JP2015182938A - Rutile-type titanium oxide sol and method for producing the same - Google Patents

Rutile-type titanium oxide sol and method for producing the same Download PDF

Info

Publication number
JP2015182938A
JP2015182938A JP2014062715A JP2014062715A JP2015182938A JP 2015182938 A JP2015182938 A JP 2015182938A JP 2014062715 A JP2014062715 A JP 2014062715A JP 2014062715 A JP2014062715 A JP 2014062715A JP 2015182938 A JP2015182938 A JP 2015182938A
Authority
JP
Japan
Prior art keywords
titanium oxide
rutile
type titanium
heating
oxide sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014062715A
Other languages
Japanese (ja)
Other versions
JP6300313B2 (en
Inventor
慎太郎 高橋
Shintaro Takahashi
慎太郎 高橋
英和 上田
Hidekazu Ueda
英和 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP2014062715A priority Critical patent/JP6300313B2/en
Publication of JP2015182938A publication Critical patent/JP2015182938A/en
Application granted granted Critical
Publication of JP6300313B2 publication Critical patent/JP6300313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a rutile-type titanium oxide sol that is excellent in dispersibility and long-term storage stability and can replace a water solvent with an organic solvent by forming a rutile-type titanium oxide crystal by a simple method in the absence of a tin compound or an organic acid.SOLUTION: The rutile-type titanium oxide sol contains a rutile-type titanium oxide and an organic phosphorus acid or a derivative thereof as a dispersant, has an acidic pH and uses water as a dispersion medium, provided that the method for forming a crystal of the rutile-type titanium oxide is a method comprising washing a neutralized gel produced by performing the reaction of an alkali aqueous solution and a water-soluble titanium compound under an alkaline condition and then heating under an acidic condition in the presence of an inorganic acid.

Description

本発明は、ルチル型酸化チタンゾル及びその製造方法に関する。   The present invention relates to a rutile type titanium oxide sol and a method for producing the same.

ルチル型酸化チタンは高屈折率を有するため、光学材料や塗料材料などの分野において広く用いられている。   Rutile titanium oxide has a high refractive index and is widely used in fields such as optical materials and paint materials.

従来、水を分散媒としたルチル型酸化チタンゾルであって、樹脂との混和・分散性を高めるために分散媒を有機溶媒に置換できるタイプのものが提案されている(例えば、特許文献1〜5)。分散性に優れたルチル型酸化チタンを液相系で合成するときの課題として、ルチル型酸化チタンの過度の結晶成長を抑制しなければならないことが知られている。特許文献1によれば、クエン酸などの有機リガンドの添加によって結晶成長の抑制を図る方法では満足の行くものが得られない。そこで、特許文献1では、ルチル型酸化チタン結晶の生成時にスズ化合物を共存させることにより、結晶成長を抑制し分散性に優れたルチル型酸化チタン微粒子が得られることを開示している。   Conventionally, rutile-type titanium oxide sols using water as a dispersion medium, and a type in which the dispersion medium can be replaced with an organic solvent in order to improve the miscibility / dispersibility with resin have been proposed (for example, Patent Documents 1 to 3). 5). As a problem when synthesizing rutile titanium oxide having excellent dispersibility in a liquid phase system, it is known that excessive crystal growth of rutile titanium oxide must be suppressed. According to Patent Document 1, a satisfactory method cannot be obtained by a method of suppressing crystal growth by adding an organic ligand such as citric acid. Therefore, Patent Document 1 discloses that a rutile-type titanium oxide fine particle having excellent dispersibility can be obtained by suppressing the crystal growth by coexisting a tin compound when producing a rutile-type titanium oxide crystal.

特許文献2と3に記載のゾルは、特許文献1と同様にスズ化合物を用いてルチル型酸化チタンを生成させるものであるが、このルチル型酸化チタンをケイ素化合物で修飾することにより、分散媒を有機溶媒に置換できるゾルが得られている。   The sols described in Patent Documents 2 and 3 are those in which a rutile-type titanium oxide is produced using a tin compound in the same manner as in Patent Document 1, and the dispersion medium is modified by modifying the rutile-type titanium oxide with a silicon compound. A sol in which can be substituted with an organic solvent is obtained.

特許文献1〜3はいずれもチタン酸塩を出発原料とするものであるが、特許文献4はチタンのアルコキシドを出発原料としスズ化合物の共存下でルチル型酸化チタンを生成させるものである。また、特許文献4には、得られたルチル型酸化チタン微粒子分散液の樹脂への均一分散性を高める目的等のために、表面処理剤を添加する態様が記載され、表面処理剤として列挙された中にフェニルホスホン酸、フェニルホスホン酸モノフェニルエステルが挙げられている。   Patent Documents 1 to 3 all use titanate as a starting material, while Patent Document 4 uses a alkoxide of titanium as a starting material to produce rutile titanium oxide in the presence of a tin compound. Patent Document 4 describes a mode in which a surface treatment agent is added for the purpose of improving the uniform dispersibility of the obtained rutile-type titanium oxide fine particle dispersion in a resin, and is listed as a surface treatment agent. Among them, phenylphosphonic acid and phenylphosphonic acid monophenyl ester are mentioned.

特許文献5に記載のルチル型酸化チタン粒子の分散体の製造方法の概要は、四塩化チタンを出発原料とし、これを熱加水分解してルチル型酸化チタン粒子を析出させ、次に有機酸の存在下で水熱処理することにより粒子の成長を抑制しながら結晶性を向上させ、得られたルチル型酸化チタン粒子のスラリーを酸で解膠し、次に湿式粉砕した後、透析により余剰の酸と塩類を除去するものである。   The outline of the method for producing a dispersion of rutile-type titanium oxide particles described in Patent Document 5 is that titanium tetrachloride is used as a starting material, and this is thermally hydrolyzed to precipitate rutile-type titanium oxide particles. Hydrothermal treatment in the presence improves the crystallinity while suppressing particle growth, and the resulting slurry of rutile titanium oxide particles is peptized with acid, then wet crushed, and then subjected to excess acid by dialysis. And remove salts.

特開2005−132706号公報JP 2005-132706 A 特許第4210785号公報Japanese Patent No. 4210785 特開2007−197278号公報JP 2007-197278 A 特開2010−195636号公報JP 2010-195636 A 特許第4941614号公報Japanese Patent No. 4941614

特許文献1〜4に記載の方法は、いずれもスズ化合物を用いてルチル化時の過度の結晶成長を抑制することにより分散性を有するルチル型酸化チタン微粒子を得ようとするものである。また、特許文献5に記載の方法は、前記のように複雑な工程を必要とするものである。   The methods described in Patent Documents 1 to 4 are all intended to obtain dispersible rutile-type titanium oxide fine particles by suppressing excessive crystal growth during rutile formation using a tin compound. The method described in Patent Document 5 requires a complicated process as described above.

本発明は、スズ化合物又は有機酸の非共存下において簡便な方法によりルチル型酸化チタン結晶を生成させ、分散性及び長期保存安定性に優れ、水溶媒から有機溶媒に置換することができるルチル型酸化チタンゾルの開発を課題とするものである。   The present invention produces a rutile type titanium oxide crystal by a simple method in the absence of a tin compound or an organic acid, is excellent in dispersibility and long-term storage stability, and can be substituted from an aqueous solvent to an organic solvent. The issue is the development of titanium oxide sol.

本発明者らは上記課題について鋭意検討した結果、驚くべきことに、有機リン酸又はその誘導体を巧みに用いることによって、ルチル型の結晶構造を有する酸化チタンゾルが得られることを見出し、本発明を完成させるに至ったものである。   As a result of intensive studies on the above problems, the present inventors have surprisingly found that a titanium oxide sol having a rutile crystal structure can be obtained by skillfully using an organic phosphoric acid or a derivative thereof. It has come to be completed.

そして、当該ゾルが得られたことから、そのメカニズムの詳細は定かではないが、有機リン酸又はその誘導体が分散剤として高度の作用を有すること、即ち、有機リン酸又はその誘導体が、(1)ルチル型酸化チタン結晶核の過度の結晶成長を抑制し、これによって結晶凝集を抑制すること、及び、(2)ルチル型酸化チタンの分散粒子の凝集を水溶媒及び有機溶媒中において長期に抑制すること、が強く推認されたものである。   And since the sol was obtained, the details of the mechanism are not clear, but the organic phosphoric acid or its derivative has a high function as a dispersant, that is, the organic phosphoric acid or its derivative is (1 ) Suppresses excessive crystal growth of rutile-type titanium oxide crystal nuclei, thereby suppressing crystal aggregation, and (2) Suppresses long-term aggregation of dispersed particles of rutile-type titanium oxide in aqueous and organic solvents. To do is strongly inferred.

尚、本発明における有機リン酸又はその誘導体の上記(1)及び(2)で推認された作用は、特許文献4に記載のような一旦出来上がった水を溶媒とするルチル型酸化チタン微粒子分散液を樹脂への均一分散性を高める目的等のために添加される表面処理剤としての作用とは全く異なるものであることを付言しておく。   The action of the organophosphoric acid or derivative thereof according to the present invention as inferred in the above (1) and (2) is the rutile type titanium oxide fine particle dispersion liquid using once produced water as described in Patent Document 4. It is added that the action as a surface treatment agent added for the purpose of enhancing the uniform dispersibility in the resin is completely different.

即ち、本発明は下記の通りである。
[1]ルチル型酸化チタンと、分散剤として有機リン酸又はその誘導体とを含有し、pHが酸性であり、水を分散媒とすることを特徴とするルチル型酸化チタンゾル。但し、前記ルチル型酸化チタンの結晶生成方法は、アルカリ水溶液と水溶性チタン化合物との反応をアルカリ性条件下で行うことによって得られる中和ゲルを洗浄後、無機酸存在下の酸性条件下で加熱する方法である。
[2]前記ルチル型酸化チタンが、Zr、Si及びAlのうちの1種以上の元素を含有する化合物によって修飾されたものである上記[1]記載のルチル型酸化チタンゾル。
[3]平均分散粒子径が20〜70nmの範囲である上記[1]又は[2]記載のルチル型酸化チタンゾル。
[4]アルカリ水溶液と水溶性チタン化合物との反応によって得られるアルカリ性の中和ゲルを洗浄後、無機酸存在下の酸性条件下で加熱(加熱1)し、さらに必要に応じてアルカリ水溶液で中和し洗浄後に無機酸存在下の酸性条件下で加熱(加熱2)すること、を含む、ルチル型酸化チタンゾルの製造方法であって、加熱1及び/又は加熱2を有機リン酸又はその誘導体の存在下で行うことを特徴とする、ルチル型酸化チタンゾルの製造方法。
[5]上記[4]記載のルチル型酸化チタンゾルの製造方法であって、前記有機リン酸又はその誘導体の存在下による加熱後に、Zr、Si及びAlのうちの1種以上の元素を含有する化合物を添加して、ルチル型酸化チタンをZr、Si及びAlのうちの1種以上の元素を含有する化合物によって修飾する、ルチル型酸化チタンゾルの製造方法。
[6]上記[1]〜[3]のいずれか1項記載のルチル型酸化チタンゾルを溶媒置換により分散媒を有機溶媒に転換したルチル型酸化チタンゾル。
[7]上記[1]、[2]、[3]又は[6]記載のルチル型酸化チタンゾルを含有してなる薄膜形成用塗布液。
That is, the present invention is as follows.
[1] A rutile type titanium oxide sol containing rutile type titanium oxide and organic phosphoric acid or a derivative thereof as a dispersant, having an acidic pH and water as a dispersion medium. However, the rutile-type titanium oxide crystal is produced by washing the neutralized gel obtained by carrying out the reaction between the aqueous alkaline solution and the water-soluble titanium compound under alkaline conditions, and then heating under acidic conditions in the presence of an inorganic acid. It is a method to do.
[2] The rutile type titanium oxide sol according to the above [1], wherein the rutile type titanium oxide is modified with a compound containing one or more elements of Zr, Si and Al.
[3] The rutile type titanium oxide sol according to the above [1] or [2], wherein the average dispersed particle size is in the range of 20 to 70 nm.
[4] After washing the alkaline neutralized gel obtained by the reaction between the aqueous alkali solution and the water-soluble titanium compound, the mixture is heated (heated 1) under acidic conditions in the presence of an inorganic acid, and further, with an aqueous alkali solution as necessary. Heating and heating under acidic conditions in the presence of an inorganic acid (heating 2), the method for producing a rutile-type titanium oxide sol, wherein the heating 1 and / or the heating 2 is an organic phosphoric acid or a derivative thereof A method for producing a rutile-type titanium oxide sol, characterized in that it is carried out in the presence.
[5] The method for producing a rutile-type titanium oxide sol according to [4] above, which contains one or more elements of Zr, Si and Al after heating in the presence of the organic phosphoric acid or a derivative thereof. A method for producing a rutile-type titanium oxide sol, comprising adding a compound and modifying rutile-type titanium oxide with a compound containing at least one element selected from Zr, Si and Al.
[6] A rutile type titanium oxide sol obtained by converting the rutile type titanium oxide sol according to any one of the above [1] to [3] into an organic solvent by solvent substitution.
[7] A coating solution for forming a thin film comprising the rutile-type titanium oxide sol described in [1], [2], [3] or [6].

本発明によれば、高屈折率を有し、保存安定性に優れたルチル型酸化チタンゾルを提供することができ、コーティング材料、樹脂組成物等の材料に適用することができるものである。   According to the present invention, a rutile-type titanium oxide sol having a high refractive index and excellent storage stability can be provided, and can be applied to materials such as coating materials and resin compositions.

実施例1で得られたルチル型酸化チタンゾルに係るX線回折図である。2 is an X-ray diffraction pattern according to the rutile-type titanium oxide sol obtained in Example 1. FIG.

以下、本発明のルチル型酸化チタンゾルについて詳細に説明する。   Hereinafter, the rutile titanium oxide sol of the present invention will be described in detail.

〈ルチル型酸化チタンの結晶生成方法〉
本発明におけるルチル型酸化チタンの結晶生成方法は、スズ化合物又は有機酸の非共存下において生成させるものでありながら、生成方法が簡便であるという利点を有する。具体的には、アルカリ水溶液と水溶性チタン化合物との反応をアルカリ性条件下で行うことによって得られる中和ゲルを洗浄後、無機酸存在下の酸性条件下で加熱する方法である。
<Method for crystal formation of rutile titanium oxide>
The crystal production method of rutile-type titanium oxide in the present invention is advantageous in that the production method is simple while it is produced in the absence of a tin compound or an organic acid. Specifically, the neutralized gel obtained by performing the reaction between the aqueous alkali solution and the water-soluble titanium compound under alkaline conditions is washed and then heated under acidic conditions in the presence of an inorganic acid.

アルカリ水溶液としては、例えば、アルカリ金属化合物の水溶液、アンモニア化合物の水溶液等が好適であるがこれらに限定されるものではない。具体的な化合物としては、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アンモニア等が好例であり、アルカリ金属の水酸化物として、水酸化ナトリウム、水酸化カリウム等が、アルカリ金属の炭酸塩として、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等が例示できる。アルカリ水溶液の濃度は、水溶性チタン化合物を添加してもアルカリ性を保つことができ、中和ゲルが生成できれば特に制限はなく、適宜設定すればよい。   As the alkaline aqueous solution, for example, an aqueous solution of an alkali metal compound, an aqueous solution of an ammonia compound, and the like are suitable, but not limited thereto. As specific compounds, alkali metal hydroxides, alkali metal carbonates, ammonia and the like are good examples, and as alkali metal hydroxides, sodium hydroxide, potassium hydroxide and the like are alkali metal carbonates. Examples thereof include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate and the like. The concentration of the aqueous alkali solution is not particularly limited as long as the alkalinity can be maintained even when a water-soluble titanium compound is added, and a neutralized gel can be formed, and may be set as appropriate.

水溶性チタン化合物として、塩化チタン、オキシ塩化チタン、硫酸チタン、オキシ硫酸チタン等を好例として挙げることができるがこれらに限定されるものではない。これら水溶性チタン化合物は水溶液の状態で使用することが作業性の観点から好ましい。その水溶液の濃度は、特に制限されることはなく、適宜設定すればよい。   Examples of water-soluble titanium compounds include, but are not limited to, titanium chloride, titanium oxychloride, titanium sulfate, titanium oxysulfate, and the like. These water-soluble titanium compounds are preferably used in the form of an aqueous solution from the viewpoint of workability. The concentration of the aqueous solution is not particularly limited and may be set as appropriate.

アルカリ水溶液と水溶性チタン化合物を、アルカリ性条件下で中和する方法について説明する。中和方法は、中和液のアルカリ性を常に保つことができれば特に制限はない。pHで云えば9以上であることが好ましい。中和方法の具体例としては、[1]アルカリ水溶液に対し、水溶性チタン化合物を添加し、アルカリ性を常に保ちながら(例えばpH9を下回らない範囲で)水溶性チタン化合物の添加を終了する方法、[2]アルカリ水溶液と水溶性チタン化合物を、アルカリ性を常に保ちながら(例えばpH9を下回らないように)同時に添加する方法、[3]設計量の内の一部のアルカリ水溶液に対し水溶性チタン化合物を添加するが、アルカリ性を常に保ちながら(例えばpH9を下回らないように)残りのアルカリ水溶液を適宜添加する方法が挙げられる。この中でも、[1]の方法が最も容易にアルカリ性を常に保つことができるため特に好ましい。尚、いずれの方法においても、中和が適切に行われるように撹拌強度、添加方法等を適宜設定すればよい。前記[1]の添加方法については、水溶性チタン化合物添加による溶液pHの局所的低下を避けるために、滴下が特に好ましい。中和ゲルを得る操作における温度については特段の制限は無く、5〜100℃の範囲内であればよい。   A method for neutralizing an alkaline aqueous solution and a water-soluble titanium compound under alkaline conditions will be described. The neutralization method is not particularly limited as long as the alkalinity of the neutralized solution can always be maintained. In terms of pH, it is preferably 9 or more. As a specific example of the neutralization method, [1] a method of adding a water-soluble titanium compound to an aqueous alkali solution and ending the addition of the water-soluble titanium compound while maintaining alkalinity (for example, within a range not lower than pH 9), [2] A method in which an alkaline aqueous solution and a water-soluble titanium compound are added simultaneously while maintaining alkalinity (for example, so as not to fall below pH 9), [3] a water-soluble titanium compound for a portion of the alkaline aqueous solution within the designed amount However, there is a method in which the remaining alkaline aqueous solution is appropriately added while keeping the alkalinity (for example, so as not to fall below pH 9). Among these, the method [1] is particularly preferable because it can always keep the alkalinity most easily. In any method, the stirring strength, the addition method, and the like may be appropriately set so that neutralization is appropriately performed. The addition method [1] is particularly preferably dripping in order to avoid a local drop in the solution pH due to the addition of the water-soluble titanium compound. There is no special restriction | limiting about the temperature in operation which obtains neutralization gel, What is necessary is just in the range of 5-100 degreeC.

中和ゲルの濃度について云えば、酸化チタン濃度(TiO2)として、0.1〜5.0質量%の範囲を例示できる。この濃度が0.1質量%を下回ると生産効率が悪くなるため、また、5.0質量%を上回ると反応時の撹拌が困難になりやすくなるため好ましくない。 Speaking of the concentration of the neutralized gel, the range of 0.1 to 5.0 mass% can be exemplified as the titanium oxide concentration (TiO 2 ). If this concentration is less than 0.1% by mass, the production efficiency is deteriorated, and if it exceeds 5.0% by mass, stirring during the reaction tends to be difficult, which is not preferable.

次に、生成した中和ゲルを洗浄する。洗浄は、副生塩や余分なイオン性物質が除去できれば洗浄方法に特に制限はなく、水を添加しながらの限外ろ過、ヌッチェろ過、フィルタープレス等が例示でき、このうち特に限外ろ過が好ましい。洗浄終点の目安として、ろ液ECが0.3〜2mS/cmの時点を挙げることができる。洗浄終了後の中和ゲルのpHとしては概ね10〜12の範囲であることが好ましい。   Next, the produced neutralization gel is washed. Washing is not particularly limited as long as by-product salts and excess ionic substances can be removed, and examples include ultrafiltration while adding water, Nutsche filtration, filter press, etc. preferable. As an indication of the end point of washing, the time when the filtrate EC is 0.3 to 2 mS / cm can be mentioned. The pH of the neutralized gel after washing is preferably in the range of 10-12.

最後に、中和ゲルの洗浄物を無機酸存在下の酸性条件下で加熱することによってルチル型酸化チタン結晶を生成させる。無機酸としては塩酸、硝酸等が好ましく、塩酸及び硝酸のうちいずれか一方又は双方を用いてもよい。中和ゲルの洗浄物と無機酸との混合は、中和ゲルの洗浄物に無機酸を添加する態様が好ましい。酸性度の度合い及び加熱条件は、ルチル型酸化チタンの結晶が生成し、アナターゼ型等の他の結晶形が検出限界以下となれば特に限定はない。酸性度の度合いは、例えば、製造効率の観点からpH3以下に調整することが好ましく、例として濃塩酸を用いたときは、洗浄物中のTiO2に対して濃塩酸(HCl)をモル比で0.6〜2.0の範囲で添加することが好ましい。 Finally, the washed product of the neutralized gel is heated under acidic conditions in the presence of an inorganic acid to produce rutile type titanium oxide crystals. As the inorganic acid, hydrochloric acid, nitric acid and the like are preferable, and either one or both of hydrochloric acid and nitric acid may be used. The mixing of the neutralized gel washed product and the inorganic acid is preferably performed by adding an inorganic acid to the neutralized gel washed product. The degree of acidity and heating conditions are not particularly limited as long as rutile-type titanium oxide crystals are formed and other crystal forms such as anatase type are below the detection limit. The degree of acidity is preferably adjusted to pH 3 or less from the viewpoint of production efficiency. For example, when concentrated hydrochloric acid is used, concentrated hydrochloric acid (HCl) is used in molar ratio with respect to TiO 2 in the washed product. It is preferable to add in the range of 0.6 to 2.0.

加熱温度は、40〜100℃の範囲が好ましい。当該温度範囲において、アナターゼ型酸化チタンが生成せずに、ルチル型酸化チタンが生成し易くなる。また、加熱時間は、ルチル型酸化チタンを充分に生成させるために、10分以上であることが好ましく、特に好ましくは10分〜360分である。より好ましい加熱条件は、50〜90℃で20分〜180分である。加熱温度を高くする、又は加熱時間を長くすることにより、ルチル型酸化チタンの結晶性が向上する一方で結晶成長が起き易くなるので、加熱条件は適宜設定することが好ましい。尚、この際、有機リン酸又はその誘導体を添加してもよく、これにより結晶凝集の抑制も可能である。
加熱時の酸化チタン濃度(TiO2)は1〜8質量%の範囲であることが好ましい。前記範囲で処理することで粒子径の小さいルチル型酸化チタンの分散粒子を効率的に得ることができる。
The heating temperature is preferably in the range of 40-100 ° C. In the temperature range, anatase-type titanium oxide is not generated, and rutile-type titanium oxide is easily generated. Further, the heating time is preferably 10 minutes or more, particularly preferably 10 minutes to 360 minutes, in order to sufficiently generate rutile type titanium oxide. More preferable heating conditions are 50 to 90 ° C. and 20 to 180 minutes. By raising the heating temperature or lengthening the heating time, the crystallinity of the rutile titanium oxide is improved while crystal growth is likely to occur. Therefore, it is preferable to set the heating conditions appropriately. At this time, organic phosphoric acid or a derivative thereof may be added, thereby suppressing crystal aggregation.
The titanium oxide concentration (TiO 2 ) during heating is preferably in the range of 1 to 8% by mass. By treating in the above range, dispersed particles of rutile-type titanium oxide having a small particle diameter can be efficiently obtained.

〈第一形態に係るルチル型酸化チタンゾル〉
本発明の第一形態に係るルチル型酸化チタンゾル(第一形態のゾル)は、ルチル型酸化チタンと、分散剤として有機リン酸又はその誘導体とを含有し、pHが酸性であり、水を分散媒とすることを特徴とするものである。また、ゾル中のルチル型酸化チタンは分散剤である有機リン酸又はその誘導体によって分散安定化されたものである。
<Rutyl-type titanium oxide sol according to the first embodiment>
The rutile-type titanium oxide sol according to the first embodiment of the present invention (first-form sol) contains rutile-type titanium oxide and an organic phosphoric acid or a derivative thereof as a dispersant, has an acidic pH, and disperses water. It is characterized by using a medium. Further, the rutile titanium oxide in the sol is dispersed and stabilized with an organic phosphoric acid or a derivative thereof as a dispersant.

有機リン酸又はその誘導体としては、アルキルリン酸エステル、芳香族リン酸エステル、アルキルホスホン酸エステル、芳香族ホスホン酸エステル、アルキルホスホン酸、芳香族ホスホン酸、アルキルホスフィン酸、芳香族ホスフィン酸又はそれらの塩を例示できる。塩における形態は、例えば、アルカリ金属塩、アンモニウム塩等が挙げられる。具体的な化合物の一例は、上記のうちアルキルを冠する化合物のアルキル基の炭素数としては1〜20の範囲のものであり、芳香族を冠する化合物の基としては、フェニル基、ジフェニル基等が挙げられるが、これらに限定されることはなく、ベンジル基、ベンズヒドリル基等であっても構わない。特に好ましい化合物は、フェニルホスホン酸である。   Organic phosphoric acid or derivatives thereof include alkyl phosphate ester, aromatic phosphate ester, alkyl phosphonate ester, aromatic phosphonate ester, alkyl phosphonic acid, aromatic phosphonic acid, alkyl phosphinic acid, aromatic phosphinic acid or those The salt of can be illustrated. Examples of the form of the salt include alkali metal salts and ammonium salts. An example of a specific compound is one having a carbon number in the range of 1 to 20 as the alkyl group of the compound bearing an alkyl among the above, and examples of the group of the compound bearing an aromatic include a phenyl group and a diphenyl group However, it is not limited to these, and may be a benzyl group, a benzhydryl group, or the like. A particularly preferred compound is phenylphosphonic acid.

有機リン酸又はその誘導体の量については、酸化チタン(TiO2)に対してモル比で0.005〜0.5の範囲であることが好ましい。0.005を下回ると分散剤としての効果が得られ難くなる傾向にあり、0.5を上回ってもさらなる分散安定化効果が得られ難いため経済的でない。 The amount of the organic phosphoric acid or derivative thereof is preferably in the range of 0.005 to 0.5 in terms of molar ratio with respect to titanium oxide (TiO 2 ). If it is less than 0.005, the effect as a dispersant tends to be difficult to obtain, and if it exceeds 0.5, it is difficult to obtain a further dispersion stabilizing effect, which is not economical.

ゾルのpHについては、必要に応じて酸やアルカリを添加しても良いが、分散安定性の観点から4以下であることが好ましい。   Regarding the pH of the sol, an acid or alkali may be added as necessary, but it is preferably 4 or less from the viewpoint of dispersion stability.

〈第二形態に係るルチル型酸化チタンゾル〉
本発明の第二形態に係るルチル型酸化チタンゾル(第二形態のゾル)は、ゾルが安定分散する限度において、ルチル型酸化チタンが、Zr、Si及びAlのうちの1種以上の元素を含有する化合物によって修飾されたものである。本形態のゾルは、とりわけ光触媒活性の抑制が要望される用途への使用に適している。
<Rutyl-type titanium oxide sol according to the second embodiment>
In the rutile-type titanium oxide sol according to the second embodiment of the present invention (the second-form sol), the rutile-type titanium oxide contains one or more elements of Zr, Si, and Al as long as the sol is stably dispersed. Modified by the compound The sol of this form is particularly suitable for use in applications where suppression of photocatalytic activity is desired.

Zrを含有する化合物としては、例えば、アルコキシジルコニウム化合物、ジルコニウム塩等が挙げられる。アルコキシジルコニウム化合物としてはテトラメトキシジルコニウム、テトラエトキシジルコニウム等を、ジルコニウム塩としてはオキシ塩化ジルコニウム、硝酸ジルコニウム等を例示できる。
Siを含有する化合物としては、例えば、アルコキシシラン化合物、ケイ酸塩、シリカゾル等が挙げられる。アルコキシシラン化合物としてはテトラエトキシシラン、メチルトリエトキシシラン、ジフェニルジメトキシシラン、フェニルトリメトキシシラン等を、ケイ酸塩としては、珪酸ナトリウム、珪酸カリウム、珪酸リチウム等を例示できる。
Alを含有する化合物としては、例えば、アルミニウム塩、アルミニウムアルコキシド等が挙げられる。アルミニウム塩としては塩化アルミニウム、硝酸アルミニウム、リン酸アルミニウム等を、アルミニウムアルコキシドとしてはトリエトキシアルミニウム、トリ−n−ブトキシアルミニウム等を例示できる。
尚、上記に挙げた化合物はあくまでも一例であり、これらに限定されるものではない。
Examples of the compound containing Zr include alkoxyzirconium compounds and zirconium salts. Examples of the alkoxyzirconium compound include tetramethoxyzirconium and tetraethoxyzirconium, and examples of the zirconium salt include zirconium oxychloride and zirconium nitrate.
Examples of the compound containing Si include alkoxysilane compounds, silicates, silica sols, and the like. Examples of the alkoxysilane compound include tetraethoxysilane, methyltriethoxysilane, diphenyldimethoxysilane, and phenyltrimethoxysilane. Examples of the silicate include sodium silicate, potassium silicate, and lithium silicate.
Examples of the compound containing Al include aluminum salts and aluminum alkoxides. Examples of the aluminum salt include aluminum chloride, aluminum nitrate, and aluminum phosphate, and examples of the aluminum alkoxide include triethoxyaluminum and tri-n-butoxyaluminum.
The compounds listed above are merely examples, and the present invention is not limited to these.

Zr、Si及びAlのうちの1種以上の元素を含有する化合物の量は、酸化チタン(TiO2)に対して5〜40質量%の範囲であることが好ましい。 The amount of the compound containing one or more elements of Zr, Si and Al is preferably in the range of 5 to 40% by mass with respect to titanium oxide (TiO 2 ).

〈分散媒の置換〉
第一形態及び第二形態のゾルは、分散媒である水を有機溶媒に置換することにより、有機溶媒を分散媒とするゾルに転換することができる(以下、分散媒が水又は有機溶媒である第一形態のゾル及び分散媒が水又は有機溶媒である第二形態のゾルを総称して「本発明のゾル」という)。有機溶媒に置換する方法としては公知の方法を用いればよく、例えば蒸留置換法、限外ろ過法等が挙げられる。
<Displacement medium replacement>
The sol of the first form and the second form can be converted to a sol using an organic solvent as a dispersion medium by replacing water as a dispersion medium with an organic solvent (hereinafter, the dispersion medium is water or an organic solvent). The sol of the first form and the sol of the second form in which the dispersion medium is water or an organic solvent are collectively referred to as “sol of the present invention”). As a method for substitution with an organic solvent, a known method may be used, and examples thereof include a distillation substitution method and an ultrafiltration method.

有機溶媒としては、例えば、メタノール、エタノール、n−プロパノール、ブタノール等のアルコール類、エチレングリコール、ジエチレングリコール、グリセリン等のグリコール類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル等のエステル類、キシレン、トルエン、ベンゼン、ヘキサン等の炭化水素類等が挙げられる。これらのうち親水性を有するものがより好ましく、特に水に対して概ね10%以上溶解し得る親水性を有するものが好ましい。   Examples of the organic solvent include alcohols such as methanol, ethanol, n-propanol and butanol, glycols such as ethylene glycol, diethylene glycol and glycerin, ethers such as diethyl ether and tetrahydrofuran, ethylene glycol monomethyl ether and ethylene glycol monoethyl. Glycol ethers such as ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, pentyl acetate , Esters such as isopentyl acetate, charcoal such as xylene, toluene, benzene, hexane Hydrogen, etc. can be mentioned. Of these, those having hydrophilicity are more preferable, and those having hydrophilicity capable of dissolving approximately 10% or more in water are particularly preferable.

また、別の態様によれば、分散媒として水と親水性有機溶媒との混合溶媒を用いてもよい。この態様に使用する親水性有機溶媒の好例は、メタノール、エタノール等である。   Moreover, according to another aspect, you may use the mixed solvent of water and a hydrophilic organic solvent as a dispersion medium. Good examples of the hydrophilic organic solvent used in this embodiment are methanol, ethanol and the like.

〈ゾルの特性〉
本発明のゾルは、分散性、安定性等の観点から、分散媒が水の場合において、平均分散粒子径が20〜70nmの範囲であることが好ましく、さらに好ましくは30〜60nmの範囲である。上記で示した平均分散粒子径は、(株)堀場製作所製「動的光散乱式粒径分布測定装置 LB-500」で測定した際のメジアン径である。
<Characteristics of sol>
From the viewpoint of dispersibility, stability, etc., the sol of the present invention preferably has an average dispersed particle size in the range of 20 to 70 nm, more preferably in the range of 30 to 60 nm when the dispersion medium is water. . The average dispersed particle diameter shown above is a median diameter measured by “Dynamic Light Scattering Particle Size Distribution Measuring Device LB-500” manufactured by Horiba, Ltd.

また、本発明のゾルのHazeは、第一形態のゾルにおいて、ゾルの固形分濃度を1質量%としたときに、分散媒が水の場合は20〜70%であることが好ましく、分散媒がメタノール、エタノールである場合は5〜60%であることが好ましい。   The Haze of the sol of the present invention is preferably 20 to 70% when the dispersion medium is water when the solid content concentration of the sol is 1% by mass in the sol of the first form. When is methanol or ethanol, the content is preferably 5 to 60%.

〈製造方法〉
本発明のゾルの製造方法は、前述の〈ルチル型酸化チタンの結晶生成方法〉によって得られるルチル型酸化チタン結晶の結晶凝集と当該結晶を構成要素とする分散粒子の凝集を、有機リン酸又はその誘導体の適用によって防ぐことができ、それにより分散性に優れたルチル型酸化チタン微粒子が得られれば特に制限は無いが、第一形態のゾルの製造方法(第一形態の製法)としては次の製法が好ましい。
即ち、アルカリ水溶液と水溶性チタン化合物との反応によって得られるアルカリ性の中和ゲルを洗浄後、無機酸存在下の酸性条件下で加熱(加熱1)し、さらに必要に応じてアルカリ水溶液で中和し洗浄後に無機酸存在下の酸性条件下で加熱(加熱2)すること、を含むものであって、加熱1及び/又は加熱2を有機リン酸又はその誘導体の存在下で行うことを特徴とする製造方法である。
尚、上記において、加熱時に有機リン酸又はその誘導体を存在させるときには、ハンドリング性の観点から、無機酸存在下の酸性条件下にしてから有機リン酸又はその誘導体を存在させること、即ち、無機酸の添加後に有機リン酸又はその誘導体を添加することが好ましい。また、有機リン酸又はその誘導体の添加量は、前述のように、酸化チタン(TiO2)に対してモル比で0.005〜0.5の範囲であることが好ましい。
<Production method>
The sol production method of the present invention comprises the above-described <rutile-type titanium oxide crystal production method> by combining the crystal aggregation of rutile-type titanium oxide crystals and the aggregation of dispersed particles containing the crystals as organic phosphoric acid or There is no particular limitation as long as rutile-type titanium oxide fine particles having excellent dispersibility can be obtained by application of the derivative. However, the production method of the first form sol (the production process of the first form) is as follows. Is preferable.
That is, after washing the alkaline neutralized gel obtained by the reaction between the alkaline aqueous solution and the water-soluble titanium compound, heating (heating 1) under acidic conditions in the presence of an inorganic acid, and further neutralizing with an alkaline aqueous solution as necessary And heating under heating under acidic conditions in the presence of an inorganic acid (heating 2), wherein heating 1 and / or heating 2 is performed in the presence of an organic phosphoric acid or a derivative thereof. Manufacturing method.
In addition, in the above, when organic phosphoric acid or a derivative thereof is present during heating, from the viewpoint of handling properties, the organic phosphoric acid or the derivative thereof is allowed to exist after being subjected to acidic conditions in the presence of an inorganic acid. It is preferable to add organophosphoric acid or a derivative thereof after the addition of. The amount of the organic phosphoric acid or a derivative thereof, as described above, is preferably in the range of 0.005 to 0.5 in molar ratio to titanium oxide (TiO 2).

ここで、上記第一形態の製法は、例えば次のように分けることができる。
(i) アルカリ水溶液と水溶性チタン化合物との反応によって得られるアルカリ性の中和ゲルを洗浄後、無機酸存在下の酸性条件下で加熱(加熱1)する製法であって、加熱1を有機リン酸又はその誘導体の存在下で行う製法。
(ii) アルカリ水溶液と水溶性チタン化合物との反応によって得られるアルカリ性の中和ゲルを洗浄後、無機酸存在下の酸性条件下で加熱(加熱1)した後、アルカリ水溶液で中和し、洗浄(洗浄1)後に、無機酸存在下の酸性条件下で加熱(加熱2)する製法であって、加熱2を有機リン酸又はその誘導体の存在下で行う製法。
(iii) (ii)において、加熱1及び加熱2を有機リン酸又はその誘導体の存在下で行う製法。
Here, the manufacturing method of said 1st form can be divided as follows, for example.
(i) A manufacturing method in which an alkaline neutralized gel obtained by the reaction between an aqueous alkali solution and a water-soluble titanium compound is washed, and then heated (heating 1) under acidic conditions in the presence of an inorganic acid. A production method carried out in the presence of an acid or a derivative thereof.
(ii) After washing the alkaline neutralized gel obtained by the reaction between the alkaline aqueous solution and the water-soluble titanium compound, heating (heating 1) under acidic conditions in the presence of an inorganic acid, neutralizing with an alkaline aqueous solution, and washing A method of heating (heating 2) after (washing 1) under acidic conditions in the presence of an inorganic acid, wherein heating 2 is performed in the presence of organic phosphoric acid or a derivative thereof.
(iii) The process according to (ii), wherein the heating 1 and the heating 2 are carried out in the presence of an organic phosphoric acid or a derivative thereof.

前述の〈ルチル型酸化チタンの結晶生成方法〉の加熱を有機リン酸又はその誘導体の存在下で行えば(i)の製法となるが、結晶の均一性の観点からいえば(ii)又は(iii)の製法を採用する方が好ましい。   If the heating of the above-described <rutile-type titanium oxide crystal production method> is performed in the presence of an organic phosphoric acid or a derivative thereof, the production method (i) is obtained, but from the viewpoint of crystal uniformity, (ii) or ( It is preferable to adopt the production method iii).

ここで、(ii)の製法について説明する。
加熱1までは前述の〈ルチル型酸化チタンの結晶生成方法〉と同様である。但し、加熱1は有機リン酸又はその誘導体の非存在下で行われるので、加熱1はルチル型酸化チタン結晶をあまり成長させない加熱条件とすることが好ましく、例えば、40〜90℃で60分〜10分である。
Here, the production method (ii) will be described.
The process up to heating 1 is the same as in the above-described <Method for producing crystal of rutile type titanium oxide>. However, since heating 1 is performed in the absence of organic phosphoric acid or a derivative thereof, heating 1 is preferably performed under heating conditions that do not allow much growth of rutile-type titanium oxide crystals, for example, at 40 to 90 ° C. for 60 minutes to 10 minutes.

加熱1以降の工程について説明する。
中和に用いるアルカリ水溶液は、前述の〈ルチル型酸化チタンの結晶生成方法〉において例示したものを用いることができるが、分散性の観点からアンモニアが特に好ましい。アルカリ水溶液の濃度と量は適宜設定すればよいが、アルカリ水溶液で中和後の溶液pHが5.5以上となるように設定することが好ましい。尚、次の洗浄1で液の粘性が高く洗浄が困難な場合は、中和した後に加熱エージングを行っても良い。加熱エージングを行う場合は50〜100℃で1〜5時間行うことが好ましい。
The process after the heating 1 will be described.
As the alkaline aqueous solution used for neutralization, those exemplified in the above-mentioned <Method for producing crystal of rutile-type titanium oxide> can be used, and ammonia is particularly preferable from the viewpoint of dispersibility. The concentration and amount of the aqueous alkaline solution may be set as appropriate, but it is preferably set so that the solution pH after neutralization with the aqueous alkaline solution is 5.5 or more. If the liquid is highly viscous and difficult to clean in the next cleaning 1, heat aging may be performed after neutralization. When performing heat aging, it is preferable to carry out at 50-100 degreeC for 1 to 5 hours.

洗浄1を行うことによりルチル型酸化チタンゲルを得る。洗浄方法は、前述の〈ルチル型酸化チタンの結晶生成方法〉において例示した方法を用いることができ、このうち限外ろ過が特に好ましい。限外ろ過を例にとると、系外へ排出されるろ液のECをおよそ500μS/cm以下まで洗浄することにより、酸化チタン(TiO2)に対し無機酸根をモル比で0.01以下まで除去することができる。より好ましくはろ液ECが50μS/cm以下となるまで洗浄する条件であり、これにより、塩素根、硝酸根等の無機酸根だけでなくその他のイオン性物質、例えば、Na、K等のアルカリ金属及び遊離のアンモニア等を限外ろ過による洗浄限界まで除去することができる。 By performing washing 1, a rutile type titanium oxide gel is obtained. As the washing method, the method exemplified in the above-mentioned <Method for producing crystal of rutile titanium oxide> can be used, and among these, ultrafiltration is particularly preferred. Taking ultrafiltration as an example, the EC of the filtrate discharged out of the system is washed to about 500 μS / cm or less to remove inorganic acid radicals to 0.01 or less in molar ratio to titanium oxide (TiO 2 ). be able to. More preferably, it is a condition for washing until the filtrate EC is 50 μS / cm or less, whereby not only inorganic acid radicals such as chlorine radicals and nitrate radicals but also other ionic substances such as alkalis such as Na + and K + Metals, free ammonia, etc. can be removed to the limit of washing by ultrafiltration.

次に、洗浄1によって得られたルチル型酸化チタンゲルを無機酸の存在下の酸性条件下で加熱2を行う。但し、加熱2は有機リン酸又はその誘導体の存在下で行う。無機酸としては、塩酸又は硝酸が好ましい。無機酸の添加目的は、ルチル型酸化チタンを、凝集したゲル状態から微粒子として分散させることにあり、当該目的が達成されるように濃度や添加量を適宜調節することが好ましい。一例として、濃塩酸を用いた場合では、TiO2に対して濃塩酸(HCl)をモル比で0.5〜3.0の範囲で添加することが好ましい。酸性度で言えば、pH3以下とすることが好ましい。 Next, the rutile type titanium oxide gel obtained by washing 1 is heated 2 under acidic conditions in the presence of an inorganic acid. However, the heating 2 is performed in the presence of an organic phosphoric acid or a derivative thereof. As the inorganic acid, hydrochloric acid or nitric acid is preferable. The purpose of adding the inorganic acid is to disperse the rutile titanium oxide from the aggregated gel state as fine particles, and it is preferable to appropriately adjust the concentration and the amount of addition so as to achieve the purpose. As an example, when concentrated hydrochloric acid is used, it is preferable to add concentrated hydrochloric acid (HCl) in a molar ratio of 0.5 to 3.0 with respect to TiO 2 . In terms of acidity, the pH is preferably 3 or less.

仮に、有機リン酸又はその誘導体の非存在下且つ無機酸存在下で加熱2を実施すると、分散粒子の凝集が生じ易くなるが、これは、一旦微粒子として分散した分散粒子中においてルチル型酸化チタンの過度の結晶成長が起き、その結果大きくなった分散粒子が分散を維持できなくなることが理由として考えられる。一方、有機リン酸又はその誘導体を、無機酸の添加によって一旦微粒子として分散した分散粒子が加熱2によって再び凝集する前に存在させると、安定分散する分散粒子が得られるが、この理由として、有機リン酸又はその誘導体がルチル型酸化チタンの過度の結晶成長による凝集を抑制しているためと考えられる。したがって、有機リン酸又はその誘導体の添加タイミングは、無機酸の添加によって一旦微粒子として分散した分散粒子が加熱2によって再び凝集する前であれば特に制限はなく、分散微粒子が効果的に得られるように添加することが望ましい。特に望ましくは、加熱2の前である。   If heating 2 is carried out in the absence of an organic phosphoric acid or its derivative and in the presence of an inorganic acid, aggregation of dispersed particles is likely to occur. This is because rutile type titanium oxide in dispersed particles once dispersed as fine particles. This is considered to be because excessive crystal growth occurs, and as a result, the dispersed particles that have become large cannot maintain dispersion. On the other hand, when dispersed particles once dispersed as fine particles by addition of an inorganic acid are present before aggregation again by heating 2, dispersed particles that are stably dispersed can be obtained. This is probably because phosphoric acid or a derivative thereof suppresses aggregation due to excessive crystal growth of rutile-type titanium oxide. Therefore, the timing of adding the organic phosphoric acid or its derivative is not particularly limited as long as the dispersed particles once dispersed as fine particles by the addition of the inorganic acid are aggregated again by the heating 2, and the dispersed fine particles can be obtained effectively. It is desirable to add to. Particularly preferably, it is before heating 2.

次に、加熱2を行うが、加熱温度は45〜100℃の範囲であることが好ましい。また、ゾルとしての分散安定性の観点から、加熱2の後に洗浄(洗浄2)を行うことが好ましい。洗浄2は、洗浄1と同様に実施すればよい。尚、必要に応じて、洗浄2の後に限外ろ過処理や加熱等により濃縮を行うことができる。限外ろ過処理する際には注水洗浄することで、残存する不純物、無機酸根、アルカリ金属をさらに除去することも可能である。この際、分散剤も幾らか除去される可能性があり、得られるゾルが不安定になる恐れがある。このような場合には有機リン酸又はその誘導体を追加添加することにより、長期に渡り安定化させることが可能である。   Next, although heating 2 is performed, it is preferable that heating temperature is the range of 45-100 degreeC. Further, from the viewpoint of dispersion stability as a sol, it is preferable to perform cleaning (cleaning 2) after heating 2. The cleaning 2 may be performed in the same manner as the cleaning 1. In addition, if necessary, concentration can be performed after washing 2 by ultrafiltration or heating. The remaining impurities, inorganic acid radicals and alkali metals can be further removed by washing with water when performing ultrafiltration. At this time, some of the dispersant may be removed, and the resulting sol may become unstable. In such a case, it can be stabilized over a long period of time by adding an organic phosphoric acid or a derivative thereof.

(iii)の製法は、有機リン酸又はその誘導体を2回に分けて添加するものであるが、配分の仕方は加熱1と加熱2の加熱条件を勘案して、所望の分散粒子径が得られるように適宜設定すればよい。   In the production method (iii), organophosphoric acid or a derivative thereof is added in two portions. The distribution method is determined in consideration of the heating conditions of heating 1 and heating 2, and a desired dispersed particle size is obtained. May be set as appropriate.

次に、第二形態のゾルの製造方法(第二形態の製法)について説明する。
本形態の製法は、第一の形態の製法における有機リン酸又はその誘導体の存在下による加熱後に、Zr、Si及びAlのうちの1種以上の元素を含有する化合物を添加して、ルチル型酸化チタンをZr、Si及びAlのうちの1種以上の元素を含有する化合物によって修飾するものである。尚、(iii)の製法では、加熱2の後に添加することが好ましい。Zr、Si及びAlのうちの1種以上の元素を含有する化合物としては前記と同じものが例示でき、添加量も前記同様である。
Next, a method for producing the sol of the second form (a process of the second form) will be described.
In the manufacturing method of this embodiment, after heating in the presence of the organic phosphoric acid or its derivative in the manufacturing method of the first embodiment, a compound containing one or more elements of Zr, Si and Al is added to form a rutile type. Titanium oxide is modified with a compound containing one or more elements of Zr, Si and Al. In addition, in the manufacturing method of (iii), it is preferable to add after the heating 2. Examples of the compound containing one or more elements of Zr, Si and Al are the same as described above, and the addition amount is the same as described above.

修飾方法としては、Zr、Si及びAlのうちの1種以上の元素を含有する化合物を添加した後、60〜150℃で加熱する方法が好ましい。また、未反応の化合物及びその副生物(遊離イオン等)を除去するために、加熱後に限外ろ過処理等で洗浄することが好ましい。この際、前記同様に、有機リン酸又はその誘導体を追加添加することも好ましい態様である。   As a modification method, a method of heating at 60 to 150 ° C. after adding a compound containing one or more elements of Zr, Si and Al is preferable. Moreover, in order to remove an unreacted compound and its by-products (free ion etc.), it is preferable to wash | clean by an ultrafiltration process etc. after a heating. At this time, as described above, it is also a preferred embodiment to add an organic phosphoric acid or a derivative thereof.

〈用途〉
本発明のゾルを用いて、本発明のゾルを含有してなる薄膜形成用塗布液とすることもできるし、本発明のゾルを配合してなる樹脂組成物とすることもできる。尚、本発明のゾルの分散媒の種類は前記から適宜選択すればよい。
<Application>
Using the sol of the present invention, a coating liquid for forming a thin film containing the sol of the present invention can be used, or a resin composition containing the sol of the present invention can be prepared. The kind of the dispersion medium for the sol of the present invention may be appropriately selected from the above.

薄膜形成用塗布液においては、シリカゾルやケイ酸アルカリ溶液等の無機バインダー成分や樹脂エマルションのような有機質又は有機無機複合の水系バインダー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂等の有機溶媒系のバインダーを添加してもよい。バインダーの使用量は、バインダーの種類、本発明のゾルの組成、用途、所望する膜機能等によって異なるが、一般的にはバインダー成分の量が全固形分重量の10〜50質量%程度となるように混合すればよい。薄膜形成用塗布液の固形分濃度は特に限定されないが、0.01〜10質量%、より好ましくは0.1〜5質量%とするのが塗布し易さにおいて好ましい。薄膜形成用塗布液の基材への適用方法は、刷毛塗り、スプレー塗布、スピンコート、ディップコート、ロールコート、グラビアコート、バーコートなど各種の公知の塗布方法を基材の形状を考慮して選択すればよい。   In the coating solution for forming a thin film, an inorganic binder component such as silica sol or alkali silicate solution, an organic or organic-inorganic composite aqueous binder such as a resin emulsion, an organic solvent binder such as an acrylic resin, an epoxy resin, or a silicone resin. It may be added. The amount of binder used varies depending on the type of binder, composition of the sol of the present invention, application, desired film function, etc., but generally the amount of the binder component is about 10 to 50% by mass of the total solid weight. What is necessary is just to mix. Although the solid content concentration of the coating liquid for forming a thin film is not particularly limited, it is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass in terms of ease of application. The application method of the coating liquid for forming a thin film to the substrate is based on various known coating methods such as brush coating, spray coating, spin coating, dip coating, roll coating, gravure coating, and bar coating in consideration of the shape of the substrate. Just choose.

以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらに制限されるものではない。尚、実施例において%は、特に断らない限り全て質量%を示す。   EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In Examples, “%” means “% by mass” unless otherwise specified.

〔実施例1〕
1.7%水酸化ナトリウム水溶液13430gにオキシ塩化チタン(TiO2=27.9%、Cl=32.7%)500gを撹拌下でローラーポンプを用いて約30分かけて添加した。得られた中和ゲルをろ液ECが1.1mS/cmになるまで限外ろ過洗浄を行い、中和ゲルの洗浄物を得た(TiO2=3.8%、pH=11.4、EC=1.17ms/cm)。この洗浄物3290gに純水439gと35%塩酸を170.4g添加した。この溶液を60℃に加温し、20分経過した時点で25%アンモニア水溶液を101.5g添加した。これをろ液ECが50μS/cmになるまで限外ろ過洗浄を行い、ルチル型結晶構造を持つ酸化チタンゲルを得た(TiO2=9.6%)。この酸化チタンゲル1078gに純水216gと35%塩酸203gとフェニルホスホン酸2.1gを添加し、90℃で3時間、撹拌下で加熱した。ここで得られた溶液をろ液ECが1mS/cmになるまで限外洗浄を行い、ルチル型酸化チタンゾルを得た。
[Example 1]
To 13430 g of a 1.7% aqueous sodium hydroxide solution, 500 g of titanium oxychloride (TiO 2 = 27.9%, Cl = 32.7%) was added over about 30 minutes with stirring using a roller pump. The obtained neutralized gel was subjected to ultrafiltration washing until the filtrate EC became 1.1 mS / cm, and a washed product of the neutralized gel was obtained (TiO 2 = 3.8%, pH = 11.4, EC = 1.17 ms / cm). To 3290 g of this washed product, 439 g of pure water and 170.4 g of 35% hydrochloric acid were added. This solution was heated to 60 ° C., and when 1.5 minutes had passed, 101.5 g of a 25% aqueous ammonia solution was added. This was subjected to ultrafiltration washing until the filtrate EC reached 50 μS / cm to obtain a titanium oxide gel having a rutile crystal structure (TiO 2 = 9.6%). To 1078 g of this titanium oxide gel, 216 g of pure water, 203 g of 35% hydrochloric acid and 2.1 g of phenylphosphonic acid were added and heated at 90 ° C. for 3 hours with stirring. The solution obtained here was subjected to ultracleaning until the filtrate EC reached 1 mS / cm to obtain a rutile-type titanium oxide sol.

〔実施例2〕
実施例1で得られたルチル型酸化チタンゾル238gにオキシ塩化ジルコニウム水溶液(ZrO2=20.2%)30gを添加し、約98℃で撹拌しながら3時間加熱した後、ろ液ECが1mS/cmになるまで限外洗浄することで、ジルコニウム化合物で表面修飾されたルチル型酸化チタンゾルを得た。
[Example 2]
After adding 30 g of zirconium oxychloride aqueous solution (ZrO 2 = 20.2%) to 238 g of the rutile-type titanium oxide sol obtained in Example 1 and heating at about 98 ° C. for 3 hours, the filtrate EC was reduced to 1 mS / cm. By performing ultra-cleaning until the end, a rutile-type titanium oxide sol surface-modified with a zirconium compound was obtained.

〔実施例3〕
実施例2で得られたジルコニウム化合物で表面修飾されたルチル型酸化チタンゾル22gにフェニルホスホン酸を0.074g添加し、超音波処理を5分行うことでフェニルホスホン酸を溶解させた。これにメタノール22gを添加し、エバポレーターで液量が約22gになるまで減圧濃縮を行い、この残液と同量のメタノールを添加し、さらに減圧濃縮した。同様の操作を繰り返し行い(減圧濃縮回数として合計5回)、メタノール分散型のジルコニウム化合物で表面修飾されたルチル型酸化チタンゾルを得た。
Example 3
0.074 g of phenylphosphonic acid was added to 22 g of the rutile-type titanium oxide sol surface-modified with the zirconium compound obtained in Example 2, and ultrasonic treatment was performed for 5 minutes to dissolve the phenylphosphonic acid. To this was added 22 g of methanol, and the mixture was concentrated under reduced pressure with an evaporator until the liquid volume became about 22 g. The same amount of methanol as this residual liquid was added, and further concentrated under reduced pressure. The same operation was repeated (total number of times of vacuum concentration was 5 times) to obtain a rutile-type titanium oxide sol surface-modified with a methanol-dispersed zirconium compound.

〔比較例1〕
実施例1と同様にして得られたルチル型結晶構造を持つ酸化チタンゲル(TiO2=9.6%)200gに純水40gと35%塩酸36gとシュウ酸2水和物0.3g添加した。その溶液を90℃で3時間、撹拌下で加熱したが、透明性がほとんど無いスラリー状の外観となり、ゾルは得られなかった。尚、下記の方法により測定したHazeは90%以上であった。
[Comparative Example 1]
40 g of pure water, 36 g of 35% hydrochloric acid and 0.3 g of oxalic acid dihydrate were added to 200 g of a titanium oxide gel (TiO 2 = 9.6%) having a rutile crystal structure obtained in the same manner as in Example 1. The solution was heated with stirring at 90 ° C. for 3 hours, but a slurry-like appearance with almost no transparency was obtained, and a sol was not obtained. In addition, Haze measured by the following method was 90% or more.

〔比較例2〕
実施例1と同様にして得られたルチル型結晶構造を持つ酸化チタンゲル(TiO2=9.6%)200gに純水40gと35%塩酸36gと85%リン酸0.27g添加した。その溶液を90℃で3時間、撹拌下で加熱したが、透明性がほとんど無いスラリー状の外観となり、ゾルは得られなかった。尚、下記の方法により測定したHazeは90%以上であった。
[Comparative Example 2]
40 g of pure water, 36 g of 35% hydrochloric acid and 0.27 g of 85% phosphoric acid were added to 200 g of a titanium oxide gel having a rutile crystal structure (TiO 2 = 9.6%) obtained in the same manner as in Example 1. The solution was heated with stirring at 90 ° C. for 3 hours, but a slurry-like appearance with almost no transparency was obtained, and a sol was not obtained. In addition, Haze measured by the following method was 90% or more.

〔比較例3〕
実施例1と同様にして得られたルチル型結晶構造を持つ酸化チタンゲル(TiO2=9.6%)200gに純水40gと35%塩酸36gとクエン酸1水和物0.5g添加した。その溶液を90℃で3時間、撹拌下で加熱したが、透明性がほとんど無いスラリー状の外観となり、ゾルは得られなかった。尚、下記の方法により測定したHazeは90%以上であった。
[Comparative Example 3]
40 g of pure water, 36 g of 35% hydrochloric acid and 0.5 g of citric acid monohydrate were added to 200 g of titanium oxide gel having a rutile crystal structure (TiO 2 = 9.6%) obtained in the same manner as in Example 1. The solution was heated with stirring at 90 ° C. for 3 hours, but a slurry-like appearance with almost no transparency was obtained, and a sol was not obtained. In addition, Haze measured by the following method was 90% or more.

〔比較例4〕
実施例1と同様にして得られたルチル型結晶構造を持つ酸化チタンゲル(TiO2=9.6%)200gに純水40gと35%塩酸36gを添加した。その溶液を90℃で3時間、撹拌下で加熱したが、透明性がほとんど無いスラリー状の外観となり、ゾルは得られなかった。尚、下記の方法により測定したHazeは90%以上であった。
[Comparative Example 4]
40 g of pure water and 36 g of 35% hydrochloric acid were added to 200 g of a titanium oxide gel having a rutile crystal structure (TiO 2 = 9.6%) obtained in the same manner as in Example 1. The solution was heated with stirring at 90 ° C. for 3 hours, but a slurry-like appearance with almost no transparency was obtained, and a sol was not obtained. In addition, Haze measured by the following method was 90% or more.

〈分析〉
[結晶構造]
実施例1で得られたゾルを100℃で乾燥させた後、島津製作所(株)製 X線回折装置 XRD-7000で測定して解析した。
そのXRDパターンを図1に示した。図1より、酸化チタンの結晶形として、ルチル型のみが検出されたことが分かった。
<analysis>
[Crystal structure]
The sol obtained in Example 1 was dried at 100 ° C., and then measured and analyzed with an X-ray diffractometer XRD-7000 manufactured by Shimadzu Corporation.
The XRD pattern is shown in FIG. From FIG. 1, it was found that only the rutile type was detected as the crystal form of titanium oxide.

[成分分析]
実施例1〜3で得られたゾルについて、ゾルを乾燥後800℃焼成で得られた焼成固形分濃度と、ゾルを乾燥後、フィリップス製 蛍光X線分析装置 PW-2400で測定した値とを用いて、TiO2濃度及びZrO2濃度を計算した。また、有機リン酸/TiO2のモル比は蛍光X線分析のPとTiの値から計算した。
[Component analysis]
About the sol obtained in Examples 1 to 3, the calcination solid content concentration obtained by drying at 800 ° C. after drying the sol, and the value measured by Philips X-ray fluorescence analyzer PW-2400 after drying the sol Used to calculate TiO 2 concentration and ZrO 2 concentration. The molar ratio of organophosphoric acid / TiO 2 was calculated from the values of P and Ti in X-ray fluorescence analysis.

[平均分散粒子径]
実施例1、2で得られたゾルについては純水、実施例3で得られたゾルについてはメタノールで、TiO2濃度1%に希釈した後、堀場製作所製 動的光散乱式粒度分布測定装置 LB-500で測定した。
[Average dispersion particle size]
The sol obtained in Examples 1 and 2 was purified with pure water, and the sol obtained in Example 3 was diluted with methanol to a TiO 2 concentration of 1%. Measured with LB-500.

[Haze]
実施例1、2で得られたゾル及び比較例1〜4で得られたスラリーについては純水、実施例3で得られたゾルについてはメタノールで、固形分濃度として1%に希釈した後、日本電色工業製 ヘーズメーター COH400で測定した。
[Haze]
The sol obtained in Examples 1 and 2 and the slurry obtained in Comparative Examples 1 to 4 were purified with pure water, the sol obtained in Example 3 was diluted with methanol, and the solid content concentration was 1%. It measured with Nippon Denshoku Industries haze meter COH400.

[安定性試験]
実施例1、2で得られたゾルは純水、実施例3で得られたゾルはメタノールでTiO2濃度5%に希釈した後、室温で1ヶ月保存した際の外観変化を観察した。変化が無かったものを○、増粘、沈殿が見られたものを×として評価した。
[Stability test]
The sols obtained in Examples 1 and 2 were pure water, and the sol obtained in Example 3 was diluted with methanol to a TiO 2 concentration of 5%, and then observed for appearance change when stored at room temperature for 1 month. The case where there was no change was evaluated as ○, and the case where thickening and precipitation were observed was evaluated as x.

Figure 2015182938
Figure 2015182938

Claims (7)

ルチル型酸化チタンと、分散剤として有機リン酸又はその誘導体とを含有し、pHが酸性であり、水を分散媒とすることを特徴とするルチル型酸化チタンゾル。
但し、前記ルチル型酸化チタンの結晶生成方法は、アルカリ水溶液と水溶性チタン化合物との反応をアルカリ性条件下で行うことによって得られる中和ゲルを洗浄後、無機酸存在下の酸性条件下で加熱する方法である。
A rutile-type titanium oxide sol comprising rutile-type titanium oxide and an organic phosphoric acid or a derivative thereof as a dispersant, having an acidic pH and water as a dispersion medium.
However, the rutile-type titanium oxide crystal is produced by washing the neutralized gel obtained by carrying out the reaction between the aqueous alkaline solution and the water-soluble titanium compound under alkaline conditions, and then heating under acidic conditions in the presence of an inorganic acid. It is a method to do.
前記ルチル型酸化チタンが、Zr、Si及びAlのうちの1種以上の元素を含有する化合物によって修飾されたものである請求項1記載のルチル型酸化チタンゾル。 The rutile type titanium oxide sol according to claim 1, wherein the rutile type titanium oxide is modified with a compound containing one or more elements of Zr, Si and Al. 平均分散粒子径が20〜70nmの範囲である請求項1又は2記載のルチル型酸化チタンゾル。 The rutile titanium oxide sol according to claim 1 or 2, wherein the average dispersed particle size is in the range of 20 to 70 nm. アルカリ水溶液と水溶性チタン化合物との反応によって得られるアルカリ性の中和ゲルを洗浄後、無機酸存在下の酸性条件下で加熱(加熱1)し、さらに必要に応じてアルカリ水溶液で中和し洗浄後に無機酸存在下の酸性条件下で加熱(加熱2)すること、
を含む、ルチル型酸化チタンゾルの製造方法であって、
加熱1及び/又は加熱2を有機リン酸又はその誘導体の存在下で行うことを特徴とする、ルチル型酸化チタンゾルの製造方法。
After washing the alkaline neutralized gel obtained by the reaction between the alkaline aqueous solution and the water-soluble titanium compound, the mixture is heated under acidic conditions in the presence of an inorganic acid (heating 1), and further neutralized and washed with an alkaline aqueous solution as necessary. Heating under acidic conditions in the presence of an inorganic acid (heating 2),
A method for producing a rutile-type titanium oxide sol, comprising:
A method for producing a rutile-type titanium oxide sol, wherein the heating 1 and / or the heating 2 are performed in the presence of an organic phosphoric acid or a derivative thereof.
請求項4記載のルチル型酸化チタンゾルの製造方法であって、前記有機リン酸又はその誘導体の存在下による加熱後に、Zr、Si及びAlのうちの1種以上の元素を含有する化合物を添加して、ルチル型酸化チタンをZr、Si及びAlのうちの1種以上の元素を含有する化合物によって修飾する、ルチル型酸化チタンゾルの製造方法。 The method for producing a rutile-type titanium oxide sol according to claim 4, wherein a compound containing one or more elements of Zr, Si and Al is added after heating in the presence of the organic phosphoric acid or a derivative thereof. A method for producing a rutile type titanium oxide sol, wherein the rutile type titanium oxide is modified with a compound containing one or more elements of Zr, Si and Al. 請求項1〜3のいずれか1項記載のルチル型酸化チタンゾルを溶媒置換により分散媒を有機溶媒に転換したルチル型酸化チタンゾル。 A rutile type titanium oxide sol obtained by converting the dispersion medium into an organic solvent by solvent substitution of the rutile type titanium oxide sol according to claim 1. 請求項1、2、3又は6記載のルチル型酸化チタンゾルを含有してなる薄膜形成用塗布液。 A coating solution for forming a thin film comprising the rutile-type titanium oxide sol according to claim 1, 2, 3 or 6.
JP2014062715A 2014-03-25 2014-03-25 Rutile-type titanium oxide sol and method for producing the same Active JP6300313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062715A JP6300313B2 (en) 2014-03-25 2014-03-25 Rutile-type titanium oxide sol and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062715A JP6300313B2 (en) 2014-03-25 2014-03-25 Rutile-type titanium oxide sol and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015182938A true JP2015182938A (en) 2015-10-22
JP6300313B2 JP6300313B2 (en) 2018-03-28

Family

ID=54349891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062715A Active JP6300313B2 (en) 2014-03-25 2014-03-25 Rutile-type titanium oxide sol and method for producing the same

Country Status (1)

Country Link
JP (1) JP6300313B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170275A1 (en) 2016-03-31 2017-10-05 日産化学工業株式会社 Inorganic oxide microparticles having amphiphilic organic silane compound bonded thereto, organic solvent dispersion thereof, and composition for film formation
CN109338454A (en) * 2018-09-26 2019-02-15 浙江凯色丽科技发展有限公司 The preparation method of the siliceous titanium dioxide crystal whisker of rutile-type
CN114072358A (en) * 2019-05-14 2022-02-18 帝化株式会社 Titanium oxide powder and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155622A (en) * 2007-12-07 2009-07-16 Nippon Shokubai Co Ltd Polymer-coated metal oxide particulate water-dispersing element, and cosmetic using the same
JP2011148668A (en) * 2010-01-25 2011-08-04 Jsr Corp Metal oxide particle dispersion, metal oxide particle-containing composition and film formed using the same, and photoelectric conversion element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155622A (en) * 2007-12-07 2009-07-16 Nippon Shokubai Co Ltd Polymer-coated metal oxide particulate water-dispersing element, and cosmetic using the same
JP2011148668A (en) * 2010-01-25 2011-08-04 Jsr Corp Metal oxide particle dispersion, metal oxide particle-containing composition and film formed using the same, and photoelectric conversion element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170275A1 (en) 2016-03-31 2017-10-05 日産化学工業株式会社 Inorganic oxide microparticles having amphiphilic organic silane compound bonded thereto, organic solvent dispersion thereof, and composition for film formation
KR20180128899A (en) 2016-03-31 2018-12-04 닛산 가가쿠 가부시키가이샤 An inorganic oxide fine particle to which an amphipathic organosilane compound is bonded, an organic solvent dispersion thereof, and a film-forming composition
US10669426B2 (en) 2016-03-31 2020-06-02 Nissan Chemical Industries, Ltd. Inorganic oxide microparticles having amphiphilic organic silane compound bonded thereto, organic solvent dispersion thereof, and composition for film formation
CN109338454A (en) * 2018-09-26 2019-02-15 浙江凯色丽科技发展有限公司 The preparation method of the siliceous titanium dioxide crystal whisker of rutile-type
CN114072358A (en) * 2019-05-14 2022-02-18 帝化株式会社 Titanium oxide powder and method for producing same
CN114072358B (en) * 2019-05-14 2023-10-24 帝化株式会社 Titanium oxide powder and method for producing same

Also Published As

Publication number Publication date
JP6300313B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
TWI464119B (en) Method for producing titanium oxide sol
JP5126783B2 (en) Method for producing rutile type titanium oxide fine particles
JP4922040B2 (en) Metal oxide fine particle aqueous dispersion and method for producing the same
CN107250289B (en) The organic solvent dispersion and its manufacturing method of titan oxide particles
JP5441264B2 (en) Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate
JP4606385B2 (en) Method for producing alkali-type titanium oxide sol
KR20170048404A (en) Organic solvent dispersion of zirconium oxide particles and method for producing same
CN107250047B (en) Method for producing organic solvent dispersion of titanium oxide particles
JP6300313B2 (en) Rutile-type titanium oxide sol and method for producing the same
KR101887052B1 (en) Method for producing rutile-type titanium oxide sol
JPWO2008056744A1 (en) Method for producing coating agent exhibiting photocatalytic activity and coating agent obtained thereby
JP6025253B2 (en) Process for producing transition metal-supported alkaline rutile titanium oxide sol
JP2009179521A (en) Method for producing rutile type titanium oxide fine particle
EP3377446A1 (en) Concentrated photoactive, neutral titanium dioxide sol
JP5625929B2 (en) Method for producing silica-containing hydrous titanium oxide and silica-containing anatase-type titanium oxide
JP2016193801A (en) Method for producing titanium oxide sol doped with niobium and/or tantalum
JP2003095657A (en) Titanium oxide sol dispersed in organic solvent and method of manufacturing it
JP6076019B2 (en) Alkaline rutile type titanium oxide sol
CN105849049A (en) Method for producing barium titanate powder
JP2011190152A (en) Amorphous titania sol and method for producing the same
JP5897995B2 (en) Alkaline anatase titania sol and method for producing the same
JP5995009B2 (en) Method for producing rutile type titanium oxide sol
JP6362167B2 (en) Coated titanium oxide sol
JP2005350309A (en) Manufacturing method of yttoria sol
JP2011026154A (en) Anatase type titanium dioxide particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180222

R150 Certificate of patent or registration of utility model

Ref document number: 6300313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250