとき、ケースNo.1−10において、切込み深さ比cが0.8、切込み指数が1386.4となり、評点が1で問題なしとなる。一方、ケースNo.1−11において、切込み深さ比cが0.95、切込み指数が1646.4となり、評点が0.25で問題ありとなる。そのため、(2)式における切込み指数の上限値は、上記両者の略中間値をとり1520に設定した。つまり、切込み指数a1が1520を超えるときには、コーン指数a1が大きくなり硬くなるので、溝形成が困難になるうえ、引抜き時の摩擦抵抗も大きくなり表面割れが生じる。
以上により、コーン指数a1と切込み溝の深さDの比cとの関係を示す切込み指数を用いて、切込み性の評価(切込み溝の評点)を示す(2)式を定義している。
Specifically, in Table 2, when the cone index a1 is 1733 kN / m 2 as the upper limit, In 1-10, the cutting depth ratio c is 0.8, the cutting index is 1386.4, the score is 1, and there is no problem. On the other hand, Case No. 1-11, the cutting depth ratio c is 0.95, the cutting index is 1646.4, and the score is 0.25, which is problematic. For this reason, the upper limit value of the cutting index in the equation (2) is set to 1520, which is a substantially intermediate value between the two. That is, when the cutting index a1 exceeds 1520, the cone index a1 increases and becomes hard, so that it becomes difficult to form a groove, and the frictional resistance at the time of drawing increases and surface cracking occurs.
As described above, the expression (2) indicating the evaluation of the cutting property (score of the cutting groove) is defined by using the cutting index indicating the relationship between the cone index a1 and the ratio c of the depth D of the cutting groove.
次に、山中式土壌硬度計による硬度に基づく、切込み溝の形成条件について説明する。
上記のコーン指数と同様に、山中式土壌硬度計による硬度a2を用いた場合について調べた結果を表3、図8に示す。この場合は、(3)式を満足すれば、良好な切込み溝が形成し得る。
Next, the conditions for forming the cut groove based on the hardness by the Yamanaka type soil hardness meter will be described.
Similar to the above-mentioned cone index, the results of examining the case where the hardness a2 by the Yamanaka type soil hardness tester is used are shown in Table 3 and FIG. In this case, if the expression (3) is satisfied, a good cut groove can be formed.
(3)式の切込み指数(a2×c)の下限値は、表3を根拠とする。表3のケースNo.2−4において、山中式土壌硬度計硬度a2が639で、切込み深さ比cが0.9、切込み指数が574.7となり、評点が0.5で問題ありとなる。そして、ケースNo.2−7において、山中式土壌硬度計硬度a2が1037で、切込み深さ比cが0.65、切込み指数が674となり、評点が1で問題なしとなる。そのため、(3)式における切込み指数の下限値は、上記両者の略中間値をとり630に設定した。つまり、切込み指数が630よりも小さいときには、水硬性材料が軟らか過ぎとなり、切込み溝が消失する。 The lower limit value of the cutting index (a2 × c) in the equation (3) is based on Table 3. Case No. in Table 3 In 2-4, the Yamanaka soil hardness tester hardness a2 is 639, the cutting depth ratio c is 0.9, the cutting index is 574.7, and the rating is 0.5, which is problematic. Case no. In 2-7, the Yamanaka-type soil hardness meter hardness a2 is 1037, the depth of cut ratio c is 0.65, the depth of cut index is 674, the score is 1, and there is no problem. Therefore, the lower limit value of the cutting index in the equation (3) is set to 630, which is an approximately intermediate value between the two. That is, when the cutting index is smaller than 630, the hydraulic material is too soft and the cutting groove disappears.
次に、切込み指数(a2×c)の上限値の根拠について説明する。
表3のケースNo.2−15において、山中式土壌硬度計硬度a2が4158で、切込み深さ比cが0.4、切込み指数が1663.1となり、評点が1で問題なしとなる。そして、ケースNo.2−12において、山中式土壌硬度計硬度a2が2744で、切込み深さ比cが0.65、切込み指数が1783.6となり、評点が0.25で問題ありとなる。そのため、(3)式における切込み指数の上限値は、上記両者の略中間値をとり1720に設定した。つまり、切込み指数が1720を超えるときには、硬度が硬く抵抗が大きくなるので、溝形成が困難になるうえ、引抜き時の摩擦抵抗も大きくなり表面割れが生じる。
Next, the basis of the upper limit value of the cutting index (a2 × c) will be described.
Case No. in Table 3 2-15, the Yamanaka soil hardness tester hardness a2 is 4158, the cutting depth ratio c is 0.4, the cutting index is 1663.1, the score is 1, and there is no problem. Case no. 2-12, the Yamanaka soil hardness tester hardness a2 is 2744, the cutting depth ratio c is 0.65, the cutting index is 1783.6, and the rating is 0.25. Therefore, the upper limit value of the cutting index in the equation (3) is set to 1720, which is an approximately intermediate value between the two. That is, when the cutting index exceeds 1720, the hardness is high and the resistance is increased, so that it is difficult to form a groove, and the frictional resistance at the time of drawing is increased, resulting in surface cracks.
ここで、切込み溝を形成後、切込み線からの逸脱がなく、また破砕屑の発生を抑えて歩留りの高い破砕を行うには、破砕時の強度を形成した切込み溝の状況に応じて適切にしなければならない。そこで、破砕時の破砕抵抗は、人工石材の厚みHから切込み溝の深さDを差し引いた残存厚Aとその時の水硬性材料の発現強度に依存することから、養生後の水硬性材料の一軸圧縮強度σと、人工石材の厚みHから切込み深さDを減じた残存厚さAの人工石材の厚みHの比e(=A/H)との積(σ×e、本発明では残存部強度指数と称す)をパラメータとして、種々の強度、切込み溝深さにおいて、破砕性の評価を行った。破砕性の評価は、破砕作業を効率よく、所望の寸法で破砕ロスが少なくできることが良好な状態という考えから、破砕作業の能率、破砕面の切込み線からの逸脱度、破砕屑の発生量の観点から評価した。そして、それぞれの評価において、破砕能率が悪い場合、破砕線の逸脱度が大きく所望寸法にできない場合、破砕屑が10%以上発生する場合の評点を0.5、それ以外の良好な状態を1.0として、すべてが良好な状態(評点の掛け算が1.0となる状態)を調べた。その結果を表4に、また残存部強度指数と総合評点の関係を図9に示す。その結果、評点で1となるときの残存部強度指数σ×eが0〜6.5となることから、(1)式を満足する時点で破砕を行うことにより、良好な破砕が可能となる。 Here, after forming the cut groove, there is no deviation from the cut line, and in order to suppress the generation of crushed debris and perform high-yield crushing, the strength at the time of crushing should be appropriately set according to the condition of the cut groove. There must be. Therefore, since the crushing resistance at the time of crushing depends on the remaining thickness A obtained by subtracting the depth D of the cut groove from the thickness H of the artificial stone material and the expression strength of the hydraulic material at that time, it is an axis of the hydraulic material after curing. The product (σ × e, the remaining portion in the present invention) of the compressive strength σ and the ratio e (= A / H) of the thickness H of the artificial stone with the remaining thickness A obtained by subtracting the cutting depth D from the thickness H of the artificial stone. Using the strength index as a parameter, friability was evaluated at various strengths and depths of cut grooves. The evaluation of crushability is based on the idea that the crushing operation is efficient and that the crushing loss can be reduced with the desired dimensions, so that the efficiency of the crushing operation, the deviation from the cut line of the crushing surface, and the amount of crushing waste generated Evaluated from the viewpoint. And in each evaluation, when the crushing efficiency is poor, when the deviation degree of the crushing line is large and the desired size cannot be obtained, the score when the crushing waste is 10% or more is 0.5, and the other good condition is 1 0.0, all in good condition (state where the multiplication of the score is 1.0) was examined. The results are shown in Table 4, and the relationship between the remaining part strength index and the overall score is shown in FIG. As a result, since the remaining part strength index σ × e when the score is 1 is 0 to 6.5, good crushing is possible by performing crushing when the equation (1) is satisfied. .
(1)式において、下限値0は、強度が小さい状態で良好な破砕を行うためのもので、深い切込み溝が形成されていた場合の条件となる。また、上限値6.5は、強度発現がある程度進んでしまうと、切込み深さ比cが0.5以下となる浅い切込み溝では、良好な破砕ができないことを確認したことに基づいて設定している。
以上により、圧縮強度σと、残存厚さAの人工石材厚みHとの比eとの関係を示す残存部強度指数を用いて(1)式を定義している。
In the formula (1), the
As described above, the equation (1) is defined using the residual portion strength index indicating the relationship between the compressive strength σ and the ratio e between the residual thickness A and the artificial stone material thickness H.
具体的に残存部強度指数σ×eの下限値の根拠について説明する。表4のケースNo.3−4において、残存部強度指数が0.6で評点が1となり、問題なしとなる。この場合、0.6より小さいと、切込み深さが大きくなり、残存部が小さくなるので、残存部に割れが生じる。ここで、残存部強度指数σ×eが0とは、石材厚を貫通する切込み溝を形成した場合を示している。つまり、下限値が0.6より小さい場合でも問題なく人工石を製作することができる。なお、厚さ50〜100cmの人工石材を対象としているが、厚みが60cmを超える場合には、切込み溝の形成が難しいが、50〜60cm程度の場合には、全厚みを貫通する切込み溝を形成することができる(e=0の状態)。貫通した切込み溝であれば、ほとんど破砕することなく所定寸法に分割された人工石が得られ、問題なく石材製造ができる。したがって、厚み60cmを超える石材の場合であっても、切込み溝を入れる治具を工夫することで、厚みの厚い場合でも切込み深さ比cが1.0(e=0)の状態を実現することが可能となることから、(1)式の下限値を0に設定している。 Specifically, the basis of the lower limit value of the remaining portion strength index σ × e will be described. Case No. 4 in Table 4 In 3-4, the remaining part strength index is 0.6 and the rating is 1, which is no problem. In this case, if it is smaller than 0.6, the depth of cut becomes large and the remaining portion becomes small, so that a crack occurs in the remaining portion. Here, the remaining portion strength index σ × e of 0 indicates a case where a cut groove penetrating the stone thickness is formed. That is, an artificial stone can be produced without any problem even when the lower limit value is smaller than 0.6. In addition, although the target is an artificial stone material having a thickness of 50 to 100 cm, when the thickness exceeds 60 cm, it is difficult to form a cut groove, but in the case of about 50 to 60 cm, a cut groove that penetrates the entire thickness is formed. Can be formed (e = 0 state). If the cut groove penetrates, an artificial stone divided into predetermined dimensions can be obtained with almost no crushing, and the stone can be produced without any problem. Therefore, even in the case of a stone having a thickness exceeding 60 cm, a state in which the cutting depth ratio c is 1.0 (e = 0) is realized even if the thickness is large by devising a jig for inserting a cutting groove. Therefore, the lower limit value of the equation (1) is set to 0.
次に、残存部強度指数σ×eの上限値の根拠について説明する。表4のケースNo.3−11において、評点が1で問題なしとなる残存部強度指数が最大値6.2となる。また、ケースNo.3−15において、評価が問題ありとなる残存部強度指数が最小値6.9となる。そのため、(1)式における残存部強度指数の上限値は、上記両者の略中間値をとり6.5に設定した。つまり、残存部強度指数が6.5を超えるときには、強度発現がある程度進み、切込み深さ比cが0.5以下の浅い切込み溝となる場合に、残存部の破砕抵抗強度が大きくなり過ぎて良好な破砕ができない。 Next, the basis of the upper limit value of the remaining portion strength index σ × e will be described. Case No. 4 in Table 4 In 3-11, the remaining portion strength index that gives a problem with a score of 1 has a maximum value of 6.2. Case no. In 3-15, the residual strength index at which the evaluation is problematic is the minimum value of 6.9. Therefore, the upper limit value of the remaining part strength index in the formula (1) is set to 6.5, which is a substantially intermediate value between the two. That is, when the remaining portion strength index exceeds 6.5, the strength development proceeds to some extent, and when the depth of cut depth c becomes a shallow groove with a depth of c of 0.5 or less, the crushing resistance strength of the remaining portion becomes too large. Good crushing is not possible.
次に、上述した人工石材1の製造方法の施工手順と作用について、図10及び図11に基づいて説明する。
先ず、図10に示すように、平面の敷地内に人工石材1の厚み以上の高さを有するとともに、上面視で矩形状に囲う外枠ブロック2を設置する。
Next, the construction procedure and operation of the method for manufacturing the
First, as shown in FIG. 10, an
次に、図11(a)、(b)に示すように、外枠ブロック2の内部に、スランプ5〜12cmに調合された水硬性材料Cを人工石材の厚みHとなるように充填・成形する。そして、図11(c)に示すように、外枠ブロック2内への充填中、又は充填完了後の水硬性材料Cの表面硬度aを計測しつつ、破砕効率も見込んで設定した切込み深さDを考慮した切込み指数a×c(c=D/H)となった時点で、打設面の上面から下方へ向けて人工石材1の所望の平面寸法に区画された切込み器具3(横板31、縦板32)を重機30を用いて、深さDの切込み溝Kを形成する。
Next, as shown in FIGS. 11 (a) and 11 (b), the
その後、図5に示すように人工石材1の厚みHから切込み深さDを差し引いた残存厚Aと一軸圧縮強度σから求まる残存部強度指数(e=σ×A/H)が、上述した(1)式を満足する時点で、図示しない油圧ブレーカー等を備えた破砕機を用いて人工石材1に形成された切込み線(切込み溝K)に沿って破砕する。つまり、油圧ブレーカーのチゼルを切込み溝Kに挿入させることで、人工石材1同士が連設する残存厚Aの部分を破壊して分離することができる。とくに、切込み溝Kが交差する位置でコンクリートブレーカーの先端位置を固定し易くなる。
Thereafter, as shown in FIG. 5, the residual thickness index (e = σ × A / H) obtained from the residual thickness A obtained by subtracting the cutting depth D from the thickness H of the
このように、厚さ50cm超100cm以下の人工石材1を製作する際、スランプ5超12cmに調合された水硬性材料Cを打設し、水硬性材料Cの表面硬度の切込み深さDを所望の切込み指数の範囲内となる表面硬度の時点で切込み深さDの切込み溝Kを形成し、その後、一軸圧縮強度が、上述した(1)式を満足する強度以上となった時点で切込み線に沿って破砕することで、人工石材1を大量にかつ効率的に製造することができる。
Thus, when manufacturing the
この場合、切込み溝Kを入れるための切込み器具3は専用のものである必要がないため、厚さ50cm超100cm以下の任意の大きさの人工石材1への対応を容易に行うことができる。
また、製造された人工石材1の破砕面や表面性状が海藻類の着生がし易い凹凸面を有することから、藻礁基質として適しており、藻礁用の人工石材1を効率的に大量の製造することができる。
In this case, since the
In addition, since the
また、本実施の形態では、鉄鋼スラグを材料に用いた人工石材1を製造することができ、製鉄所で生じ得る鉄鋼スラグを利用して、製造効率を向上させることができ、且つ製造コストの低減を図ることができる。
Moreover, in this Embodiment, the
上述した本実施の形態による大型人工石材の製造方法では、人工石材1の厚みHから切込み深さDを差し引いた残存厚Aと、破砕時の水硬性材料Cの強度とを破砕に好適な条件に設定することで、切込み溝Kの形成時において打設した水硬性材料Cの共上がりを防止することができ、高精度な人工石材1を大量にかつ効率的に製造することができる。
In the manufacturing method of the large-sized artificial stone material by this Embodiment mentioned above, the residual thickness A which deducted the cutting depth D from the thickness H of the
次に、上述した実施の形態による大型人工石材の製造方法の効果を裏付けるために行った実施例について以下説明する。 Next, examples carried out to support the effects of the method for producing a large artificial stone material according to the above-described embodiment will be described below.
(実施例)
本実施例では、表5に示すように、製造パターン毎に30ケースの試験製造を行った。試験は、表面硬度をコーンペレトノメータによるコーン指数で測定しつつ、コーン指数毎に切込み深さを変化させて、まず切込み性の評価を行った。切込み深さは、全厚さに対する切込み深さの比(D/H)で、0.1〜0.2、0.3〜0.5、0.6〜0.8、0.9〜1.0の4水準で行った。
(Example)
In this example, as shown in Table 5, 30 cases of test production were performed for each production pattern. In the test, the surface hardness was measured by a cone index with a cone pertonometer, and the depth of cut was changed for each cone index, and the depth of cut was first evaluated. The depth of cut is the ratio of the depth of cut to the total thickness (D / H), 0.1-0.2, 0.3-0.5, 0.6-0.8, 0.9-1 It was performed at 4 levels of 0.0.
そして、切込み作業が問題なかったケースについて、一軸圧縮強度の発現度合いに応じて破砕を行い、破砕性の評価を行った。 And about the case where there was no problem in cutting operation, it crushed according to the expression degree of uniaxial compressive strength, and evaluated crushability.
評価方法は、まず切込み作業においては、何らかの問題があった場合は「×」、問題がなかった場合は「○」とした。良好な切込み溝が形成できないと、良好な破砕ができないため、破砕作業は行わなかった。また、破砕作業においては、破砕効率が劣るものは「×」、効率的に問題ないものは「○」とし、また、破砕形状や屑発生については、結果的に製品の歩留りに反映されることから、形状の不良や屑の発生により、歩留り80%以下の場合を「×」、歩留り80〜90%の場合を「△」、歩留り90%以上を「○」として評価した。 The evaluation method was “X” when there was any problem in the cutting operation, and “◯” when there was no problem. If good cutting grooves could not be formed, good crushing could not be performed, so crushing work was not performed. Also, in crushing operations, “×” indicates that the crushing efficiency is inferior, “○” indicates that there is no problem with efficiency, and crushing shapes and waste generation are reflected in the product yield as a result. From the above, the case where the yield was 80% or less was evaluated as “×”, the case where the yield was 80 to 90% was evaluated as “Δ”, and the yield was evaluated as “◯” when the yield was 90% or more.
表5に示すように、切込み試験の結果では、切込み指数が、本発明の範囲内(440≦(a1×c)≦1520)であれば、良好な切込み溝を形成できている。また、切込み指数が本発明の範囲外の場合でも、切込み深さが比較的浅い場合で、問題ない切込み作業が実施できた(試験ケース5〜10)。
一方、破砕作業については、残存強度指数が本発明の範囲内(0≦(σ×e)≦6.5)であれば、歩留り90%以上の良好な破砕作業が実施できた。一方、残存強度指数が本発明の範囲外の場合、破砕効率、歩留り等の面で問題のある結果となっており、良好な破砕作業は行なえなかった。
As shown in Table 5, in the result of the cutting test, when the cutting index is within the range of the present invention (440 ≦ (a1 × c) ≦ 1520), a good cutting groove can be formed. In addition, even when the cutting index was outside the range of the present invention, no problem cutting work could be performed when the cutting depth was relatively shallow (test cases 5 to 10).
On the other hand, for the crushing work, if the residual strength index was within the range of the present invention (0 ≦ (σ × e) ≦ 6.5), a good crushing work with a yield of 90% or more could be performed. On the other hand, when the residual strength index is outside the range of the present invention, there are problems in terms of crushing efficiency, yield, etc., and good crushing work could not be performed.
以上、本発明による大型人工石材の製造方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although embodiment of the manufacturing method of the large sized artificial stone material by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
例えば、上述した実施の形態では、外枠ブロック2として石材ブロックを採用しているが、板状の型枠であってもよい。
For example, in the above-described embodiment, a stone block is adopted as the
また、人工石材1を形成する水硬性材料としては、鉄鋼スラグを用いた水硬性材料Cであることに限定されることはなく、一般的な骨材を使用した普通コンクリートであってもかまわない。
Further, the hydraulic material forming the
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention.
1 人工石材
2 外枠ブロック(外周型枠)
3 切込み器具
31 横板(仕切り板)
32 縦板(仕切り板)
A 残存厚
C 水硬性材料
D 切込み深さ
H 人工石材の厚さ
K 切込み溝
1
3 Cutting
32 Vertical plate (partition plate)
A Remaining thickness C Hydraulic material D Depth of cut H Thickness of artificial stone K Cut groove
Claims (5)
平面敷地内に人工石材の厚み以上の高さを有し、上面視で矩形状に囲う外周型枠を設置する工程と、
該外周型枠の内部にスランプ値5cm超12cm以下の水硬性材料を充填・成形する工程と、
前記外周型枠内への充填中、又は充填完了後の水硬性材料の表面硬度aと、形成しようとしている切込み深さDの人工石材厚みHの比c(=D/H)との積(a×c)で示される切込み指数を管理指標として、該切込み指数が一定範囲内となるように、前記人工石材の所望の平面寸法に区画された仕切り板を、重機を用いて打設面の上面から下方へ向けて貫入して切込み深さDの切込み溝を形成する工程と、
養生後の水和硬化体の一軸圧縮強度σと、前記人工石材厚みHから前記切込み深さDを減じた残存厚さAの人工石材厚みHとの比e(=A/H)と、の積(σ×e)で示される残存部強度指数が、(1)式を満足する強度となった時点で、破砕機を用いて前記人工石材に形成された前記切込み溝に沿って破砕する工程と、
を有することを特徴とする大型人工石材の製造方法。
A step of installing an outer periphery formwork that has a height equal to or greater than the thickness of the artificial stone material in the plane site and surrounds in a rectangular shape in a top view;
Filling and molding a hydraulic material having a slump value of more than 5 cm and not more than 12 cm inside the outer periphery mold,
The product of the surface hardness a of the hydraulic material during filling into the outer periphery formwork or after completion of filling and the ratio c (= D / H) of the artificial stone thickness H of the cutting depth D to be formed ( Using the cutting index indicated by a × c) as a management index, a partition plate partitioned into a desired plane dimension of the artificial stone material is used to place the cutting surface of the artificial stone using a heavy machine so that the cutting index is within a certain range. Forming a cutting groove having a cutting depth D by penetrating downward from the upper surface;
A ratio e (= A / H) between the uniaxial compressive strength σ of the hydrated cured body after curing and the artificial stone thickness H of the remaining thickness A obtained by subtracting the cutting depth D from the artificial stone thickness H. Step of crushing along the cut groove formed in the artificial stone using a crusher when the remaining portion strength index indicated by the product (σ × e) reaches the strength satisfying the expression (1) When,
A method for producing a large artificial stone characterized by comprising:
製鋼スラグが64〜71vol%、セメント、高炉セメント、高炉スラグ微粉末の合計量が9〜12vol%、水が15〜18vol%、空気量4〜6vol%の混合物であることを特徴とする請求項1乃至3のいずれか1項に記載の大型人工石材の製造方法。 The volume ratio of the hydraulic material is
Steelmaking slag is a mixture of 64 to 71 vol%, cement, blast furnace cement, total amount of blast furnace slag fine powder is 9 to 12 vol%, water is 15 to 18 vol%, and air amount is 4 to 6 vol%. The manufacturing method of the large sized artificial stone material of any one of 1-3.
製鋼スラグと高炉水砕スラグの合計量が66〜69vol%、セメント、高炉セメント、高炉スラグ微粉末の合計量が10〜12vol%、水が15〜18vol%、空気量4〜6vol%の混合物であることを特徴とする請求項1乃至3のいずれか1項に記載の大型人工石材の製造方法。 The volume ratio of the hydraulic material is
The total amount of steelmaking slag and granulated blast furnace slag is 66 to 69 vol%, the total amount of cement, blast furnace cement and blast furnace slag fine powder is 10 to 12 vol%, water is 15 to 18 vol%, and the amount of air is 4 to 6 vol%. The method for producing a large artificial stone material according to any one of claims 1 to 3, wherein the method is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014070525A JP6241350B2 (en) | 2014-03-28 | 2014-03-28 | Manufacturing method of large artificial stone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014070525A JP6241350B2 (en) | 2014-03-28 | 2014-03-28 | Manufacturing method of large artificial stone |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015190277A true JP2015190277A (en) | 2015-11-02 |
JP6241350B2 JP6241350B2 (en) | 2017-12-06 |
Family
ID=54425009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014070525A Active JP6241350B2 (en) | 2014-03-28 | 2014-03-28 | Manufacturing method of large artificial stone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6241350B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017208844A1 (en) * | 2016-06-02 | 2017-12-07 | Jfeスチール株式会社 | Hydrated hardened body and method for manufacturing same |
JP2017218369A (en) * | 2016-06-02 | 2017-12-14 | Jfeスチール株式会社 | Hydration cured body and method for producing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20130709A1 (en) * | 2013-04-30 | 2014-10-31 | F B Balzanelli Avvolgitori S P A | PROCEDURE, EQUIPMENT AND PLANT FOR CUTTING AND APPLYING A CAP TO THE OPPOSITE CUTS OF A TUBE |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11226932A (en) * | 1998-02-16 | 1999-08-24 | Nihon Ytong Co Ltd | Manufacture of design panel |
JP2002210863A (en) * | 2001-01-19 | 2002-07-31 | Motoharu Tamai | Method for manufacturing composite cement cured body |
JP2006001191A (en) * | 2004-06-18 | 2006-01-05 | Nippon Steel Corp | Block manufacturing method |
JP2009107908A (en) * | 2007-10-31 | 2009-05-21 | Jfe Mineral Co Ltd | Method for producing artificial stone material |
JP2011001234A (en) * | 2009-06-19 | 2011-01-06 | Nippon Steel Corp | Method for producing steel slag roadbed material, and steel slag roadbed material |
EP2314432A1 (en) * | 2009-10-22 | 2011-04-27 | Soenen bvba | Method for forming floor tiles |
JP2012012287A (en) * | 2010-06-03 | 2012-01-19 | Jfe Steel Corp | Artificial stone and method for producing the same |
-
2014
- 2014-03-28 JP JP2014070525A patent/JP6241350B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11226932A (en) * | 1998-02-16 | 1999-08-24 | Nihon Ytong Co Ltd | Manufacture of design panel |
JP2002210863A (en) * | 2001-01-19 | 2002-07-31 | Motoharu Tamai | Method for manufacturing composite cement cured body |
JP2006001191A (en) * | 2004-06-18 | 2006-01-05 | Nippon Steel Corp | Block manufacturing method |
JP2009107908A (en) * | 2007-10-31 | 2009-05-21 | Jfe Mineral Co Ltd | Method for producing artificial stone material |
JP2011001234A (en) * | 2009-06-19 | 2011-01-06 | Nippon Steel Corp | Method for producing steel slag roadbed material, and steel slag roadbed material |
EP2314432A1 (en) * | 2009-10-22 | 2011-04-27 | Soenen bvba | Method for forming floor tiles |
JP2012012287A (en) * | 2010-06-03 | 2012-01-19 | Jfe Steel Corp | Artificial stone and method for producing the same |
Non-Patent Citations (1)
Title |
---|
鉄鋼スラグ水和固化体技術マニュアル−製鋼スラグの有効利用技術−, JPN6017027602, March 2003 (2003-03-01), JP, pages 48 - 53, ISSN: 0003605475 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017208844A1 (en) * | 2016-06-02 | 2017-12-07 | Jfeスチール株式会社 | Hydrated hardened body and method for manufacturing same |
JP2017218369A (en) * | 2016-06-02 | 2017-12-14 | Jfeスチール株式会社 | Hydration cured body and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP6241350B2 (en) | 2017-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5375358B2 (en) | Manufacturing method of steel slag roadbed material | |
JP6241350B2 (en) | Manufacturing method of large artificial stone | |
CN106061918A (en) | Rapid-hardening concrete composition for road repair using rapidly cooled steel reducing slag powder as bonding material, and method for road repair using rapid-hardening concrete composition | |
WO2017083969A1 (en) | Method for forming a stable foundation ground | |
CN103134712B (en) | Vertical vibrating forming method applicable to bituminous mixture test piece with aggregate nominal maximum particle size less than 26.5mm | |
JP5744387B2 (en) | Method for producing mud-containing solidified body | |
JP5954237B2 (en) | Method for producing hydrated solid block of steel slag | |
CN104805963B (en) | A kind of very-high performance spacer preparation method | |
JP2016218031A (en) | Method for designing blending of soil cement | |
PL356359A1 (en) | Method of obtaining a self-thickening dusting powder, machine therefor as well as self-thickening dusting powder as such and application thereof | |
JP5712668B2 (en) | Manufacturing method of solidified body | |
CN103162999B (en) | Vertical vibration thermoforming method suitable for bituminous mixture test piece with maximum particle size of aggregate indicated larger than or equal to 26.5mm | |
JP2012219479A (en) | Material using steel slag for sand drainage and sand compaction pile | |
KR101326113B1 (en) | Gravity reinforced earth blocks and construction method thereof | |
JP5668634B2 (en) | Expanded controlled steel slag hydrated solid artificial stone and method for producing the same | |
JP5004757B2 (en) | Manufacturing method of artificial stone | |
JP6287914B2 (en) | Sand compaction pile material, sand compaction pile, and method for creating sand compaction pile | |
JP2012025658A (en) | Method for producing artificial stone | |
JP6361946B1 (en) | Liquid chelating agent, grass protection pavement material, grass protection pavement construction method | |
JP2014001602A (en) | Sand compaction pile and construction method for the same | |
JP2009299397A (en) | Foundation structure and manufacturing method of foundation structure | |
JP6106836B1 (en) | Aging method for existing spray mortar slopes | |
JP4991489B2 (en) | Artificial stone made of steel slag hydrated solidified for landfill, rubble or backfill | |
CN104631283A (en) | Method for designing amount of asphalt in cast asphalt mixture | |
CN114371123B (en) | Adhesive property testing method for interface transition zone of asphalt and acid-base mixed aggregate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171023 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6241350 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |