JP2016045037A - Evaluation method of intergranular stress corrosion crack occurrence sensitivity, and intergranular stress corrosion crack occurrence sensitivity evaluation device - Google Patents

Evaluation method of intergranular stress corrosion crack occurrence sensitivity, and intergranular stress corrosion crack occurrence sensitivity evaluation device Download PDF

Info

Publication number
JP2016045037A
JP2016045037A JP2014168420A JP2014168420A JP2016045037A JP 2016045037 A JP2016045037 A JP 2016045037A JP 2014168420 A JP2014168420 A JP 2014168420A JP 2014168420 A JP2014168420 A JP 2014168420A JP 2016045037 A JP2016045037 A JP 2016045037A
Authority
JP
Japan
Prior art keywords
epsilon
stress corrosion
corrosion cracking
value
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014168420A
Other languages
Japanese (ja)
Inventor
聡 青池
Satoshi Aoike
聡 青池
肇 宮田
Hajime Miyata
肇 宮田
嗣彬 西川
Hideaki Nishikawa
嗣彬 西川
哲也 豊田
Tetsuya Toyoda
哲也 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014168420A priority Critical patent/JP2016045037A/en
Publication of JP2016045037A publication Critical patent/JP2016045037A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method of intergranular stress corrosion crack occurrence sensitivity capable of evaluating IGSCC occurrence sensitivity of an analyte easily in a short time, and to provide an intergranular stress corrosion crack occurrence sensitivity evaluation device.SOLUTION: Evaluation of εis performed from a distance between dendrite boundary instruction patterns before loading forced displacement of nominal strain ε, and a distance between the dendrite boundary instruction patterns during loading of the forced displacement, and εis determined as many as n region portions on each different spot. Then, εis subjected to statistical processing, and IGSCC occurrence sensitivity of an analyte is evaluated based on a statistical process value.SELECTED DRAWING: Figure 3

Description

本発明は、オーステナイト系ステンレス鋼、ニッケル基合金の母材、溶接金属等の金属に発生する粒界型応力腐食割れの発生感受性評価方法および粒界型応力腐食割れ発生感受性評価装置に関する。   The present invention relates to a method for evaluating the susceptibility to occurrence of intergranular stress corrosion cracks occurring in metals such as austenitic stainless steel, a base material of a nickel base alloy, and a weld metal, and an apparatus for evaluating the susceptibility to occurrence of intergranular stress corrosion cracks.

Ni基合金の溶接部のSCC感受性を精度高く診断する方法の一つとして、特許文献1には、Ni基合金溶接熱影響部を研磨の後、該合金の粒界を腐食させる水溶液中に浸漬し、電気化学的に該合金の粒界の所定の濃度以下のCr欠乏域を腐食させた後、当該部または当該部より採取したレプリカの侵食された粒界の全数と連結した粒界の数を調査し、両者の割合より溶接熱影響部の応力腐食割れ感受性を評価する方法が開示されている。   As one method for accurately diagnosing the SCC sensitivity of Ni-base alloy welds, Patent Document 1 describes that after polishing the Ni-base alloy weld heat affected zone, it is immersed in an aqueous solution that corrodes the grain boundaries of the alloy. The number of grain boundaries connected to the total number of eroded grain boundaries of the part or the replica taken from the part after electrochemically corroding the Cr-deficient region below the predetermined concentration of the grain boundary of the alloy And a method for evaluating the stress corrosion cracking susceptibility of the weld heat affected zone from the ratio of the two is disclosed.

特開平11−230928号公報Japanese Patent Laid-Open No. 11-230928

オーステナイト系ステンレス鋼、ニッケル基合金の母材、溶接金属等の金属では、引張応力が発生している状態で腐食環境中に長時間暴露すると、引張応力が材料の引張強さ未満の場合でも応力腐食割れ(以降、SCCと呼ぶ)が発生する場合がある。   For metals such as austenitic stainless steel, nickel-base alloy base metal, and weld metal, when exposed to a corrosive environment for a long time in a state where tensile stress is generated, the stress is applied even if the tensile stress is less than the tensile strength of the material. Corrosion cracking (hereinafter referred to as SCC) may occur.

例えば、高い引張応力が発生しているオーステナイト系ステンレス鋼、ニッケル基合金の母材、溶接金属を高温純水環境中に長時間暴露すると、き裂進展経路が結晶粒界となる粒界型応力腐食割れ(以降、IGSCCとも呼ぶ)が発生する。IGSCCの発生は、腐食環境、腐食環境に曝される面で発生している引張応力および材料のIGSCC発生感受性の影響を受ける。このため、腐食環境中で長時間使用されるオーステナイト系ステンレス鋼やニッケル基合金製の溶接構造物にはIGSCC発生感受性の低い材料を採用するのが望ましい。   For example, when austenitic stainless steel, nickel-base alloy base metal, or weld metal, which has high tensile stress, is exposed to high-temperature pure water for a long period of time, the grain boundary type stress becomes a crystal grain boundary. Corrosion cracking (hereinafter also referred to as IGSCC) occurs. The generation of IGSCC is affected by the corrosive environment, the tensile stress generated on the surface exposed to the corrosive environment, and the IGSCC generation sensitivity of the material. For this reason, it is desirable to employ a material with low IGSCC generation susceptibility for a welded structure made of austenitic stainless steel or nickel base alloy used for a long time in a corrosive environment.

オーステナイト系ステンレス鋼やニッケル基合金等のSCC発生感受性を評価する従来の方法には、表面にグラファイトウールを敷設した試験片に約1%のひずみを付与した状態で冶具に固定し、これを腐食環境中に長時間(2000h程度)浸漬するCBB(Creviced Bent Beam)試験を行い、SCCの発生有無からSCC感受性を評価する方法や、環境中に浸漬した試験片に低ひずみ速度で増加する強制変位を付与し続け、破断後の破面で見られる粒界型の破面占有率や負荷応力等からSCC感受性を評価するSSRT(Slow Strain Rate Technique)法がある。また、JIS G 0576には、ステンレス鋼の応力腐食割れ試験方法として42%塩化マグネシウム応力腐食割れ試験方法(A法)および30%塩化カルシウム応力腐食割れ試験方法(B法)が規定されている。   The conventional method for evaluating the susceptibility to SCC generation of austenitic stainless steel, nickel-base alloy, etc. is fixed to a jig with about 1% strain applied to a test piece with graphite wool laid on the surface, and this is corroded. A CBB (Creviced Bent Beam) test that is immersed in the environment for a long time (about 2000 h) and a method for evaluating SCC sensitivity based on the presence or absence of SCC, or a forced displacement that increases at a low strain rate in a test specimen immersed in the environment There is an SSRT (Slow Strain Rate Technique) method that evaluates the SCC sensitivity from the grain boundary type fracture surface occupancy, load stress, and the like seen on the fracture surface after fracture. JIS G 0576 defines a 42% magnesium chloride stress corrosion cracking test method (Method A) and a 30% calcium chloride stress corrosion cracking test method (Method B) as stress corrosion cracking test methods for stainless steel.

しかしながら、特許文献1や上述した従来のSCC発生試験によるIGSCC発生感受性の評価方法では、割れを発生させるための試験時間が長時間となる場合があり、例えば、実際の試験環境に近い環境下で実施するCBB試験では、2000h程度の長い試験期間が必要となる。   However, in the evaluation method of IGSCC generation susceptibility based on Patent Document 1 and the conventional SCC generation test described above, the test time for generating cracks may be long. For example, in an environment close to the actual test environment. In the CBB test to be performed, a long test period of about 2000 h is required.

本発明は、簡易かつ短時間で被検体のIGSCC発生感受性を評価することができる粒界型応力腐食割れ発生感受性の評価方法および粒界型応力腐食割れ発生感受性評価装置を提供する。   The present invention provides a method for evaluating the intergranular stress corrosion cracking susceptibility evaluation apparatus and the intergranular stress corrosion cracking susceptibility evaluation apparatus that can easily and easily evaluate the IGSCC generation susceptibility of a specimen.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、被検体表面に鏡面研磨を施す表面処理工程と、この表面処理を施した前記被検体に対して公称ひずみεの強制変位を負荷し、この強制変位負荷中に発生する結晶粒界近傍のひずみεを少なくとも2以上測定する測定工程と、この測定工程で測定した前記少なくとも2以上のひずみεからε処理値を演算する演算工程と、この演算工程で求めた前記ε処理値を前記公称ひずみεで除算したε処理値/εを指標に被検体の粒界型応力腐食割れ発生感受性を評価する評価工程とを有することを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above-mentioned problems. To give an example, a surface treatment process for subjecting the surface of the subject to mirror polishing, and a nominal treatment for the subject subjected to the surface treatment. strain was loaded forced displacement of epsilon 0, a step of measuring the strain epsilon i at least two grain boundaries near which occur during the forced displacement load, of at least 2 or more measured in this measuring step strain epsilon i a calculation step of calculating an epsilon i processed value from the intergranular stress corrosion of the subject the epsilon i processed value / epsilon 0 that the epsilon i processed value divided by the nominal strain epsilon 0 obtained in this calculation step as an index And an evaluation process for evaluating cracking susceptibility.

本発明によれば、被検体のIGSCC発生感受性を簡易かつ短時間で評価することが可能であり、例えば原子力発電プラントの原子炉内構造物等で使用する材料の選定などに利用できる。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to evaluate the IGSCC generation | occurrence | production sensitivity of a test object easily and in a short time, for example, it can utilize for selection of the material used by the nuclear reactor power plant structure etc.

第1の実施形態における公称ひずみεの強制変位を負荷する前の被検体表面の拡大観察した一例を示す図である。It is a figure which shows an example which expandedly observed the to-be-examined object surface before loading the forced displacement of nominal distortion | strain (epsilon) 0 in 1st Embodiment. 第1の実施形態における公称ひずみεの強制変位を負荷している最中の被検体表面の拡大観察した一例を示す図である。It is a figure which shows an example which expandedly observed the to-be-examined object surface in the middle of loading the forced displacement of nominal distortion | strain (epsilon) 0 in 1st Embodiment. 第1の実施形態におけるεmax−iの測定結果のプロットの一例を示す図である。It is a figure which shows an example of the plot of the measurement result of (epsilon) max-i in 1st Embodiment. 第5の実施形態における本発明の粒界型応力腐食割れ発生感受性評価装置の一例を示す図である。It is a figure which shows an example of the grain boundary type stress corrosion cracking generation | occurrence | production sensitivity evaluation apparatus of this invention in 5th Embodiment.

本発明の粒界型応力腐食割れ発生感受性の評価方法および粒界型応力腐食割れ発生感受性評価装置は、SCCの発生要因の1つである引張応力に着目してIGSCC発生感受性を評価するものである。   The grain boundary type stress corrosion cracking susceptibility evaluation method and the grain boundary type stress corrosion cracking susceptibility evaluation apparatus of the present invention evaluate IGSCC generation susceptibility by paying attention to tensile stress which is one of SCC generation factors. is there.

具体的には、オーステナイト系ステンレス鋼やニッケル基合金、これらの溶接金属では、結晶粒界の硬さが結晶粒内に比べて硬い傾向となるため、被検体に外力を加えた場合に発生するひずみは、結晶粒界近傍に集中する傾向がある。そこで、本発明者らは、これらの金属では外力を加えた場合に発生するひずみが結晶粒界近傍に集中する特性に着目して、結晶粒界近傍におけるひずみの増加率を指標にIGSCC発生感受性を評価し、結晶粒界近傍におけるひずみの増加率が高い被検体をIGSCC発生感受性高と評価することを発想し、本発明を完成させた。   Specifically, in austenitic stainless steel, nickel-base alloys, and these weld metals, the grain boundary hardness tends to be harder than in the crystal grains, and this occurs when an external force is applied to the specimen. Strain tends to concentrate near the grain boundaries. Therefore, the present inventors pay attention to the characteristic that the strain generated when an external force is applied to these metals is concentrated near the grain boundary, and the IGSCC generation susceptibility using the strain increase rate near the grain boundary as an index. And the idea of evaluating a specimen having a high strain increase rate in the vicinity of the grain boundary as having high IGSCC susceptibility was completed, and the present invention was completed.

以下に本発明の粒界型応力腐食割れ発生感受性の評価方法および粒界型応力腐食割れ発生感受性評価装置の実施形態を、図面を用いて説明する。   Embodiments of the grain boundary type stress corrosion cracking susceptibility evaluation method and the grain boundary type stress corrosion cracking susceptibility evaluation apparatus of the present invention will be described below with reference to the drawings.

<第1の実施形態>
本発明の粒界型応力腐食割れ発生感受性の評価方法の第1の実施形態を、図1乃至図3を用いて説明する。
図1はニッケル基合金溶接金属製の被検体表面に鏡面研磨とオーバーエッチング処理を施すことで柱状晶粒界とデンドライト境界とを視認可能とした被検体の表面を拡大観察した場合の具体例を示す図、図2は被検体に公称ひずみεの強制変位を負荷している最中の拡大観察像の具体例を示す図、図3はεmax−iの測定結果をグラフにプロットした具体例を示す図である。
<First Embodiment>
A first embodiment of the method for evaluating the susceptibility to occurrence of intergranular stress corrosion cracking according to the present invention will be described with reference to FIGS.
FIG. 1 shows a specific example of a magnified observation of the surface of a specimen in which columnar grain boundaries and dendrite boundaries are visible by subjecting the specimen surface made of a nickel-base alloy weld metal to mirror polishing and overetching. FIG. 2 is a diagram showing a specific example of an enlarged observation image in which a subject is subjected to a forced displacement with a nominal strain ε 0 , and FIG. 3 is a graph plotting measurement results of ε max-i on a graph. It is a figure which shows an example.

まず、ニッケル基合金溶接金属製の被検体を用意する。   First, a specimen made of nickel-base alloy weld metal is prepared.

次いで、このニッケル基合金溶接金属製の被検体の表面に対して鏡面研磨を施す。その後、鏡面研磨後の被検体に対してオーバーエッチング処理を施す(表面処理工程)。この鏡面研磨とその後のオーバーエッチング処理を施すことで、被検体表面にはデンドライト境界を視認できるようになり、デンドライト境界を指標にεを測定できるようになる。 Next, mirror polishing is performed on the surface of the specimen made of this nickel-base alloy weld metal. Thereafter, an over-etching process is performed on the specimen after mirror polishing (surface treatment process). By performing this mirror polishing and subsequent over-etching treatment, the dendritic boundary can be visually recognized on the surface of the subject, and ε i can be measured using the dendritic boundary as an index.

次いで、この表面処理を施した被検体に対して公称ひずみεの強制変位を負荷する前に、図1に示すようなある領域での表面を拡大観察し、柱状晶粒界とデンドライト境界とを確認する。そして、柱状晶粒界近傍に位置する任意のデンドライト境界を2点選択し、強制変位負荷前のデンドライト境界指示模様間の距離L0iを測定する。この拡大観察による距離L0iの測定を、少なくとも2以上の領域(総数n)で行う。 Next, before applying a forced displacement of nominal strain ε 0 to the subject subjected to this surface treatment, the surface in a certain region as shown in FIG. 1 is magnified, and columnar grain boundaries and dendrite boundaries are observed. Confirm. Then, two arbitrary dendrite boundaries located in the vicinity of the columnar grain boundaries are selected, and the distance L 0i between the dendrite boundary designating patterns before the forced displacement load is measured. Measurement of the distance L 0i by this magnified observation is performed in at least two or more regions (total number n).

図1に示すように、溶接金属の結晶粒は、デンドライト組織が集合した柱状晶を形成している。このことから、柱状晶粒界がIGSCCの進展経路となる傾向が強い。このため、公称ひずみεの強制変位を負荷した際に、柱状晶粒界近傍(例えば、柱状晶粒界から柱状晶径の10%までの範囲、または、柱状晶粒界から20μmまでの範囲)で発生するεを測定する。 As shown in FIG. 1, the crystal grains of the weld metal form columnar crystals in which dendritic structures are assembled. For this reason, there is a strong tendency for columnar grain boundaries to be the path of IGSCC progress. Therefore, when a forced displacement with a nominal strain ε 0 is applied, the vicinity of the columnar grain boundary (for example, a range from the columnar grain boundary to 10% of the columnar crystal diameter, or a range from the columnar grain boundary to 20 μm). ) to measure the ε i that occur in.

具体的には、被検体に対して左右からの引張により公称ひずみεの強制変位を負荷する。そして、図2に示すように、先に強制変位負荷前のデンドライト境界指示模様間の距離L0iを測定した領域と同一の領域において、公称ひずみεの強制変位負荷中のデンドライト境界指示模様間の距離L1iを測定する。この拡大観察についても、強制変位負荷前に距離L0iを測定した少なくとも2以上の領域全て(総数n)で行う。 Specifically, a forced displacement with a nominal strain ε 0 is applied to the subject by pulling from the left and right. Then, as shown in FIG. 2, in the same area as the area where the distance L 0i between the dendritic boundary indicating patterns before the forced displacement load was previously measured, the area between the dendritic boundary indicating patterns during the forced displacement load with the nominal strain ε 0 The distance L 1i is measured. This magnified observation is also performed in all (at the total number n) of at least two or more areas in which the distance L 0i is measured before the forced displacement load.

その後、柱状晶粒界近傍のひずみεを評価する(測定工程)。この柱状晶粒界近傍のひずみεは、強制変位負荷前のデンドライト境界指示模様間の距離L0iと強制変位の負荷中のデンドライト境界指示模様間の距離L1iに基づき、式(1)により評価する。 Thereafter, the strain ε i in the vicinity of the columnar grain boundary is evaluated (measurement step). The strain ε i in the vicinity of the columnar grain boundary is expressed by the equation (1) based on the distance L 0i between the dendritic boundary indicating patterns before the forced displacement load and the distance L 1i between the dendritic boundary indicating patterns during the forced displacement loading. evaluate.

ε=(L1i−L0i)/L0i … 式(1)
次いで、先に測定した少なくとも2以上のひずみεから、各領域におけるひずみ最大値εmax−iの測定結果に基づく極値統計により、被検体における結晶粒界近傍ひずみの上限値εmax(ε処理値)を演算する(演算工程)。
ε i = (L 1i −L 0i ) / L 0i (1)
Next, from at least two or more strains ε i measured previously, an upper limit value ε max (ε for the strain near the grain boundary in the specimen is obtained by extreme value statistics based on the measurement result of the strain maximum value ε max-i in each region. i processing value) is calculated (calculation step).

具体的には、先に少なくとも2つ以上の領域(総数n)で測定した結晶粒界近傍のひずみεにおいて、各領域におけるひずみの最大値εmax−iを抽出する。その後、抽出したεmax−iを小さい値から順にεmax−1,εmax−2,…,εmax−nと定義してグラフ横軸の座標とするとともに、式(2)のyをグラフ縦軸の座標としてεmax−iの測定結果を図3に示すようなグラフにプロットする。 Specifically, the maximum strain value ε max-i in each region is extracted from the strain ε i in the vicinity of the grain boundary measured in at least two regions (total number n). After that, the extracted ε max-i is defined as ε max−1 , ε max− 2 ,..., Ε max−n in order from the smallest value and is set as the coordinate of the horizontal axis of the graph, and y i in the expression (2) is The measurement result of ε max-i is plotted on a graph as shown in FIG. 3 as the coordinate of the vertical axis of the graph.

=−ln(−ln(i/(n+1)) … 式(2)
図3に示すように、εmax−iが二重指数分布に従う場合、グラフは直線状になる。グラフへのプロット結果から最小自乗法により式(4)の一次近似式を作成し、αおよびβを決定する。
y i = −ln (−ln (i / (n + 1)) (2)
As shown in FIG. 3, when ε max-i follows a double exponential distribution, the graph is linear. A linear approximate expression of Expression (4) is created from the plotting result on the graph by the least square method, and α and β are determined.

= αεmax−i + β … 式(3)
そして、極値統計による上限値の評価では、測定領域の面積Sおよび評価対象構造物の総面積Sに基づき、式(4)で評価されるyを式(3)のyに代入することで得られるεmax−iを上限値εmaxと評価する。
y i = αε max−i + β (3)
In the evaluation of the upper limit value based on the extreme value statistics, y evaluated in Expression (4) is substituted into y i in Expression (3) based on the area S 0 of the measurement region and the total area S of the evaluation target structure. Ε max−i obtained by this is evaluated as the upper limit value ε max .

y=−ln(−ln((T−1)/T) … 式(4)
T=(S+S)/S
ただし、評価対象である被検体の寸法は1つに決められない場合がある。この場合は、Tの値を任意の定数(例えばT=100)としてyの値を決定する。
y = -ln (-ln ((T-1) / T) ... Formula (4)
T = (S + S 0 ) / S 0
However, the size of the subject to be evaluated may not be determined as one. In this case, the value of y is determined with the value of T as an arbitrary constant (for example, T = 100).

その後、上記により評価したεmaxを用いてεmax/εを求める。 Thereafter, ε max / ε 0 is obtained using ε max evaluated as described above.

次いで、先に求めたεmax/εを指標に被検体の粒界型応力腐食割れ発生感受性を評価する(評価工程)。例えば、このεmax/εが、他の被検体(従来材量)のεmax/εに比べて高い被検体を、IGSCC発生感受性が高い被検体であると評価し、同等の値以下であればIGSCC発生感受性が低い被検体であると評価する。 Next, the grain boundary type stress corrosion cracking susceptibility of the specimen is evaluated using the previously determined ε max / ε 0 as an index (evaluation step). For example, a subject whose ε max / ε 0 is higher than ε max / ε 0 of other subjects (conventional material amount) is evaluated as a subject having high IGSCC susceptibility, and is equal to or less than the equivalent value. If it is, it will evaluate that it is a test subject with low IGSCC generation | occurrence | production sensitivity.

上述した本発明の粒界型応力腐食割れ発生感受性の評価方法の第1の実施形態では、公称ひずみεの強制変位を負荷する前のデンドライト境界指示模様間の距離と強制変位負荷中のデンドライト境界指示模様間の距離とからεを評価し、このεを異なる箇所でn領域分求める。そして、εを統計処理し、この統計処理値に基づき被検体のIGSCC発生感受性を評価する。 In the first embodiment of the above-described evaluation method of the intergranular stress corrosion cracking susceptibility of the present invention, the distance between the dendrite boundary indicating patterns before applying the forced displacement with the nominal strain ε 0 and the dendrite under the forced displacement load. It evaluates epsilon i and a distance between the boundary indication pattern, obtaining the n-region component of the epsilon i at different places. Then, ε i is statistically processed, and the IGSCC occurrence sensitivity of the subject is evaluated based on the statistical processing value.

これによって、強制変位を負荷することでIGSCC発生感受性を評価できるようになり、従来のSCC発生試験によるIGSCC発生感受性の評価方法とは異なり、被検体に割れを発生させる必要が無く、短時間での試験および評価が可能となる。よって、簡易かつ短時間で被検体のIGSCC発生感受性を評価することができ、例えば原子力発電プラントの原子炉内構造物等で使用する材料の選定などに好適に適用することができる。   This makes it possible to evaluate the susceptibility to IGSCC generation by loading a forced displacement, and unlike the conventional method for evaluating susceptibility to IGSCC generation by the SCC generation test, it is not necessary to generate cracks in the subject, and in a short time. Can be tested and evaluated. Therefore, the susceptibility of the subject to IGSCC occurrence can be evaluated easily and in a short time, and can be suitably applied to, for example, selection of a material to be used in a nuclear power plant structure or the like.

なお、被検体をニッケル基合金溶接金属としたが、被検体はこれに限られず、オーステナイト系ステンレス鋼、ニッケル基合金の母材、これらの溶接金属、これら金属の両方、のいずれかとすることができる。   Although the specimen is a nickel-base alloy weld metal, the specimen is not limited to this, and may be either austenitic stainless steel, a nickel-base alloy base material, these weld metals, or both of these metals. it can.

<第2の実施形態>
次に、本発明の粒界型応力腐食割れ発生感受性の評価方法の第2の実施形態を説明する。
<Second Embodiment>
Next, a second embodiment of the evaluation method of the grain boundary type stress corrosion cracking susceptibility of the present invention will be described.

本実施形態のIGSCC発生感受性評価方法では、まず、被検体を用意し、鏡面研磨およびオーバーエッチング処理を施す(表面処理工程)。   In the IGSCC occurrence susceptibility evaluation method of this embodiment, first, a specimen is prepared, and mirror polishing and overetching are performed (surface treatment process).

次いで、鏡面研磨+オーバーエッチング処理後の被検体の表面を拡大観察によって観察し、柱状晶粒界近傍に位置する任意のデンドライト境界を2点選択して、強制変位負荷前のデンドライト境界指示模様間の距離L0iを測定する。この拡大観察による距離L0iの測定を、少なくとも観察した領域で2か所以上で行う。 Next, observe the surface of the specimen after mirror polishing + over-etching by magnifying observation, select two arbitrary dendrite boundaries located near the columnar grain boundary, and between the dendrite boundary designating patterns before forced displacement loading The distance L 0i is measured. Measurement of the distance L 0i by this magnified observation is performed at least in two or more places in the observed region.

次いで、被検体に対して公称ひずみεの強制変位を負荷し、先に距離L0iを測定した箇所における強制変位負荷中のデンドライト境界指示模様間の距離L1iを測定して、柱状晶粒界近傍のひずみεを評価する(測定工程)。 Next, a forced displacement with a nominal strain ε 0 is applied to the subject, and the distance L 1i between the dendritic boundary indicating patterns in the forced displacement load at the location where the distance L 0i has been measured previously is measured. The strain ε i near the boundary is evaluated (measurement process).

次いで、先に測定した少なくとも2以上のひずみεから、測定したεの平均値εave(ε処理値)を演算し、εave/εを求める(演算工程)。 Then, at least two or more strain epsilon i previously measured, calculates the average value epsilon ave of the measured ε i i value) and determine the ε ave / ε 0 (calculation step).

次いで、先に求めたεave/εを指標にして被検体の粒界型応力腐食割れ発生感受性を評価する(評価工程)。 Next, using the previously obtained ε ave / ε 0 as an index, the grain boundary type stress corrosion cracking susceptibility of the specimen is evaluated (evaluation step).

本発明の粒界型応力腐食割れ発生感受性の評価方法の第2の実施形態においても、前述した粒界型応力腐食割れ発生感受性の評価方法の第1の実施形態とほぼ同様な効果が得られる。   Also in the second embodiment of the method for evaluating the susceptibility to occurrence of intergranular stress corrosion cracking according to the present invention, substantially the same effect as in the first embodiment of the method for evaluating the susceptibility to occurrence of intergranular stress corrosion cracking can be obtained. .

<第3の実施形態>
次に、本発明の粒界型応力腐食割れ発生感受性の評価方法の第3の実施形態を説明する。
<Third Embodiment>
Next, a third embodiment of the evaluation method of the grain boundary type stress corrosion cracking susceptibility of the present invention will be described.

本実施形態のIGSCC発生感受性評価方法では、まず、被検体を用意し、鏡面研磨およびオーバーエッチング処理を施す(表面処理工程)。   In the IGSCC occurrence susceptibility evaluation method of this embodiment, first, a specimen is prepared, and mirror polishing and overetching are performed (surface treatment process).

次いで、柱状晶粒界近傍に位置する任意のデンドライト境界を2点選択し、強制変位負荷前のデンドライト境界指示模様間の距離L0iを測定する。この拡大観察による距離L0iの測定を、少なくとも観察した領域で2か所以上で行う。 Next, two arbitrary dendrite boundaries located in the vicinity of the columnar grain boundary are selected, and the distance L 0i between the dendrite boundary designating patterns before the forced displacement load is measured. Measurement of the distance L 0i by this magnified observation is performed at least in two or more places in the observed region.

次いで、被検体に対して公称ひずみεの強制変位を負荷し、先に距離L0iを測定した箇所における強制変位負荷中のデンドライト境界指示模様間の距離L1iを測定して、柱状晶粒界近傍のひずみεを評価する(測定工程)。 Next, a forced displacement with a nominal strain ε 0 is applied to the subject, and the distance L 1i between the dendritic boundary indicating patterns in the forced displacement load at the location where the distance L 0i has been measured previously is measured. The strain ε i near the boundary is evaluated (measurement process).

次いで、先に測定した少なくとも2以上のひずみεから、測定したεの平均値εaveを演算する。更に、ひずみεが正規分布に従うものとして標準偏差σを求め、被検体における結晶粒界近傍ひずみとして平均値εaveに標準偏差σのa倍の値を加えた(εave+a×σ)/ε(ε処理値)を求める(演算工程)。 Next, an average value ε ave of the measured ε i is calculated from at least two strains ε i measured in advance. Further, the standard deviation σ is obtained assuming that the strain ε i follows a normal distribution, and the value a times the standard deviation σ is added to the average value ε ave as the strain near the grain boundary in the specimen (ε ave + a × σ) / ε 0i processing value) is obtained (calculation step).

次いで、先に求めた(εave+a×σ)/εを指標にして被検体の粒界型応力腐食割れ発生感受性を評価する(評価工程)。 Next, the grain boundary type stress corrosion cracking susceptibility of the specimen is evaluated using the previously obtained (ε ave + a × σ) / ε 0 as an index (evaluation step).

本発明の粒界型応力腐食割れ発生感受性の評価方法の第3の実施形態においても、前述した粒界型応力腐食割れ発生感受性の評価方法の第1の実施形態とほぼ同様な効果が得られる。   Also in the third embodiment of the evaluation method for the susceptibility to occurrence of intergranular stress corrosion cracking according to the present invention, substantially the same effect as in the first embodiment of the evaluation method for the susceptibility to occurrence of intergranular stress corrosion cracking can be obtained. .

<第4の実施形態>
次に、本発明の粒界型応力腐食割れ発生感受性の評価方法の第4の実施形態を説明する。
<Fourth Embodiment>
Next, a fourth embodiment of the method for evaluating the susceptibility to occurrence of intergranular stress corrosion cracking according to the present invention will be described.

本実施形態のIGSCC発生感受性評価方法では、まず、被検体を用意し、鏡面研磨処理を施す(表面処理工程)。   In the IGSCC generation susceptibility evaluation method of this embodiment, first, a specimen is prepared and subjected to a mirror polishing process (surface treatment process).

次いで、電子後方散乱回折(EBSD:Electron Backscatter Diffraction)によって、鏡面研磨処理後の被検体の表面の公称ひずみεの強制変位の負荷前のパターンから推定される塑性ひずみ(強制変位負荷前ε0i)を測定する。その後、公称ひずみεの強制変位の負荷の最中のパターンから推定される塑性ひずみ(制変位負荷中ε1i)を電子後方散乱回折によって測定する。その後、これら強制変位負荷前ε0iおよび強制変位負荷中ε1iに基づき、式(5)により柱状晶粒界近傍のひずみεを評価する。 Next, the plastic strain (ε 0i before the forced displacement load) estimated from the pattern before loading of the forced displacement of the nominal strain ε 0 on the surface of the subject after mirror polishing is performed by electron backscatter diffraction (EBSD). ). Thereafter, the plastic strain (ε 1i during the controlled displacement load) estimated from the pattern during the forced displacement load with the nominal strain ε 0 is measured by electron backscatter diffraction. Thereafter, the strain ε i in the vicinity of the columnar grain boundary is evaluated by the equation (5) based on these ε 0i before the forced displacement load and ε 1i during the forced displacement load.

ε=ε1i−ε0i … 式(5)
次いで、先に測定した少なくとも2以上のひずみεから、各領域におけるひずみ最大値εmax−iの測定結果に基づく極値統計により被検体における結晶粒界近傍ひずみの上限値εmax(ε処理値)を演算する(演算工程)。
ε i = ε 1i −ε 0i (5)
Next, from at least two or more strains ε i measured previously, the upper limit value ε maxii) of the strain near the grain boundary in the specimen is determined by extreme value statistics based on the measurement result of the strain maximum value ε max-i in each region. Processing value) is calculated (calculation step).

次いで、先に求めたεmax/εを指標に被検体の粒界型応力腐食割れ発生感受性を評価する(評価工程)。 Next, the grain boundary type stress corrosion cracking susceptibility of the specimen is evaluated using the previously determined ε max / ε 0 as an index (evaluation step).

本発明の粒界型応力腐食割れ発生感受性の評価方法の第4の実施形態においても、前述した粒界型応力腐食割れ発生感受性の評価方法の第1の実施形態とほぼ同様な効果が得られる。   Also in the fourth embodiment of the evaluation method for the susceptibility to occurrence of intergranular stress corrosion cracking according to the present invention, substantially the same effect as in the first embodiment of the evaluation method for the susceptibility to occurrence of intergranular stress corrosion cracking can be obtained. .

すなわち、簡易かつ短時間で被検体のIGSCC発生感受性を評価することができ、例えば原子力発電プラントの原子炉内構造物等で使用する材料の選定などに好適に適用することができる。   That is, the susceptibility of the subject to IGSCC can be evaluated easily and in a short time, and can be suitably applied to, for example, selection of a material used in a nuclear reactor plant structure or the like.

なお、本実施形態では極値統計によってε処理値を求める場合について説明したが、ε処理値を求める方法は、第2の実施形態のようにεaveを求める方法や第3の実施形態のようにεave+a×σを求める方法等の他の方法を用いることができる。 In the present embodiment, the case where the ε i processing value is obtained by the extreme value statistics has been described. However, the method for obtaining the ε i processing value is a method for obtaining ε ave as in the second embodiment or the third embodiment. Other methods such as a method for obtaining ε ave + a × σ can be used.

<第5の実施形態>
本発明の粒界型応力腐食割れ発生感受性評価装置の第5の実施形態を図4を用いて説明する。図4は本発明のIGSCC発生感受性評価装置の具体例を説明する図である。
<Fifth Embodiment>
A fifth embodiment of the grain boundary type stress corrosion cracking susceptibility evaluation apparatus of the present invention will be described with reference to FIG. FIG. 4 is a diagram for explaining a specific example of the IGSCC occurrence susceptibility evaluation apparatus of the present invention.

図4に示すように、粒界型応力腐食割れ発生感受性評価装置は、変位負荷部3、拡大観察部4、演算部5、表示部6とを備える。   As shown in FIG. 4, the intergranular stress corrosion cracking susceptibility evaluation apparatus includes a displacement load unit 3, an enlargement observation unit 4, a calculation unit 5, and a display unit 6.

変位負荷部3は、鏡面研磨やオーバーエッチングなどの表面処理により結晶粒界を視認可能とした被検体10の下方から上方に向けた押圧の公称ひずみεの強制変位を負荷する。 The displacement load unit 3 loads a forced displacement of a nominal strain ε 0 of pressing from the lower side to the upper side of the subject 10 in which the crystal grain boundary can be visually recognized by surface treatment such as mirror polishing or over etching.

拡大観察部4は、変位負荷部3による強制変位の負荷前と負荷中に被検体10に発生する結晶粒界近傍のひずみεを観察するために必要な拡大観察像を取得する。この拡大観察部は、例えば、顕微鏡や、電子後方散乱回折用の走査電子顕微鏡などが挙げられる。 The magnification observation unit 4 acquires a magnification observation image necessary for observing the strain ε i in the vicinity of the grain boundary generated in the subject 10 before and during the loading of the forced displacement by the displacement load unit 3. Examples of the magnified observation unit include a microscope and a scanning electron microscope for electron backscatter diffraction.

演算部5は、拡大観察部4によって取得した強制変位負荷の有無の被検体10表面の拡大観察像から、少なくとも2以上の結晶粒界近傍のひずみεを評価する。また、この評価したεからε処理値を演算し、このε処理値を公称ひずみεで除算したε処理値/εを演算する。更に、このε処理値/εを指標として、IGSCC発生感受性を評価する。このε処理値の演算方法には、例えば、極値統計によってε処理値を求める方法、εaveを求める方法、εave+a×σを求める方法等の方法がある。 The computing unit 5 evaluates at least two or more strains ε i in the vicinity of the crystal grain boundaries from the magnified observation image of the surface of the subject 10 with or without the forced displacement load acquired by the magnification observation unit 4. Moreover, this evaluation was epsilon i calculates the epsilon i processed value from computing the epsilon i processed value / epsilon 0 divided by epsilon 0 strain nominal this epsilon i processed value. Furthermore, IGSCC generation sensitivity is evaluated using this ε i treatment value / ε 0 as an index. Examples of the calculation method of the ε i processing value include a method of obtaining an ε i processing value by extreme value statistics, a method of obtaining ε ave, and a method of obtaining ε ave + a × σ.

表示部6は、演算部5で求めたε処理値/εを表示する。この表示部6には、他の被検体のε処理値/εを演算部5で求めたε処理値/εと並べて表示し、比較しやすいようにすることができる。 The display unit 6 displays the ε i processing value / ε 0 obtained by the calculation unit 5. On this display unit 6, the ε i processing value / ε 0 of another subject can be displayed side by side with the ε i processing value / ε 0 obtained by the calculation unit 5 to facilitate comparison.

本発明の粒界型応力腐食割れ発生感受性評価装置の第5の実施形態においても、前述した粒界型応力腐食割れ発生感受性の評価方法の第1の実施形態とほぼ同様な効果が得られる。   In the fifth embodiment of the grain boundary type stress corrosion cracking susceptibility evaluation apparatus of the present invention, substantially the same effect as that of the first embodiment of the grain boundary type stress corrosion cracking susceptibility evaluation method described above can be obtained.

すなわち、簡易かつ短時間で被検体のIGSCC発生感受性を評価することができ、例えば原子力発電プラントの原子炉内構造物等で使用する材料の選定などに好適に使用することができる。   That is, the susceptibility of the subject to IGSCC generation can be evaluated easily and in a short time, and can be suitably used, for example, for selection of a material to be used in a reactor internal structure of a nuclear power plant.

<その他>
なお、本発明は上記の実施形態に限られず、種々の変形、応用が可能なものである。上述の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
<Others>
In addition, this invention is not restricted to said embodiment, A various deformation | transformation and application are possible. The above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.

例えば、公称ひずみεの強制変位の負荷の方向は、第1の実施形態のように被検体に対する左右からの引っ張り応力による負荷や、第5の実施形態のように下方から上方に向けた押圧による負荷に限られず、被検体に対して公称ひずみεの強制変位が負荷されればよい。 For example, the direction of the load of the forced displacement with the nominal strain ε 0 is the load caused by the tensile stress from the left and right on the subject as in the first embodiment, and the pressing from the lower side to the upper side as in the fifth embodiment. The forced displacement with the nominal strain ε 0 may be applied to the subject.

1…柱状晶粒界、
2…デンドライト境界、
3…変位負荷部、
4…拡大観察部、
5…演算部、
6…表示部、
10…被検体。
1 ... Columnar grain boundaries,
2 ... Dendrite boundary,
3 ... displacement load section,
4 ... Magnification observation part,
5 ... arithmetic unit,
6 ... display part,
10 ... Subject.

Claims (7)

被検体表面に鏡面研磨を施す表面処理工程と、
この表面処理を施した前記被検体に対して公称ひずみεの強制変位を負荷し、この強制変位負荷中に発生する結晶粒界近傍のひずみεを少なくとも2以上測定する測定工程と、
この測定工程で測定した前記少なくとも2以上のひずみεからε処理値を演算する演算工程と、
この演算工程で求めた前記ε処理値を前記公称ひずみεで除算したε処理値/εを指標に被検体の粒界型応力腐食割れ発生感受性を評価する評価工程とを有する
ことを特徴とする粒界型応力腐食割れ発生感受性の評価方法。
A surface treatment process for subjecting the subject surface to mirror polishing;
A measuring step of applying a forced displacement of nominal strain ε 0 to the subject subjected to the surface treatment, and measuring at least two strains ε i in the vicinity of the crystal grain boundaries generated during the forced displacement load;
A calculation step of calculating an ε i treatment value from the at least two strains ε i measured in the measurement step;
Having an evaluation step of evaluating the intergranular stress corrosion cracking susceptibility of the subject to index epsilon i processed value / epsilon 0 obtained by dividing the epsilon i processed value by the nominal strain epsilon 0 obtained in this calculation step Evaluation method of grain boundary type stress corrosion cracking susceptibility.
請求項1に記載の粒界型応力腐食割れ発生感受性の評価方法において、
前記測定工程では、前記ひずみεを少なくとも2つ以上の領域で測定し、
前記演算工程では、前記ε処理値として、前記測定工程で測定した各領域におけるひずみ最大値εmax−iの測定結果に基づく極値統計により被検体における結晶粒界近傍ひずみの上限値εmaxを演算し、
前記評価工程では、前記εmax/εを指標に被検体の粒界型応力腐食割れ発生感受性を評価する
ことを特徴とする粒界型応力腐食割れ発生感受性の評価方法。
In the evaluation method of the intergranular stress corrosion cracking susceptibility according to claim 1,
In the measuring step, the strain ε i is measured in at least two regions,
In the calculation step, as the ε i treatment value, the upper limit value ε max of the strain near the grain boundary in the specimen is obtained by extreme value statistics based on the measurement result of the strain maximum value ε max-i in each region measured in the measurement step. And
In the evaluation step, the grain boundary type stress corrosion cracking susceptibility of the specimen is evaluated using the ε max / ε 0 as an index.
請求項1に記載の粒界型応力腐食割れ発生感受性の評価方法において、
前記演算工程では、前記ε処理値として、測定した前記εの平均値εaveを演算し、
前記評価工程では、前記εave/εを指標に、被検体の粒界型応力腐食割れ発生感受性を評価する
ことを特徴とする粒界型応力腐食割れ発生感受性の評価方法。
In the evaluation method of the intergranular stress corrosion cracking susceptibility according to claim 1,
In the calculating step, as the epsilon i processed value, calculates the average value epsilon ave of the measured the epsilon i,
In the evaluation step, the susceptibility of the grain boundary type stress corrosion cracking of the specimen is evaluated using the ε ave / ε 0 as an index.
請求項1に記載の粒界型応力腐食割れ発生感受性の評価方法において、
前記演算工程では、測定したεの平均値εaveと、εが正規分布に従うものとして標準偏差σを求めて、前記ε処理値としてεave+a×σを演算し、
前記評価工程では、前記(εave+a×σ)/εを指標に被検体の粒界型応力腐食割れ発生感受性を評価する
ことを特徴とする粒界型応力腐食割れ発生感受性の評価方法。
In the evaluation method of the intergranular stress corrosion cracking susceptibility according to claim 1,
In the calculation step calculates the average value epsilon ave of the measured epsilon i, and the standard deviation sigma as epsilon i follows a normal distribution, the ε ave + a × σ as the epsilon i processed value,
In the evaluation step, the grain boundary type stress corrosion cracking susceptibility of the specimen is evaluated by using (ε ave + a × σ) / ε 0 as an index.
請求項1に記載の粒界型応力腐食割れ発生感受性の評価方法において、
前記表面処理工程では、前記鏡面研磨に加えて、鏡面研磨後の前記被検体に対してオーバーエッチングを施す
ことを特徴とする粒界型応力腐食割れ発生感受性の評価方法。
In the evaluation method of the intergranular stress corrosion cracking susceptibility according to claim 1,
In the surface treatment step, in addition to the mirror polishing, over-etching is performed on the specimen after mirror polishing. An evaluation method of the intergranular stress corrosion cracking susceptibility.
請求項1に記載の粒界型応力腐食割れ発生感受性の評価方法において、
前記被検体は、オーステナイト系ステンレス鋼、ニッケル基合金の母材、これらの溶接金属、これら金属の両方、のいずれかである
ことを特徴とする粒界型応力腐食割れ発生感受性の評価方法。
In the evaluation method of the intergranular stress corrosion cracking susceptibility according to claim 1,
The test object is one of austenitic stainless steel, a nickel-base alloy base material, a weld metal thereof, and both of these metals.
結晶粒界を視認可能とした被検体に対して公称ひずみεの強制変位を負荷する変位負荷部と、
この変位負荷部による強制変位の負荷中に前記被検体の表面に発生する結晶粒界近傍のひずみεを少なくとも2以上測定する測定部と、
この測定部で測定した前記少なくとも2以上のひずみεからε処理値を演算し、このε処理値を前記公称ひずみεで除算したε処理値/εを演算する演算部と、
この演算部で求めた前記ε処理値/εを表示する表示部とを備えた
ことを特徴とする粒界型応力腐食割れ発生感受性評価装置。
A displacement load section for applying a forced displacement with a nominal strain ε 0 to the subject whose crystal grain boundaries are visible;
A measuring unit for measuring at least two strains ε i in the vicinity of the crystal grain boundary generated on the surface of the subject during the load of forced displacement by the displacement load unit;
This calculates the epsilon i processed value the measured by the measurement unit from at least two strain epsilon i, a calculator for calculating the epsilon i processed value / epsilon 0 divided by the epsilon i processed value the nominal strain epsilon 0 to ,
A grain boundary type stress corrosion cracking susceptibility evaluation apparatus, comprising: a display unit that displays the ε i processing value / ε 0 obtained by the calculation unit.
JP2014168420A 2014-08-21 2014-08-21 Evaluation method of intergranular stress corrosion crack occurrence sensitivity, and intergranular stress corrosion crack occurrence sensitivity evaluation device Pending JP2016045037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014168420A JP2016045037A (en) 2014-08-21 2014-08-21 Evaluation method of intergranular stress corrosion crack occurrence sensitivity, and intergranular stress corrosion crack occurrence sensitivity evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014168420A JP2016045037A (en) 2014-08-21 2014-08-21 Evaluation method of intergranular stress corrosion crack occurrence sensitivity, and intergranular stress corrosion crack occurrence sensitivity evaluation device

Publications (1)

Publication Number Publication Date
JP2016045037A true JP2016045037A (en) 2016-04-04

Family

ID=55635740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014168420A Pending JP2016045037A (en) 2014-08-21 2014-08-21 Evaluation method of intergranular stress corrosion crack occurrence sensitivity, and intergranular stress corrosion crack occurrence sensitivity evaluation device

Country Status (1)

Country Link
JP (1) JP2016045037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793855A (en) * 2019-11-13 2020-02-14 北京理工大学 Evaluation method for intercrystalline stress of polycrystalline alloy with cubic structure
JP7304476B1 (en) 2021-12-27 2023-07-06 Jfeテクノリサーチ株式会社 Evaluation Method for Liquid Metal Brittle Cracking Susceptibility in Resistance Spot Welds of Steel Plates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793855A (en) * 2019-11-13 2020-02-14 北京理工大学 Evaluation method for intercrystalline stress of polycrystalline alloy with cubic structure
CN110793855B (en) * 2019-11-13 2021-03-02 北京理工大学 Evaluation method for intercrystalline stress of polycrystalline alloy with cubic structure
JP7304476B1 (en) 2021-12-27 2023-07-06 Jfeテクノリサーチ株式会社 Evaluation Method for Liquid Metal Brittle Cracking Susceptibility in Resistance Spot Welds of Steel Plates
WO2023127405A1 (en) * 2021-12-27 2023-07-06 Jfeスチール株式会社 Method for evaluating susceptibility to liquid metal embrittlement cracking in resistance spot welded portion of steel plate
JP2023099994A (en) * 2021-12-27 2023-07-14 Jfeテクノリサーチ株式会社 Evaluation method for liquid metal brittle cracking susceptibility in resistance spot weld portion of steel plate

Similar Documents

Publication Publication Date Title
Gussev et al. In situ SEM-EBSD analysis of plastic deformation mechanisms in neutron-irradiated austenitic steel
Kamaya et al. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction
Unnikrishnan et al. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments
Kamaya Assessment of local deformation using EBSD: Quantification of accuracy of measurement and definition of local gradient
Hinds et al. Impact of surface condition on sulphide stress corrosion cracking of 316L stainless steel
Lu et al. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water
Kumar et al. Methods for making alloy 600 resistant to sensitization and intergranular corrosion
Siefert et al. Evaluation of the creep cavitation behavior in Grade 91 steels
Meisnar et al. Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels
Haidyrah et al. Weibull statistical analysis of Krouse type bending fatigue of nuclear materials
JP2013092432A (en) Life estimation of metallic material due to occurrence of stress corrosion crack, and inspection planning system for structure used under corrosive water environment
Lu et al. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water
Sket et al. Microtomographic investigation of damage in E911 steel after long term creep
EP2841917B1 (en) The method of non-destructive evaluation of intergranular stress corrosion cracking (igssc) in structural components made of metal alloys, and the method of lifetime evaluation of the structural components
Ren et al. A constitutive model accounting for strain ageing effects on work-hardening. Application to a C–Mn steel
Fujii et al. Strain-based approach to investigate intergranular stress corrosion crack initiation on a smooth surface of austenitic stainless steel
Cheon et al. Alveolar ridge preservation using allografts and dense polytetrafluoroethylene membranes with open membrane technique in unhealthy extraction socket
Fujii et al. Investigation on nucleation of intergranular stress corrosion cracking in austenitic stainless steel by in situ strain measurement
JP2016045037A (en) Evaluation method of intergranular stress corrosion crack occurrence sensitivity, and intergranular stress corrosion crack occurrence sensitivity evaluation device
JP2010164430A (en) Method and apparatus for evaluating creep damage of metallic material
Kim et al. Effect of local strain distribution on stress corrosion cracking of cold-rolled Alloy 690 with inhomogeneous microstructure
Muránsky et al. Assessment of welding-induced plasticity via electron backscatter diffraction
JP2012073126A (en) Evaluation method and device for crack evolution velocity of metallic material
Lee et al. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals
JP2017203685A (en) Method for diagnosing degradation of irradiation material and degradation diagnosis device of the same