JP2015188103A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2015188103A
JP2015188103A JP2015113362A JP2015113362A JP2015188103A JP 2015188103 A JP2015188103 A JP 2015188103A JP 2015113362 A JP2015113362 A JP 2015113362A JP 2015113362 A JP2015113362 A JP 2015113362A JP 2015188103 A JP2015188103 A JP 2015188103A
Authority
JP
Japan
Prior art keywords
gate electrode
gate
impurity layer
concentration impurity
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015113362A
Other languages
Japanese (ja)
Inventor
眞弓 柴田
Mayumi Shibata
眞弓 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2015113362A priority Critical patent/JP2015188103A/en
Publication of JP2015188103A publication Critical patent/JP2015188103A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device including a step for performing ion implantation from an oblique direction to a substrate, which satisfies both reduction in the gate electrode size and improvement of leak current characteristics.SOLUTION: A gate electrode 34n is formed on the surface of a semiconductor substrate, and a resist mask 71 is formed to cover both end faces of the gate electrode 34n in the gate width direction crossing the gate length direction. A low density impurity layer 42n overlapping the gate electrode 34n is formed on both sides of the gate electrode 34 on the surface of the semiconductor substrate, by injecting impurity ions into the semiconductor substrate, in an injecting direction having a gate length direction component and a gate width direction component. A sidewall covering the side face of the gate electrode 34n is formed, and a high concentration impurity layer, separated from the gate electrode 34n, is formed on the surface of the semiconductor substrate, on both sides of the gate electrode 34n, by injecting impurity ions, using the gate electrode 34 and sidewall as a mask.

Description

本発明は、半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device.

半導体素子のサイズを縮小していくことは、単位面積当たりにより多くの回路の集積を可能にするだけでなく、より低電圧、低電流で半導体素子を駆動できるようになり、消費電力を抑制することが可能となる。しかしながら、半導体素子のサイズを縮小していくと長チャネル時の近似からデバイスの特性がずれてくる。具体的には、しきい値電圧の変化、ソース、ドレイン耐圧の低下、弱反転状態におけるソース−ドレイン間のリーク電流の増加などが挙げられる。これらの現象を総称して短チャネル効果と呼ぶ。短チャンネル効果を防止する手法としてLDD構造がある。LDD構造は、高不純物濃度のドレイン領域およびソース領域とチャネル領域との間に低不純物濃度の領域を挿入した構造である。LDD構造をとることより、ドレインおよびソース端近傍の電界が緩和され耐圧が向上する。   Reducing the size of the semiconductor element not only enables integration of more circuits per unit area, but also allows the semiconductor element to be driven at a lower voltage and current, thereby reducing power consumption. It becomes possible. However, as the size of the semiconductor element is reduced, the device characteristics deviate from the approximation in the long channel. Specific examples include a change in threshold voltage, a decrease in breakdown voltage of the source and drain, and an increase in leakage current between the source and drain in the weak inversion state. These phenomena are collectively referred to as the short channel effect. There is an LDD structure as a technique for preventing the short channel effect. The LDD structure is a structure in which a low impurity concentration region is inserted between a high impurity concentration drain region and a source region and a channel region. By adopting the LDD structure, the electric field in the vicinity of the drain and source ends is relaxed and the breakdown voltage is improved.

特許文献1には、高不純物濃度のドレイン領域およびソース領域とチャネル領域の間にゲート電極とオーバーラップするように設けられた低濃度不純物層および高濃度不純物層を有する半導体装置およびその製造方法が記載されている。   Patent Document 1 discloses a semiconductor device having a low-concentration impurity layer and a high-concentration impurity layer provided so as to overlap with a gate electrode between a drain region and a source region and a channel region having a high impurity concentration, and a method for manufacturing the semiconductor device. Have been described.

特開平10−12870号公報Japanese Patent Laid-Open No. 10-12870

LDD構造を有するMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)において、ゲート電極とオーバーラップするように低濃度不純物層を形成する場合、基板に対して例えば45°の傾斜角でイオン注入が行われる。   In a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) having an LDD structure, when a low-concentration impurity layer is formed so as to overlap the gate electrode, ion implantation is performed at an inclination angle of, for example, 45 ° with respect to the substrate. Is called.

図1(a)は、一般的なMOSFET100の上面図である。MOSFET100は、高濃度不純物層44、低濃度不純物層42およびチャネル領域46を含むアクティブ領域40と、アクティブ領域40の周囲に延在する素子分離膜20と、アクティブ領域40を跨ぐように伸長するゲート電極34と、を有している。低濃度不純物層42をゲート電極34にオーバーラップさせる場合、イオン注入方向が図1に示すゲート長方向(すなわち、ドレイン、ゲート、ソースが並ぶ方向)に沿ったA方向成分およびB方向成分を持つような注入方向でイオン注入が行われる。ここで、MOSFET100とはゲート長方向が異なる他のMOSFETが他の領域に存在する場合、C方向成分およびD方向成分を有する注入方向で更にイオン注入が行われることとなる。この場合において、ゲート長方向と直交する方向におけるゲート電極34のアクティブ領域40からの突き出し寸法L1が小さいと、図1(b)および図1(c)に示すように、注入されたイオンがゲート電極34および素子分離膜20を突き抜けてチャネル領域46内に侵入してリークパスが形成される場合がある。これを防止するためには、ゲート電極34の突き出し寸法L1を大きくしてイオンの侵入を阻止する必要がある。しかしながら、ゲート電極34の突き出し寸法L1を大きくすると素子サイズが大きくなり、半導体装置の高密度化および小型化の要求を満足することができない。   FIG. 1A is a top view of a general MOSFET 100. MOSFET 100 includes an active region 40 including a high concentration impurity layer 44, a low concentration impurity layer 42 and a channel region 46, an element isolation film 20 extending around the active region 40, and a gate extending across the active region 40. Electrode 34. When the low-concentration impurity layer 42 is overlapped with the gate electrode 34, the ion implantation direction has an A-direction component and a B-direction component along the gate length direction (that is, the direction in which the drain, gate, and source are aligned) shown in FIG. Ion implantation is performed in such an implantation direction. Here, when another MOSFET having a gate length direction different from that of the MOSFET 100 is present in another region, further ion implantation is performed in an implantation direction having a C direction component and a D direction component. In this case, when the protrusion dimension L1 of the gate electrode 34 from the active region 40 in the direction orthogonal to the gate length direction is small, the implanted ions are gated as shown in FIGS. 1 (b) and 1 (c). A leak path may be formed by penetrating the electrode 34 and the element isolation film 20 and entering the channel region 46. In order to prevent this, it is necessary to increase the protruding dimension L1 of the gate electrode 34 to prevent ions from entering. However, when the protrusion dimension L1 of the gate electrode 34 is increased, the element size increases, and the demand for higher density and smaller size of the semiconductor device cannot be satisfied.

図2は、ゲート電極の突き出し寸法L1を0.2μm(破線)および0.4μm(実線)とした場合のリーク電流を比較した結果を示すグラフである。図2において横軸はゲート電圧、縦軸はドレイン電流を示している。ゲート電極の突き出し寸法L1を0.2μmとした場合、リーク電流が大幅に増大しており、突き出し寸法L1を0.4μmと大きくすることでこれを回避できることが理解できる。   FIG. 2 is a graph showing a result of comparison of leakage currents when the gate electrode protruding dimension L1 is 0.2 μm (broken line) and 0.4 μm (solid line). In FIG. 2, the horizontal axis indicates the gate voltage, and the vertical axis indicates the drain current. It can be understood that when the protruding dimension L1 of the gate electrode is 0.2 μm, the leakage current is greatly increased, and this can be avoided by increasing the protruding dimension L1 to 0.4 μm.

本発明はかかる点に鑑みてなされたものであり、基板に対して斜め方向からイオン注入を行う工程を含む半導体装置の製造方法において、ゲート電極サイズの縮小化とリーク電流特性の改善を両立することができる製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and in a method for manufacturing a semiconductor device including a step of performing ion implantation from an oblique direction with respect to a substrate, both reduction in gate electrode size and improvement in leakage current characteristics are achieved. An object of the present invention is to provide a manufacturing method that can be used.

本発明の半導体装置の製造方法は、半導体基板の表面にゲート電極を形成する工程と、前記ゲート電極のゲート長方向と交差するゲート幅方向における両端面を被覆するレジストマスクを形成する工程と、前記半導体基板に前記ゲート長方向成分および前記ゲート幅方向成分を有する注入方向で不純物イオンを注入して前記半導体基板の表面の前記ゲート電極を挟む両側に前記ゲート電極とオーバーラップした低濃度不純物層を形成する工程と、前記ゲート電極の側面を覆うサイドウォールを形成する工程と、前記ゲート電極および前記サイドウォールをマスクとして不純物イオンを注入して前記半導体基板の表面の前記ゲート電極を挟む両側に前記ゲート電極から離間した高濃度不純物層を形成する工程と、を含み、前記レジストマスクは、前記ゲート電極の形成領域のうち、前記低濃度不純物層及び前記高濃度不純物層を含むアクティブ領域から突き出した領域を被覆することを特徴としている。   The method of manufacturing a semiconductor device of the present invention includes a step of forming a gate electrode on a surface of a semiconductor substrate, a step of forming a resist mask that covers both end faces in the gate width direction intersecting the gate length direction of the gate electrode, Impurity ions are implanted into the semiconductor substrate in an implantation direction having the gate length direction component and the gate width direction component, and the low concentration impurity layer overlaps with the gate electrode on both sides of the gate electrode on the surface of the semiconductor substrate Forming a sidewall covering the side surface of the gate electrode, implanting impurity ions using the gate electrode and the sidewall as a mask, and sandwiching the gate electrode on both sides of the surface of the semiconductor substrate Forming a high-concentration impurity layer spaced from the gate electrode, and the resist mask Wherein among the formation area of the gate electrode is characterized by covering the area protruding from the active region including the low concentration impurity layer and the high concentration impurity layer.

本発明の半導体装置の製造方法によれば、低濃度不純物層を形成する際にゲート長方向と交差するゲート幅方向成分をもつ傾斜角でイオン注入が行われる場合でも、ゲート電極のゲート幅方向における両端面がレジストマスクで被覆されるので、ゲート電極直下のチャネル領域内へのイオン注入が阻害され、チャネル領域内におけるリークパスの形成を防止することができる。これによりゲート電極サイズの縮小化とリーク電流特性の改善を両立を達成することができる。   According to the method for manufacturing a semiconductor device of the present invention, even when ion implantation is performed at an inclination angle having a gate width direction component that intersects the gate length direction when forming a low-concentration impurity layer, the gate width direction of the gate electrode Since both end faces of are covered with a resist mask, ion implantation into the channel region directly under the gate electrode is inhibited, and formation of a leak path in the channel region can be prevented. As a result, it is possible to achieve both reduction of the gate electrode size and improvement of the leakage current characteristics.

図1(a)および図1(b)はMOSFETの構造を示す上面図である。図1(c)は図1(b)の1c−1c線に沿った断面図である。1A and 1B are top views showing the structure of the MOSFET. FIG.1 (c) is sectional drawing along the 1c-1c line | wire of FIG.1 (b). MOSFETのリーク電流特性を示すグラフである。It is a graph which shows the leakage current characteristic of MOSFET. 本発明の実施例に係るCMOS型ICの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of CMOS type IC which concerns on the Example of this invention. 本発明の実施例に係るCMOS型ICの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of CMOS type IC which concerns on the Example of this invention. 図5(a)はn−MOS形成領域に低濃度不純物層を形成する工程におけるCMOS型ICの上面図である。図5(b)および図5(c)はそれぞれ、図5(a)における5b−5b線および5c−5c線に沿った断面図である。FIG. 5A is a top view of the CMOS IC in the process of forming a low concentration impurity layer in the n-MOS formation region. FIGS. 5B and 5C are cross-sectional views taken along lines 5b-5b and 5c-5c in FIG. 5A, respectively. 図6(a)はn−MOS形成領域に低濃度不純物層を形成する工程におけるCMOS型ICの上面図である。図6(b)および図6(c)はそれぞれ、図6(a)における5b−5b線および5c−5c線に沿った断面図である。FIG. 6A is a top view of the CMOS IC in the process of forming the low concentration impurity layer in the n-MOS formation region. 6B and 6C are cross-sectional views taken along lines 5b-5b and 5c-5c in FIG. 6A, respectively. MOSFETのリーク電流特性を示すグラフである。It is a graph which shows the leakage current characteristic of MOSFET.

以下、本発明の実施例について図面を参照しつつ説明する。尚、以下に示す図において、実質的に同一又は等価な構成要素、部分には同一の参照符を付している。以下において、互いに隣接するn−MOS形成領域2およびp−MOS形成領域3にそれぞれn型MOSFETおよびp型MOSFETを形成する場合を例に説明する。図3(a)〜(e)および図4(a)〜(d)は、本発明の実施例に係るCMOS型ICの製造方法におけるプロセスステップ毎の断面図である。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings shown below, substantially the same or equivalent components and parts are denoted by the same reference numerals. In the following, an example in which an n-type MOSFET and a p-type MOSFET are formed in the n-MOS formation region 2 and the p-MOS formation region 3 adjacent to each other will be described. FIGS. 3A to 3E and FIGS. 4A to 4D are cross-sectional views for each process step in the CMOS type IC manufacturing method according to the embodiment of the present invention.

p型のシリコン基板10を用意し、これを酸溶液で洗浄し、超純水でリンスした後、遠心乾燥機で乾燥させる(図3(a))。   A p-type silicon substrate 10 is prepared, washed with an acid solution, rinsed with ultrapure water, and then dried with a centrifugal dryer (FIG. 3A).

次に、シリコン基板10のn−MOS形成領域2の表面を覆うようにレジストマスクを形成した後、シリコン基板10のレジストで覆われていない露出面にリンイオンを注入してp−MOS形成領域3にn−ウェル12を形成する(図3(b))。   Next, after forming a resist mask so as to cover the surface of the n-MOS formation region 2 of the silicon substrate 10, phosphorus ions are implanted into the exposed surface of the silicon substrate 10 that is not covered with the resist to form the p-MOS formation region 3. An n-well 12 is formed on the substrate (FIG. 3B).

次に、n−MOS形成領域2とp−MOS形成領域3とを電気的に分離するための素子分離膜20を形成する。素子分離膜20は例えばSTI(Shallow Trench Isolation)法またはLOCOS(local oxidation of silicon)法により形成することができる。STI法の場合、シリコン基板10の素子分離領域に反応性イオンエッチング(RIE:reactive ion etching)により溝を形成し、化学気相成長法(CVD:Chemical Vapor Deposition)等によりこの溝にSiO2を埋め込む。その後,化学機械平坦化法(CMP:Chemical Mechanical Polishing)によりSiO2を平坦化する(図3(c))。 Next, an element isolation film 20 for electrically isolating the n-MOS formation region 2 and the p-MOS formation region 3 is formed. The element isolation film 20 can be formed by, for example, an STI (Shallow Trench Isolation) method or a LOCOS (local oxidation of silicon) method. In the case of the STI method, a groove is formed in the element isolation region of the silicon substrate 10 by reactive ion etching (RIE), and SiO 2 is formed in this groove by a chemical vapor deposition (CVD) method or the like. Embed. Thereafter, SiO 2 is planarized by chemical mechanical planarization (CMP) (FIG. 3C).

次に、熱酸化法によりシリコン基板10の表面にSiO2からなるゲート酸化膜32を形成する。続いて、シラン(SiH4)ガスを窒素(N2)ガス雰囲気中で熱分解させ、ゲート酸化膜32上にゲート電極34n、34pを構成する多結晶シリコン膜34を形成する。尚、多結晶シリコン膜34の電気抵抗を下げるためにリン(P)等の不純物を添加してもよい(図3(d))。 Next, a gate oxide film 32 made of SiO 2 is formed on the surface of the silicon substrate 10 by thermal oxidation. Subsequently, a silane (SiH 4 ) gas is thermally decomposed in a nitrogen (N 2 ) gas atmosphere to form a polycrystalline silicon film 34 constituting the gate electrodes 34 n and 34 p on the gate oxide film 32. Note that an impurity such as phosphorus (P) may be added to lower the electrical resistance of the polycrystalline silicon film 34 (FIG. 3D).

次に、多結晶シリコン膜34にパターニングを施してn−MOS形成領域2およびp−MOS形成領域3にそれぞれゲート電極34nおよび34pを形成する。続いてゲート電極34nおよび34pをマスクにしてゲート酸化膜32を部分的に除去する(図3(e))   Next, the polycrystalline silicon film 34 is patterned to form gate electrodes 34n and 34p in the n-MOS formation region 2 and the p-MOS formation region 3, respectively. Subsequently, the gate oxide film 32 is partially removed using the gate electrodes 34n and 34p as a mask (FIG. 3E).

次に、n−MOS形成領域2に低濃度不純物層42nを形成する(図4(a))。ここで、図5(a)は、図4(a)に対応するn−MOS形成領域2およびp−MOS形成領域3の上面図、図5(b)および図5(c)は、それぞれ図5(a)における5b−5b線および5c−5c線に沿った断面図である。n−MOS形成領域2に低濃度不純物層42nを形成するためのイオン注入を行う前にレジストマスク61および71を形成する。レジストマスク61は、p−MOS形成領域3へのイオン注入を阻止するためのマスクである。レジストマスク61は、シリコン基板10のp−MOS形成領域3の表面を覆い且つn−MOS形成領域2において開口部61aを有する。レジストマスク71は、開口部61a内において露出しているゲート電極34nの上面の一部と、ゲート電極34nのゲート長方向と直交する方向(以下ゲート幅方向と称する)における端面aおよびbを被覆している。ゲート電極34nのアクティブ領域40nからの突き出し寸法L1は、例えば0.2μmであり、ゲート電極34nの端面aおよびbを被覆するレジストマスク71の被覆厚L2は例えば0.3μmである。レジストマスク61とレジストマスク71は、同一の材料を用いて形成することができ、同一の露光・現像処理を経て一括処理にて形成することができる。すなわち、ゲート電極34nの端面を被覆するレジスト71を形成するための工程を新たに追加することを要しない。   Next, a low concentration impurity layer 42n is formed in the n-MOS formation region 2 (FIG. 4A). Here, FIG. 5A is a top view of the n-MOS formation region 2 and the p-MOS formation region 3 corresponding to FIG. 4A, and FIG. 5B and FIG. It is sectional drawing along the 5b-5b line | wire and 5c-5c line | wire in 5 (a). Resist masks 61 and 71 are formed before ion implantation for forming the low-concentration impurity layer 42n in the n-MOS formation region 2 is performed. The resist mask 61 is a mask for preventing ion implantation into the p-MOS formation region 3. The resist mask 61 covers the surface of the p-MOS formation region 3 of the silicon substrate 10 and has an opening 61 a in the n-MOS formation region 2. The resist mask 71 covers a part of the upper surface of the gate electrode 34n exposed in the opening 61a and end faces a and b in a direction perpendicular to the gate length direction of the gate electrode 34n (hereinafter referred to as the gate width direction). doing. The protruding dimension L1 of the gate electrode 34n from the active region 40n is, for example, 0.2 μm, and the coating thickness L2 of the resist mask 71 that covers the end faces a and b of the gate electrode 34n is, for example, 0.3 μm. The resist mask 61 and the resist mask 71 can be formed using the same material, and can be formed by batch processing through the same exposure / development processing. That is, it is not necessary to newly add a process for forming the resist 71 that covers the end face of the gate electrode 34n.

レジストマスク61および71を形成した後、シリコン基板10の表面にドーズ量2.0×1013atom/cm2、注入エネルギー160kevにてリンイオン(31P+)を注入して、ゲート電極34nを挟む両側にn型の低濃度不純物層42nを形成する。イオン注入は、注入方向がゲート長方向に沿ったA方向成分およびB方向成分を持つように注入角度45°で行われる。低濃度不純物層42nは、自己整合的にゲート電極34nとオーバーラップするように(ゲート電極直下領域に侵入する部分を有するように)アクティブ領域40n内に形成される。 After the resist masks 61 and 71 are formed, phosphorus ions (31P +) are implanted into the surface of the silicon substrate 10 at a dose of 2.0 × 10 13 atoms / cm 2 and an implantation energy of 160 kev, and on both sides of the gate electrode 34n. An n-type low concentration impurity layer 42n is formed. The ion implantation is performed at an implantation angle of 45 ° so that the implantation direction has an A direction component and a B direction component along the gate length direction. The low-concentration impurity layer 42n is formed in the active region 40n so as to overlap with the gate electrode 34n in a self-aligned manner (so as to have a portion that enters the region directly under the gate electrode).

ここで、図示しない他のn−MOS形成領域にゲート長方向が異なったn型MOSFETを更に形成する場合、本工程において、ゲート幅方向に沿ったC方向成分およびD方向成分を持つ注入方向(傾斜角)でイオン注入が行われることとなる。ゲート電極34nの端面aおよびbは所定の被覆厚を有するレジスト71により被覆されているので、ゲート幅方向成分を持つイオン注入が行われた場合でもゲート電極34nの直下のチャネル領域内へのイオン注入が阻止される。従って、チャネル領域内においてリークパスが形成されることはない。このように、ゲート電極34nのゲート幅方向における端面aおよびbをレジスト71で被覆することにより、ゲート電極の突き出し寸法L1を長くした場合と同様の効果を得ることができる。尚、レジスト71のゲート電極34nの両端面を被覆する被覆厚は、ゲート電極直下へのイオン注入を阻止し得る厚さに設定され、ゲート電極34nの突き出し寸法L1やイオン注入条件等に応じて適宜変更することが可能である。   Here, in the case where an n-type MOSFET having a different gate length direction is further formed in another n-MOS formation region (not shown), in this step, an implantation direction (with a C direction component and a D direction component along the gate width direction) Ion implantation is performed at an inclination angle. Since the end faces a and b of the gate electrode 34n are covered with the resist 71 having a predetermined coating thickness, even when ion implantation having a gate width direction component is performed, ions into the channel region immediately below the gate electrode 34n Injection is blocked. Therefore, no leak path is formed in the channel region. Thus, by covering the end faces a and b in the gate width direction of the gate electrode 34n with the resist 71, the same effect as that obtained when the protruding dimension L1 of the gate electrode is increased can be obtained. The coating thickness of the resist 71 that covers both end faces of the gate electrode 34n is set to a thickness that can prevent ion implantation directly under the gate electrode, and depends on the protrusion dimension L1 of the gate electrode 34n, ion implantation conditions, and the like. It can be changed as appropriate.

次に、p−MOS形成領域3に同様の手順で低濃度不純物層42pを形成する(図4(b))。ここで、図6(a)は、図4(b)に対応するn−MOS形成領域2およびp−MOS形成領域3の上面図、図6(b)および図6(c)は、それぞれ図6(a)における5b−5b線および5c−5c線に沿った断面図である。p−MOS形成領域3に低濃度不純物層42pを形成するためのイオン注入を行う前にレジストマスク62および72を形成する。レジストマスク62は、n−MOS形成領域2へのイオン注入を阻止するためのマスクである。レジストマスク62は、シリコン基板10のn−MOS形成領域2の表面を覆い且つp−MOS形成領域3において開口部62aを有する。レジストマスク72は、開口部62a内において露出しているゲート電極34pの上面の一部と、ゲート電極34pのゲート幅方向における端面aおよびbを被覆している。ゲート電極34pのアクティブ領域40pからの突き出し寸法L1は、例えば0.2μmであり、ゲート電極34nの端面aおよびbを被覆するゲート幅方向におけるレジストマスク72の被覆厚L2は例えば0.3μmである。レジストマスク62とレジストマスク72は、同一の材料を用いて形成することができ、同一の露光・現像処理を経て一括処理にて形成される。すなわち、ゲート電極34pの端面を被覆するレジスト72を形成するためにプロセスを追加することを要しない。   Next, the low-concentration impurity layer 42p is formed in the p-MOS formation region 3 in the same procedure (FIG. 4B). 6A is a top view of the n-MOS formation region 2 and the p-MOS formation region 3 corresponding to FIG. 4B, and FIGS. 6B and 6C are diagrams respectively. It is sectional drawing along the 5b-5b line and 5c-5c line in 6 (a). Resist masks 62 and 72 are formed before ion implantation for forming the low-concentration impurity layer 42p in the p-MOS formation region 3 is performed. The resist mask 62 is a mask for preventing ion implantation into the n-MOS formation region 2. The resist mask 62 covers the surface of the n-MOS formation region 2 of the silicon substrate 10 and has an opening 62 a in the p-MOS formation region 3. The resist mask 72 covers a part of the upper surface of the gate electrode 34p exposed in the opening 62a and the end surfaces a and b of the gate electrode 34p in the gate width direction. The protruding dimension L1 of the gate electrode 34p from the active region 40p is, for example, 0.2 μm, and the coating thickness L2 of the resist mask 72 in the gate width direction that covers the end faces a and b of the gate electrode 34n is, for example, 0.3 μm. . The resist mask 62 and the resist mask 72 can be formed using the same material, and are formed by batch processing through the same exposure / development processing. That is, it is not necessary to add a process to form the resist 72 that covers the end face of the gate electrode 34p.

レジストマスク62および72を形成した後、シリコン基板10のp表面にボロンイオン(11B+)を注入して、ゲート電極34nを挟む両側にn型の低濃度不純物層42pを形成する。イオン注入は、ゲート長方向に沿ったA方向成分およびB方向成分を持つように注入角度45°で行われる。低濃度不純物層42nは、自己整合的にゲート電極34pとオーバーラップするように(ゲート電極直下領域に侵入する部分を有するように)アクティブ領域40p内に形成される。   After the resist masks 62 and 72 are formed, boron ions (11B +) are implanted into the p surface of the silicon substrate 10 to form n-type low-concentration impurity layers 42p on both sides of the gate electrode 34n. The ion implantation is performed at an implantation angle of 45 ° so as to have an A direction component and a B direction component along the gate length direction. The low-concentration impurity layer 42n is formed in the active region 40p so as to overlap with the gate electrode 34p in a self-aligned manner (so as to have a portion that enters the region directly under the gate electrode).

ここで、図示しない他のp−MOS形成領域にゲート長方向が異なったp型MOSFETを更に形成する場合、本工程において、ゲート幅方向に沿ったC方向成分およびD方向成分を持つ注入方向(傾斜角)でイオン注入が行われることとなる。ゲート電極34pの端面aおよびbは所定の厚さを有するレジスト72により被覆されているので、C方向成分およびD方向成分を持つイオン注入が行われた場合でも、チャネル領域内へのイオン注入が阻害され、チャネル領域内にリークパスが形成されることはない。このように、ゲート電極34pの端面aおよびbをレジスト72で被覆することにより、ゲート電極の突き出し寸法L1を長くした場合と同様の効果を得ることができる。   Here, in the case where a p-type MOSFET having a different gate length direction is further formed in another p-MOS formation region (not shown), in this step, an implantation direction having a C direction component and a D direction component along the gate width direction ( Ion implantation is performed at an inclination angle. Since the end faces a and b of the gate electrode 34p are covered with a resist 72 having a predetermined thickness, even when ion implantation having a C-direction component and a D-direction component is performed, ion implantation into the channel region is performed. It is inhibited and a leak path is not formed in the channel region. Thus, by covering the end faces a and b of the gate electrode 34p with the resist 72, the same effect as that obtained when the protruding dimension L1 of the gate electrode is increased can be obtained.

次に、レジスト62および72を除去した後、CVD法等を用いてゲート電極34nおよび34pを埋設するようにシリコン基板10の表面にSiO2等からなる絶縁膜を形成する。続いて反応性イオンエッチングによりこの絶縁膜をエッチバックしてゲート電極34nおよび34pの側面にそれぞれサイドウォール36n、36pを形成する。 Next, after removing the resists 62 and 72, an insulating film made of SiO 2 or the like is formed on the surface of the silicon substrate 10 so as to embed the gate electrodes 34n and 34p using a CVD method or the like. Subsequently, the insulating film is etched back by reactive ion etching to form side walls 36n and 36p on the side surfaces of the gate electrodes 34n and 34p, respectively.

次に、p−MOS形成領域3を覆うように、シリコン基板10の表面にレジスト63を形成する。次に、シリコン基板10の表面にドーズ量5.0×1015atom/cm2、注入エネルギー50kevにて砒素イオン(75As+)を注入して、ゲート電極34nを挟む両側にドレインおよびソースに対応するn型の高濃度不純物層44nを形成する。イオン注入は注入角度0°で行われる。ゲート電極34nおよびサイドウォール36nがマスクとして機能して高濃度不純物層44nは、低濃度不純物層42n内においてゲート電極34nおよびチャネル領域から離間した位置に形成される。すなわち、高濃度不純物層44nとチャネル領域46nとの間に低濃度不純物層42nが介在するLDD構造が形成される(図4(c))。 Next, a resist 63 is formed on the surface of the silicon substrate 10 so as to cover the p-MOS formation region 3. Next, arsenic ions (75As +) are implanted into the surface of the silicon substrate 10 at a dose of 5.0 × 10 15 atom / cm 2 and an implantation energy of 50 kev, and correspond to the drain and source on both sides of the gate electrode 34n. An n-type high concentration impurity layer 44n is formed. Ion implantation is performed at an implantation angle of 0 °. The gate electrode 34n and the sidewall 36n function as a mask, and the high-concentration impurity layer 44n is formed at a position separated from the gate electrode 34n and the channel region in the low-concentration impurity layer 42n. That is, an LDD structure in which the low concentration impurity layer 42n is interposed between the high concentration impurity layer 44n and the channel region 46n is formed (FIG. 4C).

次に、n−MOS形成領域2を覆うように、シリコン基板10の表面にレジスト64を形成する。次に、シリコン基板10の表面にボロンイオン(11B+)を注入して、ゲート電極34pを挟む両側にドレインおよびソースに対応するp型の高濃度不純物層44pを形成する。イオン注入は注入角度0°で行われる。ゲート電極34pおよびサイドウォール36pがマスクとして機能して高濃度不純物層44pは、低濃度不純物層42p内においてゲート電極34pおよびチャネル領域46pから離間した位置に形成される。すなわち、高濃度不純物層44pとチャネル領域46pとの間に低濃度不純物層42pが介在するLDD構造が形成される(図4(d))。その後、公知の配線工程を経てCMOS型ICが完成する。   Next, a resist 64 is formed on the surface of the silicon substrate 10 so as to cover the n-MOS formation region 2. Next, boron ions (11B +) are implanted into the surface of the silicon substrate 10 to form p-type high-concentration impurity layers 44p corresponding to the drain and source on both sides of the gate electrode 34p. Ion implantation is performed at an implantation angle of 0 °. The gate electrode 34p and the sidewall 36p function as a mask, and the high concentration impurity layer 44p is formed in a position separated from the gate electrode 34p and the channel region 46p in the low concentration impurity layer 42p. That is, an LDD structure in which the low concentration impurity layer 42p is interposed between the high concentration impurity layer 44p and the channel region 46p is formed (FIG. 4D). Thereafter, a CMOS IC is completed through a known wiring process.

以上の説明から明らかなように、本実施例に係る製造方法によれば、低濃度不純物層を形成する際にゲート長方向と直交するゲート幅方向成分をもつ傾斜角でイオン注入が行われる場合でも、当該イオン注入の前にゲート電極のゲート幅方向における両端面がレジストマスクで被覆されるので、ゲート電極直下のチャネル領域内へのイオン注入が阻害され、チャネル領域内におけるリークパスの形成を防止することができる。従って、ゲート電極のゲート幅方向の寸法を従来よりも小さくすることができ、半導体素子の縮小化および高密度化に寄与することができる。ゲート電極の両端面を被覆するレジストマスクは、他の領域へのイオン注入を阻止するための既存のレジストマスクと同一の工程において形成することができるので、新たな工程を追加することを要しない。   As is clear from the above description, according to the manufacturing method according to the present embodiment, when the low concentration impurity layer is formed, ion implantation is performed at an inclination angle having a gate width direction component orthogonal to the gate length direction. However, since both end faces in the gate width direction of the gate electrode are covered with a resist mask before the ion implantation, ion implantation into the channel region immediately below the gate electrode is inhibited, and the formation of a leak path in the channel region is prevented. can do. Therefore, the dimension of the gate electrode in the gate width direction can be made smaller than before, which can contribute to the reduction in the size and density of the semiconductor element. The resist mask that covers both end faces of the gate electrode can be formed in the same process as the existing resist mask for preventing ion implantation into other regions, so that it is not necessary to add a new process. .

図7は、ゲート電極のアクティブ領域からの突き出し寸法L1を従来よりも短い0.2μmとした場合において、ゲート電極のゲート幅方向における両端面をレジストマスクで被覆した場合(実線)と被覆しない場合(破線)のリーク電流の比較を行った結果を示すグラフである。本実施例の如くゲート電極の両端面をレジストで被覆してチャネル領域へのイオン注入を阻止することにより、リーク電流が大幅に減少していることが理解できる。   FIG. 7 shows a case where both end surfaces of the gate electrode in the gate width direction are covered with a resist mask (solid line) and a case where the gate electrode is not covered when the protruding dimension L1 from the active region of the gate electrode is 0.2 μm which is shorter than the conventional one. It is a graph which shows the result of having compared the leak current of (broken line). It can be understood that leakage current is greatly reduced by covering both end faces of the gate electrode with a resist as in this embodiment to prevent ion implantation into the channel region.

2 n−MOS形成領域
3 p−MOS形成領域
10 半導体基板
34n、34p ゲート電極
36n、36p サイドウォール
42n、42p 低濃度不純物層
44n、44p 高濃度不純物層
61〜64 レジストマスク
71、72 レジストマスク
2 n-MOS formation region 3 p-MOS formation region 10 Semiconductor substrate 34n, 34p Gate electrode 36n, 36p Side wall 42n, 42p Low concentration impurity layer 44n, 44p High concentration impurity layer 61-64 Resist mask 71, 72 Resist mask

Claims (2)

半導体基板の表面にゲート電極を形成する工程と、
前記ゲート電極のゲート長方向と交差するゲート幅方向における両端面を被覆するレジストマスクを形成する工程と、
前記半導体基板に前記ゲート長方向成分および前記ゲート幅方向成分を有する注入方向で不純物イオンを注入して前記半導体基板の表面の前記ゲート電極を挟む両側に前記ゲート電極とオーバーラップした低濃度不純物層を形成する工程と、
前記ゲート電極の側面を覆うサイドウォールを形成する工程と、
前記ゲート電極および前記サイドウォールをマスクとして不純物イオンを注入して前記半導体基板の表面の前記ゲート電極を挟む両側に前記ゲート電極から離間した高濃度不純物層を形成する工程と、を含み、
前記レジストマスクは、前記ゲート電極の形成領域のうち、前記低濃度不純物層及び前記高濃度不純物層を含むアクティブ領域から突き出した領域を被覆することを特徴とする半導体装置の製造方法。
Forming a gate electrode on the surface of the semiconductor substrate;
Forming a resist mask covering both end faces in the gate width direction intersecting the gate length direction of the gate electrode;
Impurity ions are implanted into the semiconductor substrate in an implantation direction having the gate length direction component and the gate width direction component, and the low concentration impurity layer overlaps with the gate electrode on both sides of the gate electrode on the surface of the semiconductor substrate Forming a step;
Forming a sidewall covering a side surface of the gate electrode;
Implanting impurity ions using the gate electrode and the sidewall as a mask to form a high concentration impurity layer spaced from the gate electrode on both sides of the gate electrode on the surface of the semiconductor substrate,
The method of manufacturing a semiconductor device, wherein the resist mask covers a region protruding from an active region including the low-concentration impurity layer and the high-concentration impurity layer in the formation region of the gate electrode.
前記レジストマスクは、前記低濃度不純物層を形成する工程において前記ゲート幅方向成分を有する注入方向で注入される不純物イオンの前記ゲート電極の直下への侵入を阻止し得る被覆厚を有することを特徴とする請求項1に記載の製造方法。   The resist mask has a coating thickness capable of preventing entry of impurity ions implanted in the implantation direction having the gate width direction component into the region immediately below the gate electrode in the step of forming the low-concentration impurity layer. The manufacturing method according to claim 1.
JP2015113362A 2015-06-03 2015-06-03 Method of manufacturing semiconductor device Pending JP2015188103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015113362A JP2015188103A (en) 2015-06-03 2015-06-03 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015113362A JP2015188103A (en) 2015-06-03 2015-06-03 Method of manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010263486A Division JP5808907B2 (en) 2010-11-26 2010-11-26 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2015188103A true JP2015188103A (en) 2015-10-29

Family

ID=54430160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015113362A Pending JP2015188103A (en) 2015-06-03 2015-06-03 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2015188103A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230355A (en) * 1985-04-05 1986-10-14 Nec Corp Manufacture of semiconductor device
JPH09320978A (en) * 1996-05-31 1997-12-12 Nec Corp Ion implantation
JP2001267556A (en) * 2000-03-14 2001-09-28 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2003158136A (en) * 2001-11-26 2003-05-30 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
JP2003179056A (en) * 2001-12-11 2003-06-27 Fujitsu Ltd Semiconductor device and method of manufacturing the same
JP2003188269A (en) * 2001-12-14 2003-07-04 Mitsubishi Electric Corp Method for manufacturing transistor
JP2004071722A (en) * 2002-08-05 2004-03-04 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
JP2008218609A (en) * 2007-03-02 2008-09-18 Fujitsu Ltd Semiconductor device and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230355A (en) * 1985-04-05 1986-10-14 Nec Corp Manufacture of semiconductor device
JPH09320978A (en) * 1996-05-31 1997-12-12 Nec Corp Ion implantation
JP2001267556A (en) * 2000-03-14 2001-09-28 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2003158136A (en) * 2001-11-26 2003-05-30 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
JP2003179056A (en) * 2001-12-11 2003-06-27 Fujitsu Ltd Semiconductor device and method of manufacturing the same
JP2003188269A (en) * 2001-12-14 2003-07-04 Mitsubishi Electric Corp Method for manufacturing transistor
JP2004071722A (en) * 2002-08-05 2004-03-04 Matsushita Electric Ind Co Ltd Method for manufacturing semiconductor device
JP2008218609A (en) * 2007-03-02 2008-09-18 Fujitsu Ltd Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7981783B2 (en) Semiconductor device and method for fabricating the same
US7528442B2 (en) Semiconductor device and manufacturing method thereof
US7556997B2 (en) Method of manufacturing semiconductor device having impurity region under isolation region
KR101531882B1 (en) Semiconductor device and method for manufacturing the same
CN111933713B (en) Semiconductor device and method for manufacturing the same
US20080032483A1 (en) Trench isolation methods of semiconductor device
KR101780147B1 (en) Semiconductor device for multi votlage and method for manufacturing the same
JP4501183B2 (en) Manufacturing method of semiconductor device
US20070212842A1 (en) Manufacturing method of high-voltage MOS transistor
US8552506B2 (en) Semiconductor device and method of manufacturing the same
US6768148B1 (en) Devices with active areas having increased ion concentrations adjacent to isolation structures
JP2004072063A (en) Semiconductor device and manufacturing method thereof
CN115425087A (en) Semiconductor device and method for manufacturing semiconductor device
JP2009267027A (en) Semiconductor device, and method for manufacturing thereof
KR101035578B1 (en) Method for manufacturing semiconductor device
JP5808907B2 (en) Manufacturing method of semiconductor device
JP3744438B2 (en) Semiconductor device
JP2015188103A (en) Method of manufacturing semiconductor device
KR100731092B1 (en) High voltage semiconductor device and method of manufacturing the same
KR101267889B1 (en) A semiconductor device and method for manufacturing the same
JP2011176113A (en) Mos-type semiconductor device and method of manufacturing the same
KR101175231B1 (en) A semiconductor device and method for manufacturing the same
KR101212266B1 (en) Semiconductor device and method for manufacturing the same
JP2007258568A (en) Method of manufacturing semiconductor device
JP2004259847A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131