JP2009300371A - Method and apparatus for detecting hetero-crystalline area of single crystal material - Google Patents

Method and apparatus for detecting hetero-crystalline area of single crystal material Download PDF

Info

Publication number
JP2009300371A
JP2009300371A JP2008157942A JP2008157942A JP2009300371A JP 2009300371 A JP2009300371 A JP 2009300371A JP 2008157942 A JP2008157942 A JP 2008157942A JP 2008157942 A JP2008157942 A JP 2008157942A JP 2009300371 A JP2009300371 A JP 2009300371A
Authority
JP
Japan
Prior art keywords
detecting
single crystal
detection
crystal material
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008157942A
Other languages
Japanese (ja)
Inventor
Reki Takaku
歴 高久
Hiroaki Yoshioka
洋明 吉岡
Daizo Saito
大蔵 斎藤
Katsuyasu Ito
勝康 伊藤
Kazutoshi Ishibashi
和利 石橋
Wataru Kono
渉 河野
Takehisa Hino
武久 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008157942A priority Critical patent/JP2009300371A/en
Publication of JP2009300371A publication Critical patent/JP2009300371A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus, capable of nondestructively and simply detecting a hetero-crystalline area as a defect occurring in manufacturing a signal crystal metallic material or in use, even when existing in an invisible region. <P>SOLUTION: The method for detecting the hetero-crystalline area of the single crystal material comprises; a step of making an ultrasonic wave incident on the front face of an object to be inspected which is made of the single crystal material and has front and rear faces sandwiching a certain thickness part, and of detecting a reflected wave from the rear face; a step of measuring a time from the incidence to the detection of the rear-face reflected wave; a step of detecting the presence of the hetero-crystalline area, based on a deviance in detected times of the rear-face reflected wave measured at least two or more points (first method); and a step of detecting the presence of the hetero-crystalline area, based on a deviance of the detected time of the rear-face reflected wave from a detection time of the rear-face reflected wave estimated from previously obtained shape information of the object to be inspected (second method). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、単結晶材料からなる被検査体中を伝播する超音波の伝播時間を計測することにより、非破壊的に単結晶材料中の異結晶域(すなわち、局部的に単結晶の結晶方位あるいは組織が周囲とは異なる領域)を検出する方法および装置に関する。   The present invention measures non-destructively different crystal regions in a single crystal material (i.e., crystal orientation of the single crystal locally) by measuring the propagation time of the ultrasonic wave propagating in the test object made of the single crystal material. Alternatively, the present invention relates to a method and an apparatus for detecting a region where a tissue is different from the surrounding area.

単結晶材料からなる製品の品質検査・保守・運用のために単結晶材料中の異結晶域を検出することが必要な場合が多くある。例えば、近年では多くの航空機ジェットエンジンや発電用のガスタービンの動翼・静翼に単結晶合金が用いられている。これらの単結晶部品ではしばしば製造段階(例えば単結晶材料の徐冷による結晶化の工程、あるいは結晶化した単結晶材料の切削等による部品製造工程等)で異結晶域が発生することがある。またあるいは、運転時の損傷(例えば異物の衝突による打痕など)に起因した再結晶現象により異結晶域が生じることがある。異結晶域は材料の強度を著しく低下させる上、補修も困難であるため、異結晶の生じている部品は廃却される。従って、これらの異結晶域を検査によって検出する必要がある。単結晶材料における異結晶域の公知の検出方法としては、部品の外表面全体をエッチングして観察するマクロエッチ法や、部品にX線を照射して回折パターンから評価するラウエ法、あるいは、当該部位を切り出して研磨・エッチング後に顕微鏡で観察する顕微鏡観察法や、同様に切り出した試料に照射された電子が後方散乱することで形成された電子後方散乱回折像によって評価するEBSP法(電子後方散乱回折像法)などがある。しかし、いずれの方法も少なからぬ手間と時間を要する。さらにマクロエッチ法は部品の目視可能な外表面にしか適用できない;ラウエ法は部品全体の検査を行うのが困難である;顕微鏡観察法とEBSP法は部品を破壊しなければ検査できない;といった欠点がある。以上のように、特に、高温機器に使用されているNi基単結晶合金などにおける、従来の異結晶域の検出方法にはそれぞれ問題があった。
特開2008−58244号公報
In many cases, it is necessary to detect a different crystal region in a single crystal material for quality inspection, maintenance and operation of a product made of the single crystal material. For example, in recent years, single crystal alloys have been used in the moving blades and stationary blades of many aircraft jet engines and gas turbines for power generation. In these single crystal parts, a different crystal region often occurs in the manufacturing stage (for example, a crystallization process by slow cooling of a single crystal material, or a part manufacturing process by cutting a crystallized single crystal material). Alternatively, a different crystal region may occur due to a recrystallization phenomenon caused by damage during operation (for example, a dent due to collision of a foreign substance). The different crystal region significantly lowers the strength of the material and is difficult to repair, so parts with different crystals are discarded. Therefore, it is necessary to detect these different crystal regions by inspection. Known detection methods for different crystal regions in a single crystal material include a macro etch method in which the entire outer surface of a part is etched and observed, a Laue method in which the part is irradiated with X-rays and evaluated from a diffraction pattern, or the like Microscopic observation method in which a part is cut out and observed with a microscope after polishing / etching, and EBSP method (electron backscattering) in which the electron irradiated to the cut out sample is evaluated by backscattering diffraction image formed by backscattering Diffraction image method). However, both methods require considerable labor and time. In addition, the macro-etching method can only be applied to the visible outer surface of the part; the Laue method is difficult to inspect the entire part; the microscopic and EBSP methods cannot be inspected without destroying the part; There is. As described above, there have been problems with conventional methods for detecting different crystal regions, particularly in Ni-based single crystal alloys used in high-temperature equipment.
JP 2008-58244 A

本発明は、上記従来技術の問題点を解決するためになされたもので、単結晶材料からなる部品等の被検査体における異結晶域の存在を、非破壊で、簡便に、肉厚の内部等の目視不可能な部位におけるものも含めて、検知可能な方法および装置を提供することを、主要な目的とする。   The present invention has been made to solve the above-described problems of the prior art, and the existence of a different crystal region in an object to be inspected such as a part made of a single crystal material is nondestructively and easily It is a main object to provide a method and apparatus capable of being detected, including those that are not visible.

本発明者らは、単結晶材料の結晶方位に応じて、入射された超音波の伝播速度が異なることに着目した結晶方位の測定装置および測定方法を提案している(特許文献1)。本発明者らは、上述の目的で研究した結果、上記特許文献1の方法を発展させることにより、単結晶材料中の異結晶域の検出が可能であるとの知見に到達した。すなわち、本発明の単結晶材料の異結晶域検出方法は、単結晶材料からなり、ある肉厚を挟む表面と裏面とを有する被検査体の該表面から超音波を入射してその裏面からの反射波を検知する工程と;該入射から該裏面反射波検出までの時間を計測する工程と;少なくとも2箇所以上で計測した該裏面反射波検出時間のずれに基づいて異結晶域の存在を検知する工程(第1の方法)、あるいは該裏面反射波検出時間と予め得ておいた被検査体の形状情報から推定される裏面反射波検出時間とのずれに基づいて異結晶域の存在を検知する工程(第2の方法)と;を含むことを特徴とするものである。   The inventors of the present invention have proposed a crystal orientation measuring apparatus and measurement method that pay attention to the fact that the propagation speed of incident ultrasonic waves differs depending on the crystal orientation of a single crystal material (Patent Document 1). As a result of studying for the above-mentioned purpose, the present inventors have reached the knowledge that by developing the method of Patent Document 1, it is possible to detect a different crystal region in a single crystal material. That is, the method for detecting a different crystal region of a single crystal material according to the present invention comprises a single crystal material, and an ultrasonic wave is incident from the front surface of the object to be inspected having a front surface and a rear surface sandwiching a certain thickness, and from the rear surface. A step of detecting a reflected wave; a step of measuring a time from the incident to the detection of the back surface reflected wave; and a detection of the presence of a different crystal region based on a difference in the back surface reflected wave detection time measured at at least two locations. The presence of a different crystal region is detected based on the difference between the back surface reflected wave detection time estimated from the back surface reflected wave detection time and the shape information of the inspected object obtained in advance (first method). And a step (second method).

また、本発明の単結晶材料の異結晶域検出装置は、超音波発生・検出手段と、該超音波発生・検出手段に電気的に接続され、単結晶材料からなりある肉厚を挟む表面と裏面とを有する被検査体の該表面から超音波を入射してその裏面からの反射波が検出されるまでの時間を計測する時間計測手段と、時間計測手段に電気的に接続され該時間データを記憶する記憶手段と、該記憶手段と電気的に接続された演算手段と、該演算手段と電気的に接続された可視化手段とを含むことを特徴とするものである。   The apparatus for detecting a different crystal region of a single crystal material according to the present invention includes an ultrasonic wave generation / detection unit, and a surface that is electrically connected to the ultrasonic wave generation / detection unit and sandwiches a certain thickness of the single crystal material. A time measuring means for measuring a time from when an ultrasonic wave is incident from the front surface of the inspection object having a back surface until a reflected wave from the back surface is detected; and the time data electrically connected to the time measuring means Storage means, a calculation means electrically connected to the storage means, and a visualization means electrically connected to the calculation means.

本発明方法および装置における異結晶域の検出原理は、一般の超音波探傷法におけるような、傷のもたらす超音波反射面としての作用に基づく検出原理とは異なり、上記特許文献1の発明の基礎をなす、単結晶材料の結晶方位に応じて入射された超音波の伝播速度(音速)が異なるという現象、より一般的には物質中の音速はそのヤング率の平方根に比例するという現象に基づいて、単結晶材料に入射して裏面反射する超音波の入射から裏面反射波の検出までの時間の変化を通じて、異結晶域を検出するものである。   The detection principle of the different crystal region in the method and apparatus of the present invention is different from the detection principle based on the action as an ultrasonic reflection surface brought about by the scratch as in the general ultrasonic flaw detection method, and the basis of the invention of the above-mentioned Patent Document 1. Based on the phenomenon that the propagation speed (sound speed) of an incident ultrasonic wave differs depending on the crystal orientation of a single crystal material, and more generally, the sound speed in a substance is proportional to the square root of its Young's modulus. Thus, the different crystal region is detected through a change in time from the incidence of the ultrasonic wave incident on the single crystal material and reflected from the back surface to the detection of the back surface reflected wave.

例えば、耐熱合金として知られるNi基単結晶超合金は、図1(a)に示すように面心立方格子結晶構造(すなわち、一辺aの立方格子の格子原点に加えて各格子面の中心に、Ni等の特定原子等で代表される同価点を有する結晶構造)を有し、これをその一軸方向(図1(a)の上下方向)[001]に引き上げつつ凝固させて形成した場合には、図1(b)(図1(a)の結晶格子の上部平面図) に示すように、[001]と直交する(001)面における互いに直交する2方向[100]および[010]方向、これらから各45度の中間方向の[110]、の各方向から同単結晶に入射した超音波の伝播速度間には、V[100]=V[010]<v[110](=約1.3×V[100])の関係が成立することが知られている。 For example, a Ni-based single crystal superalloy known as a heat-resistant alloy has a face-centered cubic lattice crystal structure (that is, at the center of each lattice plane in addition to the lattice origin of the cubic lattice on one side a) as shown in FIG. , A crystal structure having an equivalence point represented by a specific atom such as Ni), which is solidified while being pulled up in the uniaxial direction (vertical direction in FIG. 1 (a)) [001] As shown in FIG. 1B (upper plan view of the crystal lattice of FIG. 1A), two directions [100] and [010] orthogonal to each other on the (001) plane orthogonal to [001] V [100] = V [010] <v [110] (= between the propagation speeds of the ultrasonic waves incident on the single crystal from each direction of [110], which is an intermediate direction of 45 degrees from each direction. It is known that the relationship of about 1.3 × V [100] ) is established.

一般の超音波探傷法においては、図2に示すように、超音波入射に伴う検出ピークPi(t=0)と被検査体の裏面反射に伴う検出ピークPr(tr)に先立って、傷や他の欠損からの反射波の検出ピークPf(tf<tr)が現れることによって、傷や他の欠損を検出する。これに対し、本発明の異結晶域の検出方法では、異結晶域と正常結晶域との界面が超音波の反射面としては作用しないので、傷等に基づく反射ピークは期待できないが、検査対象の単結晶材料についての形状、超音波伝播速度の結晶方位依存性等のデータを正確に把握しておけば、被検査体の裏面反射に伴う本来の検出ピークPr(tr)から微妙にずれた裏面反射ピークにもとづいて、肉厚方向に存在する異結晶域の存在が検出可能であることの知見に基づいている。   In a general ultrasonic flaw detection method, as shown in FIG. 2, prior to a detection peak Pi (t = 0) accompanying ultrasonic incidence and a detection peak Pr (tr) accompanying back-surface reflection of the object to be inspected, When a detection peak Pf (tf <tr) of a reflected wave from another defect appears, a flaw or another defect is detected. On the other hand, in the method for detecting a different crystal region according to the present invention, the interface between the different crystal region and the normal crystal region does not act as an ultrasonic reflection surface. If the data such as the shape of the single crystal material and the crystal orientation dependence of the ultrasonic wave propagation speed are accurately grasped, it is slightly deviated from the original detection peak Pr (tr) associated with the back surface reflection of the object to be inspected. This is based on the knowledge that the presence of a different crystal region existing in the thickness direction can be detected based on the back surface reflection peak.

以下、本発明の単結晶材料の異結晶域検出方法および装置の実施の形態について、主に耐熱合金として知られるNi基単結晶超合金からなるガスタービン動翼・静翼を念頭に置き図面を参照して説明する。   Hereinafter, embodiments of the method and apparatus for detecting a different crystal region of a single crystal material according to the present invention will be described with a gas turbine rotor blade / stator blade mainly made of a Ni-based single crystal superalloy known as a heat-resistant alloy in mind. The description will be given with reference.

<第1の実施形態>
まず、第1の実施形態について、例えばz方向に凝固した(z軸が凝固方向で[001]になっている)単結晶を想定して、以下、説明する(主に請求項1〜8に対応)。図3(a)の様に被検査体1表面にプローブ2を接触させる。プローブ2は超音波発生・検出手段21と保持手段22とを含んでおり(図4(a))、超音波発生・検出手段21としてはセラミック製あるいは高分子製の圧電素子などが挙げられるがこれに限定されるものではなく、超音波を発生・検出できるものであればよい。保持手段22は、超音波発生・検出手段21を保持し、被検査体1表面に対して安定して接触できるように作用するものであり、樹脂、金属などいずれの材質であっても良い。プローブ2の端面は、グリセリンなどの潤滑媒体を介して被検査体1表面に接触させることが望ましい。あるいは被検査体を水中に浸漬して、水を媒体として非接触でプローブ2からの超音波を被検査体1に入射させても良い。異結晶域の検出精度を上げるために、超音波発生・検出手段21は、その複数個を規則的に配列することが望ましい。図4(b)のように超音波発生・検出手段21で、被検査体1に超音波を入射し、反射波を検出する。超音波発生・検出手段21は信号伝達手段3を介して時間計測手段4へ接続され、時間計測手段4において超音波の入射から反射波検出までの時間を計測する。計測された時間情報は、プローブ2の移動方向(y)におけるy=y1という位置情報と共に記憶手段5に記憶される。次にy方向にプローブを移動させy=y2として同様に超音波の入射から反射波検出までの時間を計測し、記憶手段5に記憶させる。記憶された情報は演算手段6にて演算され、その出力は、各種ディスプレイ等の可視化手段7にて、例えば図3(b)に示すようなグラフとして表示される。この際、y=y2の位置に異結晶域CAが存在したとすると、図3(a)の例のように非検査体の形状がyによらず一定であっても超音波の入射から反射波検出までの時間に違い(図3(b)の○と×のずれ)が生じる。この違いによって異結晶域の存在を検知できる。前述したように一般に、物質中の音速はそのヤング率の平方根に比例する。従って、単結晶からなる部品中に一部でも異結晶域が存在するとその部分では音速が変化する。本手法はこの原理を用いて異結晶を検知するものである。当然yは上記の2点だけでなく、非検査体1の必要検査領域全体に渡ってデータ採取を行う。
<First Embodiment>
First, the first embodiment will be described below assuming a single crystal solidified in the z direction (the z-axis is [001] in the solidification direction), for example (mainly in claims 1 to 8). Correspondence). The probe 2 is brought into contact with the surface of the inspection object 1 as shown in FIG. The probe 2 includes an ultrasonic wave generation / detection unit 21 and a holding unit 22 (FIG. 4A). Examples of the ultrasonic wave generation / detection unit 21 include a piezoelectric element made of ceramic or polymer. The present invention is not limited to this, and any apparatus that can generate and detect ultrasonic waves may be used. The holding means 22 holds the ultrasonic wave generation / detection means 21 and acts so as to stably contact the surface of the object 1 to be inspected, and may be any material such as resin or metal. It is desirable that the end surface of the probe 2 is brought into contact with the surface of the device under test 1 via a lubricating medium such as glycerin. Alternatively, the inspection object may be immersed in water, and ultrasonic waves from the probe 2 may be incident on the inspection object 1 in a non-contact manner using water as a medium. In order to improve the detection accuracy of different crystal regions, it is desirable that a plurality of ultrasonic wave generation / detection means 21 be regularly arranged. As shown in FIG. 4B, the ultrasonic wave generation / detection means 21 causes the ultrasonic wave to be incident on the object 1 to be detected and the reflected wave is detected. The ultrasonic wave generation / detection means 21 is connected to the time measurement means 4 via the signal transmission means 3, and the time measurement means 4 measures the time from the incidence of the ultrasonic wave to the detection of the reflected wave. The measured time information is stored in the storage unit 5 together with position information y = y1 in the moving direction (y) of the probe 2. Next, the probe is moved in the y direction, and the time from the incidence of the ultrasonic wave to the detection of the reflected wave is similarly measured with y = y2, and stored in the storage means 5. The stored information is calculated by the calculation means 6, and the output is displayed as a graph as shown in FIG. 3B on the visualization means 7 such as various displays. At this time, if the different crystal region CA exists at the position of y = y2, even if the shape of the non-inspection object is constant regardless of y as in the example of FIG. There is a difference in the time until wave detection (deviation between ◯ and x in FIG. 3B). The presence of the different crystal region can be detected by this difference. As described above, the speed of sound in a substance is generally proportional to the square root of its Young's modulus. Accordingly, if even a part of a different crystal region exists in a part made of a single crystal, the speed of sound changes in that part. This method uses this principle to detect different crystals. Naturally, y collects data not only for the above two points but also for the entire necessary inspection area of the non-inspection object 1.

好ましくは、演算手段6には被検査部品の肉厚分布(プロファイル)等の形状情報などを格納した部品(被検査体)データベース8を接続して、必要に応じて演算手段6によってその情報を読み出すことが出来るように構成される。入射から反射波検出までの時間のグラフ上に部品形状の情報から得られる肉厚プロファイルを描画させて、実測のプロット比較することで異結晶域を検知することも出来る。なお、部品を構成する単結晶材料(の主たる結晶方位)ごと、あるいは材質ごとに入射から反射波検出までの時間の絶対値は変化するが、本例においては、例えばあるyの値におけるプロファイル(複数のプロットの相対的な位置関係)は変わらない。従って、部品データベース8から読み出されるプロファイルは形状情報から得られる肉厚のプロファイルで良く、表示上で自由に上下可能とし、実測プロットと重ね合わせて比較評価できることが望ましい。   Preferably, a component (inspected object) database 8 storing shape information such as a thickness distribution (profile) of the component to be inspected is connected to the calculating means 6, and the information is obtained by the calculating means 6 as necessary. It is configured to be readable. It is also possible to detect a different crystal region by drawing a thickness profile obtained from information on the part shape on a graph of time from incident to reflected wave detection and comparing the measured plots. Although the absolute value of the time from incident to reflected wave detection varies for each single crystal material (main crystal orientation) constituting the part or for each material, in this example, for example, a profile at a certain y value ( The relative positional relationship of the plots does not change. Therefore, the profile read from the part database 8 may be a thickness profile obtained from the shape information, and can be freely moved up and down on the display, and can be compared and evaluated by superimposing with the actual measurement plot.

ここで、記憶手段5、部品データベース8は、例えば、ハードディスク装置、メモリなどのデータ記憶装置で構成され、外部出力インターフェイス、外部入力インターフェイスなどを介して、時間計測手段4や演算手段6と情報の交信が可能に接続されている。演算手段6は、例えば、コンピュータなどで構成され、ハードディスク装置などに格納された各プログラムをCPUなどの演算部で作動させ、演算を行う。演算の具体例として、(イ)データベース8に入っている設計肉厚データと音速データから理想的な時間tを演算すること、(ロ)y=y1のデータとy=y2のデータの「差」を演算すること、(ハ)計測され時間データと上記(イ)で演算された時間データの「差」を演算すること、などが挙げられる。また、上記した各手段は、データ入力部として、例えば、情報を入力するためのキーボードやマウスなどを備えてもよい。また、可視化手段は例えば液晶ディスプレーなどで構成されている。あるいはプリンターのような紙媒体への可視化手段でもよい。   Here, the storage means 5 and the parts database 8 are constituted by, for example, a data storage device such as a hard disk device and a memory, and the time measurement means 4 and the calculation means 6 and the information storage device via the external output interface and the external input interface. Communication is possible. The calculation means 6 is constituted by a computer, for example, and operates each program stored in a hard disk device or the like by a calculation unit such as a CPU to perform calculation. As specific examples of the calculation, (a) calculating an ideal time t from the design wall thickness data and sound velocity data stored in the database 8, (b) “difference between y = y1 data and y = y2 data. And (c) calculating the “difference” between the measured time data and the time data calculated in (a) above. Each means described above may include, for example, a keyboard or a mouse for inputting information as a data input unit. Further, the visualization means is constituted by, for example, a liquid crystal display. Or the visualization means to the paper medium like a printer may be sufficient.

ちなみに、プローブ2にて時間データを採取する際に、必要とされるプロット間隔に対してx方向の位置x1、x2 …に、配列したプローブ内の超音波発生・検出手段21のx方向配列間隔(x2−x1)が広い場合には、一定のyにおいて、超音波発生・検出手段21の間隔以内の範囲で、超音波発生・検出手段21をx方向に微小移動(Δx<x2−x1)することにより、本来のx=x1,x=x2 …の位置に加えて,x=x1+Δx,x=x2+Δx …など追加の位置で時間データを採取し、それらを記憶手段5へ併せて記憶させて演算手段6で密度の高いプロットデータとして統合しても良い。   Incidentally, when the time data is collected by the probe 2, the x-direction arrangement interval of the ultrasonic wave generation / detection means 21 in the arranged probes at the x-direction positions x1, x2... With respect to the required plot interval. When (x2−x1) is wide, the ultrasonic wave generation / detection unit 21 is slightly moved in the x direction within a range within the interval of the ultrasonic wave generation / detection unit 21 at a constant y (Δx <x2−x1). Thus, in addition to the original positions x = x1, x = x2..., Time data is collected at additional positions such as x = x1 + Δx, x = x2 + Δx... And stored together in the storage means 5. The calculation means 6 may integrate the plot data with high density.

<第2の実施形態>
次に第2の実施形態について説明する。すなわち、第1の実施形態と異なり、被検査体1の超音波入射面11が曲面であるか、あるいは凹凸を有する場合の例を示す。
<Second Embodiment>
Next, a second embodiment will be described. That is, unlike the first embodiment, an example in which the ultrasonic incident surface 11 of the inspection object 1 is a curved surface or has irregularities is shown.

この形態では、図5のとおりプローブ2は、超音波発生・検出手段21、それを支持する管23およびその管23を保持する保持手段22と、信号伝達手段3に取付けられたストッパー24から成っている。さらに、管23の内部には弾性部材25が封入され、超音波発生・検出手段21と力学的に接続されている。保持手段22は隣接する管23同士を力学的に接続する役割を有しており、樹脂、金属等からなる。また管23中の弾性部材25は、ゴム、金属バネなどからなっており、これにより、プローブ2(の超音波発生・検出手段21)が、被検査体1の形状に追随することが可能となっている。管23は、金属・樹脂いずれの素材でも良いが、内面(超音波発生・検出手段との接触面)はテフロンなどの低摩擦素材を配していることが望ましい。管23、ストッパー24および弾性部材25は、プローブ2中において、超音波発生・検出手段21の補助的な保持手段として機能する。 In this embodiment, as shown in FIG. 5, the probe 2 includes an ultrasonic wave generation / detection unit 21, a tube 23 that supports the ultrasonic wave generation / detection unit 21, a holding unit 22 that holds the tube 23, and a stopper 24 attached to the signal transmission unit 3. ing. Further, an elastic member 25 is sealed inside the tube 23 and is mechanically connected to the ultrasonic wave generation / detection means 21. The holding means 22 has a role of dynamically connecting adjacent pipes 23 and is made of resin, metal, or the like. The elastic member 25 in the tube 23 is made of rubber, a metal spring, or the like, so that the probe 2 (the ultrasonic wave generation / detection means 21) can follow the shape of the object 1 to be inspected. It has become. The tube 23 may be made of either metal or resin, but it is desirable that a low friction material such as Teflon be disposed on the inner surface (contact surface with the ultrasonic wave generation / detection means). The tube 23, the stopper 24, and the elastic member 25 function as auxiliary holding means for the ultrasonic wave generation / detection means 21 in the probe 2.

<第3の実施形態>
第3の実施形態について図6を参照して説明する。この実施形態は、第2の実施形態と同様に、被検査体1の超音波入射面が曲面であるか、あるいは凹凸を有する場合に好適である。被検査体1を水30などの媒体中へ浸漬して検査する場合の例を示すと、図6に示すように、水中でのプローブ2の超音波発生・検出手段21と、被検査体の超音波入射面11との距離を一定に保つための距離維持手段26を有したプローブ2を用いることで、上記水中距離を一定に保つことが可能となる。
<Third Embodiment>
A third embodiment will be described with reference to FIG. As in the second embodiment, this embodiment is suitable when the ultrasonic incident surface of the device under test 1 is a curved surface or has irregularities. As shown in FIG. 6, the ultrasonic wave generation / detection means 21 of the probe 2 in water and the inspection object 1 are inspected by immersing the inspection object 1 in a medium such as water 30 for inspection. By using the probe 2 having the distance maintaining means 26 for keeping the distance from the ultrasonic incident surface 11 constant, the underwater distance can be kept constant.

<第4の実施形態>
第4の実施形態は、結晶方位による音速の変化を考慮して評価値の変動を補完する手法に関する。図7(a)に示すような[001]方向に1方向凝固法により形成された一定肉厚の中空円筒上の被検査体1と円筒座標系を例にとると、図7(b)のようにθ方向へプローブを配してz方向へスキャンしていく方法と、(c)のようにz方向へプローブを配してθ方向へスキャンしていく方法の2種類が、いずれも好適に用いられる。
<Fourth Embodiment>
The fourth embodiment relates to a method of complementing fluctuations in evaluation values in consideration of changes in sound speed due to crystal orientation. Taking the object to be inspected 1 and a cylindrical coordinate system on a hollow cylinder with a constant thickness formed by the unidirectional solidification method in the [001] direction as shown in FIG. 7A, for example, FIG. Both the method of arranging the probe in the θ direction and scanning in the z direction and the method of arranging the probe in the z direction and scanning in the θ direction as shown in (c) are suitable. Used for.

ここで、前者の場合は得られる時間データのグラフは図7(b)の右側に示すようになる。すなわち、部品データベースに格納されている被検査体の形状情報のみから得られる肉厚プロファイルと大きく異なる結果が得られる。これは単結晶材料部品の異方性によるものであり[001]方向軸を包囲する円筒材料の周りをθスキャンすることは、図1(a)および(b)に示したように、同単結晶材料の[100]→[110]→[010]…と、順に、異なる結晶方位方向に超音波を入射させることに相当し、結晶方位の差に基づき、超音波伝播速度の遅い[100]および[010]方向では裏面反射時間が長くなり、伝播速度の速い[110]方向では裏面反射時間が短くなる。このような場合、それぞれのθにおける隣接するz同士(z=z1とz=z2)のデータの差を演算して、表示することで、異常の有無を検知し易くすることが出来る。その際は部品データベースを参照して表示するプロファイルも同様に隣接するz同士の差に相当したプロファイルを表示させる。(なお、図7(b)に設計上の肉厚プロファイルとして示す水平な直線は、結晶方位を考慮せずに設計上の形状のみでプロファイルを表すと、単結晶材料では、音速の結果のプロファイルと全く一致しないことを示すために表示してある。   Here, in the former case, the graph of time data obtained is as shown on the right side of FIG. That is, a result greatly different from the thickness profile obtained only from the shape information of the object to be inspected stored in the parts database can be obtained. This is due to the anisotropy of the single crystal material part, and the θ scan around the cylindrical material surrounding the [001] direction axis is the same as shown in FIGS. 1 (a) and 1 (b). [100] → [110] → [010]... In order of crystal materials, which corresponds to incident ultrasonic waves in different crystal orientation directions, and has a slow ultrasonic propagation speed based on the difference in crystal orientation [100]. And in the [010] direction, the back surface reflection time becomes long, and in the [110] direction where the propagation speed is fast, the back surface reflection time becomes short. In such a case, it is possible to easily detect the presence / absence of an abnormality by calculating and displaying a difference between adjacent z data (z = z1 and z = z2) at each θ. At that time, the profile displayed with reference to the parts database is also displayed corresponding to the difference between adjacent z's. (Note that the horizontal straight line shown as the design thickness profile in FIG. 7B represents the profile only with the design shape without considering the crystal orientation. Is displayed to indicate that they do not match at all.

図7(b)の例とは異なり、図7(c)に示すようにプローブの1列のデータ採取で異方性が出にくい方向を選んでもよい。この場合θによって絶対値は変動するがプロファイルは部品データベースによるそれ(この例では、均等肉厚に基づく一定反射時間データ)と一致する。   Unlike the example of FIG. 7B, as shown in FIG. 7C, a direction in which anisotropy does not easily occur in data collection of one row of the probe may be selected. In this case, the absolute value varies depending on θ, but the profile matches that of the parts database (in this example, constant reflection time data based on uniform thickness).

図7(b)および(c)のいずれの場合にも、さらには、部品データベース8および演算手段6に部品の結晶方位の情報(部品の結晶方位および結晶方位と音速の関係)を与えておくことで、実測された2種以上のデータの比較でなく、結晶方位を考慮した入射から反射波検出までの時間の理論プロファイル(例えば図7(b)のz=z2に相当する理論プロファイル(この例ではz=z1の実測プロファイルに近似したものとなる)または図7(c)のθ=θ2のプロファイルに相当する理論プロファイル(この例ではθ=θ1の実測プロファイルに、θ=θ1とθ=θ2の結晶方位差に伴う音速差に基づく時間差を加味した反射時間データとなる))を演算して表示し、実測されたデータ(例えば図7(b)のz=z2のプロファイルまたは図7(c)のθ=θ2)と比較できるようにしても良い。このような、理論プロファイルの計算は、部品(被検査体)が欠陥のない単結晶材料であると仮定して、肉厚ごとに異なる反射検出時間を計算し、結晶方位による超音波伝播速度(音速)の変化を考慮して修正することにより行われる。結晶方位による超音波伝播速度(音速)の変化に関しては、例えば面心立方格子構造を有する代表的なNi基超合金の代表的な結晶方位における音速データ(例えば、V[100]、V[210]、V[110]、V[111]など)、およびそれ以外の中間方位における音速データは、部品データベース8中に格納される。代表的な方位における音速データのみデータベース8中に格納しておいて、中間方位での音速データは、内挿により導くこととしてもよい。 7B and 7C, information on the crystal orientation of the component (the crystal orientation of the component and the relationship between the crystal orientation and the sound velocity) is given to the component database 8 and the calculation means 6. Thus, not a comparison of two or more types of actually measured data, but a theoretical profile of time from incident to reflected wave detection considering the crystal orientation (for example, a theoretical profile corresponding to z = z2 in FIG. In the example, it is approximated to a measured profile of z = z1) or a theoretical profile corresponding to the profile of θ = θ2 in FIG. 7C (in this example, θ = θ1 and θ = is calculated and displayed) (for example, a profile or graph of z = z2 in FIG. 7B). 7 (c) may be compared with θ = θ2). The calculation of the theoretical profile is based on the assumption that the part (inspected object) is a single-crystal material with no defects. This is done by taking into account changes in sound speed. Regarding the change of the ultrasonic propagation velocity (sound speed) depending on the crystal orientation, for example, sound speed data (for example, V [100] , V [210 ] in a typical crystal orientation of a typical Ni-based superalloy having a face-centered cubic lattice structure. ], V [110], sound velocity data in the V [111], etc.), and other intermediate orientation are stored in the component database 8. Only the sound speed data in the representative direction may be stored in the database 8, and the sound speed data in the intermediate direction may be derived by interpolation.

上記した、理論プロファイルと、実測反射時間プロファイルとの比較による異結晶域の検出態様は、図7のように肉厚が一定の直円筒状部品のような単純なプロファイルでなく、より複雑な形状のプロファイルにおける異結晶域の検出精度を向上するために好ましい。例えば、2位置での実測データ間の比較では、両者間での理論プロファイルが一致することが前提で、いずれか一方が正しいと仮定しないと、異結晶域が検出できないのに対し、理論プロファイルであれば、測定データ間の比較によらずとも、個々の位置での理論データプロファイルと実測データの比較により異結晶域の検出が可能になるからである。これは、傷に基づく反射波の検出のように明瞭な検出が可能な超音波探傷法とは異なり、微妙な裏面反射波の時間ずれに基づく本発明法による異結晶域の検出精度を向上する上で重要な利点となる。   The above-described detection mode of the different crystal region by comparing the theoretical profile with the actually measured reflection time profile is not a simple profile like a straight cylindrical part with a constant wall thickness as shown in FIG. 7, but a more complicated shape. This is preferable in order to improve the detection accuracy of the different crystal region in the profile. For example, in the comparison between measured data at two positions, it is assumed that the theoretical profiles between the two match, and unless one of them is assumed to be correct, a different crystal region cannot be detected. This is because the different crystal regions can be detected by comparing the theoretical data profile and the actual measurement data at each position without using the comparison between the measurement data. This is different from the ultrasonic flaw detection method that enables clear detection such as detection of reflected waves based on scratches, and improves the detection accuracy of different crystal regions according to the method of the present invention based on the time lag of subtle reflected waves. Above is an important advantage.

<第5の実施形態>
上記の実施の形態においては一列に配列された超音波発生・検出手段21を例に説明してきたが、1つの超音波発生・検出手段を用いて、その位置をシフトしながら繰り返し超音波の入射および反射波の検出を行うことにより、本発明法による異結晶域の検出法を実施することも可能である。この場合、狭い領域を検査できるし、装置が簡便・安価で済むという利点がある。具体的には、例えば図8(a)のようにプローブをスキャンすることで前記と同様の検査が可能となる(図において保持手段等は省略されている)。逆に、一列でなく複数列の超音波発生・検出手段を配した構造であってもよい(図8(b))。この場合は一度に広い領域を迅速に検査できる利点がある。
<Fifth Embodiment>
In the above embodiment, the ultrasonic wave generation / detection means 21 arranged in a row has been described as an example. However, by using one ultrasonic wave generation / detection means, the incidence of ultrasonic waves is repeated while shifting its position. It is also possible to carry out a method for detecting a different crystal region according to the method of the present invention by detecting the reflected wave. In this case, there is an advantage that a narrow region can be inspected and the apparatus can be simple and inexpensive. Specifically, for example, the same inspection as described above can be performed by scanning the probe as shown in FIG. 8A (the holding means and the like are omitted in the figure). On the contrary, a structure in which a plurality of rows of ultrasonic wave generation / detection means are arranged instead of one row may be employed (FIG. 8B). In this case, there is an advantage that a large area can be inspected quickly.

なお、上記の実施の形態は面心立方構造の単結晶超合金からなるガスタービンの動翼・静翼を念頭に置いた例で説明してきたが、それ以外にも本発明の範囲内に様々な形態が可能であることは当業者にとって容易に理解されるであろう。   Although the above embodiment has been described with an example in which the moving blades and stationary blades of a gas turbine made of a single crystal superalloy having a face-centered cubic structure are taken into consideration, there are various other embodiments within the scope of the present invention. It will be readily appreciated by those skilled in the art that various forms are possible.

以上説明したように、本発明によれば、単結晶金属材料の製造上あるいは使用中に発生する欠陥としての異結晶域を、目視不可能な領域に存在する場合も含めて、非破壊で、簡便に検出可能な方法および装置が提供される。   As described above, according to the present invention, a non-destructive region including a case where a different crystal region as a defect that occurs during production or use of a single crystal metal material is present in a region that cannot be visually observed, Provided are a method and an apparatus that can be easily detected.

(a)は一軸[001]方向凝固法による単結晶材料の面心立方格子構造の模式斜視図、(b)は同格子構造の上部平面図。(a) is a schematic perspective view of a face-centered cubic lattice structure of a single crystal material by a uniaxial [001] direction solidification method, and (b) is an upper plan view of the lattice structure. 一般の超音波探傷法における反射波の検出パターンのグラフ。The graph of the detection pattern of the reflected wave in the general ultrasonic flaw detection method. (a)本発明に係る検出装置の構成図、(b)本発明に係る検査結果の表示の一例。(a) The block diagram of the detection apparatus which concerns on this invention, (b) An example of the display of the test result which concerns on this invention. (a)および(b)は本発明に係る超音波プローブの構造を示す模式図。(a) And (b) is a schematic diagram which shows the structure of the ultrasonic probe which concerns on this invention. (a)〜(c)は本発明に係る超音波プローブの構造を示す模式図。(a)-(c) is a schematic diagram which shows the structure of the ultrasonic probe which concerns on this invention. 本発明に係る超音波プローブの構造を示す模式図。The schematic diagram which shows the structure of the ultrasonic probe which concerns on this invention. (a)〜(c)は本発明に係る、材料異方性を考慮した検査方法を示す模式図。(a)-(c) is a schematic diagram which shows the inspection method which considered material anisotropy based on this invention. (a)および(b)は本発明に係る超音波プローブの構造とスキャン方法を示す模式図。(a) And (b) is a schematic diagram which shows the structure and scanning method of the ultrasonic probe which concerns on this invention.

符号の説明Explanation of symbols

1:被検査体 (11:超音波入射面、12:超音波反射面、CA:異結晶域)
2:プローブ
21:超音波発生・検出手段
22:保持手段
23:管
24:ストッパー
25:弾性部材
26:距離維持手段
3:信号伝達手段
4:時間計測手段
5:記憶手段
6:演算手段
7:可視化手段
8:部品(被検査体)データベース
1: Inspected object (11: ultrasonic wave incident surface, 12: ultrasonic wave reflecting surface, CA: different crystal region)
2: Probe 21: Ultrasonic wave generation / detection means 22: Holding means 23: Tube 24: Stopper 25: Elastic member 26: Distance maintenance means 3: Signal transmission means 4: Time measurement means 5: Storage means 6: Calculation means 7: Visualization means 8: parts (inspected object) database

Claims (11)

単結晶材料からなり、ある肉厚を挟む表面と裏面とを有する被検査体の該表面から超音波を入射してその裏面からの反射波を検知する工程と、該入射から該裏面反射波検出までの時間を計測する工程と、少なくとも2箇所以上で計測した該裏面反射波検出時間のずれに基づいて異結晶域の存在を検知する工程とを含むことを特徴とする、単結晶材料の異結晶域検出方法。 A step of detecting an reflected wave from the back surface of the object to be inspected made of a single crystal material having a surface and a back surface sandwiching a certain thickness, and detecting the back surface reflected wave from the incident And a step of detecting the presence of a different crystal region based on a difference between the back surface reflected wave detection times measured at at least two locations. Crystal region detection method. 単結晶材料からなり、ある肉厚を挟む表面と裏面とを有する被検査体の該表面から超音波を入射してその裏面からの反射波を検知する工程と、該入射から該裏面反射波検出までの時間を計測する工程と、該裏面反射波検出時間と予め得ておいた被検査体の形状情報から推定される裏面反射波検出時間とのずれに基づいて異結晶域の存在を検知する工程とを含むことを特徴とする、単結晶材料の異結晶域検出方法。 A step of detecting an reflected wave from the back surface of the object to be inspected made of a single crystal material having a surface and a back surface sandwiching a certain thickness, and detecting the back surface reflected wave from the incident And the presence of the different crystal region is detected based on the difference between the step of measuring the time until and the back surface reflected wave detection time and the back surface reflected wave detection time estimated from the shape information of the object to be inspected in advance. A method for detecting a different crystal region of a single crystal material. 予め得ておいた被検査体の形状情報から裏面反射波検出時間を推定する際に、被検査体の結晶方位の情報を参照して演算することを特徴とする、請求項2に記載の単結晶材料の異結晶域検出方法。 The single-sided calculation method according to claim 2, wherein when the back surface reflected wave detection time is estimated from the shape information of the inspected object obtained in advance, the calculation is performed with reference to the crystal orientation information of the inspected object. A method for detecting a different crystal region of a crystal material. 超音波発生・検出手段と、該超音波発生・検出手段に電気的に接続され、単結晶材料からなりある肉厚を挟む表面と裏面とを有する被検査体の該表面から超音波を入射してその裏面からの反射波が検出されるまでの時間を計測する時間計測手段と、時間計測手段に電気的に接続され該時間データを記憶する記憶手段と、該記憶手段と電気的に接続された演算手段と、該演算手段と電気的に接続された可視化手段とを含むことを特徴とする、単結晶材料の異結晶域検出装置。 An ultrasonic wave is incident from the surface of the object to be inspected having an ultrasonic wave generation / detection unit and a surface and a back surface that are electrically connected to the ultrasonic wave generation / detection unit and sandwich the thickness of a single crystal material. A time measuring means for measuring a time until a reflected wave from the back surface is detected, a storage means electrically connected to the time measuring means and storing the time data, and electrically connected to the storage means A device for detecting a different crystal region of a single crystal material, comprising: a calculation means; and a visualization means electrically connected to the calculation means. 少なくとも2つの超音波発生・検出手段を含むことを特徴とする、請求項4に記載の単結晶材料の異結晶域検出装置。 The apparatus for detecting a different crystal region of a single crystal material according to claim 4, comprising at least two ultrasonic wave generation / detection means. 前記演算手段に電気的に接続された、被検査体の形状情報が格納された部品データベースを含むことを特徴とする、請求項4または5に記載の単結晶材料の異結晶域検出装置。 6. The apparatus for detecting a different crystal region of a single crystal material according to claim 4 or 5, further comprising a parts database electrically connected to the calculation means and storing shape information of the object to be inspected. 前記部品データベースに被検査体の形状情報とともに結晶方位に関する情報が格納されていることを特徴とする、請求項6に記載の単結晶材料の異結晶域検出装置。 7. The apparatus for detecting a different crystal region of a single crystal material according to claim 6, wherein information on crystal orientation is stored in the parts database together with shape information of the object to be inspected. 前記超音波発生・検出手段を保持する保持手段を含むことを特徴とする、請求項4〜6のいずれかに記載の単結晶材料の異結晶域検出装置。 The apparatus for detecting a different crystal region of a single crystal material according to any one of claims 4 to 6, further comprising holding means for holding the ultrasonic wave generation / detection means. 前記保持手段が変形可能な素材を含み、超音波発生・検出手段の方向を変化させうる構造であることを特徴とした請求項8に記載の単結晶材料の異結晶域検出装置。 The apparatus for detecting a different crystal region of a single crystal material according to claim 8, wherein the holding unit includes a deformable material and has a structure capable of changing a direction of the ultrasonic wave generation / detection unit. 超音波発生・検出手段を支持する管と、該超音波発生・検出手段と該管とを力学的に接合する弾性部材とを含み、該超音波発生・検出手段と該管との相対的な位置関係が可変であることを特徴とする、請求項9に記載の単結晶材料の異結晶域検出装置。 A tube that supports the ultrasonic wave generation / detection means, and an elastic member that mechanically joins the ultrasonic wave generation / detection means and the tube, the relative relationship between the ultrasonic wave generation / detection means and the tube The apparatus for detecting a different crystal region of a single crystal material according to claim 9, wherein the positional relationship is variable. 前記超音波発生・検出手段と被検査体との距離を一定に保ち得る距離維持手段を含むことを特徴とする、請求項8に記載の単結晶材料の異結晶域検出装置。 9. The apparatus for detecting a different crystal region of a single crystal material according to claim 8, further comprising a distance maintaining unit capable of maintaining a constant distance between the ultrasonic wave generation / detection unit and the object to be inspected.
JP2008157942A 2008-06-17 2008-06-17 Method and apparatus for detecting hetero-crystalline area of single crystal material Pending JP2009300371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157942A JP2009300371A (en) 2008-06-17 2008-06-17 Method and apparatus for detecting hetero-crystalline area of single crystal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157942A JP2009300371A (en) 2008-06-17 2008-06-17 Method and apparatus for detecting hetero-crystalline area of single crystal material

Publications (1)

Publication Number Publication Date
JP2009300371A true JP2009300371A (en) 2009-12-24

Family

ID=41547419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157942A Pending JP2009300371A (en) 2008-06-17 2008-06-17 Method and apparatus for detecting hetero-crystalline area of single crystal material

Country Status (1)

Country Link
JP (1) JP2009300371A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227018A (en) * 2010-04-23 2011-11-10 Hitachi Cable Ltd Method for inspecting defect in semiconductor single crystal
KR101430694B1 (en) 2012-12-28 2014-09-23 한국원자력연구원 Apparatus and method for thickness measurement
CN105891330A (en) * 2016-01-14 2016-08-24 东莞帕姆蒂昊宇液态金属有限公司 Method and device for judging whether products are crystallized and detection equipment
JP2020091129A (en) * 2018-12-03 2020-06-11 三菱重工業株式会社 Aperture synthetic processing device, aperture synthetic processing method and program of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227018A (en) * 2010-04-23 2011-11-10 Hitachi Cable Ltd Method for inspecting defect in semiconductor single crystal
KR101430694B1 (en) 2012-12-28 2014-09-23 한국원자력연구원 Apparatus and method for thickness measurement
CN105891330A (en) * 2016-01-14 2016-08-24 东莞帕姆蒂昊宇液态金属有限公司 Method and device for judging whether products are crystallized and detection equipment
WO2017121338A1 (en) * 2016-01-14 2017-07-20 东莞帕姆蒂昊宇液态金属有限公司 Method and apparatus for determining whether product is crystallized, and detection device
JP2020091129A (en) * 2018-12-03 2020-06-11 三菱重工業株式会社 Aperture synthetic processing device, aperture synthetic processing method and program of the same
JP7120896B2 (en) 2018-12-03 2022-08-17 三菱重工業株式会社 Aperture synthesis processing device, aperture synthesis processing method, and its program

Similar Documents

Publication Publication Date Title
Lane The development of a 2D ultrasonic array inspection for single crystal turbine blades
Yashiro et al. A novel technique for visualizing ultrasonic waves in general solid media by pulsed laser scan
US7272529B2 (en) Dual wall turbine blade ultrasonic wall thickness measurement technique
CN107655971B (en) Concrete structure surface and internal damage fine modeling method
JP2005315892A (en) Method for ultrasonically inspecting aerofoil
Wen et al. Crack detection in photovoltaic cells by interferometric analysis of electronic speckle patterns
JP5604738B2 (en) Progress crack detection method, apparatus and program
JP5412647B2 (en) Nondestructive inspection probe movement detection method, nondestructive inspection method, and probe system
EP2594931B1 (en) Ultrasonic flaw detecting apparatus and method for test pieces with complex shapes
JP5706772B2 (en) Nondestructive inspection method
JP5085115B2 (en) 3D inspection system for water turbine structures
Na et al. Nondestructive evaluation method for standardization of fused filament fabrication based additive manufacturing
JP2009300371A (en) Method and apparatus for detecting hetero-crystalline area of single crystal material
JP5531257B2 (en) Turbine blade flaw detection method
Skews et al. Shock wave interaction with convex circular cylindrical surfaces
Jun et al. Method for evaluation of surface crack size of wind turbine main shaft by using ultrasonic diffracted waves
JP2003207489A (en) Damage evaluation method and apparatus for metallic material
US20060050092A1 (en) 2D and 3D display system and method for reformer tube inspection
JP2007322350A (en) Ultrasonic flaw detector and method
Hastie et al. Computed Tomography Wall Thickness Inspection to Support Gas Turbine Blade Life Extension
KR20190119952A (en) Ultrasonic testing method
JP2019138700A (en) Welded part flaw detector and method for detecting flaw
JP5959677B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Blackshire Ultrasonic scattering from complex crack morphology features
Tesfaye et al. Mapping of ultrasonic thickness measurements using laser grid projection and image processing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100424

Free format text: JAPANESE INTERMEDIATE CODE: A7424