JP2015183627A - ハイブリッド車両のバッテリ暖機システム - Google Patents

ハイブリッド車両のバッテリ暖機システム Download PDF

Info

Publication number
JP2015183627A
JP2015183627A JP2014062078A JP2014062078A JP2015183627A JP 2015183627 A JP2015183627 A JP 2015183627A JP 2014062078 A JP2014062078 A JP 2014062078A JP 2014062078 A JP2014062078 A JP 2014062078A JP 2015183627 A JP2015183627 A JP 2015183627A
Authority
JP
Japan
Prior art keywords
battery
compressed air
air
turbine
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014062078A
Other languages
English (en)
Inventor
奥村 健一
Kenichi Okumura
健一 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014062078A priority Critical patent/JP2015183627A/ja
Publication of JP2015183627A publication Critical patent/JP2015183627A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】バッテリの不具合を防止しつつ効率的な利用が可能なハイブリッド車両のバッテリ暖機システムを提供する。【解決手段】コンプレッサ13で生成された圧縮空気が空気供給路14を介して燃焼器12に供給され、タービン11が駆動されるガスタービン2と、タービン11の駆動によって発電された電気を充電するバッテリ3と、を備えたハイブリッド車両1に適用されるバッテリ暖機システム21であって、空気供給路14には、コンプレッサ13から供給される圧縮空気のうち少なくとも一部を取り出す空気取出口22が設けられ、空気取出口22から取り出された圧縮空気をバッテリ3に導く配管23を備えた。【選択図】図1

Description

本発明は、バッテリを充填可能なハイブリッド車両に適用されるバッテリ暖機システムに関する。
エンジンの動力によりジェネレータで発電を行い、バッテリを充電するハイブリッド車両において、エンジンから放出される排ガスの熱量でバッテリを暖機するバッテリ暖機装置が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2が存在する。
特開2013−18419号公報 国際公開第11/077528号パンフレット
バッテリを暖機するための媒体としてエンジンの排ガスを利用すると、バッテリが排ガスにより腐食するおそれがある。
そこで、本発明はバッテリの不具合を防止しつつ効率的な利用が可能なハイブリッド車両のバッテリ暖機システムを提供することを目的とする。
本発明のハイブリッド車両のバッテリ暖機システムは、コンプレッサで生成された圧縮空気が空気供給路を介して燃焼器に供給され、タービンが駆動されるガスタービンと、前記タービンの駆動によって発電された電気を充電するバッテリと、を備えたハイブリッド車両に適用されるバッテリ暖機システムであって、前記空気供給路には、前記コンプレッサから供給される圧縮空気のうち少なくとも一部を取り出す空気取出口が設けられ、前記空気取出口から取り出された圧縮空気を前記バッテリに導く空気導入手段を備えたものである(請求項1)。
本発明によれば、コンプレッサで生成される圧縮空気の少なくとも一部がバッテリに導かれる。圧縮空気は燃焼器に供給される前のものであり、バッテリを汚染したり腐食したりすることがない。したがって、圧縮空気の熱を利用して不具合を生じさせることなくバッテリを暖機することができ、効率よくバッテリを利用することができる。
本発明の一形態に係るバッテリ暖機システムが適用されたハイブリッド車両を示す全体概略図。 ECUが実行するバルブ開閉処理を示すフローチャート。 本発明の変形例に係るバッテリ暖機システムが適用されたハイブリッド車両を示す全体概略図。 熱交換型ガスタービンを備えたハイブリッド車両にバッテリ暖機システムが適用された構成を示した図。
図1は、本発明の一形態に係るバッテリ暖機システムが適用されたハイブリッド車両を示す全体概略図である。ハイブリッド車両1は、コンプレッサ13で生成された圧縮空気が空気供給路14を介して燃焼器12に供給され、タービン11が駆動されるガスタービン2と、タービン11の駆動によって発電された電気を充電するバッテリ3とを備えている。つまり、ガスタービン2には、タービン11と、タービン11を回転させるための燃焼器12と、圧縮空気を生成するコンプレッサ13と、コンプレッサ13から燃焼器12に圧縮空気を供給する空気供給路14とが設けられている。タービン11及びコンプレッサ13は、回転軸15を介して一体回転可能に構成されている。コンプレッサ13は、吸気通路16から外気を吸気して圧縮空気を生成する。圧縮空気は、空気供給路14を介して燃焼器12に供給される。圧縮空気の燃焼により発生した高温高圧ガスは、ガス供給路17を介してタービン11に供給され、タービン11が回転駆動する。タービン11の回転によりコンプレッサ13に動力が供給される。一方で、高温高圧ガスはタービン11から排気通路18を介して排出される。
タービン11の回転は、回転軸15を介して発電機(不図示)に伝達され、発電される。発電された電気は、バッテリ3やモータ(不図示)に供給される。モータの駆動により車輪19が回転することでハイブリッド車両1が走行する。バッテリ3には、発電機からの電気や、モータの回生により発電した電気が充電される。また、バッテリ3には、バッテリ3の温度を計測するバッテリ温度計3aが設けられている。このようなハイブリッド車両1の構成は、周知技術を利用して構成してもよい。
ガスタービン2の空気供給路14には、コンプレッサ13から供給される圧縮空気のうち少なくとも一部を取り出す空気取出口22が設けられている。ハイブリッド車両1には、空気取出口22から取り出された圧縮空気をバッテリ3に導く空気導入手段としての配管23が設けられている。配管23を介して一部の圧縮空気がバッテリ3に導かれる。配管23は、一例として、バッテリ3に広範囲に吹き付けられるようにバッテリ3側の形状が拡がるように形成されていてもよい。空気取出口22からの圧縮空気の取出し量は、ガスタービン2の設計に依存する。一例として、15[kW]出力、圧縮比5のガスタービンエンジンで圧縮された空気のうち3[%]を空気取出口22から取り出せば、バッテリ3に100[℃]程度の空気をブローすることができる。空気取出口22には、配管23への通路を開閉するバルブ24が設けられている。バルブ24は、コンピュータとして構成されたエンジンコントロールユニット(ECU)31にて開閉制御される。ECU31は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含む。バルブ24は、バッテリ温度計3aの計測結果に応じて開閉制御されてもよいし、手動で開閉できるように構成されてもよい。バッテリ暖機システム21の構成には、空気取出口22、配管23及びECU31が含まれる。
次に本発明の作用を説明する。バルブ24は、バッテリ3の温度に応じて、あるいはユーザの指示等により全開又は全閉する。バルブ24が開状態でコンプレッサ13にて生成された圧縮空気がバッテリ3に導かれると、圧縮空気の熱によりバッテリ3の温度が上昇する。また、バッテリ3に導かれる圧縮空気は外気を吸気したものであり、バッテリ3を汚染したり腐食したりすることがない。バッテリ3は、化学反応を活用しているため、低温下においては内部抵抗が増大し活性が低下する。これにより、充放電効率の低下や出力制限といった不具合が生じ、また、このような不具合が繰り返し生じると、バッテリ3の寿命を低下させるおそれがある。本発明によれば、圧縮空気の熱を利用するため、バッテリ3に不具合を生じさせることなく暖機することができる。冷間時のバッテリ性能低下を回避するとともに、効率よくバッテリを利用することができる。
図2は、ECU31が実行するバルブ開閉処理を示すフローチャートである。バルブ24の開閉は、上述した開閉制御の他、取出し量要求に応じて開度を制御するようにしてもよい。図2を参照して以下に説明する。バルブ開閉処理は、ハイブリッド車両1のスタート時に実行される。ECU31は、バッテリ温度計3aの計測結果からバッテリ温度がX[℃]以上か否かを判別する(ステップS1)。このバッテリ監視温度の閾値X[℃]として、例えば−10[℃]が設定される。なお、閾値X[℃]は、バッテリ3の性能や、他の構成要素との関係に応じて適宜設定してよい。
バッテリ温度がX[℃]以上でない場合、ECU31は、ガスタービン2を起動し(ステップS2)、バルブ24を開口する(ステップS3)。なお、ガスタービン2を起動した走行はREX(レンジエクステンダー)モードといい、後述するバッテリモードと区別する。REXモードは、ガスタービン2の駆動により発電機で発電し、モータやバッテリ3に電気を供給するモードである。このときのバルブ24の開度は、適宜設定してよい。そして、ECU31は、バッテリ温度が閾値X[℃]以上か否かを判別する(ステップS4)。バッテリ温度がX[℃]以上である場合、ECU31は、バルブ24を閉口し(ステップS5)、バッテリ3に充電されている電気を用いるバッテリモードでハイブリッド車両1を走行させ(ステップS6)、今回の処理を終了する。また、ステップS1でバッテリ温度がX[℃]以上である場合、ECU31は、ステップS6に進んでバッテリモードでハイブリッド車両1を走行させ、今回の処理を終了する。なお、バッテリ残量が少ない場合等、必要であれば、ステップS6に代えてREXモードでの走行を継続させてもよい。ステップS5でバルブ24が閉口した後は、バッテリモード、REXモードのいずれのモードが選択されてもよい。
一方、ステップS4でバッテリ温度が閾値X[℃]以上でない場合、ECU31は、ステップS3に戻り、さらにバルブ24を開口する。バッテリ温度を監視する監視周期として、例えば10秒が設定され、ステップS3及びS4の処理が繰り返される。一回の処理で制御するバルブ24の開度は適宜設定してよい。なお、バッテリ監視温度及び監視周期は上述した例に限定されるものではなく、使用するバッテリの特性、監視に伴う消費電力の許容値によってそれぞれ任意に設定してもよい。
本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本形態では、コンプレッサ13で生成された圧縮空気の一部をそのままバッテリ3へ導いたがこれに限られない。例えば、バッテリ3に導く圧縮空気の温度を調整できるようにしてもよい。図3は、本発明の変形例に係るバッテリ暖機システム41が適用されたハイブリッド車両1Aを示す全体概略図である。上述した図1の形態と同様の構成には、同じ符号を付して説明を省略する。ハイブリッド車両1Aには、上述した形態に加えて、圧縮空気の温度を下げるための希釈配管42が配管23に接続されている。希釈配管42には、大気を導入するバルブ42aが設けられている。バッテリ暖機システム41の構成には、空気取出口22、配管23、希釈配管42、及びECU31が含まれる。バルブ42aの開閉は、バッテリ3の温度、あるいは圧縮空気の温度に応じてECU31が制御する。これにより、圧縮空気の温度が高すぎる場合に、バッテリ3にブローする前に大気で希釈して温度を下げることができる。また、ECU31でバルブ42aの開閉を制御することで任意の温度に制御することができる。希釈配管42のバルブ42aの開閉制御は、バッテリ温度計3aの計測結果に基づく他、配管23や空気供給路14に温度計を設け、この計測結果に基づいて制御してよい。
図1及び図3の形態では、ガスタービン2をバッテリ3の前方に配置した例で説明したが、これに限られない。例えば、バッテリ3の後方にガスタービン2を設けた形態に本発明を適用してもよい。バッテリ3の後方にガスタービンを設けた形態においても同様の効果を得ることができる。
また、上述した形態に限られず、図4に示すように、熱交換型ガスタービンに本発明を適用してもよい。図4は、熱交換型ガスタービン2Aを備えたハイブリッド車両1Bにバッテリ暖機システム21が適用された構成を示した図である。熱交換型ガスタービン2Aには、ガスタービン2の構成に加え、熱交換器25が設けられている。熱交換器25は、コンプレッサ13が燃焼器12に供給する圧縮空気と、タービン11から排出される高温高圧ガスとの間で熱交換を行い、圧縮空気の加温及び高温高圧ガスの冷却をする。熱交換器25によって熱交換されたガスはそのまま排気通路26を介して排出される。このような熱交換型ガスタービン2Aを備えたハイブリッド車両1Bにおいても本発明は適用でき、同様の効果を得ることができる。この場合において、空気取出口22は、熱交換器25の上流側及び下流側のいずれに配置されていてもよい。
上述した形態においては、空気導入手段として配管23で説明したがこれに限られない。圧縮空気をバッテリ3へ導く構成であればよく、例えば、他の部材との関係で仕切りを設けたりしてもよい。また、バッテリ3の暖機に利用した空気をハイブリッド車両1の車内に導入してもよい。圧縮空気は外気から生成されたものであり、車内に導入しても実害がなく、車内暖房として利用することができる。
1、1A、1B ハイブリッド車両
2 ガスタービン
3 バッテリ
11 タービン
12 燃焼器
13 コンプレッサ
14 空気供給路
21、41 バッテリ暖機システム
22 空気取出口
23 配管(空気導入手段)

Claims (1)

  1. コンプレッサで生成された圧縮空気が空気供給路を介して燃焼器に供給され、タービンが駆動されるガスタービンと、前記タービンの駆動によって発電された電気を充電するバッテリと、を備えたハイブリッド車両に適用されるバッテリ暖機システムであって、
    前記空気供給路には、前記コンプレッサから供給される圧縮空気のうち少なくとも一部を取り出す空気取出口が設けられ、
    前記空気取出口から取り出された圧縮空気を前記バッテリに導く空気導入手段を備えたバッテリ暖機システム。
JP2014062078A 2014-03-25 2014-03-25 ハイブリッド車両のバッテリ暖機システム Pending JP2015183627A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062078A JP2015183627A (ja) 2014-03-25 2014-03-25 ハイブリッド車両のバッテリ暖機システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062078A JP2015183627A (ja) 2014-03-25 2014-03-25 ハイブリッド車両のバッテリ暖機システム

Publications (1)

Publication Number Publication Date
JP2015183627A true JP2015183627A (ja) 2015-10-22

Family

ID=54350450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062078A Pending JP2015183627A (ja) 2014-03-25 2014-03-25 ハイブリッド車両のバッテリ暖機システム

Country Status (1)

Country Link
JP (1) JP2015183627A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510667A (ja) * 2016-03-01 2019-04-18 至▲ゲツ▼騰▲風▼科技投資集団有限公司Technologies’ Xanadu Of Resonatory−Solar−Systemed Co., Ltd. エンジン前置き航続距離延長型電気乗用車

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510667A (ja) * 2016-03-01 2019-04-18 至▲ゲツ▼騰▲風▼科技投資集団有限公司Technologies’ Xanadu Of Resonatory−Solar−Systemed Co., Ltd. エンジン前置き航続距離延長型電気乗用車
US10618399B2 (en) 2016-03-01 2020-04-14 Technologies' Xanadu Of Resonatory-Solar-Systemed Co., Ltd. Front-engine extended range electric passenger vehicle

Similar Documents

Publication Publication Date Title
KR101189581B1 (ko) 냉각수 폐열을 이용하는 연료전지 자동차의 난방 제어 방법
RU2585671C1 (ru) Устройство управления рекуперацией тепла выхлопных газов
JP2010174886A5 (ja)
RU2015147446A (ru) Система и способ (варианты) управления турбогенератором посредством отключения клапана в раздельной выхлопной системе двигателя
BR112017007487B8 (pt) Dispositivo de carregamento para um motor de combustão interna, e método de operação para o dispositivo de carregamento
US20090229649A1 (en) Thermal management for improved engine operation
CN103261618A (zh) 发动机冷却装置
KR20120051826A (ko) 냉각수 폐열을 이용하는 연료전지 자동차의 난방시스템
JP5143056B2 (ja) 排熱回生システム
JP2015086779A (ja) エンジン冷却システム
KR20170035445A (ko) 자동차용 배기열 회수 및 egr 제어 시스템
JP2020514178A (ja) 液冷媒移送回路を含むハイブリッド電気自動車のための冷却システムを作動させる方法
RU2016119300A (ru) Система рециркуляции отработавших газов
JP5544193B2 (ja) 排熱回生システム
CN108506076A (zh) 发动机的涡轮冷却系统、控制方法及车辆
KR20120094567A (ko) 전기자동차의 폐열 난방 시스템
JP2015183627A (ja) ハイブリッド車両のバッテリ暖機システム
JP2011052662A (ja) 車両の廃熱回収装置
CN103452731B (zh) 一种用于减少机动车冷启动排放的提前加热系统
JP2017218997A (ja) 内燃機関の制御装置
CN205876583U (zh) 一种水冷柴油发电机组低温自启动装置
CN109449537B (zh) 一种电池热管理系统及其控制方法
JP6152737B2 (ja) エンジン冷却システム
RU2280777C1 (ru) Энергетическая установка
CN218991767U (zh) 发动机启动系统及车辆