JP2012219479A - Material using steel slag for sand drainage and sand compaction pile - Google Patents

Material using steel slag for sand drainage and sand compaction pile Download PDF

Info

Publication number
JP2012219479A
JP2012219479A JP2011084942A JP2011084942A JP2012219479A JP 2012219479 A JP2012219479 A JP 2012219479A JP 2011084942 A JP2011084942 A JP 2011084942A JP 2011084942 A JP2011084942 A JP 2011084942A JP 2012219479 A JP2012219479 A JP 2012219479A
Authority
JP
Japan
Prior art keywords
sand
steel slag
slag
particle size
scp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011084942A
Other languages
Japanese (ja)
Other versions
JP5696569B2 (en
Inventor
Haruhiko Shinozaki
晴彦 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011084942A priority Critical patent/JP5696569B2/en
Publication of JP2012219479A publication Critical patent/JP2012219479A/en
Application granted granted Critical
Publication of JP5696569B2 publication Critical patent/JP5696569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material using steel slag for sand drainage and sand compaction pile, which has non-consolidation properties and water permeability.SOLUTION: A material using steel slag for sand drainage and sand compaction pile, which has non-consolidation properties and water permeability, is manufactured by the steps of: kneading steel slag, blast-furnace slag fine powder, and water as main components to manufacture a solidified steel slag hydrated substance; fracturing the solidified steel slag hydrated substance into artificial stones; carbonating the stones for at least 48 hours; and adjusting the particle size of the stones to a predetermined range.

Description

本発明は、軟弱粘土地盤の改良工法であるサンドドレーン(以下、SDともいう)工法もしくは低置換率のサンドコンパクションパイル(以下、SCPともいう)工法に用いられる砂の代替として使用される鉄鋼スラグ水和固化体を破砕した人工石材を所定期間養生後、少なくとも48時間の炭酸化処理と所定の粒度調整を行い製造したドレーン材としての性能を有する非固結性かつ透水性に優れる地盤改良材に関する。   The present invention is a steel slag used as an alternative to sand used in sand drain (hereinafter also referred to as SD) method or sand displacement pile (hereinafter also referred to as SCP) method of low substitution rate, which is an improved method for soft clay ground. A ground improvement material with excellent non-consolidating properties and water permeability that has the performance as a drain material produced by curing a hydrated solidified body of artificial stone for a predetermined period, followed by carbonization for at least 48 hours and a predetermined particle size adjustment. About.

従来、地盤改良工法として、砂杭を軟弱な粘土地盤に打設するSD工法もしくはSCP工法が知られている。   Conventionally, as a ground improvement method, an SD method or an SCP method in which a sand pile is placed on a soft clay ground is known.

前記のSD工法は砂を締め固めずに打設し、通常本工法後に施工される盛土等の構造物の荷重を軟弱な粘土地盤に圧密応力として加えることによって、粘土地盤の排水促進(排水長短縮)による強度増加を促進させるためのドレーン材としての機能を期待する。本工法での地盤改良効果は、通常圧密による軟弱粘土地盤の強度増加のみであり、打設された砂杭の強度は考慮しない。一方、SCP工法は、締め固めた強固な砂杭を軟弱な粘土地盤中に打設する工法であり、改良率(砂杭の体積/改良対象となる軟弱地盤の体積)に応じて、高置換率改良SCP工法と低置換率SCP工法がある。
高置換率改良SCP工法は通常、改良率が70%以上になるように締め固めた砂杭を軟弱粘土地盤に打設することによってほぼ強制的に軟弱粘土地盤を強固な砂杭で置き換える工法であり、地盤改良効果は、軟弱粘土地盤の強度と締め固めた強固な砂杭の強度を改良率で平均化した複合地盤としての強度で評価される。本工法では設計上、SCP杭に求められる性能はせん断強度のみである。
一方、低置換率SCP工法は通常、改良率が30%以下で用いられる場合が多く、地盤改良効果は、高置換率SCP工法同様の複合地盤としての強度で評価されるが、施工後のSCP杭間の粘土地盤の圧密促進による強度増加を見込むことができる。従って、本工法でのSCP杭に求められる性能はせん断強度のみならず、粘土地盤の圧密促進のための透水性である。
さらにSD工法、低置換率SCP工法により軟弱粘土地盤の圧密が確実に行われるためには、上記透水性以外にSDならびにSCP改良後の地盤上の構造物による上載荷重を増加応力として軟弱粘土地盤に伝える必要がある。
特に低置換率SCP工法では、締め固めた強固な砂杭の剛性が軟弱粘土に比べて大きくなるため、上記上載荷重に伴う砂杭の増加応力Δσsと粘土地盤の増加応力Δσcの比率(応力分担比n=Δσs/Δσc)は、通常2〜4の範囲であるが、SCP杭が固結し、剛性が大きくなった場合には、さらに応力分担比が大きく粘土地盤に応力が伝達しにくくなり所定の圧密効果が期待できなくなることから、SCP杭は所定の圧密期間(6か月程度)非固結材料であることが必要である。
In the SD method, sand is cast without compaction, and the load of structures such as embankments that are usually constructed after the main method is applied to the soft clay ground as consolidation stress, thereby promoting drainage of the clay ground (drain length Expected to function as a drain material to promote strength increase due to (shortening). The ground improvement effect by this method is only the increase in the strength of soft clay ground due to normal consolidation, and does not consider the strength of the sand piles that have been cast. On the other hand, the SCP method is a method in which a compacted solid sand pile is placed in soft clay ground. Depending on the improvement rate (volume of sand pile / volume of soft ground to be improved), high replacement There are a rate improvement SCP method and a low replacement rate SCP method.
The high replacement rate improved SCP method is usually a method of forcibly replacing soft clay ground with solid sand piles by placing sand piles compacted so that the improvement rate is 70% or more on soft clay ground. Yes, the ground improvement effect is evaluated by the strength of the composite ground obtained by averaging the strength of the soft clay ground and the strength of the compacted solid sand pile by the improvement rate. In this construction method, only the shear strength is the only performance required for the SCP pile.
On the other hand, the low replacement rate SCP method is usually used at an improvement rate of 30% or less, and the ground improvement effect is evaluated by the strength as a composite ground similar to the high replacement rate SCP method. It is possible to expect an increase in strength by promoting consolidation of clay ground between piles. Therefore, the performance required for the SCP pile in this construction method is not only shear strength but also water permeability for promoting consolidation of clay ground.
Furthermore, in order to ensure the consolidation of soft clay ground by the SD construction method and the low replacement rate SCP construction method, in addition to the above water permeability, the soft clay ground is subjected to an increased load due to the load on the ground after SD and SCP improvements. Need to tell.
In particular, in the low replacement rate SCP method, the rigidity of the compacted and strong sand pile is larger than that of soft clay. Therefore, the ratio between the increased stress Δσs of the sand pile and the increased stress Δσc of the clay ground (stress sharing) The ratio n = Δσs / Δσc) is usually in the range of 2 to 4, but when the SCP pile is consolidated and the rigidity increases, the stress sharing ratio is further increased, making it difficult to transmit stress to the clay ground. Since the predetermined consolidation effect cannot be expected, the SCP pile needs to be a non-consolidated material for a predetermined consolidation period (about 6 months).

特に低置換率SCP工法は、高置換率SCP工法に比較して、工程が長くなり、重要構造物の場合の沈下を許容するなどの欠点があるが、杭本数が少なく、施工に伴い発生する軟弱粘土地盤の盛り上がり土(浚渫土)の処分量削減による経済効果をもたらすことから、近年港湾に多用されつつある。   In particular, the low replacement rate SCP method has disadvantages such as a longer process and allow subsidence in the case of important structures compared to the high replacement rate SCP method. In recent years, it has been widely used in harbors because it brings about an economic effect by reducing the disposal amount of uplifted soil (soil) of soft clay ground.

一方、SD工法およびSCP工法に用いられる砂杭の材料は、従来良質な天然砂が用いられてきたが、近年天然資源の保護の観点より鉄鋼スラグ等のリサイクル材料の有効活用が推進されている。   On the other hand, high-quality natural sand has been conventionally used as a material for sand piles used in the SD method and the SCP method, but in recent years, effective use of recycled materials such as steel slag has been promoted from the viewpoint of protecting natural resources. .

SCP工法用中詰め材料として、製鋼スラグ、高炉徐冷スラグ、高炉水砕スラグを用いた材料は知られている。しかし、製鋼スラグ、高炉徐冷スラグ、高炉水砕スラグを用いたSCP工法用中詰め材料は水硬性(固結性)があるため、高置換用の地盤改良材として用いることができても、地盤の圧密を期待する低置換用の地盤改良材としては、そのまま用いることが困難であるという問題がある(例えば、非特許文献1、2参照)。   Materials using steelmaking slag, blast furnace slow-cooled slag, and blast furnace granulated slag are known as filling materials for the SCP method. However, because the steel filling slag, blast furnace slow cooling slag, stuffed material for the SCP method using blast furnace granulated slag is hydraulic (consolidation), even if it can be used as a ground improvement material for high replacement, There is a problem that it is difficult to use as it is as a low-replacement ground improvement material that expects consolidation of the ground (see, for example, Non-Patent Documents 1 and 2).

なお、低置換SCP材料で、非固結性材料としては、天然砂以外に、銅水砕スラグ、フェロニッケルスラグ、石炭灰造粒物あるいはコンクリートがらを使用することが知られている(例えば、特許文献1参照)が、鉄鋼スラグを用いた材料については知られていない。   In addition, it is known that low-substitution SCP material and non-consolidating material use, besides natural sand, copper granulated slag, ferronickel slag, coal ash granulated material, or concrete waste (for example, However, the material using steel slag is not known.

特開2006−348466号公報JP 2006-348466 A

(財)沿岸開発技術センター発行、港湾工事用製鋼スラグ利用手引書P19〜P20、2000.3Issuance of Coastal Development Technology Center, Steelmaking Slag Use Handbook for Port Construction P19-P20, 2000.3 (財)沿岸開発技術センター発行、港湾工事用水砕スラグ利用技術マニュアル P58〜P60、2007.12Issued by Coastal Development Technology Center, Technical manual for using granulated slag for port construction P58-P60, 2007.12. 鉄鋼スラグ水和固化体 技術マニュアル 製鋼スラグの有効技術マニュアル 財団法人沿岸開発技術開発センター発行 平成20年2月Steel slag hydrated solidified body Technical manual Effective technical manual for steelmaking slag Published by Coastal Development Technology Development Center February 2008

前記のような水硬性を有する鉄鋼スラグの固結抑制対策として、鉄鋼スラグを天然砂や天然石と混合する方法が知られているが、このように混合する場合は、それらの混合に手間がかかり、また天然資源の保護という点で問題がある。   As a measure for suppressing consolidation of steel slag having hydraulic properties as described above, a method of mixing steel slag with natural sand or natural stone is known. However, when mixing in this way, it takes time to mix them. There is also a problem in terms of protecting natural resources.

本発明は、鉄鋼スラグを天然砂や天然石と混合することなく、SD工法および低置換率改良(一般的な改良率≦30%)に適用可能な非固結性の低置換SCP工法用材料(すなわち、低置換SCP工法用材料中詰め材料:SCP杭形成時において、鋼製ケーシング内に投入されて前記鋼製ケーシング下端から排出される材料)を提供することを目的とする。
しかも、本発明は、ドレーン材としての性能を有する非固結性のSDおよび低置換率SCP工法用材料に関し、鉄鋼スラグ水和固化体を破砕した人工石材を所定の粒度範囲に設定するとともに、これをさらに養生して残留する水和反応を抑制することにより非固結性、ドレーン材としての透水性能(透水係数k15=10-3cm/S以上)を有する低置換率SCP用材料を提供することを目的とする。
The present invention is a non-consolidating low replacement SCP method material that can be applied to SD method and low replacement rate improvement (general improvement rate ≦ 30%) without mixing steel slag with natural sand or natural stone ( That is, an object of the present invention is to provide a low replacement SCP material filling material: a material that is introduced into a steel casing and discharged from the lower end of the steel casing at the time of SCP pile formation.
Moreover, the present invention relates to a non-consolidating SD having a performance as a drain material and a low substitution rate SCP construction material, and setting an artificial stone material obtained by crushing a steel slag hydrated solidified body within a predetermined particle size range, This material is further cured to suppress the remaining hydration reaction, thereby providing a low substitution rate SCP material having non-consolidating properties and water permeability as a drain material (water permeability coefficient k 15 = 10 −3 cm / S or more). The purpose is to provide.

前記の課題を有利に解決するために、第1発明の鉄鋼スラグを用いたサンドドレーン材料及びサンドコンパクションパイル用材料は、製鋼スラグと高炉スラグ微粉末と水を主成分として、これらを練り混ぜた後、固化させて鉄鋼スラグ水和固化体を製造し、その鉄鋼スラグ水和固化体を破砕して製造した人工石材を、少なくとも48時間の炭酸化処理と所定の粒度に調整することにより製造した非固結性かつ透水性を有する材料としたことを特徴とする。
また、第2発明では、第1発明の鉄鋼スラグを用いたサンドドレーン材料及びサンドコンパクションパイル用材料において、人工石材は、粒度が最大粒径50mm以下で10%通過粒径D10が少なくとも0.9mmであり、かつ前記鉄鋼スラグ水和固化体を破砕した人工石材製造後の養生期間M(月)が、少なくとも1.0カ月以上の条件を満足することを特徴とする。
In order to solve the above-mentioned problem advantageously, the sand drain material and the sand compaction pile material using the steel slag of the first invention are made by mixing steelmaking slag, blast furnace slag fine powder and water as main components. After that, it was solidified to produce a hydrated solidified body of steel slag, and an artificial stone material produced by crushing the hydrated solidified body of steel slag was produced by adjusting the carbonization treatment for at least 48 hours and a predetermined particle size. It is characterized by being a non-consolidating and water-permeable material.
In the second invention, in the sand drain material and the sand compaction pile material using the steel slag of the first invention, the artificial stone material has a maximum particle size of 50 mm or less and a 10% passing particle size D 10 of at least 0.00. It is 9 mm, and the curing period M (month) after manufacturing the artificial stone material obtained by crushing the hydrated solidified steel slag satisfies the condition of at least 1.0 month or more.

本発明の鉄鋼スラグを用いたサンドドレーン材料及びサンドコンパクションパイル用材料は、鉄鋼スラグの有効利用による天然資源の保護とともに、炭酸化処理されているため、炭酸ガスの有効利用による炭酸ガスの削減に寄与する。   Since the material for sand drain and sand compaction pile using steel slag of the present invention is carbonized with the protection of natural resources by effective use of steel slag, the carbon dioxide gas can be reduced by the effective use of carbon dioxide. Contribute.

人工石材からなる鉄鋼スラグを用いたSD材料及びSCP用中詰め材料の粒径と通過重量百分率との関係を示すグラフである。It is a graph which shows the relationship between the particle size of the SD material using the steel slag made of artificial stone, and the filling material for SCP and the passing weight percentage. 10%通過粒径と初期透水係数との関係を示すグラフである。It is a graph which shows the relationship between a 10% passage particle size and an initial hydraulic conductivity. 人工石材からなる鉄鋼スラグを用いたサンドドレーン材料及びサンドコンパクションパイル用材料の10%通過粒径D10と養生期間M(月)とを軸にとって、固結、非固結の関係を示すグラフであり、本発明における非固結性の人工石材として利用可能な10%通過粒径D10と養生期間M(月)の条件範囲を示すグラフである。For axes 10% passing diameter D 10 of the sand drain material and sand compaction pile material and curing period M (month) using a steel slag consisting of artificial stone, consolidated, a graph showing the relationship between non-caking There is a graph showing a range of conditions with 10% passing diameter D 10 available as a non-caking artificial stone curing period M (month) in the present invention.

次に、本発明を図示の実施形態に基づいて詳細に説明する。     Next, the present invention will be described in detail based on the illustrated embodiment.

先ず、本発明において利用する鉄鋼スラグ水和固化体とは、非特許文献3に示されるいずれかの配合のものであり、具体的には製鋼スラグと高炉水砕スラグ微粉末と水と練り混ぜ、固化(硬化)させたもので、必要に応じ、高炉水砕スラグ、フライアッシュ、および消石灰、セメントのいずれか1種又は2種以上のアルカリ刺激材を含ませてもよい。   First, the steel slag hydrated solid body used in the present invention is one having any combination shown in Non-Patent Document 3, specifically, steelmaking slag, ground granulated blast furnace slag, and water. , Solidified (cured), and may contain blast furnace granulated slag, fly ash, slaked lime, cement, or two or more alkali stimulants as necessary.

前記の製鋼スラグとは、溶銑、スクラップなどを精錬し、靭性、加工性を有する鋼を製造する製鋼過程で生成するCaO,SiO2などを主成分とする無機物である。一般には、砕石状の外観を呈する。 Wherein A steelmaking slag, molten iron, etc. and refining scrap, toughness, CaO produced in the steelmaking process of manufacturing a steel having a processability, a inorganic material as a main component such as SiO 2. In general, it has a crushed stone appearance.

また、製鋼スラグは、製鋼工程で生じる石灰分を主体とした副産物であり、転炉スラグ、溶銑予備処理スラグ、脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、電気炉還元スラグ、電気炉酸化スラグ、二次精錬スラグ、造塊スラグの1種または2種以上を混合したものである。   Steelmaking slag is a by-product mainly composed of lime generated in the steelmaking process. It is a converter slag, hot metal pretreatment slag, decarburization slag, dephosphorization slag, desulfurization slag, desiliconization slag, electric furnace reduction slag, It is a mixture of one or more of furnace oxidation slag, secondary refining slag and ingot slag.

本発明の実施形態では、養生済み人工石材製造後の養生期間(保管による水和反応の促進)と炭酸化処理を行い、さらに養生済み人工石材の粒度範囲を因子とした突き固め作成供試体についての非固結条件を巧みに組み合わせるようにしている。   In the embodiment of the present invention, the curing period (acceleration of hydration reaction by storage) and carbonation treatment after the production of the cured artificial stone material, and the tamped preparation specimen with the particle size range of the cured artificial stone material as factors Skillfully combining the unconsolidated conditions.

次に、本発明の実施形態について、説明する。
(実施形態)
Next, an embodiment of the present invention will be described.
(Embodiment)

表1に示すように、製鋼スラグを1397kg/m3、高炉スラグ微粉末を530kg/m3、水を290kg/m3として、これらを混合して練り混ぜ、型枠内に充填して固化させて、鉄鋼スラグ固化体を製造後、これを破砕して、人工石材を製造した。そのように製造にした人工石材の試料を、その粒度が最大粒径50mm以下にふるい分けした試料を、図1に示す3つの粒度に調整し、屋外で少なくとも1.0カ月以上(1.0カ月〜2ヶ月)の養生期間M(月)で自然養生後、48時間炭酸化処理を行って人工石材からなる鉄鋼スラグを用いたSD材料及びSCP用中詰め材料のふるい分けした試料を製造した。
前記の炭酸化処理は、前記3つの粒度に調整した試料を二酸化炭素の雰囲気中に少なくとも48時間置いて炭酸化を促進させる処理である。
As shown in Table 1, as steelmaking slag 1397kg / m 3, blast furnace slag to 530kg / m 3, 290kg / m 3 of water, it was mixed kneaded mixture to solidify by filling in the mold Then, after producing the solidified steel slag, this was crushed to produce an artificial stone material. A sample obtained by sieving the artificial stone sample thus manufactured so as to have a particle size of 50 mm or less is adjusted to the three particle sizes shown in FIG. 1, and is at least 1.0 month or more outdoors (1.0 month or more). After natural curing in a curing period M (month) of ˜2 months), carbonization treatment was performed for 48 hours to produce a sample in which SD material using steel slag made of artificial stone material and a filling material for SCP were screened.
The carbonation treatment is a treatment for accelerating carbonation by placing the sample adjusted to the three particle sizes in a carbon dioxide atmosphere for at least 48 hours.

前記のように3つにふるい分けした試料の通過質量百分率を、均等係数Ucと共に表2に示す。   Table 2 shows the passing mass percentage of the sample screened in three as described above together with the uniformity coefficient Uc.

前記の3つにふるい分けした人工石材からなる鉄鋼スラグを用いたサンドドレーン材料及びサンドコンパクションパイル用材料を用いて、突き固め試験(JIS A 1220)によるE-c法による最大乾燥密度になるように詰めて、円柱供試体(直径D=150mm×高さH=300mm)をそれぞれ作製後、80℃恒温水槽で促進養生し、3ヶ月間後の固結状況試験および突き固め直後の初期透水試験を実施し、固結の判定を行った。判定結果を表3に示す。
尚、固結の判定は、80℃恒温水槽で促進養生3ケ月後に材料を詰めた養生容器を脱枠した後の供試体が手で崩せる程度の一軸圧縮強さqu=30kN/m2以下のものを非固結とする。
Using sand drain material and sand compaction pile material made of steel slag made of artificial stone material that has been screened into the above three, it is packed to the maximum dry density by the Ec method according to the tamping test (JIS A 1220). After each cylindrical specimen (diameter D = 150 mm × height H = 300 mm) was prepared, it was accelerated and cured in a constant temperature water bath at 80 ° C., and a consolidation condition test after 3 months and an initial water permeability test immediately after tamping were conducted. The caking was determined. The determination results are shown in Table 3.
The determination of consolidation is uniaxial compressive strength qu = 30kN / m 2 or less so that the specimen can be broken by hand after removing the curing container filled with the material after 3 months of accelerated curing in an 80 ° C water bath. Unconsolidate things.

Figure 2012219479
Figure 2012219479

Figure 2012219479
Figure 2012219479

Figure 2012219479
Figure 2012219479

図1に黒三角(▲)で示す下限設定値の粒度曲線Aでは、表3に示すように、初期透水係数が5.83×10-4cm/sであり、ドレーン材として必要な透水係数10-3cm/sを満足しないため、低置換率サンドコンパクションパイル用材料として使用することができないことがわかる。
図1に黒四角(■)で示す上限設定値の粒度曲線Bでは、表3に示すように、初期透水係数が8.46×10-2cm/sであり、かつ1.0カ月以上の養生で固結しないため、低置換率SCP用中詰め材料として使用することができることがわかる。
図1に白四角(□)で示す平均設定値の粒度分布曲線Cでは、表3に示すように、初期透水係数が3.24×10-3cm/sであり、ト゛レーン材として必要な透水係数10-3cm/sを満足し、かつ2.0カ月以上の養生で固結しないため、低置換率サンドコンパクションパイル用材料として使用することができることがわかる。
In the particle size curve A of the lower limit set value indicated by the black triangle (▲) in FIG. 1, as shown in Table 3, the initial hydraulic conductivity is 5.83 × 10 −4 cm / s, and the hydraulic conductivity necessary as a drain material. Since 10 −3 cm / s is not satisfied, it can be seen that it cannot be used as a material for a low substitution rate sand compaction pile.
In the particle size curve B of the upper limit set value indicated by the black square (■) in FIG. 1, as shown in Table 3, the initial hydraulic conductivity is 8.46 × 10 −2 cm / s and is not less than 1.0 month. It can be seen that it can be used as a filling material for SCP with a low replacement rate because it is not consolidated by curing.
In the particle size distribution curve C of the average set value indicated by a white square (□) in FIG. 1, the initial permeability coefficient is 3.24 × 10 −3 cm / s as shown in Table 3, and the permeability required for the drain material It can be seen that since it satisfies the coefficient of 10 −3 cm / s and does not solidify after curing for 2.0 months or more, it can be used as a material for sand compaction pile with a low substitution rate.

図1および表3から、養生、炭酸化処理済みの人工石材をSDおよび低置換SCP工法用材料として用いると、ドレーン材として軟弱地盤中の水を排水して、軟弱地盤の圧密を図ることができ、製鋼スラグを含む鉄鋼スラグ水和固化体の有効利用を図ることができる。   From FIG. 1 and Table 3, when artificial stone material that has been cured and carbonized is used as a material for SD and low-replacement SCP construction methods, water in the soft ground can be drained as a drain material, and the soft ground can be consolidated. The steel slag hydrated solid body including steelmaking slag can be effectively used.

図2は、図1に示す粒度曲線におけるD10と表3に示す突き固め直後の養生前の初期透水係数の関係を示したものである。この図から、初期透水係数10-3cm/s以上とするためには、10%通過粒径(D10)で、0.9mm以上(少なくとも0.9mm)のものを用いる必要があることがわかる。さらに好ましくは、初期透水係数を10-2cm/s以上に上げることにより、さらなる圧密促進効果が期待できる10%通過粒径(D10)で、2.7mm以上(少なくとも2.7mm)のものを用いることが望ましい。
なお、図2中、E−01〜E−04は、×10-1〜10-4の意味で使用している。
FIG. 2 shows the relationship between D 10 in the particle size curve shown in FIG. 1 and the initial hydraulic conductivity before curing immediately after tamping shown in Table 3. From this figure, it can be seen that in order to obtain an initial hydraulic conductivity of 10 −3 cm / s or more, it is necessary to use a 10% passing particle diameter (D 10 ) of 0.9 mm or more (at least 0.9 mm). . More preferably, by increasing the initial hydraulic conductivity to 10 −2 cm / s or more, a 10% passing particle diameter (D 10 ) that can be expected to further enhance the consolidation is 2.7 mm or more (at least 2.7 mm). It is desirable to use it.
In FIG. 2, E-01 to E-04 are used to mean × 10 −1 to 10 −4 .

また、図3は、10%通過粒径(D10)と養生期間(月)との関係のグラフであり、本発明における非固結性の人工石材からなる鉄鋼スラグを用いたサンドドレーン材料及びサンドコンパクションパイル用材料として利用可能な範囲を示すグラフである。また、この図から、固結しないようにするためには、鉄鋼スラグ水和固化体を破砕した人工石材製造後の養生期間M(月)として、固結条件と非固結条件の点線で示す境界線よりも右上の範囲にすればよいことがわかる。 FIG. 3 is a graph of the relationship between the 10% passing particle size (D 10 ) and the curing period (month). The sand drain material using steel slag made of non-consolidated artificial stone in the present invention, and It is a graph which shows the range which can be utilized as a material for sand compaction pile. In addition, from this figure, in order to prevent consolidation, the curing period M (month) after manufacturing the artificial stone material crushed steel slag hydrated solidified body is indicated by dotted lines of the consolidation condition and the non-consolidation condition. It can be seen that the upper right range from the boundary line is sufficient.

Claims (2)

製鋼スラグと高炉スラグ微粉末と水を主成分として、これらを練り混ぜた後、固化させて鉄鋼スラグ水和固化体を製造し、その鉄鋼スラグ水和固化体を破砕して製造した人工石材を、少なくとも48時間の炭酸化処理と所定の粒度に調整することにより製造した非固結性かつ透水性を有する材料としたことを特徴とする鉄鋼スラグを用いたサンドドレーン材料及びサンドコンパクションパイル用材料。   Steelmaking slag, blast furnace slag fine powder and water as main components are kneaded and then solidified to produce a hydrated solidified body of steel slag, and an artificial stone material produced by crushing the hydrated solidified body of steel slag. A sand drain material and a sand compaction pile material using steel slag produced by carbonation treatment for at least 48 hours and a non-consolidating and water-permeable material produced by adjusting to a predetermined particle size . 前記人工石材は、粒度が最大粒径50mm以下で10%通過粒径D10が少なくとも0.9mmであり、かつ前記鉄鋼スラグ水和固化体を破砕した人工石材製造後の養生期間M(月)が、少なくとも1.0ヶ月の条件を満足することを特徴とする請求項1に記載の鉄鋼スラグを用いたサンドドレーン材料及びサンドコンパクションパイル用材料。 The artificial stone has a maximum particle size of 50 mm or less, a 10% passing particle size D 10 of at least 0.9 mm, and a curing period M (month) after production of the artificial stone obtained by crushing the hydrated solidified steel slag. Satisfying the condition of at least 1.0 month, the sand drain material and the material for sand compaction pile using the steel slag according to claim 1.
JP2011084942A 2011-04-06 2011-04-06 Sand drain material and sand compaction pile material using steel slag Active JP5696569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084942A JP5696569B2 (en) 2011-04-06 2011-04-06 Sand drain material and sand compaction pile material using steel slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084942A JP5696569B2 (en) 2011-04-06 2011-04-06 Sand drain material and sand compaction pile material using steel slag

Publications (2)

Publication Number Publication Date
JP2012219479A true JP2012219479A (en) 2012-11-12
JP5696569B2 JP5696569B2 (en) 2015-04-08

Family

ID=47271313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084942A Active JP5696569B2 (en) 2011-04-06 2011-04-06 Sand drain material and sand compaction pile material using steel slag

Country Status (1)

Country Link
JP (1) JP5696569B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000919A (en) * 2014-06-11 2016-01-07 新日鐵住金株式会社 Simple pavement body
JP2017095858A (en) * 2015-11-18 2017-06-01 株式会社不動テトラ Ground improvement method by constructing compaction pile
CN107285775A (en) * 2017-05-25 2017-10-24 唐山钢铁集团有限责任公司 A kind of special drainage agent of low carbon high alloy steel and its production method and application
JP2019007159A (en) * 2017-06-21 2019-01-17 株式会社大林組 Solidifying material
WO2022077908A1 (en) * 2020-10-12 2022-04-21 海南大学 Isoenergetic deformation composite foundation utilizing microorganism to solidify aggregate, and construction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874559A (en) * 1981-10-27 1983-05-06 日本鋼管株式会社 Manufacture of hardened body
JP2005231947A (en) * 2004-02-19 2005-09-02 Nippon Magnetic Dressing Co Ltd Method of treating steel slag to make aggregate
JP2005314156A (en) * 2004-04-28 2005-11-10 Jfe Steel Kk Granule and its manufacturing process
JP2007309091A (en) * 2006-04-21 2007-11-29 Nippon Steel Corp Material for sand compaction pile construction method and preparation method of sand compaction pile using its material
JP2009203664A (en) * 2008-02-27 2009-09-10 Nippon Steel Corp Infill for caisson, and caisson, and water area structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874559A (en) * 1981-10-27 1983-05-06 日本鋼管株式会社 Manufacture of hardened body
JP2005231947A (en) * 2004-02-19 2005-09-02 Nippon Magnetic Dressing Co Ltd Method of treating steel slag to make aggregate
JP2005314156A (en) * 2004-04-28 2005-11-10 Jfe Steel Kk Granule and its manufacturing process
JP2007309091A (en) * 2006-04-21 2007-11-29 Nippon Steel Corp Material for sand compaction pile construction method and preparation method of sand compaction pile using its material
JP2009203664A (en) * 2008-02-27 2009-09-10 Nippon Steel Corp Infill for caisson, and caisson, and water area structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000919A (en) * 2014-06-11 2016-01-07 新日鐵住金株式会社 Simple pavement body
JP2017095858A (en) * 2015-11-18 2017-06-01 株式会社不動テトラ Ground improvement method by constructing compaction pile
CN107285775A (en) * 2017-05-25 2017-10-24 唐山钢铁集团有限责任公司 A kind of special drainage agent of low carbon high alloy steel and its production method and application
JP2019007159A (en) * 2017-06-21 2019-01-17 株式会社大林組 Solidifying material
WO2022077908A1 (en) * 2020-10-12 2022-04-21 海南大学 Isoenergetic deformation composite foundation utilizing microorganism to solidify aggregate, and construction method

Also Published As

Publication number Publication date
JP5696569B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
TWI440617B (en) Artificial stone and its manufacturing method
JP5696569B2 (en) Sand drain material and sand compaction pile material using steel slag
JP5326995B2 (en) Mud-containing solidified body and method for producing the same
TWI543957B (en) Method for manufacturing hydrated solidified body and hydrated solidified body
JP5744387B2 (en) Method for producing mud-containing solidified body
JP6662046B2 (en) Method for producing solidified body containing mud
JP5158026B2 (en) Permeable structure material
JP6032013B2 (en) Soft soil improvement material, soft soil improvement method using the same, and soft ground improvement method
CN105541217A (en) Impermeable concrete prepared from steel slags
JP5907246B2 (en) Manufacturing method of solidified body
TWI434818B (en) Manufacture of artificial stone
JP2015134715A (en) Method for manufacturing artificial stone material
JP5668634B2 (en) Expanded controlled steel slag hydrated solid artificial stone and method for producing the same
CN108383457A (en) A kind of high intensity dry slag pervious concrete and preparation method thereof
JP6020677B2 (en) Artificial stone
JP6642506B2 (en) Manufacturing method of solidified body
JP2020015850A (en) Manufacturing method of calcia-modified soil
JP5002368B2 (en) Backfilling and backfilling material for underwater construction using granulated blast furnace slag and its manufacturing method
WO2011136395A1 (en) Method for producing artificial stone material
JP6292409B2 (en) Method for producing hydrated solid body
JP2014001602A (en) Sand compaction pile and construction method for the same
JP5326996B2 (en) Mud-containing solidified body and method for producing the same
JP2004238214A (en) Aerated mortar composition and work using the same
Cai et al. Study on the properties improvement of wet quarry sludge made artificial aggregates by using PAM and CaO
JP6160833B2 (en) Manufacturing method of artificial stone

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R151 Written notification of patent or utility model registration

Ref document number: 5696569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350