JP2015184216A - Method for measuring strength of grain boundary - Google Patents

Method for measuring strength of grain boundary Download PDF

Info

Publication number
JP2015184216A
JP2015184216A JP2014062658A JP2014062658A JP2015184216A JP 2015184216 A JP2015184216 A JP 2015184216A JP 2014062658 A JP2014062658 A JP 2014062658A JP 2014062658 A JP2014062658 A JP 2014062658A JP 2015184216 A JP2015184216 A JP 2015184216A
Authority
JP
Japan
Prior art keywords
ultra
tensile test
test piece
grain boundary
fixed beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014062658A
Other languages
Japanese (ja)
Inventor
藤井 克彦
Katsuhiko Fujii
克彦 藤井
弘雅 西岡
Hiromasa Nishioka
弘雅 西岡
耕司 福谷
Koji Fukutani
耕司 福谷
照光 三浦
Terumitsu Miura
照光 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Nuclear Safety System Inc
Original Assignee
Institute of Nuclear Safety System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Nuclear Safety System Inc filed Critical Institute of Nuclear Safety System Inc
Priority to JP2014062658A priority Critical patent/JP2015184216A/en
Publication of JP2015184216A publication Critical patent/JP2015184216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring the strength of a grain boundary, capable of more accurately evaluating a stress even without using a cantilever large in size and even without performing finite element analysis, etc., in consideration of a bending moment.SOLUTION: The method for measuring the strength of a grain boundary comprises the steps of: manufacturing an ultra-microscopic tensile test piece having one grain boundary in an intermediate portion by focused ion beam processing; manufacturing a both-ends fixed beam having a microscopic size from a single crystal silicon wafer; fixing a lower end portion of the ultra-microscopic tensile test piece at the middle position of the both-ends fixed beam; fixing an upper end portion of the ultra-microscopic tensile test piece to a micro sampling probe; moving the micro sampling probe to apply a tensile load to the ultra-microscopic tensile test piece; and calculating a load applied to the ultra-microscopic tensile test piece from the flexure and spring constant of the both-ends fixed beam.

Description

本発明は、原子炉配管等の応力腐食割れ、特に粒界酸化を発生原因とする応力腐食割れの発生の可能性を診断するのに役立つ、結晶粒界強度測定方法に関する。   The present invention relates to a method for measuring grain boundary strength, which is useful for diagnosing the possibility of occurrence of stress corrosion cracking in reactor piping and the like, particularly stress corrosion cracking caused by grain boundary oxidation.

原子炉の冷却水に配管等を形成している材料が長時間曝されると、その材料と、環境、応力の条件が重なった条件で応力腐食割れと呼ばれる結晶粒界で割れる損傷が発生する。   When a material that forms piping, etc. is exposed to the reactor coolant for a long time, damage that breaks at grain boundaries called stress corrosion cracking occurs when the material, environment, and stress conditions overlap. .

従来、原子力発電所では、その健全性、信頼性を確保するため、定期的に原子炉の運転を停止させて点検を実施している。原子炉配管等で発生する応力腐食割れの検査も点検時に行われ、水中ビデオカメラを使用する検査手段で、主として目視検査が行われていた。また、目視が行えない箇所については、超音波探傷による割れの検出が行われていた。   Conventionally, nuclear power plants have been regularly inspected with nuclear reactors shut down to ensure their soundness and reliability. The inspection of stress corrosion cracking occurring in the reactor piping and the like was also performed at the time of inspection, and mainly visual inspection was performed by an inspection means using an underwater video camera. Moreover, the crack detection by ultrasonic flaw detection was performed about the location which cannot be visually observed.

しかしながら、これらの検査方法では、応力腐食割れの予兆を検出することは困難であった。   However, it has been difficult for these inspection methods to detect signs of stress corrosion cracking.

応力腐食割れは、長い潜伏期を経た後に発生し、発生後は割れの進展に伴ってき裂進展速度は増大する。応力腐食割れの潜伏期における粒界強度の低下を検出することができれば、応力腐食割れの発生応力と比較することで、原子炉配管等の応力腐食割れの発生の可能性を診断できる。しかし、特定の結晶粒界の強度を測定することは、従来の巨視的な材料試験技術では困難である。   Stress corrosion cracking occurs after a long incubation period, and the crack growth rate increases with the progress of cracking after the occurrence. If a decrease in grain boundary strength during the latent period of stress corrosion cracking can be detected, the possibility of the occurrence of stress corrosion cracking in a reactor pipe or the like can be diagnosed by comparing with the stress generated by stress corrosion cracking. However, it is difficult to measure the strength of a specific grain boundary with the conventional macroscopic material testing technique.

そこで、本発明者等は、多結晶材料の個々の結晶粒界のミクロ組織や組成の破壊特性との関係を調べる手法として、集束イオンビーム(focused ion beam, FIB)による加工を用いた超微小引張試験法を開発した(非特許文献1、2)。この手法は、電子顕微鏡を用いてミクロ組織と組成を明らかにした結晶粒界から、単一の結晶粒界を含む超微小引張試験片をFIB加工により作成し、図4に示すように、単結晶シリコンから作成したカンチレバーの先端に、超微小引張試験片の下端を固定し、超微小試験片の上端をマイクロプローブに固定して、FIB装置内で観察される2次イオン顕微鏡像(secondary ion microscope, SIM)像によりその場観察しながらマイクロプローブを超微小引張試験片の軸方向に引っ張る引張試験を実施するものである。図5に、FIB装置内引張試験をその場観察した一例を示す。SIM像により、超微小引張試験片の変形の観察とカンチレバーの撓みから荷重の算出が可能である。   Accordingly, the present inventors have used ultra-fine processing using focused ion beam (FIB) as a method for examining the relationship between the microstructure of individual grain boundaries of polycrystalline materials and the fracture characteristics of the composition. A small tensile test method was developed (Non-Patent Documents 1 and 2). In this method, an ultra-fine tensile specimen including a single crystal grain boundary is prepared by FIB processing from a grain boundary whose microstructure and composition have been clarified using an electron microscope. As shown in FIG. A secondary ion microscope image observed in the FIB device with the bottom end of the ultrafine tensile test piece fixed to the tip of a cantilever made of single crystal silicon and the top end of the ultrafine test piece fixed to a microprobe. (Secondary ion microscope, SIM) A tensile test is performed in which the microprobe is pulled in the axial direction of an ultra-small tensile specimen while observing in situ. FIG. 5 shows an example of in-situ observation of the tensile test in the FIB apparatus. With the SIM image, the load can be calculated from the observation of the deformation of the ultra-small tensile specimen and the bending of the cantilever.

藤井克彦、福谷耕司、「粒界強度測定のためのFIB装置内引張試験法の開発」、INSS JOURNAL,Vol.17,P.172(2010)Katsuhiko Fujii, Koji Fukutani, “Development of FIB In-machine Tensile Test Method for Grain Boundary Strength Measurement”, INS JOURNAL, Vol. 17, p. 172 (2010) 三浦照光、藤井克彦、西岡弘雅、福谷耕司、橘内裕寿、「超微小引張試験による中性子照射ステンレス鋼の粒界破壊特性の評価」、INSS JOURNAL,Vol.19,P.155(2012)Terutsu Miura, Katsuhiko Fujii, Hiromasa Nishioka, Koji Fukuya, Hirotoshi Tachiuchi, “Evaluation of Intergranular Fracture Properties of Neutron Irradiated Stainless Steel by Ultra-Micro Tensile Test”, INS JOURNAL, Vol. 19, p. 155 (2012)

上記従来の方法では、上記の超微小引張試験法では、カンチレバーのたわみが大きくなるほど大きな曲げモーメントが超微小引張試験片に作用する。大きな荷重での試験が必要な場合には、カンチレバーのサイズを大きくして撓みを小さくすることで曲げモーメントの応力への影響を減少させる必要があるとともに、より正確な応力の評価には曲げモーメントを考慮した有限要素解析等の解析が必要となる。   In the above-described conventional method, in the above-described ultra-fine tensile test method, a greater bending moment acts on the ultra-fine tensile test piece as the deflection of the cantilever increases. When testing with a large load is required, it is necessary to reduce the effect of bending moment on the stress by increasing the cantilever size and reducing deflection, and for a more accurate evaluation of the bending moment Analysis such as finite element analysis that takes into account is necessary.

そこで、本発明は、サイズを大きくしたカンチレバーを用いなくても、また曲げモーメントを考慮した有限要素解析等の解析を行わなくても、より正確な応力の評価が可能な結晶粒界強度測定方法を提供することを目的とする。   Therefore, the present invention provides a crystal grain boundary strength measuring method capable of more accurate stress evaluation without using a cantilever having a large size or performing analysis such as a finite element analysis considering a bending moment. The purpose is to provide.

上記目的を達成するため、本発明に係る結晶粒界強度測定方法は、集束イオンビーム加工により、一つの結晶粒界を中間部に有する超微小引張試験片を製作するステップと、単結晶シリコンウエハから微小寸法の両端固定梁を製作するステップと、前記両端固定梁の中央位置に前記超微小引張試験片の下端部を固定するステップと、前記超微小引張試験片の上端部をマイクロサンプリングプローブに固定するステップと、前記マイクロサンプリングプローブを移動させて前記超微小引張試験片に引張荷重をかけるステップと、前記両端固定梁のたわみとバネ定数から前記超微小引張試験片にかかる荷重を算出するステップと、を含むことを特徴とする。   In order to achieve the above object, a grain boundary strength measuring method according to the present invention includes a step of producing an ultra-fine tensile specimen having one grain boundary in the middle by focused ion beam processing, and single crystal silicon. A step of fabricating a micro-sized both-end fixed beam from a wafer, a step of fixing a lower end portion of the ultra-small tensile test piece at a center position of the both-end fixed beam, and a micro-end of the upper end portion of the ultra-micro tensile test piece. A step of fixing to the sampling probe; a step of moving the micro sampling probe to apply a tensile load to the ultra-small tensile test piece; And a step of calculating a load.

本発明によれば、超微小引張試験片を微小寸法の両端固定梁の中央位置に固定し、引張試験を行うことにより、超微小引張試験片に曲げモーメントが作用せず、また、数マイクロメートルの超微小引張試験片に対して垂直に引張荷重をかけることができ、より正確な応力の評価が可能となる。   According to the present invention, a bending moment is not applied to the ultra-small tensile test piece by fixing the ultra-fine tensile test piece at the center position of the both ends fixed beam of a minute size and performing a tensile test. A tensile load can be applied perpendicularly to a micrometer ultra-small tensile test piece, and a more accurate stress evaluation can be performed.

本発明に係る結晶粒界強度測定方法に用いる超微小引張試験片の一例であって、(a)は正面図、(b)は側面図を示す。It is an example of the ultra micro tensile test piece used for the crystal grain boundary strength measuring method which concerns on this invention, Comprising: (a) is a front view, (b) shows a side view. 本発明に係る結晶粒界強度測定方法を説明するためのSIM像であって、(a)は全体図、(b)は(a)の四角囲み部分の拡大図、(c)は(b)を更に拡大した拡大図である。It is a SIM image for demonstrating the crystal grain boundary intensity | strength measuring method which concerns on this invention, Comprising: (a) is a general view, (b) is an enlarged view of the square surrounding part of (a), (c) is (b). It is the enlarged view which expanded further. 本発明に係る結晶粒界強度測定方法を説明するためのSIM像であって、引張試験の変化を時系列で示す。It is a SIM image for demonstrating the crystal grain boundary strength measuring method which concerns on this invention, Comprising: The change of a tensile test is shown in time series. 従来の粒界強度測定方法を説明するためのSIM像である。It is a SIM image for demonstrating the conventional grain boundary strength measuring method. 図4に示す従来の粒界強度測定方法による時系列変化を示すSIM像である。It is a SIM image which shows the time-sequential change by the conventional grain boundary strength measuring method shown in FIG.

本発明に係る粒界強度測定方法の実施形態について、以下に図1〜図3を参照しつつ説明する。   Embodiments of the grain boundary strength measuring method according to the present invention will be described below with reference to FIGS.

測定対象とする引張試験片は、原子炉配管等から採取して加工することにより製作することができる。具体的には、先ず、原子炉配管等の接液面から、微小片を切り出す。接液面から切り出すのは、酸化した粒界の強度を調べることにより、応力腐食割れの可能性を診断することができるからである。切り出す微小片の寸法は、例えば、縦〜10mm、横〜10mm、厚さ〜1mm程度とすることができる。   The tensile test piece to be measured can be manufactured by collecting and processing from a reactor pipe or the like. Specifically, first, a minute piece is cut out from a liquid contact surface such as a reactor pipe. The reason for cutting out from the wetted surface is that the possibility of stress corrosion cracking can be diagnosed by examining the strength of the oxidized grain boundary. The dimension of the minute piece to be cut out can be, for example, about vertical to 10 mm, horizontal to 10 mm, and thickness to about 1 mm.

切り出した微小片に対して電子後方散乱回折(electron backscatter diffraction, EBSD)により各結晶粒界の位置と性格を調べ、測定する結晶粒界を特定する。電子後方散乱回折には、例えば、TLS社製OIM(Orientation imaging microscopy)を使用することができる。   The crystal grain boundaries to be measured are specified by examining the position and character of each grain boundary by electron backscatter diffraction (EBSD) on the cut out small piece. For example, OIM (Orientation imaging microscopy) manufactured by TLS can be used for electron backscatter diffraction.

次に、FIB加工により、前記微小片の特定された結晶粒界を含むマイクロメートルサイズの超微小引張試験片を製作する。図1は、超微小引張試験片1の正面図(a)及び側面図(b)を示す。図示例の試料は、全体的に角柱状をしていて、両側から粒界2に沿って溝またはノッチ3,3が切り込み形成され、結晶粒界周辺の塑性拘束を強めるとともに粒界に高い応力が作用するようにしている。FIB加工には、例えば、株式会社日立ハイテクテクノロジー社製FIBシステムのマイクロサンプリングを用いてFIB装置内で行うことができる。   Next, a micrometer-sized ultra-fine tensile test piece including the specified grain boundary of the fine piece is manufactured by FIB processing. FIG. 1 shows a front view (a) and a side view (b) of an ultra-fine tensile test piece 1. The sample in the illustrated example has a prismatic shape as a whole. Grooves or notches 3 and 3 are formed along the grain boundary 2 from both sides, strengthening the plastic restraint around the grain boundary and increasing the stress on the grain boundary. Is to work. The FIB processing can be performed in the FIB apparatus by using micro sampling of the FIB system manufactured by Hitachi High-Technologies Corporation.

また、単結晶のシリンコンウエハから微小な両端固定梁を製作する。図2(a)は、製作した両端固定梁(マイクロ梁)のSIM像を示す。この両端固定梁(マイクロ梁)もFIB加工により作成することができ、図2(a)のマイクロ梁は、梁部の寸法が232×7×7μmであり、バネ定数は超微小硬さ試験機による測定で460N/mであった。   In addition, a small fixed beam is manufactured from a single crystal silicon wafer. FIG. 2A shows a SIM image of the produced both-end fixed beam (micro beam). This both-end fixed beam (micro beam) can also be created by FIB processing. The micro beam in Fig. 2 (a) has a beam part size of 232 x 7 x 7 µm, and the spring constant is an ultra-micro hardness test. It was 460 N / m as measured by a machine.

図2(b)に示すように、両端固定梁の中央位置に、超微小引張試験片の下端部がタングステン蒸着により固定されており、超微小引張試験片の上端部がFIBシステム内で3軸方向に移動可能なマイクロサンプリングプローブにタングステン蒸着により固定されている。   As shown in FIG. 2 (b), the lower end of the ultra-small tensile test piece is fixed by tungsten vapor deposition at the center position of the both ends fixed beam, and the upper end of the ultra-fine tensile test piece is within the FIB system. It is fixed by tungsten vapor deposition to a microsampling probe that can move in three axial directions.

図2(c)に示す粒界は、図1を参照すれば、引張方向に対して直交する方向、すなわち垂直方向に延在している。   Referring to FIG. 1, the grain boundaries shown in FIG. 2C extend in a direction perpendicular to the tensile direction, that is, in the vertical direction.

次に、マイクロサンプリングプローブを、例えば0.1mm/秒の移動速度で上方に移動させ、図3に示すように、超微小引張試験片が破断するまで引張試験を行う。試験中のSIM像を録画し、超微小引張試験片の形状変化と両端固定梁(マイクロ梁)の撓みを記録する。   Next, the microsampling probe is moved upward at a moving speed of, for example, 0.1 mm / second, and a tensile test is performed until the ultra-fine tensile test piece breaks as shown in FIG. Record the SIM image during the test, and record the shape change of the ultra-small tensile test piece and the deflection of the both ends fixed beam (micro beam).

超微小引張試験片にかかる荷重は、両端固定梁(マイクロ梁)のたわみとバネ定数より、下記式(1)により算出することができる。   The load applied to the ultra-small tensile test piece can be calculated by the following formula (1) from the deflection of the both-end fixed beam (micro beam) and the spring constant.

F=(16Ewt/l)・d ・・・ (1)
式(1)において、Fは荷重、Eはヤング率、wは両端固定梁の厚さ寸法、wは両端固定梁の幅寸法、lは両端固定梁の長さ寸法、dは両端固定梁のたわみである。たわみ(d)と荷重(F)の比がバネ定数である。
F = (16 Ewt 3 / l 3 ) · d (1)
In Formula (1), F is a load, E is a Young's modulus, w is a thickness dimension of a both-end fixed beam, w is a width dimension of the both-end fixed beam, l is a length dimension of the both-end fixed beam, and d is a both-end fixed beam. It is deflection. The ratio of deflection (d) to load (F) is the spring constant.

試験片の破断応力は,破断荷重を破面の断面積で除して求めた平均応力として求められる。   The breaking stress of the specimen is obtained as the average stress obtained by dividing the breaking load by the cross-sectional area of the fracture surface.

本発明による上記の粒界強度測定方法によれば、超微小引張試験片に曲げモーメントが作用しないため、小さなゲージ部(図1においては中央部の幅0.3mm、長さ0.1mmの部分。)の超微小引張試験片に対しても測定可能であり、また、超微小引張試験片に対しても垂直方向に引張荷重をかけることができるため、従来法より正確な応力評価が可能となる。   According to the above grain boundary strength measuring method according to the present invention, since a bending moment does not act on the ultra-small tensile test piece, a small gauge part (in FIG. 1, a central part having a width of 0.3 mm and a length of 0.1 mm). ) Can be measured even for ultra-fine tensile specimens, and a tensile load can be applied in the vertical direction to ultra-fine tensile specimens, enabling more accurate stress evaluation than conventional methods. It becomes.

応力腐食割れの発生応力は材料ごとに既知であり、測定された粒界強度を応力腐食割れの発生応力と比較することにより、原子炉配管等の応力腐食割れの発生の可能性をある程度予測することが可能となる。   Stress generated by stress corrosion cracking is known for each material, and by comparing the measured grain boundary strength with the stress generated by stress corrosion cracking, the possibility of the occurrence of stress corrosion cracking in reactor piping, etc. is predicted to some extent It becomes possible.

1 超微小引張試験片
2 粒界
3 溝
1 Ultra-fine tensile specimen 2 Grain boundary 3 Groove

Claims (1)

集束イオンビーム加工により、一つの結晶粒界を中間部に有する超微小引張試験片を製作するステップと、
単結晶シリコンウエハから微小寸法の両端固定梁を製作するステップと、
前記両端固定梁の中央位置に前記超微小引張試験片の下端部を固定するステップと、
前記超微小引張試験片の上端部をマイクロサンプリングプローブに固定するステップと、
前記マイクロサンプリングプローブを移動させて前記超微小引張試験片に引張荷重をかけるステップと、
前記両端固定梁のたわみとバネ定数から前記超微小引張試験片にかかる荷重を算出するステップと、を含むことを特徴とする結晶粒界強度測定方法。
A step of producing an ultra-micro tensile specimen having one grain boundary in the middle by focused ion beam processing;
A step of fabricating a micro-sized both-end fixed beam from a single crystal silicon wafer;
Fixing the lower end of the ultra-fine tensile test piece at the center position of the both-ends fixed beam;
Fixing the upper end of the ultra-fine tensile specimen to a microsampling probe;
Moving the micro-sampling probe to apply a tensile load to the ultra-fine tensile specimen;
Calculating the load applied to the ultra-small tensile test piece from the deflection of the both-ends fixed beam and the spring constant.
JP2014062658A 2014-03-25 2014-03-25 Method for measuring strength of grain boundary Pending JP2015184216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062658A JP2015184216A (en) 2014-03-25 2014-03-25 Method for measuring strength of grain boundary

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062658A JP2015184216A (en) 2014-03-25 2014-03-25 Method for measuring strength of grain boundary

Publications (1)

Publication Number Publication Date
JP2015184216A true JP2015184216A (en) 2015-10-22

Family

ID=54350894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062658A Pending JP2015184216A (en) 2014-03-25 2014-03-25 Method for measuring strength of grain boundary

Country Status (1)

Country Link
JP (1) JP2015184216A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323973A (en) * 1993-05-13 1994-11-25 Agency Of Ind Science & Technol Parallel plate spring type tension tester
JPH11231252A (en) * 1997-12-09 1999-08-27 Olympus Optical Co Ltd Light deflector and manufacturing method thereof
US20110317157A1 (en) * 2010-06-25 2011-12-29 The Board Of Trustees Of The University Of Illinois Apparatus and method for in situ testing of microscale and nanoscale samples

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323973A (en) * 1993-05-13 1994-11-25 Agency Of Ind Science & Technol Parallel plate spring type tension tester
JPH11231252A (en) * 1997-12-09 1999-08-27 Olympus Optical Co Ltd Light deflector and manufacturing method thereof
US20110317157A1 (en) * 2010-06-25 2011-12-29 The Board Of Trustees Of The University Of Illinois Apparatus and method for in situ testing of microscale and nanoscale samples

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016032874; 三浦 照光 他: '"超微小引張試験による中性子照射ステンレス鋼の粒界破壊特性の評価"' INSS JOURNAL Vol.19, 2012, 155〜165頁 *

Similar Documents

Publication Publication Date Title
Turnbull et al. Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure
JP5902485B2 (en) Method for evaluating the probe shape of a scanning probe microscope
Saxena et al. Experimental conditions affecting the measured fracture toughness at the microscale: Notch geometry and crack extension measurement
JP4858773B2 (en) Verification method of nanoindentation test
Winiarski et al. High spatial resolution evaluation of residual stresses in shot peened specimens containing sharp and blunt notches by micro-hole drilling, micro-slot cutting and micro-X-ray diffraction methods
JP5710997B2 (en) Fatigue limit identification system and fatigue limit identification method
JP5531257B2 (en) Turbine blade flaw detection method
JP4612585B2 (en) Method for evaluating deformation structure of ferritic steel sheet
JP2009092652A (en) Remaining life evaluation method and deformation amount evaluation method for metallic material
Payam et al. Development of fatigue testing system for in-situ observation of stainless steel 316 by HS-AFM & SEM
DelRio et al. Eliciting stable nanoscale fracture in single-crystal silicon
CN102155931A (en) Sub-surface damage detection method based on temperature field finite element analysis and simulation
Kruska et al. Characterization of stress corrosion cracking initiation precursors in cold-worked alloy 690 using advanced high-resolution microscopy
CN110940582B (en) Method for predicting fatigue strength of metal material through tensile test
Olszta et al. High-resolution crack imaging reveals degradation processes in nuclear reactor structural materials
JP5410395B2 (en) Method and apparatus for evaluating crack growth rate of metallic material
JP2015184216A (en) Method for measuring strength of grain boundary
Zhai et al. Precursor corrosion damage and stress corrosion crack initiation in alloy 600 during exposure to PWR primary water
CN107271557B (en) Steel cleanliness evaluation method based on ultrasonic scanning microscope
JP2009300371A (en) Method and apparatus for detecting hetero-crystalline area of single crystal material
Rellaford et al. Characterization of mechanical deformation in aluminum by optical second harmonic generation
Kobayashi et al. Deformation and fracture mode during small punch creep tests
JP2018091720A (en) Evaluation method and evaluation device for evaluating creep damage of metallic material
JP2016045037A (en) Evaluation method of intergranular stress corrosion crack occurrence sensitivity, and intergranular stress corrosion crack occurrence sensitivity evaluation device
Aswad et al. Intergranular crack nuclei in polycrystalline alumina

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314