JP2015183267A - Production method of aqueous solution of cobalt chloride - Google Patents
Production method of aqueous solution of cobalt chloride Download PDFInfo
- Publication number
- JP2015183267A JP2015183267A JP2014062786A JP2014062786A JP2015183267A JP 2015183267 A JP2015183267 A JP 2015183267A JP 2014062786 A JP2014062786 A JP 2014062786A JP 2014062786 A JP2014062786 A JP 2014062786A JP 2015183267 A JP2015183267 A JP 2015183267A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- extraction
- aqueous solution
- nickel
- organic phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Extraction Or Liquid Replacement (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、コバルトを含有する塩化ニッケル水溶液から、アミン系抽出剤と希釈剤から成る有機溶媒によってコバルトを溶媒抽出することによって、コバルトを分離回収する、ニッケルおよびコバルトの湿式製錬法に関するものであり、詳しくはコバルトが抽出された有機相に逆抽出後の水相の一部を混合・接触させ、有機相中のニッケルを除去することにより、ニッケル濃度の低い塩化コバルト水溶液を得る、塩化コバルト水溶液の製造方法に関するものである。 The present invention relates to a nickel and cobalt hydrometallurgical process for separating and recovering cobalt from a nickel chloride aqueous solution containing cobalt by solvent extraction of cobalt with an organic solvent comprising an amine-based extractant and a diluent. More specifically, cobalt chloride is obtained by mixing and contacting a part of the aqueous phase after back-extraction with the organic phase from which cobalt has been extracted to remove nickel in the organic phase, thereby obtaining a cobalt chloride aqueous solution having a low nickel concentration. The present invention relates to a method for producing an aqueous solution.
ニッケルの湿式製錬法において、酸性水溶液中に含まれるニッケルとコバルトの分離は、最も重要な技術要素である。
一般に、酸性水溶液中に含まれるニッケルとコバルトの分離は、各種の有機抽出剤を用いた溶媒抽出法によって実施されている。
In the nickel hydrometallurgical process, the separation of nickel and cobalt contained in an acidic aqueous solution is the most important technical element.
In general, separation of nickel and cobalt contained in an acidic aqueous solution is performed by a solvent extraction method using various organic extractants.
このニッケルとコバルトを分離する溶媒抽出法では、有機抽出剤としてD2EHPA(Di−(2−ethylhexyl)phosphoric acid)等の燐酸エステル系酸性抽出剤や、TNOA(Tri−n−octylamine)等のアミン系抽出剤が用いられる。
燐酸エステル系酸性抽出剤とアミン系抽出剤は、両者ともに優れたニッケルとコバルトの分離性能を有するが、一般的には、アニオンが硫酸イオンの場合は燐酸エステル系酸性抽出剤が、アニオンが塩化物イオンの場合にはアミン系抽出剤が使用されている。
In the solvent extraction method for separating nickel and cobalt, phosphoric acid ester-based acid extractants such as D2EHPA (Di- (2-ethylhexyl) phosphoric acid) and amine-based amines such as TNOA (Tri-n-octylamine) are used as organic extractants. An extractant is used.
Both phosphate ester-based acid extractants and amine-based extractants have excellent nickel and cobalt separation performance. However, in general, when anions are sulfate ions, phosphate ester-based acid extractants are anionic chloride salts. In the case of a product ion, an amine-based extractant is used.
ところで、水溶液中の塩化物イオン濃度が十分に高い、塩化物イオン濃度が200g/L以上の塩化物水溶液の場合、コバルトはクロロ錯イオンを形成するが、ニッケルはクロロ錯イオンを形成しないため、アミン系抽出剤の方が、燐酸エステル系酸性抽出剤に比べてより高いコバルトとニッケルの分離係数を持つ。 By the way, in the case of a chloride aqueous solution having a sufficiently high chloride ion concentration in the aqueous solution and a chloride ion concentration of 200 g / L or more, cobalt forms chloro complex ions, but nickel does not form chloro complex ions. The amine-based extractant has a higher cobalt and nickel separation factor than the phosphate ester-based acidic extractant.
また、燐酸エステル系酸性抽出剤では、金属イオンの抽出によって抽出剤からプロトンが放出されるため中和剤コストを要する他、pHの変動によってクラッドが発生することが多い。
このクラッドとは、金属の水酸化物等の固体で、油水分離装置内で有機相と水相の中間に滞留・蓄積されるため、溶媒抽出の重要な技術要素である油水分離を大きく阻害するものである。
In addition, in the case of a phosphoric acid ester-based acidic extractant, protons are released from the extractant by extraction of metal ions, so that a neutralizer cost is required, and clad is often generated due to a change in pH.
This clad is a solid such as a metal hydroxide that stays and accumulates between the organic and aqueous phases in the oil / water separator, greatly impairing oil / water separation, an important technical element of solvent extraction. Is.
コバルトを含有する塩化ニッケル水溶液からアミン系抽出剤によってコバルトを分離する方法は、以下に記載するような技術を利用して、抽出段、洗浄段および逆抽出段から構成される溶媒抽出として工業化されている。 The method for separating cobalt from an aqueous nickel chloride solution containing cobalt by an amine-based extractant is industrialized as a solvent extraction composed of an extraction stage, a washing stage, and a back-extraction stage using techniques as described below. ing.
抽出剤としては、1級アミン(RNH2)や2級アミン(R2NH)、3級アミン(R3N)が用いられる(Rは任意の飽和または不飽和炭化水素基を表す)。
このようなアミン系抽出剤は、塩酸を付加されて活性化することにより、金属クロロ錯イオンの抽出能力を保有し、優れたニッケルとコバルトの分離特性を有する。
As the extractant, primary amine (RNH 2 ), secondary amine (R 2 NH), or tertiary amine (R 3 N) is used (R represents any saturated or unsaturated hydrocarbon group).
Such an amine-based extractant has the ability to extract metal chloro complex ions when activated by addition of hydrochloric acid, and has excellent nickel and cobalt separation characteristics.
抽出段では、Co、Cu、Zn、Fe等のクロロ錯イオンを形成する金属種が有機相中に抽出され、金属元素のクロロ錯イオンを担持したアミンが生成される。
しかしながらニッケルは、クロロ錯イオンを形成しないので、抽出残液に残留して分離される。
In the extraction stage, metal species that form chloro complex ions such as Co, Cu, Zn, and Fe are extracted into the organic phase, and amines carrying the metal element chloro complex ions are generated.
However, since nickel does not form chloro complex ions, it remains in the extraction residue and is separated.
次の洗浄段は、必要により設置される。
一般に、洗浄段では、抽出後の有機相中のエントレインメントに、すなわち有機相中に懸濁する微細な水滴中に、含まれる不純物の、洗浄水による希釈除去が行われる。
The next cleaning stage is installed if necessary.
In general, in the washing stage, the impurities contained in the entrainment in the organic phase after extraction, that is, in the fine water droplets suspended in the organic phase, are diluted and removed by the washing water.
本発明に係るアミン系抽出剤によってニッケルとコバルトを分離する方法では、通常、純度の高い塩化コバルト水溶液である逆抽出液を用いて抽出後の有機相を洗浄する。
つまり、抽出後の有機相を純度の高い塩化コバルト水溶液で洗浄することによって、抽出段からエントレインメントとして持ち込まれる有機相中の塩化ニッケル水溶液を塩化コバルト水溶液で希釈・置換して、有機相中のニッケル濃度を低下させる役割を果たす。
なお、洗浄後の水相はニッケルを含んだ塩化コバルト水溶液となるため、抽出始液に混合されて抽出段に繰返される。
In the method for separating nickel and cobalt by the amine-based extractant according to the present invention, the organic phase after extraction is usually washed using a back extract that is an aqueous cobalt chloride solution having a high purity.
In other words, by washing the organic phase after extraction with a high-purity cobalt chloride aqueous solution, the nickel chloride aqueous solution in the organic phase brought in as an entrainment from the extraction stage is diluted and replaced with the cobalt chloride aqueous solution. It plays the role of reducing the nickel concentration.
In addition, since the aqueous phase after washing becomes a cobalt chloride aqueous solution containing nickel, it is mixed with the extraction start solution and repeated in the extraction stage.
逆抽出段では、洗浄後の有機相、すなわちコバルトのクロロ錯イオンを担持したアミンを、弱酸性水溶液と接触させることで、コバルトを水相中に脱離する処理を行う。 In the back extraction stage, the organic phase after washing, that is, the amine carrying the cobalt chloro complex ion is brought into contact with a weakly acidic aqueous solution, thereby removing cobalt into the aqueous phase.
この逆抽出段で得られた逆抽出液、すなわち塩化コバルト水溶液は、ニッケルとは別の処理ルートで、さらなる浄液、すなわちマンガン、銅、亜鉛等の不純物の除去が行われ、電解採取により電気コバルトとして製品化される。 The back extract obtained in this back extraction stage, that is, the aqueous cobalt chloride solution, is further treated with a treatment route different from that of nickel to remove impurities such as manganese, copper, and zinc. Commercialized as cobalt.
ところで、塩化コバルト水溶液中に含まれる微量のニッケルの除去は、酸化性雰囲気中での中和、イオン交換や溶媒抽出等の手段を用いたとしても、主要成分であるコバルトを沈澱除去、吸着、抽出して微量不純物であるニッケルを水溶液中に残留させる操作となるため、工業的に実施が不可能である。 By the way, the removal of a trace amount of nickel contained in the cobalt chloride aqueous solution can be carried out by removing and adsorbing cobalt, which is a main component, even if means such as neutralization in an oxidizing atmosphere, ion exchange or solvent extraction are used. Since it is an operation of extracting and leaving nickel, which is a trace impurity, in the aqueous solution, it cannot be implemented industrially.
一方で、この塩化コバルト水溶液中に含まれる微量のニッケルは、電解採取工程で電気コバルトを汚染して製品品質を悪化させる。
よって、コバルトを含有する塩化ニッケル水溶液から、アミン系抽出剤と希釈剤から成る有機溶媒によってコバルトを溶媒抽出する方法においては、塩化コバルト水溶液中のニッケル濃度を低減させることが最重要課題となっている。
On the other hand, a very small amount of nickel contained in the cobalt chloride aqueous solution contaminates electric cobalt in the electrowinning process and deteriorates the product quality.
Therefore, in the method of extracting cobalt from an aqueous solution of nickel chloride containing cobalt with an organic solvent composed of an amine-based extractant and a diluent, reducing the nickel concentration in the aqueous solution of cobalt chloride is the most important issue. Yes.
低ニッケル濃度の塩化コバルト水溶液を得るための一手段として、洗浄始液量、すなわち逆抽出液量を増加させる方法が考えられるが、洗浄始液量を増加させると、抽出段で処理すべきコバルト量が増加して回収される塩化コバルト量が減少してしまうため、溶媒抽出工程でのコバルト回収効率を低下させ、また溶媒抽出工程全体のコバルト処理能力を低下させることになる。 As a means for obtaining an aqueous solution of cobalt chloride having a low nickel concentration, a method of increasing the amount of washing starting liquid, that is, the amount of back-extracted liquid is conceivable. If the amount of washing starting liquid is increased, cobalt to be treated in the extraction stage is considered. Since the amount of cobalt chloride recovered increases and the amount of cobalt chloride recovered decreases, the cobalt recovery efficiency in the solvent extraction step decreases, and the cobalt treatment capacity of the entire solvent extraction step decreases.
また、洗浄始液量を増加させることは、抽出段に繰返す洗浄後の水相量が増えることになり、抽出始液中の塩化物イオン濃度を低下させることを意味する。そのため、抽出段でのコバルトの抽出率も低下させ、抽出残液、すなわち塩化ニッケル水溶液のコバルト濃度を上昇させてしまう。 Further, increasing the amount of the washing start solution means that the amount of the aqueous phase after washing repeated in the extraction stage is increased, and the chloride ion concentration in the extraction start solution is reduced. Therefore, the extraction rate of cobalt in the extraction stage is also lowered, and the cobalt concentration of the extraction residual liquid, that is, the nickel chloride aqueous solution is increased.
そこで、洗浄始液量を増加させずに低ニッケル濃度の塩化コバルト水溶液を得ることができる、抽出後の有機相の洗浄方法が求められていた。
上記課題を解決するために、例えば、特許文献1では、(a)有機相のアミン系抽出剤の濃度を30〜40体積%とし、(b)抽出後の有機相のコバルト抽出率を30〜40%とし、(c)洗浄段のO/A比(有機相対水相の体積比率)を10〜14とし、(d)洗浄始液中のコバルト濃度を45〜65g/Lとして、溶媒抽出を行う方法が開示されている。
Therefore, there has been a demand for a method for cleaning the organic phase after extraction that can provide a cobalt chloride aqueous solution having a low nickel concentration without increasing the amount of the starting cleaning solution.
In order to solve the above problems, for example, in Patent Document 1, (a) the concentration of the amine-based extractant in the organic phase is 30 to 40% by volume, and (b) the cobalt extraction rate of the organic phase after extraction is 30 to 30%. 40%, (c) O / A ratio of washing stage (volume ratio of organic relative aqueous phase) is 10 to 14, and (d) cobalt concentration in washing starting liquid is 45 to 65 g / L, and solvent extraction is performed. A method of performing is disclosed.
この特許文献1に開示される方法は、有機相中のアミン系抽出剤の濃度を高くする代わりに、アミン系抽出剤中のコバルトのクロロ錯イオンを担持したアミンの比率を下げることにより、洗浄段において有機相中のコバルトが水相中に逆抽出されることを防止すると共に、洗浄始液のコバルト濃度を低目に管理し、O/A比を高目に管理することによって、抽出段に繰返されるコバルト量を削減することを意図したものである。 In the method disclosed in Patent Document 1, instead of increasing the concentration of the amine-based extractant in the organic phase, the ratio of the amine carrying the cobalt chloro complex ion in the amine-based extractant is decreased, thereby cleaning. In the stage, the cobalt in the organic phase is prevented from being back-extracted into the aqueous phase, and the cobalt concentration in the washing starting liquid is controlled to a low level, and the O / A ratio is controlled to a high level, whereby the extraction stage This is intended to reduce the amount of cobalt repeated.
上記方法によれば、逆抽出液、すなわち塩化コバルト水溶液のニッケル濃度を大きく上昇させること無く、抽出段に繰返されるコバルト量の削減を達成することができている。 According to the above method, the amount of cobalt repeated in the extraction stage can be reduced without greatly increasing the nickel concentration of the back extract, that is, the aqueous solution of cobalt chloride.
しかしながら、得られた塩化コバルト水溶液中のニッケル濃度は5mg/L程度であり、低ニッケル濃度の塩化コバルト水溶液を製造するという、もう一方の課題については、さらなる改善が望まれていた。 However, the nickel concentration in the obtained cobalt chloride aqueous solution is about 5 mg / L, and further improvement has been desired for the other problem of producing a low nickel concentration cobalt chloride aqueous solution.
本発明は、上記問題点を解決するために、コバルトを含有する塩化ニッケル水溶液から、アミン系抽出剤と希釈剤から成る有機溶媒によってコバルトを溶媒抽出する方法において、低ニッケル濃度の塩化コバルト水溶液を製造することが可能な、塩化コバルト水溶液の製造方法を提供することを目的とするものである。 In order to solve the above problems, the present invention provides a method for extracting cobalt from a nickel chloride aqueous solution containing cobalt with an organic solvent comprising an amine-based extractant and a diluent. An object of the present invention is to provide a method for producing an aqueous cobalt chloride solution that can be produced.
上記目的を達成するため、本発明者らは、特にミキサータンク内での有機溶媒の洗浄方法に着目して研究を重ねた結果、ミキサータンク内を有機相連続にしつつO/A比(有機相対水相の体積比率)を下げることにより、従来技術よりもさらに低ニッケル濃度の塩化コバルト水溶液が製造できることを見出し、本発明を完成させるに至った。 In order to achieve the above-mentioned object, the present inventors have conducted researches focusing on the organic solvent cleaning method in the mixer tank. As a result, the O / A ratio (organic relative By reducing the volume ratio of the aqueous phase, it was found that an aqueous cobalt chloride solution having a lower nickel concentration than that of the prior art can be produced, and the present invention has been completed.
本発明の第1の発明は、向流多段方式の抽出装置を用い、コバルトを含有する塩化ニッケル水溶液からアミン系抽出剤と希釈剤から成る有機溶媒を用い、コバルトを溶媒抽出して塩化コバルト水溶液を生成する塩化コバルト水溶液の製造方法であって、下記(1)〜(3)の抽出段、洗浄段、逆抽出段の3処理を含む溶媒抽出方法における洗浄段のミキサータンク内を有機相連続とし、そのミキサータンク内の有機相対水相の体積比率を3.0以下とすることを特徴とする塩化コバルト水溶液の製造方法である。 The first invention of the present invention uses a counter-current multi-stage type extraction device, and extracts cobalt from an aqueous solution of nickel chloride containing cobalt using an organic solvent comprising an amine-based extractant and a diluent to extract cobalt from the aqueous solution of cobalt chloride. Of the aqueous solution of cobalt chloride in the solvent extraction method comprising the following three treatments of extraction stage, washing stage and back-extraction stage of (1) to (3): And the volume ratio of the organic relative aqueous phase in the mixer tank is 3.0 or less.
(1)前記コバルトを含有する塩化ニッケル水溶液からコバルトを有機相に抽出し、コバルトが除去された塩化ニッケル水溶液を得る抽出段。
(2)コバルトを抽出した有機相に、逆抽出後の水相の一部を混合・接触させ、有機相中のニッケルを除去する洗浄段。
(3)洗浄後の有機相から、弱酸性水溶液によってコバルトを脱離して、塩化コバルト水溶液を得る逆抽出段。
(1) An extraction stage in which cobalt is extracted from the nickel chloride aqueous solution containing cobalt into an organic phase to obtain a nickel chloride aqueous solution from which cobalt has been removed.
(2) A washing stage in which a part of the aqueous phase after back extraction is mixed and brought into contact with the organic phase from which cobalt has been extracted to remove nickel in the organic phase.
(3) A back extraction stage in which cobalt is removed from the washed organic phase with a weakly acidic aqueous solution to obtain an aqueous cobalt chloride solution.
本発明の第2の発明は、第1の発明におけるコバルトを含有する塩化ニッケル水溶液のニッケル濃度が140〜240g/L、コバルト濃度が3〜10g/Lで、塩化コバルト水溶液のコバルト濃度が60〜80g/Lであることを特徴とする塩化コバルト水溶液の製造方法である。 In the second invention of the present invention, the nickel concentration of the nickel chloride aqueous solution containing cobalt in the first invention is 140 to 240 g / L, the cobalt concentration is 3 to 10 g / L, and the cobalt concentration of the cobalt chloride aqueous solution is 60 to It is a manufacturing method of cobalt chloride aqueous solution characterized by being 80 g / L.
本発明の第3の発明は、第1及び第2の発明におけるアミン系抽出剤に3級アミン系抽出剤を用い、希釈剤に芳香族炭化水素を用いて有機溶媒を構成し、その有機溶媒中の抽出剤濃度が10〜40体積%であることを特徴とする塩化コバルト水溶液の製造方法である。 According to a third aspect of the present invention, an organic solvent is constituted using a tertiary amine extractant as the amine extractant in the first and second inventions and an aromatic hydrocarbon as a diluent. It is a manufacturing method of cobalt chloride aqueous solution characterized by the concentration of an extractant in it being 10 to 40% by volume.
本発明の第4の発明は、第3の発明における3級アミン系抽出剤が、トリ−ノルマル−オクチルアミン(TNOA:Tri−n−octylamine)又はトリ−イソ−オクチルアミン(TIOA:Tri−i−octylamine)であることを特徴とする塩化コバルト水溶液の製造方法である。 According to a fourth aspect of the present invention, the tertiary amine extractant in the third aspect is tri-n-octylamine (TNOA) or tri-iso-octylamine (TIOA: Tri-i). -Octylamine), which is a method for producing an aqueous cobalt chloride solution.
本発明の塩化コバルト水溶液の製造方法によれば、従来技術と比較して洗浄始液量を増加させないため、溶媒抽出工程でのコバルト回収効率を低下させずに、抽出残液、すなわち塩化ニッケル水溶液のコバルト濃度を上昇させずに、従来技術よりもさらに低いニッケル濃度の塩化コバルト水溶液を製造することができるため、製品である電気コバルトのニッケル含有率を低下させることができる。 According to the method for producing an aqueous solution of cobalt chloride of the present invention, the amount of washing starting liquid is not increased as compared with the prior art. Therefore, it is possible to produce an aqueous cobalt chloride solution having a nickel concentration lower than that of the prior art without increasing the cobalt concentration, and thus the nickel content of the product electric cobalt can be reduced.
以下に、本発明の塩化コバルト水溶液の製造方法に関して、詳細に説明する。
本発明による塩化コバルト水溶液の製造方法は、向流多段方式の抽出装置を用いた、コバルトを含有する塩化ニッケル水溶液から、アミン系抽出剤と希釈剤から成る有機溶媒によってコバルトを溶媒抽出して、塩化コバルト水溶液を生成する塩化コバルト水溶液の製造方法であって、以下の3つの処理を含む溶媒抽出方法における洗浄段のミキサータンク内を有機相連続とし、ミキサータンク内のO/A比、すなわち有機相対水相の体積比率を3.0以下とすることを特徴とするものである。
Below, the manufacturing method of the cobalt chloride aqueous solution of this invention is demonstrated in detail.
In the method for producing an aqueous cobalt chloride solution according to the present invention, cobalt is extracted from an aqueous nickel chloride solution containing cobalt from an aqueous solution containing an amine-based extractant and a diluent, using a countercurrent multi-stage extraction apparatus, A method for producing a cobalt chloride aqueous solution for producing a cobalt chloride aqueous solution, wherein the inside of the mixer tank of the washing stage in the solvent extraction method including the following three treatments is made an organic phase continuous, and the O / A ratio in the mixer tank, ie, organic The volume ratio of the relative aqueous phase is 3.0 or less.
(1)コバルトを含有する塩化ニッケル水溶液からコバルトを有機相に抽出し、コバルトが除去された塩化ニッケル水溶液を得る抽出段。 (1) An extraction stage in which cobalt is extracted into an organic phase from a nickel chloride aqueous solution containing cobalt to obtain a nickel chloride aqueous solution from which cobalt has been removed.
(2)コバルトを抽出した有機相に、逆抽出後の水相の一部を混合・接触させ、有機相中のニッケルを除去する洗浄段。 (2) A washing stage in which a part of the aqueous phase after back extraction is mixed and brought into contact with the organic phase from which cobalt has been extracted to remove nickel in the organic phase.
(3)洗浄後の有機相から、弱酸性水溶液によってコバルトを脱離して、塩化コバルト水溶液を得る逆抽出段。 (3) A back extraction stage in which cobalt is removed from the washed organic phase with a weakly acidic aqueous solution to obtain an aqueous cobalt chloride solution.
図1に、本発明に係る溶媒抽出プロセスの概略フローシートを示す。
溶媒抽出は、向流多段方式で行われ、抽出段、洗浄段、逆抽出段から構成されている。
FIG. 1 shows a schematic flow sheet of a solvent extraction process according to the present invention.
Solvent extraction is performed in a countercurrent multi-stage system, and is composed of an extraction stage, a washing stage, and a back extraction stage.
必要とされる抽出段、洗浄段、逆抽出段の段数は、抽出始液の組成や抽出剤や抽出装置によって決まってくるが、一般に、有機相と水相との接触を確実に行い良好な抽出結果を得るためにはそれぞれ複数段とすることが好ましい。 The number of extraction stages, washing stages, and back-extraction stages required depends on the composition of the extraction starting liquid, the extractant, and the extraction device. In general, however, the organic phase and the aqueous phase are reliably in contact with each other. In order to obtain the extraction result, it is preferable to use a plurality of stages.
本発明に用いられる抽出剤は、アミン系抽出剤であれば特にこだわらないが、反応性の高さや水に対する溶解度の低さにより3級アミン系抽出剤を用いることが好ましく、取り扱い性、価格等を勘案するとTNOA(Tri−n−octylamine)、又はTIOA(Tri−i−octylamine)を用いることがより好ましい。
この抽出剤を希釈し、抽出に用いる有機溶媒を構成する希釈剤としては、水に対する溶解度の低さや良好な油水分離性から芳香族炭化水素を用いることが好ましい。
The extractant used in the present invention is not particularly limited as long as it is an amine-based extractant, but a tertiary amine-based extractant is preferably used depending on its high reactivity and low solubility in water, and handling properties, cost, etc. In view of the above, it is more preferable to use TNOA (Tri-n-octylamine) or TIOA (Tri-i-octylamine).
As the diluent constituting the organic solvent used for the extraction by diluting the extractant, it is preferable to use an aromatic hydrocarbon because of its low solubility in water and good oil / water separation properties.
有機相の粘度を調整するため、有機相、すなわち抽出剤と希釈剤の混合物中の抽出剤濃度は、10〜40体積%とする。 In order to adjust the viscosity of the organic phase, the concentration of the extractant in the organic phase, that is, the mixture of the extractant and the diluent, is 10 to 40% by volume.
3級アミンは、下記の式(1)に従って、塩酸を付加されて活性化することにより、式(2)および式(2’)に示すような金属クロロ錯イオンの抽出能力を保有し、優れたニッケルとコバルトの分離特性を有する。 Tertiary amine has the ability to extract metal chloro complex ions as shown in formula (2) and formula (2 ′) by adding hydrochloric acid and activating according to the following formula (1), and is excellent. It has the separation characteristics of nickel and cobalt.
上記式(2)中のMは、Co、Cu、Zn等のクロロ錯イオンを形成する金属種を表すが、金属イオンの価数によってクロロ錯イオンの形態が異なるため、例えば3価の場合は、下記式(2’)に従う。
なお、式(1)、式(2)、式(2’)中の「:」は、窒素原子の非共有電子対を表す。
M in the above formula (2) represents a metal species that forms a chloro complex ion such as Co, Cu, Zn, etc., but the form of the chloro complex ion differs depending on the valence of the metal ion. In accordance with the following formula (2 ′).
In the formula (1), formula (2), and formula (2 ′), “:” represents a lone pair of nitrogen atoms.
抽出段では、式(2)又は式(2’)で示された反応により、Co、Cu、Zn、Fe等のクロロ錯イオンを形成する金属種が有機相中に抽出され、金属元素のクロロ錯イオンを担持したアミンが生成される。
なお、ニッケルはクロロ錯イオンを形成しないので、抽出残液に残留して分離される。
In the extraction stage, metal species that form chloro complex ions such as Co, Cu, Zn, and Fe are extracted into the organic phase by the reaction represented by the formula (2) or the formula (2 ′), and the metal element chloro An amine carrying complex ions is produced.
Since nickel does not form chloro complex ions, it remains in the extraction residual liquid and is separated.
逆抽出段では、洗浄後の有機相を、すなわちコバルトのクロロ錯イオンを担持したアミンを、弱酸性水溶液と接触させることにより、式(2)の逆反応である下記式(3)に従って、コバルトを水相中に脱離する。 In the back extraction stage, the washed organic phase, that is, an amine carrying cobalt chloro complex ions is brought into contact with a weakly acidic aqueous solution, whereby cobalt is obtained according to the following formula (3), which is the reverse reaction of formula (2). Is released into the aqueous phase.
また、本発明では、抽出始液として用いるコバルトを含有する塩化ニッケル水溶液の組成は特に問わないが、ニッケル硫化物原料を塩素浸出して得られた塩化ニッケル水溶液を用いることが好適であり、例えばニッケル濃度が140〜240g/L、コバルト濃度が3〜10g/Lの塩化ニッケル水溶液を用いることができる。その場合、より有機相の洗浄を効果的なものとし本発明の目的を達成するためには、逆抽出液として得られる塩化コバルト水溶液のコバルト濃度は60〜80g/Lが好適である。 Further, in the present invention, the composition of the nickel chloride aqueous solution containing cobalt used as the extraction starting liquid is not particularly limited, but it is preferable to use a nickel chloride aqueous solution obtained by leaching a nickel sulfide raw material, for example, A nickel chloride aqueous solution having a nickel concentration of 140 to 240 g / L and a cobalt concentration of 3 to 10 g / L can be used. In that case, in order to make the washing of the organic phase more effective and achieve the object of the present invention, the cobalt concentration of the aqueous cobalt chloride solution obtained as the back extract is preferably 60 to 80 g / L.
洗浄段では、抽出後の有機相中のエントレインメントの、すなわち有機相中に懸濁する微細な水滴中に含まれる不純物の、洗浄水による希釈除去が行われるが、本発明に係るアミン系抽出剤によってニッケルとコバルトを分離する方法では、純度の高い塩化コバルト水溶液である所の逆抽出液を用いて抽出後の有機相を洗浄する。 In the washing stage, the entrainment in the organic phase after extraction, that is, impurities contained in fine water droplets suspended in the organic phase is diluted and removed by washing water, but the amine extraction according to the present invention is performed. In the method of separating nickel and cobalt with an agent, the organic phase after extraction is washed with a back extract solution in a highly pure cobalt chloride aqueous solution.
つまり、抽出後の有機相を純度の高い塩化コバルト水溶液で洗浄することによって、抽出段からエントレインメントとして持ち込まれる塩化ニッケル水溶液を高純度塩化コバルト水溶液で希釈・置換して、有機相中のニッケル濃度を低下させる。
なお、洗浄後の水相はニッケルを含んだ塩化コバルト水溶液となるため、抽出始液に混合されて抽出段に繰返される。
In other words, by washing the organic phase after extraction with high-purity cobalt chloride aqueous solution, the nickel chloride aqueous solution brought in as an entrainment from the extraction stage is diluted and replaced with high-purity cobalt chloride aqueous solution, so that the nickel concentration in the organic phase Reduce.
In addition, since the aqueous phase after washing becomes a cobalt chloride aqueous solution containing nickel, it is mixed with the extraction start solution and repeated in the extraction stage.
この洗浄段には、前記したような2つの課題があった。
その1つ目は、抽出後の有機相を洗浄して、エントレインメントとして持ち込まれる塩化ニッケル水溶液を塩化コバルト水溶液で希釈・置換するに際しての、洗浄効率の向上である。
This cleaning stage has two problems as described above.
The first is to improve the cleaning efficiency when the organic phase after extraction is washed and the nickel chloride aqueous solution brought in as entrainment is diluted and replaced with a cobalt chloride aqueous solution.
2つ目は、洗浄段の水相流量を増やせば洗浄効率は向上するが、その結果、逆抽出液、すなわち塩化コバルト水溶液の繰返し量が増えるため、塩化コバルトとして回収されるコバルト量が減少してコバルト回収効率が低下し、さらにコバルト処理能力が低下するだけでなく、逆抽出液の塩化物イオン濃度が低いため、洗浄段でのコバルトの逆抽出量を増加させてしまう。 Second, increasing the aqueous phase flow rate in the cleaning stage improves the cleaning efficiency, but as a result, the amount of back extract, that is, the amount of cobalt chloride aqueous solution increases, reduces the amount of cobalt recovered as cobalt chloride. Thus, not only the cobalt recovery efficiency is reduced, but also the cobalt treatment capacity is lowered, and the chloride ion concentration of the back extract is low, which increases the back extract amount of cobalt in the cleaning stage.
また、洗浄後の水相は抽出始液と混合して処理されるために、抽出始液の塩化物イオン濃度を低下させ、抽出段でのコバルト抽出率を低下させる課題である。
つまり、洗浄段の水相流量を増やさずに洗浄を強化する技術が求められている。
Moreover, since the aqueous phase after washing is processed by mixing with the extraction start liquid, it is a problem of reducing the chloride ion concentration of the extraction start liquid and reducing the cobalt extraction rate in the extraction stage.
That is, there is a need for a technique that enhances cleaning without increasing the aqueous phase flow rate in the cleaning stage.
そこで本発明は、洗浄段のミキサータンク内を有機相連続とし、ミキサータンク内のO/A比、すなわち有機相対水相の体積比率を3.0以下とすることを特徴とする。
ここで有機相連続とは、有機相中に水滴が分散している状態のことを言う。逆に、水相連続とは、水相中に有機相粒子が分散している状態のことを指す。
Therefore, the present invention is characterized in that the inside of the mixer tank of the washing stage is made continuous with an organic phase, and the O / A ratio in the mixer tank, that is, the volume ratio of the organic relative aqueous phase is made 3.0 or less.
Here, the organic phase continuity means a state in which water droplets are dispersed in the organic phase. Conversely, the continuous aqueous phase refers to a state where organic phase particles are dispersed in the aqueous phase.
有機相連続とするのは、有機相中での水滴どうしの結合が促進されるため、エントレインメント中のニッケル濃度が0.1g/L以下にまで、大巾に減少すると共に、エントレインメントが減少するためである。 When the organic phase is continuous, binding of water droplets in the organic phase is promoted, so that the nickel concentration in the entrainment is greatly reduced to 0.1 g / L or less, and the entrainment is reduced. It is to do.
逆に、水相連続とした場合、有機相中のエントレインメントと水相の混合・接触が十分に行われないため、エントレインメント中のニッケル濃度は5〜10g/Lと高い値となる。 On the other hand, when the aqueous phase is continuous, the entrainment in the organic phase and the aqueous phase are not sufficiently mixed and contacted, so the nickel concentration in the entrainment is a high value of 5 to 10 g / L.
有機相連続か水相連続かについては、ミキサータンク内に導電率計を設置することで簡単に判別することができる。
すなわち、有機相連続から水相連続に変わった時点で、ミキサータンク内の導電率が急上昇する。
Whether the organic phase is continuous or the aqueous phase is continuous can be easily determined by installing a conductivity meter in the mixer tank.
That is, the conductivity in the mixer tank rapidly increases when the organic phase is continuously changed to the aqueous phase.
逆に水相連続から有機相連続に変わった場合は、ミキサータンク内の導電率が急低下する。
したがって、この導電率の閾値を管理すれば、有機相連続の状態を容易に維持することができる。
On the contrary, when the water phase is continuously changed to the organic phase, the electrical conductivity in the mixer tank is rapidly lowered.
Therefore, the state of organic phase continuity can be easily maintained by managing the threshold value of conductivity.
O/A比を3.0以下とするのは、有機相中での水滴どうしの結合を促進し、洗浄を強化すると共に、油水分離性を向上させ、有機相中のエントレインメントを低減させるためである。 The O / A ratio is set to 3.0 or less in order to promote the bonding of water droplets in the organic phase, enhance washing, improve oil / water separation, and reduce entrainment in the organic phase. It is.
例えば、抽出始液としてニッケル硫化物原料を塩素浸出して得た塩化ニッケル水溶液を用いる場合、抽出後の有機流量は1160L/分、洗浄段の水相の流量は18L/分になる。
洗浄段の水相の流量が少ないが、これは前述したコバルト繰返し量の削減、抽出段におけるコバルト抽出率の低下防止を目的としている。
ここで、流量比で考えればO/Aは1160÷18=64程度になるが、ミキサータンク内の体積比をO/Aで3.0以下にするために、リサイクル配管によって油水分離後の水相をミキサータンク内に自己循環させる。
For example, when an aqueous nickel chloride solution obtained by leaching a nickel sulfide raw material as a starting extraction liquid is used, the organic flow rate after extraction is 1160 L / min, and the flow rate of the aqueous phase in the washing stage is 18 L / min.
Although the flow rate of the water phase in the washing stage is small, this is intended to reduce the amount of cobalt repetition described above and to prevent a decrease in the cobalt extraction rate in the extraction stage.
Here, considering the flow ratio, O / A is about 1160 ÷ 18 = 64, but in order to make the volume ratio in the mixer tank O / A 3.0 or less, the water after oil-water separation by recycle piping is used. The phase is self-circulated into the mixer tank.
リサイクル配管に流量計と調節弁を設ければ、比較的容易にミキサータンク内のO/A比を3.0以下に制御することができる。 If a flow meter and a control valve are provided in the recycle piping, the O / A ratio in the mixer tank can be controlled to 3.0 or less relatively easily.
以下に、実施例を用いて本発明をさらに説明する。 The present invention will be further described below with reference to examples.
図1に示したフローシートに従い向流多段方式のミキサーセトラーを用いた抽出段3段、洗浄段3段、逆抽出段3段で構成された溶媒抽出装置を用い、抽出剤の3級アミンであるトリ−ノルマル−オクチルアミン(TNOA)を20体積%含み、希釈剤の芳香族炭化水素(丸善石油化学株式会社製 スワゾール1800)を残部80体積%とする有機溶媒を用いて溶媒抽出操業を行った。 In accordance with the flow sheet shown in FIG. 1, a solvent extraction apparatus comprising a three-stage extraction stage, a three-stage washing stage, and a three-stage back-extraction stage using a countercurrent multistage mixer settler is used. Solvent extraction operation was performed using an organic solvent containing 20% by volume of a certain tri-normal-octylamine (TNOA) and the remainder being 80% by volume of the aromatic hydrocarbon (Swazole 1800 manufactured by Maruzen Petrochemical Co., Ltd.) as a diluent. It was.
ミキサータンク内O/Aを2.4とし、抽出始液流量を851L/分、有機流量を1035L/分、洗浄段の水相の流量を17L/分とし、洗浄段ミキサータンク内の連続相を有機相連続として操業を実施した。 The O / A in the mixer tank is set to 2.4, the extraction starting liquid flow rate is 851 L / min, the organic flow rate is 1035 L / min, the flow rate of the water phase in the wash stage is 17 L / min, and the continuous phase in the wash stage mixer tank is The operation was carried out as a continuous organic phase.
抽出始液(塩化ニッケルと塩化コバルトの混合水溶液)の組成は、ニッケル濃度が198g/L、コバルト濃度が6.0g/Lであり、逆抽出液(塩化コバルト水溶液)のコバルト濃度は62g/Lであった。
その結果を表1に示したが、逆抽出液中Ni濃度は0.97mg/L、有機中エントレインメントは992ppm(体積比)、洗浄終液中Co濃度は92g/Lとなった。
The composition of the extraction starting solution (mixed aqueous solution of nickel chloride and cobalt chloride) has a nickel concentration of 198 g / L and a cobalt concentration of 6.0 g / L, and the cobalt concentration of the back extract (cobalt chloride aqueous solution) is 62 g / L. Met.
The results are shown in Table 1. The Ni concentration in the back extract was 0.97 mg / L, the organic entrainment was 992 ppm (volume ratio), and the Co concentration in the cleaning final solution was 92 g / L.
実施例1と同じ溶媒抽出装置で、同じ成分組成の抽出剤、希釈剤からなる有機溶媒を用いて、溶媒抽出操業を行った。
ミキサータンク内O/Aを2.0とし、抽出始液流量を850L/分、有機流量を1126L/分、洗浄段の水相の流量を19L/分とし、洗浄段ミキサータンク内の連続相を有機相連続として操業を実施した。
In the same solvent extraction apparatus as in Example 1, a solvent extraction operation was performed using an organic solvent composed of an extractant and a diluent having the same component composition.
The O / A in the mixer tank is set to 2.0, the extraction start liquid flow rate is 850 L / min, the organic flow rate is 1126 L / min, the flow rate of the water phase in the wash stage is 19 L / min, and the continuous phase in the wash stage mixer tank is The operation was carried out as a continuous organic phase.
抽出始液(塩化ニッケルと塩化コバルトの混合水溶液)の組成は、ニッケル濃度が194g/L、コバルト濃度が6.0g/Lであり、逆抽出液(塩化コバルト水溶液)のコバルト濃度は62g/Lであった。
その結果を表1に示したが、逆抽出液中Ni濃度は0.33mg/L、有機中エントレインメントは427ppm(体積比)、洗浄終液中Co濃度は90g/Lとなった。
The composition of the extraction starting solution (mixed aqueous solution of nickel chloride and cobalt chloride) is a nickel concentration of 194 g / L, a cobalt concentration of 6.0 g / L, and the cobalt concentration of the back extract (cobalt chloride aqueous solution) is 62 g / L. Met.
The results are shown in Table 1. The Ni concentration in the back extract was 0.33 mg / L, the organic entrainment was 427 ppm (volume ratio), and the Co concentration in the washing final solution was 90 g / L.
実施例1と同じ溶媒抽出装置を用い、同じ成分組成の抽出剤、希釈剤からなる有機溶媒を用いて、溶媒抽出操業を行った。
ミキサータンク内O/Aを1.2とし、抽出始液流量を891L/分、有機流量を1110L/分、洗浄段の水相の流量を19L/分とし、洗浄段ミキサータンク内の連続相を有機相連続として操業を実施した。
Using the same solvent extraction apparatus as in Example 1, a solvent extraction operation was performed using an organic solvent composed of an extractant and a diluent having the same component composition.
The O / A in the mixer tank is 1.2, the extraction starting liquid flow rate is 891 L / min, the organic flow rate is 1110 L / min, the flow rate of the water phase in the wash stage is 19 L / min, and the continuous phase in the wash stage mixer tank is The operation was carried out as a continuous organic phase.
抽出始液(塩化ニッケルと塩化コバルトの混合水溶液)の組成は、ニッケル濃度が192g/L、コバルト濃度が6.5g/Lであり、逆抽出液(塩化コバルト水溶液)のコバルト濃度は60g/Lであった。 The composition of the extraction starting solution (mixed aqueous solution of nickel chloride and cobalt chloride) is a nickel concentration of 192 g / L and a cobalt concentration of 6.5 g / L, and the cobalt concentration of the back extract (cobalt chloride aqueous solution) is 60 g / L. Met.
その結果を表1に示したが、逆抽出液中Ni濃度は0.28mg/L、有機中エントレインメントは368ppm(体積比)、洗浄終液中Co濃度は89g/Lとなった。 The results are shown in Table 1. The Ni concentration in the back extract was 0.28 mg / L, the organic entrainment was 368 ppm (volume ratio), and the Co concentration in the cleaning final solution was 89 g / L.
実施例1と同じ溶媒抽出装置を用い、同じ成分組成の抽出剤、希釈剤からなる有機溶媒を用いて、溶媒抽出操業を行った。
ミキサータンク内O/Aを2.8とし、抽出始液流量を879L/分、有機流量を1095L/分、洗浄段の水相の流量を18L/分とし、洗浄段ミキサータンク内の連続相を有機相連続として操業を実施した。
Using the same solvent extraction apparatus as in Example 1, a solvent extraction operation was performed using an organic solvent composed of an extractant and a diluent having the same component composition.
The O / A in the mixer tank is set to 2.8, the extraction starting liquid flow rate is 879 L / min, the organic flow rate is 1095 L / min, the flow rate of the water phase of the washing stage is 18 L / min, and the continuous phase in the washing stage mixer tank is The operation was carried out as a continuous organic phase.
抽出始液(塩化ニッケルと塩化コバルトの混合水溶液)の組成は、ニッケル濃度が197g/L、コバルト濃度が6.2g/Lであり、逆抽出液(塩化コバルト水溶液)のコバルト濃度は65g/Lであった。 The composition of the extraction starting solution (mixed aqueous solution of nickel chloride and cobalt chloride) is a nickel concentration of 197 g / L and a cobalt concentration of 6.2 g / L, and the cobalt concentration of the back extract (cobalt chloride aqueous solution) is 65 g / L. Met.
その結果を表1に示したが、逆抽出液中Ni濃度は1.27mg/L、有機中エントレインメントは1341ppm(体積比)、洗浄終液中Co濃度は94g/Lとなった。 The results are shown in Table 1. The Ni concentration in the back extract was 1.27 mg / L, the organic entrainment was 1341 ppm (volume ratio), and the Co concentration in the cleaning final solution was 94 g / L.
(比較例1)
実施例1と同じ溶媒抽出装置を用い、同じ成分組成の抽出剤、希釈剤からなる有機溶媒を用いて、溶媒抽出操業を行った。
ミキサータンク内O/Aを3.1とし、抽出始液流量を910L/分、有機流量を1185L/分、洗浄段の水相の流量を20L/分とし、洗浄段ミキサータンク内の連続相を有機相連続として操業を実施した。
(Comparative Example 1)
Using the same solvent extraction apparatus as in Example 1, a solvent extraction operation was performed using an organic solvent composed of an extractant and a diluent having the same component composition.
The O / A in the mixer tank is 3.1, the extraction starting liquid flow rate is 910 L / min, the organic flow rate is 1185 L / min, the flow rate of the water phase in the wash stage is 20 L / min, and the continuous phase in the wash stage mixer tank is The operation was carried out as a continuous organic phase.
抽出始液(塩化ニッケルと塩化コバルトの混合水溶液)の組成は、ニッケル濃度が186g/L、コバルト濃度が6.8g/Lであり、逆抽出液(塩化コバルト水溶液)のコバルト濃度は60g/Lであった。 The composition of the extraction starting solution (mixed aqueous solution of nickel chloride and cobalt chloride) is a nickel concentration of 186 g / L and a cobalt concentration of 6.8 g / L, and the cobalt concentration of the back extract (cobalt chloride aqueous solution) is 60 g / L. Met.
その結果を表1に示したが、逆抽出液中Ni濃度は2.59mg/L、有機中エントレインメントは3116ppm(体積比)、洗浄終液中Co濃度は88g/Lとなった。 The results are shown in Table 1. The Ni concentration in the back extract was 2.59 mg / L, the organic entrainment was 3116 ppm (volume ratio), and the Co concentration in the cleaning final solution was 88 g / L.
(比較例2)
実施例1と同じ溶媒抽出装置で、同じ成分組成の抽出剤、希釈剤からなる有機溶媒を用いて、溶媒抽出操業を行った。
ミキサータンク内O/Aを0.6とし、抽出始液流量を451L/分、有機流量を633L/分、洗浄段の水相の流量を13L/分とし、洗浄段ミキサータンク内の連続相を水相連続として操業を実施した。
(Comparative Example 2)
In the same solvent extraction apparatus as in Example 1, a solvent extraction operation was performed using an organic solvent composed of an extractant and a diluent having the same component composition.
The O / A in the mixer tank is 0.6, the extraction starting liquid flow rate is 451 L / min, the organic flow rate is 633 L / min, the water phase flow rate in the washing stage is 13 L / min, and the continuous phase in the washing stage mixer tank is The operation was carried out as a continuous water phase.
抽出始液(塩化ニッケルと塩化コバルトの混合水溶液)の組成は、ニッケル濃度が182g/L、コバルト濃度が6.0g/Lであり、逆抽出液(塩化コバルト水溶液)のコバルト濃度は58g/Lであった。 The composition of the extraction starting solution (mixed aqueous solution of nickel chloride and cobalt chloride) is a nickel concentration of 182 g / L and a cobalt concentration of 6.0 g / L, and the cobalt concentration of the back extract (cobalt chloride aqueous solution) is 58 g / L. Met.
その結果を表1に示したが、逆抽出液中Ni濃度は16.4mg/L、洗浄終液中Co濃度は89g/Lとなった。 The results are shown in Table 1. The Ni concentration in the back extract was 16.4 mg / L, and the Co concentration in the washing final solution was 89 g / L.
図2に、実施例1〜4、比較例1、比較例2の結果について、ミキサータンク内O/A比と逆抽出液中Ni濃度の関係を示す。
ミキサータンク内の連続相とO/A比を管理した結果、図2に示すように洗浄段ミキサータンク内を有機相連続にしつつ、O/A比を低下させることにより、水相中のNi濃度を低下させることができた。
ただし、O/A比を1.0よりも低下させると水相連続となってしまうため、このO/A比1.0が臨界値となり、1.0以下ではニッケル濃度が上昇に転じることになる。
FIG. 2 shows the relationship between the O / A ratio in the mixer tank and the Ni concentration in the back extract with respect to the results of Examples 1 to 4, Comparative Example 1, and Comparative Example 2.
As a result of managing the continuous phase and O / A ratio in the mixer tank, the concentration of Ni in the aqueous phase is reduced by reducing the O / A ratio while maintaining the organic phase in the washing stage mixer tank as shown in FIG. Could be reduced.
However, if the O / A ratio is lowered below 1.0, the aqueous phase becomes continuous, so this O / A ratio 1.0 becomes a critical value, and the nickel concentration starts to increase below 1.0. Become.
なお、実施例1〜4、比較例1〜2のいずれにおいても洗浄終液量(洗浄段の水相の流量)は増加していない。
また、洗浄終液中のコバルト濃度は90g/L前後であり、洗浄終液としてのコバルトの繰返し量も増加していない。
In addition, in any of Examples 1-4 and Comparative Examples 1-2, the amount of washing | cleaning final liquid (flow volume of the water phase of a washing | cleaning stage) has not increased.
Further, the cobalt concentration in the cleaning final solution is around 90 g / L, and the repetition amount of cobalt as the cleaning final solution does not increase.
Claims (4)
(記)
(1)前記コバルトを含有する塩化ニッケル水溶液からコバルトを有機相に抽出し、コバルトが除去された塩化ニッケル水溶液を得る抽出段。
(2)コバルトを抽出した有機相に、逆抽出後の水相の一部を混合・接触させ、有機相中のニッケルを除去する洗浄段。
(3)洗浄後の有機相から、弱酸性水溶液によってコバルトを脱離して、塩化コバルト水溶液を得る逆抽出段。 A method for producing an aqueous cobalt chloride solution using a counter-current multistage extraction device and using an organic solvent comprising an amine-based extractant and a diluent from an aqueous nickel chloride solution containing cobalt to produce an aqueous cobalt chloride solution by solvent extraction of cobalt. The mixer tank (stirring tank) in the washing stage in the solvent extraction method including the following three treatments of extraction stage, washing stage and back-extraction stage of (1) to (3) is used as a continuous organic phase, and the mixer A method for producing an aqueous cobalt chloride solution, wherein the volume ratio of the organic relative aqueous phase in the tank is 3.0 or less.
(Record)
(1) An extraction stage in which cobalt is extracted from the nickel chloride aqueous solution containing cobalt into an organic phase to obtain a nickel chloride aqueous solution from which cobalt has been removed.
(2) A washing stage in which a part of the aqueous phase after back extraction is mixed and brought into contact with the organic phase from which cobalt has been extracted to remove nickel in the organic phase.
(3) A back extraction stage in which cobalt is removed from the washed organic phase with a weakly acidic aqueous solution to obtain an aqueous cobalt chloride solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014062786A JP6156781B2 (en) | 2014-03-25 | 2014-03-25 | Method for producing cobalt chloride aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014062786A JP6156781B2 (en) | 2014-03-25 | 2014-03-25 | Method for producing cobalt chloride aqueous solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015183267A true JP2015183267A (en) | 2015-10-22 |
JP6156781B2 JP6156781B2 (en) | 2017-07-05 |
Family
ID=54350158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014062786A Active JP6156781B2 (en) | 2014-03-25 | 2014-03-25 | Method for producing cobalt chloride aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6156781B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105692753A (en) * | 2016-02-26 | 2016-06-22 | 兰州金川新材料科技股份有限公司 | Method for treating wastewater containing cobalt and acid |
JP2019055354A (en) * | 2017-09-20 | 2019-04-11 | 住友金属鉱山株式会社 | Method for removing droplet of water phase contained in organic phase |
CN109621485A (en) * | 2018-12-13 | 2019-04-16 | 中石化炼化工程(集团)股份有限公司 | A kind of device and method of solvent extraction product |
JP2019108594A (en) * | 2017-12-19 | 2019-07-04 | 住友金属鉱山株式会社 | Method for removing the droplet of water phase included in organic phase |
JP2019196528A (en) * | 2018-05-11 | 2019-11-14 | 住友金属鉱山株式会社 | Manufacturing method of cobalt chloride solution |
JP2020002433A (en) * | 2018-06-28 | 2020-01-09 | 住友金属鉱山株式会社 | MANUFACTURING METHOD OF LOW Ni CONCENTRATION COBALT CHLORIDE SOLUTION |
KR20210069892A (en) * | 2019-12-04 | 2021-06-14 | 목포대학교산학협력단 | Method for recovery ruthenium and cobalt from scrap |
CN115321604A (en) * | 2022-07-29 | 2022-11-11 | 格林美(江苏)钴业股份有限公司 | Method for removing phosphorus in cobalt chloride solution by using iron oxide yellow |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5518547A (en) * | 1978-07-24 | 1980-02-08 | Nippon Mining Co Ltd | Extracting and separating method for nickel and cobalt from liquid containing nickel and cobalt |
JPS5541938A (en) * | 1978-09-18 | 1980-03-25 | Nippon Mining Co Ltd | Removing method for nickel included in organic phase containing cobalt |
JP2011006759A (en) * | 2009-06-29 | 2011-01-13 | Sumitomo Metal Mining Co Ltd | Method for producing cobalt chloride aqueous solution |
-
2014
- 2014-03-25 JP JP2014062786A patent/JP6156781B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5518547A (en) * | 1978-07-24 | 1980-02-08 | Nippon Mining Co Ltd | Extracting and separating method for nickel and cobalt from liquid containing nickel and cobalt |
JPS5541938A (en) * | 1978-09-18 | 1980-03-25 | Nippon Mining Co Ltd | Removing method for nickel included in organic phase containing cobalt |
JP2011006759A (en) * | 2009-06-29 | 2011-01-13 | Sumitomo Metal Mining Co Ltd | Method for producing cobalt chloride aqueous solution |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105692753A (en) * | 2016-02-26 | 2016-06-22 | 兰州金川新材料科技股份有限公司 | Method for treating wastewater containing cobalt and acid |
JP2019055354A (en) * | 2017-09-20 | 2019-04-11 | 住友金属鉱山株式会社 | Method for removing droplet of water phase contained in organic phase |
JP2019108594A (en) * | 2017-12-19 | 2019-07-04 | 住友金属鉱山株式会社 | Method for removing the droplet of water phase included in organic phase |
JP2019196528A (en) * | 2018-05-11 | 2019-11-14 | 住友金属鉱山株式会社 | Manufacturing method of cobalt chloride solution |
JP7119551B2 (en) | 2018-05-11 | 2022-08-17 | 住友金属鉱山株式会社 | Method for producing aqueous solution of cobalt chloride |
JP2020002433A (en) * | 2018-06-28 | 2020-01-09 | 住友金属鉱山株式会社 | MANUFACTURING METHOD OF LOW Ni CONCENTRATION COBALT CHLORIDE SOLUTION |
JP7127388B2 (en) | 2018-06-28 | 2022-08-30 | 住友金属鉱山株式会社 | Method for producing low Ni concentration cobalt chloride aqueous solution |
CN109621485A (en) * | 2018-12-13 | 2019-04-16 | 中石化炼化工程(集团)股份有限公司 | A kind of device and method of solvent extraction product |
KR20210069892A (en) * | 2019-12-04 | 2021-06-14 | 목포대학교산학협력단 | Method for recovery ruthenium and cobalt from scrap |
KR102320891B1 (en) | 2019-12-04 | 2021-11-02 | 목포대학교산학협력단 | Method for recovery ruthenium and cobalt from scrap |
CN115321604A (en) * | 2022-07-29 | 2022-11-11 | 格林美(江苏)钴业股份有限公司 | Method for removing phosphorus in cobalt chloride solution by using iron oxide yellow |
Also Published As
Publication number | Publication date |
---|---|
JP6156781B2 (en) | 2017-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6156781B2 (en) | Method for producing cobalt chloride aqueous solution | |
JP5541336B2 (en) | Method for producing high purity cobalt sulfate aqueous solution | |
JP6176491B2 (en) | Method for removing copper from aqueous nickel chloride solution | |
CN102627333B (en) | Method for refined nickel sulfate | |
JP5514844B2 (en) | Method for separating valuable metals from waste secondary batteries and method for recovering valuable metals using the same | |
JP2020084199A (en) | Production method of cobalt chloride aqueous solution | |
JP6471912B2 (en) | Method for producing high purity cobalt sulfate aqueous solution | |
CA2961616A1 (en) | Method of separating cobalt and magnesium from a nickel-bearing extraction feed solution | |
WO2015110702A1 (en) | Method for recovery of copper and zinc | |
JP5375631B2 (en) | Method for removing metal elements from organic phase | |
JP6658238B2 (en) | Method for removing impurities from aqueous cobalt solution | |
JP2013221178A (en) | Method for separating valuable metal | |
WO2016209178A1 (en) | Recovering scandium and derivatives thereof from a leach solution loaded with metals obtained as a result of leaching lateritic ores comprising nickel, cobalt and scandium, and secondary sources comprising scandium | |
JP2020164945A (en) | Manufacturing method of cobalt chloride aqueous solution | |
JP2020084200A (en) | Production method of cobalt chloride aqueous solution | |
JP5881952B2 (en) | Method for producing cobalt sulfate | |
JP2011006759A (en) | Method for producing cobalt chloride aqueous solution | |
JP7360091B2 (en) | Solvent extraction method and method for producing cobalt aqueous solution | |
RU2540257C1 (en) | Cobalt and nickel separation method | |
JP7127388B2 (en) | Method for producing low Ni concentration cobalt chloride aqueous solution | |
JP6922588B2 (en) | Method of removing droplets of aqueous phase contained in organic phase | |
JP2015212424A (en) | Method for producing cobalt sulfate | |
JP2004307270A (en) | Method of refining nickel sulfate aqueous solution containing cobalt and calcium | |
JP2010174359A (en) | Activation treatment method for organic solvent | |
JP6989815B2 (en) | Methods and systems for reducing impurity metals from refining electrolytes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170515 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6156781 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170528 |