JP2015180490A - Three-way catalyst, and clarification method of methane-containing gas using the same - Google Patents

Three-way catalyst, and clarification method of methane-containing gas using the same Download PDF

Info

Publication number
JP2015180490A
JP2015180490A JP2015003472A JP2015003472A JP2015180490A JP 2015180490 A JP2015180490 A JP 2015180490A JP 2015003472 A JP2015003472 A JP 2015003472A JP 2015003472 A JP2015003472 A JP 2015003472A JP 2015180490 A JP2015180490 A JP 2015180490A
Authority
JP
Japan
Prior art keywords
methane
catalyst
oxide
way catalyst
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015003472A
Other languages
Japanese (ja)
Other versions
JP6448371B2 (en
Inventor
大塚 浩文
Hirofumi Otsuka
浩文 大塚
弘樹 藤田
Hiroki Fujita
弘樹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015003472A priority Critical patent/JP6448371B2/en
Publication of JP2015180490A publication Critical patent/JP2015180490A/en
Application granted granted Critical
Publication of JP6448371B2 publication Critical patent/JP6448371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-way catalyst excellent in low-temperature performance, having high sulfur poisoning resistivity, and also excellent in methane removal performance even on the lean side.SOLUTION: There is provided a three-way catalyst constituted by carrying ruthenium and platinum on an inorganic oxide carrier mainly composed of zirconium oxide of a monoclinic crystal, for removing reductively a nitrogen oxide by using methane as reducing power, in a three-way catalyst reaction treatment of methane-containing gas containing carbon monoxide, nitrogen oxide and methane which is generated by combustion of gas in which combustion air to a fuel is adjusted at a theoretical air-fuel ratio.

Description

本発明は、例えば、燃料に対する燃焼用空気が理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスの三元触媒反応処理を行う技術に関する。   The present invention is, for example, a technique for performing a three-way catalytic reaction treatment of a methane-containing gas containing carbon monoxide, nitrogen oxides, and methane, which is generated by combustion of a gas whose combustion air for fuel is adjusted to a stoichiometric air-fuel ratio. About.

エンジン等の内燃機関の排ガス中には、窒素酸化物や一酸化炭素、さらには炭化水素が含まれる。これらの成分は大気中にそのまま放出すると環境等の観点から問題があるので、三元触媒を用いて排ガスから上記3成分を除去する排ガス浄化方法(三元触媒法)が広く普及している。   The exhaust gas of an internal combustion engine such as an engine contains nitrogen oxides, carbon monoxide, and hydrocarbons. If these components are released into the atmosphere as they are, there is a problem from the viewpoint of the environment and the like, and therefore, an exhaust gas purification method (three-way catalyst method) that removes the three components from the exhaust gas using a three-way catalyst is widely used.

三元触媒法とは、排ガスの空燃比を制御して排ガス中の酸化性成分と還元性成分とを釣り合わせた上で、白金やロジウムを含む触媒(三元触媒)に排ガスを通じて、窒素酸化物、一酸化炭素、および炭化水素の同時除去を図るものである。   The three-way catalyst method controls the air-fuel ratio of exhaust gas and balances the oxidizing component and reducing component in the exhaust gas, and then oxidizes nitrogen through the exhaust gas to a catalyst containing platinum or rhodium (three-way catalyst). It is intended to remove substances, carbon monoxide, and hydrocarbons simultaneously.

三元触媒を用いた排ガスの浄化方法は、ガソリン自動車の排ガス浄化に適用され、自動車排ガスからの窒素酸化物低減に多大な効果をもたらした。三元触媒法をガソリン自動車排ガスに適用した場合、空燃比(空気過剰率)λ=1.000およびその近辺では、窒素酸化物、一酸化炭素、および炭化水素のいずれの成分も良好に除去できる。   The exhaust gas purification method using a three-way catalyst has been applied to exhaust gas purification of gasoline automobiles, and has had a great effect on reducing nitrogen oxides from automobile exhaust gas. When the three-way catalyst method is applied to gasoline automobile exhaust gas, any component of nitrogen oxides, carbon monoxide, and hydrocarbons can be satisfactorily removed at and near the air-fuel ratio (excess air ratio) λ = 1.000. .

しかし三元触媒を用いた排ガス浄化方法では、λ=1.000よりもリーン(燃料希薄すなわち酸素過剰)側の空燃比では、一酸化炭素や炭化水素の浄化率は高く維持されるが、窒素酸化物の除去率が低下する傾向が知られている。一方、λ=1.000よりもリッチ(燃料過剰すなわち酸素不足)側の空燃比では、窒素酸化物の浄化率は高いが、一酸化炭素や炭化水素の浄化率は低下する傾向が知られている。リーンおよびリッチ側に傾いた空燃比で浄化性能が低下するのは、酸化性成分と還元性成分のバランスが崩れるためと考えられる。   However, in the exhaust gas purification method using a three-way catalyst, the purification rate of carbon monoxide and hydrocarbons is maintained high at an air-fuel ratio on the lean (fuel lean or oxygen excess) side of λ = 1.000, but nitrogen There is a known tendency for the oxide removal rate to decrease. On the other hand, at an air-fuel ratio on the rich side (excessive fuel, that is, oxygen shortage) than λ = 1.000, the purification rate of nitrogen oxides is high, but the purification rate of carbon monoxide and hydrocarbons tends to decrease. Yes. The reason why the purification performance decreases at the lean and rich air-fuel ratio is considered to be because the balance between the oxidizing component and the reducing component is lost.

三元触媒の使用目安となる、前記3種のガス成分をバランスよく除去できる空燃比の範囲を、一般的に「ウインドウ」と呼ぶ。
ガスエンジンの排ガスのように、排ガス中の炭化水素が主としてメタンである場合には、このウインドウ領域が非常に狭く、ガソリン排ガスと同種の触媒や使用条件では高い浄化率が得られないことも知られており、特にリーン側でもメタンの浄化率が低くなる特徴がある。これは、メタンが炭化水素の中で最も安定性の高い炭化水素で、反応性に乏しいことに起因していると考えられている。そこで、このような炭化水素に占めるメタンの割合の高い排ガスに対しても高い浄化率が得られるメタン主成分ガスの燃焼排ガス用三元触媒が開発されている(特許文献1、2)。
The range of the air-fuel ratio that can remove the three kinds of gas components in a well-balanced manner, which is a guideline for using the three-way catalyst, is generally called “window”.
It is also known that when the hydrocarbon in the exhaust gas is mainly methane, such as the exhaust gas of a gas engine, this window region is very narrow, and a high purification rate cannot be obtained with the same catalyst and operating conditions as gasoline exhaust gas. In particular, the lean side is characterized by a low methane purification rate. This is thought to be due to the fact that methane is the most stable hydrocarbon among the hydrocarbons and lacks reactivity. Therefore, a three-way catalyst for combustion exhaust gas of main component gas of methane has been developed that can obtain a high purification rate even for exhaust gas having a high proportion of methane in hydrocarbons (Patent Documents 1 and 2).

しかし、近年、エンジンのエネルギー変換効率が向上した結果、排ガスの温度が低温化する傾向にあり、従来の三元触媒では低温で十分な性能を得るには多量の触媒を要する懸念が生じつつあり、より低い温度でも使用できる高活性の三元触媒が求められている。
そのような状況に鑑みて、単斜晶の酸化ジルコニウムを主成分とする無機酸化物にイリジウムおよび白金を担持して構成され、理論空燃比でメタン含有ガス中のメタンを還元力として利用可能な三元触媒も提案されており、低温域における性能の向上やリーン側でも高いメタン酸化活性が得られることが示されている(特許文献3)。しかし、イリジウムは白金族金属の中で最も希少な金属で高価であることから、より資源量が多く安価な成分で十分な性能が得られる触媒が強く求められている。
However, in recent years, as a result of improving the energy conversion efficiency of the engine, the temperature of the exhaust gas tends to be lowered, and there is a concern that a conventional three-way catalyst requires a large amount of catalyst to obtain sufficient performance at a low temperature. Therefore, there is a need for a highly active three-way catalyst that can be used at lower temperatures.
In view of such a situation, iridium and platinum are supported on an inorganic oxide mainly composed of monoclinic zirconium oxide, and methane in a methane-containing gas can be used as a reducing power at a stoichiometric air-fuel ratio. A three-way catalyst has also been proposed, and it has been shown that high methane oxidation activity can be obtained even on the lean side with improved performance in a low temperature range (Patent Document 3). However, since iridium is the rarest metal among the platinum group metals and expensive, there is a strong demand for a catalyst that can provide sufficient performance with a less expensive component and a larger amount of resources.

単斜晶の酸化ジルコニウムを主成分とする無機酸化物にルテニウムおよび白金を担持した触媒が、酸素過剰(リーン)雰囲気において高いメタン酸化活性を示すことは知られている(特許文献4)。しかしながら、この触媒は、メタンを含有し酸素を大過剰に含む燃焼排ガス(体積基準として約2%以上であって且つ炭化水素などからなる還元性成分の酸化当量の約5倍以上の酸素が存在)中の炭化水素を浄化するものであって、理論空燃比(すなわち空気過剰率λ=1.000)近傍におけるメタン酸化活性や窒素酸化物除去性能については全く不明であった。付言すれば、酸素を大過剰に含む酸化雰囲気では、担持されたルテニウムや白金は酸化状態にあると推測されるのに対して、ほとんど酸素を含まない理論空燃比近傍の条件では、ルテニウムや白金は金属に近い状態にあると推測され、活性金属の化学状態が全く異なることから、一方の条件における反応性から、他方の条件における反応性を類推することは容易なことではない。   It is known that a catalyst in which ruthenium and platinum are supported on an inorganic oxide mainly composed of monoclinic zirconium oxide exhibits high methane oxidation activity in an oxygen-excess (lean) atmosphere (Patent Document 4). However, this catalyst is a combustion exhaust gas containing methane and containing a large excess of oxygen (about 2% or more on a volume basis and having oxygen more than about 5 times the oxidation equivalent of reducing components such as hydrocarbons) The methane oxidation activity and nitrogen oxide removal performance in the vicinity of the theoretical air-fuel ratio (that is, excess air ratio λ = 1.000) was completely unknown. In addition, in an oxidizing atmosphere containing a large excess of oxygen, the supported ruthenium and platinum are presumed to be in an oxidized state, whereas under conditions near the stoichiometric air-fuel ratio that hardly contains oxygen, ruthenium and platinum are assumed. Is presumed to be close to a metal, and the chemical state of the active metal is completely different. Therefore, it is not easy to infer the reactivity in one condition from the reactivity in one condition.

クエン酸を使用する特定の方法により、活性アルミナなどの無機質担体に白金およびロジウムの少なくとも1種とイリジウムおよびルテニウムの少なくとも1種とを併せて担持させた排気ガス浄化用触媒を製造する方法が開示されている(特許文献5参照)。この公報によれば、イリジウムおよび/またはルテニウムが、白金および/またはロジウムと融点の高い固溶体を形成するので、得られた触媒の耐熱性が向上するとされている。しかしながら、この公報は、得られた触媒のNOx転化率が改善されたことを示すのみで、排気ガスに含まれる炭化水素の中でも特に難分解性のメタンの酸化分解については、一切教示していない。   Disclosed is a method for producing an exhaust gas purification catalyst in which at least one of platinum and rhodium and at least one of iridium and ruthenium are supported on an inorganic support such as activated alumina by a specific method using citric acid. (See Patent Document 5). According to this publication, iridium and / or ruthenium forms a solid solution having a high melting point with platinum and / or rhodium, so that the heat resistance of the obtained catalyst is improved. However, this publication only shows that the NOx conversion rate of the obtained catalyst has been improved, and does not teach any oxidative decomposition of refractory methane, especially among hydrocarbons contained in exhaust gas. .

特開平5−23592号公報JP-A-5-23592 特開平7−313878公報Japanese Patent Laid-Open No. 7-313878 特開2006−181569号公報JP 2006-181569 A 特開2007−90331号公報JP 2007-90331 A 特開平3−98644号公報Japanese Patent Laid-Open No. 3-98644

つまり、いずれの技術においても、三元触媒の反応活性を容易に高く維持し、低温においても十分高い活性を発揮させるためには、尚も改良の余地があった。   That is, in any of the techniques, there is still room for improvement in order to maintain the reaction activity of the three-way catalyst easily high and exhibit sufficiently high activity even at low temperatures.

以上のような状況に鑑みて、本発明の目的とするところは、低温においても高い性能を維持できる高活性のメタン主成分ガスの燃焼排ガス用三元触媒を提供することにある。   In view of the above situation, an object of the present invention is to provide a highly active methane main component gas three-way catalyst for combustion exhaust gas capable of maintaining high performance even at low temperatures.

本発明者らが上記課題を解決するために鋭意研究した結果として見出した、この目的を達成するための本発明の三元触媒の特徴構成は、単斜晶の酸化ジルコニウムを主成分とする無機酸化物担体にルテニウムおよび白金を担持して構成され、燃料に対する燃焼用空気が理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスの三元触媒反応処理において、前記メタンを還元力として前記窒素酸化物の還元除去を行う点にある。尚、本明細書において、「理論空燃比」とは、空気量が理論空気量の0.990倍〜1.005倍(λ=0.990〜1.005)程度の範囲をいう。   The inventors of the present invention found out as a result of earnest research to solve the above-mentioned problems, and the characteristic configuration of the three-way catalyst of the present invention for achieving this purpose is an inorganic material mainly composed of monoclinic zirconium oxide. Composed of ruthenium and platinum supported on an oxide carrier, combustion air for fuel is generated by combustion of a gas adjusted to the theoretical air-fuel ratio, and a methane-containing gas containing carbon monoxide, nitrogen oxides and methane In the three-way catalytic reaction treatment, the nitrogen oxide is reduced and removed using the methane as a reducing power. In this specification, “theoretical air-fuel ratio” refers to a range in which the air amount is about 0.990 times to 1.005 times (λ = 0.990 to 1.005) the theoretical air amount.

上記特徴構成において、ルテニウムの担持量は、無機酸化物担体の質量に対して0.1〜0.5%であることが好ましい。また、白金の担持量が前記無機酸化物担体に対する質量基準で0.5〜5%であることが好ましい。
無機酸化物担体中に単斜晶の酸化ジルコニウムが50質量%より多く含まれることが好ましい。
In the above-described characteristic configuration, the amount of ruthenium supported is preferably 0.1 to 0.5% with respect to the mass of the inorganic oxide support. Moreover, it is preferable that the supported amount of platinum is 0.5 to 5% on the mass basis with respect to the inorganic oxide support.
The inorganic oxide support preferably contains more than 50% by mass of monoclinic zirconium oxide.

なお、本発明において「主成分とする」とは、構成材料としての材料Xを主たる有効成分の一つとしていることをいい、必要に応じて添加剤を添加していてもよく、その材料Xのもつ特性が現れていれば、配合割合に特に制限はなく、材料X単独では、必ずしも、混合物中で最も多い材料である必要はなく、好ましくは50%以上が材料Xから構成されることが好ましいが、それ以下であってもよい。   In the present invention, “main component” means that the material X as a constituent material is one of the main active ingredients, and an additive may be added as necessary. As long as the characteristics possessed by the material appear, the blending ratio is not particularly limited, and the material X alone does not necessarily need to be the most abundant material in the mixture, and preferably 50% or more is composed of the material X. Although it is preferable, it may be less.

この目的を達成するための本発明のメタン含有ガスの浄化方法の特徴手段は、理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスを、単斜晶の酸化ジルコニウムを主成分とする無機酸化物担体にルテニウムおよび白金を担持して構成される三元触媒に接触させ、前記メタン含有ガス中のメタンを還元力として利用して、前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンを三元触媒反応により除去する点にある。   In order to achieve this object, the characteristic means of the method for purifying a methane-containing gas of the present invention is a methane-containing gas generated by combustion of a gas adjusted to a stoichiometric air-fuel ratio and containing carbon monoxide, nitrogen oxides, and methane. Is contacted with a three-way catalyst constituted by supporting ruthenium and platinum on an inorganic oxide support mainly composed of monoclinic zirconium oxide, and using methane in the methane-containing gas as a reducing power, The point is that carbon monoxide, nitrogen oxides, and methane in the methane-containing gas are removed by a three-way catalytic reaction.

上記特徴手段において、前記メタン含有ガスの空燃比を、λ=0.998〜1.000に調整して前記三元触媒に接触させることが好ましい。
又、前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンの除去反応を、400℃〜550℃で行うことが好ましい。
In the above characteristic means, it is preferable that the air-fuel ratio of the methane-containing gas is adjusted to λ = 0.998 to 1.000 and brought into contact with the three-way catalyst.
Moreover, it is preferable to perform the removal reaction of carbon monoxide, nitrogen oxides, and methane in the methane-containing gas at 400 ° C to 550 ° C.

本発明の触媒は、単斜晶の酸化ジルコニウムを主成分とする無機酸化物担体にルテニウムおよび白金を担持して構成された資源量が多く安価な成分で成り、燃料に対する燃焼用空気が理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスの三元触媒反応処理において、前記メタンを還元力として前記窒素酸化物の還元除去を行う。これにより、反応性の乏しいメタンが炭化水素の大部分を占める天然ガス燃焼排ガスのような排ガスに対しても、低温で高い性能を示し、窒素酸化物、一酸化炭素および炭化水素の浄化率を高く保つことができるとともに、硫黄酸化物の存在下でも性能低下が小さい。   The catalyst of the present invention is composed of a low-resource component with a large amount of resources that is formed by supporting ruthenium and platinum on an inorganic oxide carrier mainly composed of monoclinic zirconium oxide, and the combustion air for the fuel is theoretically empty. In a three-way catalytic reaction treatment of a methane-containing gas containing carbon monoxide, nitrogen oxides and methane generated by combustion of a gas adjusted to the fuel ratio, the nitrogen oxides are reduced and removed using the methane as a reducing power. . As a result, it exhibits high performance at low temperatures even for exhaust gases such as natural gas combustion exhaust gas, in which methane, which has a low reactivity, occupies the majority of hydrocarbons, and improves the purification rate of nitrogen oxides, carbon monoxide and hydrocarbons. It can be kept high, and performance degradation is small even in the presence of sulfur oxides.

従来の三元触媒の浄化性能を示す図である。It is a figure which shows the purification performance of the conventional three-way catalyst. 本発明の三元触媒の浄化性能を示す図である。It is a figure which shows the purification performance of the three-way catalyst of this invention.

以下に本発明の実施の形態を説明する。
本発明の触媒は、単斜晶の酸化ジルコニウムを主成分とする無機酸化物担体にルテニウムおよび白金を担持して構成され、燃料に対する燃焼用空気が理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスの三元触媒反応処理において、前記メタンを還元力として前記窒素酸化物の還元除去を行う三元触媒である。
Embodiments of the present invention will be described below.
The catalyst of the present invention is constituted by supporting ruthenium and platinum on an inorganic oxide carrier mainly composed of monoclinic zirconium oxide, and is generated by combustion of gas in which combustion air for fuel is adjusted to a theoretical air-fuel ratio. In the three-way catalytic reaction treatment of a methane-containing gas containing carbon monoxide, nitrogen oxides, and methane, the three-way catalyst performs reduction removal of the nitrogen oxides using the methane as a reducing power.

この三元触媒は、単斜晶の酸化ジルコニウムを主成分とする無機酸化物担体に、ルテニウムおよび白金のイオンを含む溶液を含浸し、乾燥、焼成することによって得られる。
担体の比表面積は、あまりに低いと担持されたルテニウムおよび白金を高分散に保つことができなくなる一方、あまりに高表面積でも、不安定となって使用中に担体の焼結が進行するおそれがある。従って、2〜90m2/gの範囲とするのがよく、より好ましくは、5〜60m2/gの範囲である。
This three-way catalyst is obtained by impregnating an inorganic oxide carrier mainly composed of monoclinic zirconium oxide with a solution containing ruthenium and platinum ions, followed by drying and firing.
If the specific surface area of the support is too low, the supported ruthenium and platinum cannot be kept highly dispersed. On the other hand, if the specific surface area is too high, the support may become unstable and sintering of the support may proceed during use. Therefore, it is good to set it as the range of 2-90 m < 2 > / g, More preferably, it is the range of 5-60 m < 2 > / g.

このような条件を満たす単斜晶の酸化ジルコニウムとしては、市販の触媒担体用酸化ジルコニウムを用いても良く、または市販の水酸化ジルコニウムを600〜1000℃で焼成して用いても良い。尚、酸化ジルコニウムには、調製条件並びに添加物の有無およびその量により、単斜晶、正方晶、立方晶のものが存在することが知られている。
本発明の三元触媒で用いる担体は、正方晶、立方晶の酸化ジルコニウムを含んでいてもよいが、単斜晶の酸化ジルコニウムを主成分とする必要がある。本発明の場合、主成分としての単斜晶の酸化ジルコニウムの酸化ジルコニウム以外の成分を含めた担体に占める割合が、質量基準で50%より多く含まれていると理論空燃比近傍での窒素酸化物浄化率が高く、更に、前記単斜晶の酸化ジルコニウムの割合が質量基準で60%より多く含まれると、一層、理論空燃比近傍での窒素酸化物浄化率が向上するので好ましい。
As monoclinic zirconium oxide satisfying such conditions, commercially available zirconium oxide for catalyst supports may be used, or commercially available zirconium hydroxide may be calcined at 600 to 1000 ° C. Zirconium oxide is known to be monoclinic, tetragonal, or cubic depending on the preparation conditions, the presence or absence of additives, and the amount thereof.
The support used in the three-way catalyst of the present invention may contain tetragonal or cubic zirconium oxide, but it must contain monoclinic zirconium oxide as a main component. In the case of the present invention, if the proportion of monoclinic zirconium oxide as a main component in the support including components other than zirconium oxide is more than 50% on a mass basis, nitrogen oxidation in the vicinity of the theoretical air-fuel ratio is performed. When the ratio of the monoclinic zirconium oxide is more than 60% on a mass basis, the nitrogen oxide purification ratio near the stoichiometric air-fuel ratio is further improved.

担体は、酸化ジルコニウム以外の成分として、酸化セリウム、酸化アルミニウム(アルミナ)などを含んでいてもよい。特に酸化セリウムは、酸素貯蔵能があるため、空燃比が変動する条件で安定した浄化性能を発揮する上で効果が高い。しかし、低温で高い浄化性能を得るためには、これらの含有率は質量基準で20%以下とすることが好ましい。
ルテニウムおよび白金の含浸は、これらの金属の水溶性化合物を純水に溶解することにより調製した水溶液を用いて行っても良く、或いはアセチルアセトナト錯体などの有機金属化合物をアセトンなどの有機溶媒に溶解した有機溶媒溶液を用いて行っても良い。
水溶性化合物としては、塩化ルテニウム、硝酸ルテニウム、ヘキサアンミンルテニウム硝酸塩、塩化白金酸(ヘキサクロロ白金酸)、テトラアンミン白金硝酸塩などが例示される。水のみでは所望の濃度の溶液が得られない場合は、必要に応じて塩酸、硝酸やアンモニア水を添加して溶液を調製してもよい。
また、有機金属化合物としては、トリス(アセチルアセトナト)ルテニウム、ビス(アセチルアセトナト)白金などが例示される。
含浸操作において、金属化合物の種類によっては、混合により沈殿を生じることがある。この様な場合には、担体に対し、順次異なる金属を担持させても良い。例えば、担体に第一の活性成分を担持し、必要ならば、乾燥した後或いは乾燥および仮焼した後、第二の活性成分の担持操作を行うことができる。
The carrier may contain cerium oxide, aluminum oxide (alumina) or the like as a component other than zirconium oxide. In particular, since cerium oxide has an oxygen storage capacity, it is highly effective in exhibiting stable purification performance under conditions where the air-fuel ratio varies. However, in order to obtain high purification performance at a low temperature, the content is preferably 20% or less on a mass basis.
The impregnation of ruthenium and platinum may be performed using an aqueous solution prepared by dissolving a water-soluble compound of these metals in pure water, or an organometallic compound such as an acetylacetonato complex in an organic solvent such as acetone. You may carry out using the melt | dissolved organic solvent solution.
Examples of water-soluble compounds include ruthenium chloride, ruthenium nitrate, hexaammineruthenium nitrate, chloroplatinic acid (hexachloroplatinic acid), and tetraammineplatinum nitrate. If a solution having a desired concentration cannot be obtained with water alone, a solution may be prepared by adding hydrochloric acid, nitric acid or aqueous ammonia as necessary.
Examples of organometallic compounds include tris (acetylacetonato) ruthenium and bis (acetylacetonato) platinum.
In the impregnation operation, depending on the type of the metal compound, precipitation may occur due to mixing. In such a case, different metals may be sequentially supported on the carrier. For example, the first active ingredient can be supported on a carrier, and if necessary, the second active ingredient can be supported after drying or after drying and calcination.

白金の担持量は、少なすぎると三元触媒活性が低く、また多すぎると白金の粒径が大きくなり担持量に見合った性能が得られなくなり、経済性に劣る。よって、好ましくは担体の質量に対して0.5〜5%とする。
ルテニウムの担持量は、少なすぎると三元触媒活性が低く、また多すぎてもルテニウムの粒径が大きくなり担持量に見合った性能も得られなくなり、経済性に劣る。よって、好ましくは担体の質量に対して0.1〜0.5%とする。
担持された白金とルテニウムの質量比は、通常20:1〜2:1程度で、好ましくは15:1〜5:1程度である。
含浸時間は、所定の担持量が確保される限り、特に制限されないが、通常1〜50時間程度、好ましくは3〜20時間程度である。
次いで、所定の金属成分を担持させた担体を、必要に応じて蒸発乾固または乾燥させた後、焼成する。
焼成は、空気の流通下に行えばよい。或いは、空気あるいは酸素と窒素などの不活性ガスとを適宜混合したガスなどの酸化性ガス流通下において行っても良い。
焼成温度は、高すぎる場合には、担持された金属の粒成長が進んで高い活性が得られない。また特にルテニウムは高温で高酸化数の気体状酸化物を形成して揮散する恐れがある。逆に低すぎる場合には、焼成が十分に行われないので、触媒の使用中に担持された金属粒子が粗大化して、安定した活性が得られないおそれがある。従って、安定して高い触媒活性を得るためには、焼成温度は、450〜650℃程度とすることが好ましく、約500〜600℃程度とすることがより好ましい。
焼成時間は、特に制限されないが、通常1〜50時間程度であり、好ましくは3〜10時間程度である。
If the supported amount of platinum is too small, the three-way catalytic activity is low, and if it is too large, the particle size of platinum becomes large and performance corresponding to the supported amount cannot be obtained, resulting in poor economic efficiency. Therefore, it is preferably 0.5 to 5% with respect to the mass of the carrier.
If the supported amount of ruthenium is too small, the three-way catalyst activity is low, and if it is too large, the particle size of ruthenium becomes large and performance corresponding to the supported amount cannot be obtained, resulting in poor economic efficiency. Therefore, it is preferably 0.1 to 0.5% with respect to the mass of the carrier.
The mass ratio of supported platinum and ruthenium is usually about 20: 1 to 2: 1, preferably about 15: 1 to 5: 1.
The impregnation time is not particularly limited as long as a predetermined loading amount is ensured, but is usually about 1 to 50 hours, preferably about 3 to 20 hours.
Next, the carrier carrying the predetermined metal component is evaporated to dryness or dried as necessary, and then fired.
Firing may be performed under air circulation. Or you may carry out in oxidizing gas circulation, such as air or the gas which mixed oxygen and inert gas, such as nitrogen, suitably.
If the firing temperature is too high, grain growth of the supported metal proceeds and high activity cannot be obtained. In particular, ruthenium may vaporize by forming a gaseous oxide having a high oxidation number at a high temperature. On the other hand, if it is too low, the calcination is not performed sufficiently, so that the metal particles supported during the use of the catalyst may become coarse and stable activity may not be obtained. Therefore, in order to stably obtain a high catalytic activity, the calcination temperature is preferably about 450 to 650 ° C., more preferably about 500 to 600 ° C.
The firing time is not particularly limited, but is usually about 1 to 50 hours, preferably about 3 to 10 hours.

本発明の三元触媒は、その形状を、ペレット状やハニカム状など任意の形状に成型して用いても良い。例えば、コージェライトなどの耐火性ハニカム上にウオッシュコートしたりして用いてもよく、このようにすることで、圧力損失を低減することができる。
耐火性ハニカム上にウオッシュコートする場合には、上記の方法で調製した三元触媒に必要に応じて酸化ジルコニウムゾルなどを加えてスラリー状にしてウオッシュコートしても、あらかじめ担体を同様の方法で耐火性ハニカム上にウオッシュコートしてから上記の方法に従ってルテニウムおよび白金を担持してもよい。
The three-way catalyst of the present invention may be used by molding its shape into an arbitrary shape such as a pellet shape or a honeycomb shape. For example, a wash-resistant honeycomb such as cordierite may be used as a wash coat, and pressure loss can be reduced by doing so.
When wash-coating on a fire-resistant honeycomb, the carrier can be preliminarily treated in the same manner by adding a zirconium oxide sol or the like to the three-way catalyst prepared by the above method to make a slurry. Ruthenium and platinum may be supported according to the above method after wash-coating on the fire-resistant honeycomb.

コージェライトにウオッシュコートする場合の三元触媒のコート量は、コージェライト1リットルあたり、無機酸化物担体として50〜300g、ルテニウムとして0.05〜1.5g、白金として0.25〜15gとするのが良く、より好ましくは、無機酸化物担体として100〜250g、ルテニウムとして0.1〜1.25g、白金として0.5〜12.5gの範囲とする。   When the cordierite is wash-coated, the coating amount of the three-way catalyst is 50 to 300 g as an inorganic oxide support, 0.05 to 1.5 g as ruthenium, and 0.25 to 15 g as platinum per liter of cordierite. More preferably, the inorganic oxide carrier is in the range of 100 to 250 g, ruthenium in the range of 0.1 to 1.25 g, and platinum in the range of 0.5 to 12.5 g.

上述したような触媒を用いるメタン含有ガス浄化方法は、理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスを、上記三元触媒に接触させ、前記メタン含有ガス中のメタンを還元力として利用して、前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンを三元触媒反応により除去することを特徴とする。   The methane-containing gas purification method using a catalyst as described above is generated by combustion of a gas adjusted to a theoretical air-fuel ratio, and methane-containing gas containing carbon monoxide, nitrogen oxides and methane is used as the three-way catalyst. The carbon monoxide, nitrogen oxide and methane in the methane-containing gas are removed by a three-way catalytic reaction using methane in the methane-containing gas as a reducing power.

浄化すべきメタン含有ガスの空燃比が理論空燃比にある場合には、空燃比を調整する必要はない。かかる空燃比にはないメタン含有ガスが浄化対象である場合には、例えば、通常行われるような、燃焼器の空燃比を直接制御する方法、又は、燃焼メタン含有ガスの酸素過剰度を測定してそれに応じて空気などの酸化性ガスあるいは燃料などの還元性ガスを添加する方法等で空燃比を調整する。
ここで、理論空燃比とは、通常、燃焼器に投入される燃料に対する燃焼用空気量が完全燃焼に必要な最小値(理論空気量)であることを言い、例えば、空気量が理論空気量の0.990倍〜1.005倍(すなわち空気過剰率λ=0.990〜1.005)程度の範囲にあることをいう。実用上、空燃比を数10ミリ秒〜数秒単位で振動させる場合においては、時間平均の空燃比が上記の範囲に入っていればよい。
特殊な場合として、燃焼器の後段で空気や燃料等を添加する場合には、これらと燃焼器に投入される燃料または空気量とを合算して計算したものが上記の範囲にあればよい。
燃焼用空気に、通常の空気ではなく、酸素富化空気等酸素濃度の異なるガスを用いる場合であっても、酸素含有量に応じて理論ガス量は計算できるので、同様に理論ガス量の0.990倍〜1.005倍程度とすればよい。
好ましくは、λ=0.998〜1.000の空燃比にあるメタン含有ガスを、本発明に係る三元触媒に接触させる。このようにすると、非常に高い浄化能を発揮することができる。
When the air-fuel ratio of the methane-containing gas to be purified is at the stoichiometric air-fuel ratio, it is not necessary to adjust the air-fuel ratio. When a methane-containing gas that does not have such an air-fuel ratio is the target of purification, for example, a method of directly controlling the air-fuel ratio of the combustor, which is normally performed, or the oxygen excess of the combustion methane-containing gas is measured. Accordingly, the air-fuel ratio is adjusted by a method of adding an oxidizing gas such as air or a reducing gas such as fuel.
Here, the stoichiometric air-fuel ratio means that the amount of combustion air with respect to the fuel input to the combustor is usually the minimum value (theoretical air amount) necessary for complete combustion. For example, the air amount is the theoretical air amount. Is in the range of about 0.990 times to 1.005 times (that is, the excess air ratio λ = 0.990 to 1.005). In practice, when the air-fuel ratio is vibrated in units of several tens of milliseconds to several seconds, the time-averaged air-fuel ratio may be within the above range.
As a special case, when air, fuel, or the like is added at the subsequent stage of the combustor, the sum of these and the amount of fuel or air introduced into the combustor may be within the above range.
Even when a gas having a different oxygen concentration, such as oxygen-enriched air, is used as the combustion air, the theoretical gas amount can be calculated according to the oxygen content. It may be about 990 times to 1.005 times.
Preferably, a methane-containing gas having an air-fuel ratio of λ = 0.998 to 1.000 is brought into contact with the three-way catalyst according to the present invention. If it does in this way, very high purification ability can be exhibited.

本発明の三元触媒は、高い活性を有するが、あまりに低温では活性が下がり、所望の酸化性能が得られない虞れがあるので、触媒層温度が400℃以上に保たれるようにするのが好ましい。また600℃を超えるような温度での使用では、三元触媒の耐久性が悪化するおそれがある。特に、600℃以上の温度で長時間空気を流通するなどした場合には活性金属の凝集(粒成長)が促進されるため、三元触媒劣化の懸念がある。
より好ましくは400〜550℃の低温運転のエンジンから排出されたガスをそのまま触媒に接触させる。
触媒の使用量は、要求される浄化率に応じて適宜選択できるが、通常ガス時間当たり空間速度(GHSV)として1000〜200,000h-1の範囲である。GHSVを低くするほど触媒量が多くなるため、触媒性能は向上するが、例えば1000h-1以下で用いるような場合には経済性の問題に加えて、触媒層での圧力損失が大きくなる問題が生じるおそれがある。これに対し、GHSVが200,000h-1を超えるような条件では十分な性能が確保できない懸念がある。好ましくは、GHSVとして10,000〜100,000h-1の範囲である。
Although the three-way catalyst of the present invention has a high activity, the activity is lowered at a too low temperature, and the desired oxidation performance may not be obtained. Therefore, the catalyst layer temperature should be maintained at 400 ° C. or higher. Is preferred. In addition, when used at a temperature exceeding 600 ° C., the durability of the three-way catalyst may be deteriorated. In particular, when air is circulated for a long time at a temperature of 600 ° C. or more, active metal aggregation (granular growth) is promoted, and there is a concern about deterioration of the three-way catalyst.
More preferably, the gas discharged from the engine operating at a low temperature of 400 to 550 ° C. is directly brought into contact with the catalyst.
Although the usage-amount of a catalyst can be suitably selected according to the purification | cleaning rate requested | required, it is the range of 1000-200,000h < -1 > as a space velocity per gas time (GHSV) normally. As the GHSV is lowered, the amount of the catalyst is increased, so that the catalyst performance is improved. For example, when used at 1000 h −1 or less, in addition to the economical problem, there is a problem that the pressure loss in the catalyst layer increases. May occur. On the other hand, there is a concern that sufficient performance cannot be secured under conditions where GHSV exceeds 200,000 h −1 . Preferably, it is in the range of 10,000 to 100,000 h −1 as GHSV.

メタン含有ガスには、燃料中の硫黄分に由来して二酸化硫黄などの硫黄成分が含まれることがある。ところが、実施例から明らかなように、本発明の三元触媒は硫黄被毒に対する抵抗性が高いので、このような場合にも高い浄化性能が維持される。
この他、メタン含有ガス中にはメタン以外の炭化水素やその他の有機成分が含まれることがある。このような場合にも、本発明の三元触媒は、不活性なメタンも利用できるほどの高い酸化活性を有するので、メタン以外の炭化水素やその他の有機成分も有効に除去でき、浄化性能を阻害されることはない。
The methane-containing gas may contain a sulfur component such as sulfur dioxide derived from the sulfur content in the fuel. However, as is clear from the examples, the three-way catalyst of the present invention has high resistance to sulfur poisoning, and thus high purification performance is maintained even in such a case.
In addition, the methane-containing gas may contain hydrocarbons other than methane and other organic components. Even in such a case, since the three-way catalyst of the present invention has a high oxidation activity that can also use inert methane, hydrocarbons other than methane and other organic components can be effectively removed, and purification performance is improved. There is no inhibition.

以下、実施例および比較例を示し、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not limited to these Examples.

(比較例1)
キシダ化学製触媒用酸化アルミニウム(活性型、4〜6mm)を破砕してふるい分け、粒径1〜2mmに揃えた。この100gに、硝酸セリウム(III)6水和物(Ce(NO33・6H2O)31gを純水180gに溶解した溶液を12時間含浸した。これを蒸発乾固した後、120℃で1時間乾燥し、さらに空気中700℃で6時間焼成して酸化セリウム−酸化アルミニウム(BET比表面積109m2/g)を得た。
Ptとして10.1質量%を含有するジニトロジアンミン白金硝酸溶液(硝酸20質量%含有)3.16gとRhとして5.0質量%を含有する硝酸ロジウム水溶液0.64gとを混合し、12gの純水で希釈した。これを前記の酸化セリウム−酸化アルミニウム担体16gに含浸し、蒸発乾固した後、120℃で1時間乾燥し、さらに空気中550℃で6時間焼成して2%Pt−0.2%Rh/酸化セリウム−酸化アルミニウム(以下では、触媒Aとする)を得た。触媒AのBET比表面積は104m2/gであった。
(Comparative Example 1)
Aluminum oxide for catalyst (active type, 4-6 mm) manufactured by Kishida Chemical Co., Ltd. was crushed and sieved, and the particle size was adjusted to 1-2 mm. 100 g of this was impregnated with a solution of 31 g of cerium nitrate (III) hexahydrate (Ce (NO 3 ) 3 .6H 2 O) in 180 g of pure water for 12 hours. This was evaporated to dryness, dried at 120 ° C. for 1 hour, and further fired in air at 700 ° C. for 6 hours to obtain cerium oxide-aluminum oxide (BET specific surface area 109 m 2 / g).
A mixture of 3.16 g of a dinitrodiammine platinum nitrate solution (containing 20% by mass of nitric acid) containing 10.1% by mass as Pt and 0.64 g of an aqueous rhodium nitrate solution containing 5.0% by mass as Rh, Dilute with water. This was impregnated in 16 g of the above cerium oxide-aluminum oxide support, evaporated to dryness, dried at 120 ° C. for 1 hour, and further calcined in air at 550 ° C. for 6 hours to give 2% Pt−0.2% Rh / Cerium oxide-aluminum oxide (hereinafter referred to as catalyst A) was obtained. The BET specific surface area of the catalyst A was 104 m 2 / g.

(比較例2)
Ptとして10.1質量%を含有するジニトロジアンミン白金硝酸溶液(硝酸20質量%含有)3.17gとRuとして3.9質量%を含有する硝酸ルテニウム水溶液0.82gとを混合し、15gの純水で希釈した。これを比較例1と同じ酸化セリウム−酸化アルミニウム担体16gに含浸し、蒸発乾固した後、120℃で1時間乾燥し、さらに空気中550℃で6時間焼成して2%Pt−0.2%Ru/酸化セリウム−酸化アルミニウム(以下では、触媒Bとする)を得た。
(Comparative Example 2)
Dinitrodiammine platinum nitrate solution containing 10.1% by mass as Pt (containing 20% by mass nitric acid) 3.17g and ruthenium nitrate aqueous solution 0.82g containing 3.9% by mass as Ru were mixed, and 15g of pure Dilute with water. This was impregnated in 16 g of the same cerium oxide-aluminum oxide support as in Comparative Example 1, evaporated to dryness, dried at 120 ° C. for 1 hour, and further calcined in air at 550 ° C. for 6 hours to give 2% Pt-0.2. % Ru / cerium oxide-aluminum oxide (hereinafter referred to as catalyst B) was obtained.

(比較例3)
水酸化ジルコニウム(林純薬工業社製、ZrO2として85%含有)122.5gを、硝酸セリウム6水和物(Ce(NO33・6H2O)50gを100gの純水に溶解した水溶液に15時間浸漬し、蒸発乾固した。さらに、120℃で1時間乾燥後、700℃で6時間焼成して、BET比表面積33m2/gの酸化セリウム−酸化ジルコニウム(質量比で酸化セリウム:酸化ジルコニウム=16:84である複合酸化物)を得た。
Cu−Kα線を用いたX線回折測定では、2θ=30°付近の正方晶の回折線が強く観測された他、2θ=28°及び31.5°付近の単斜晶の回折線が弱く観測された。これらの強度比から、この酸化セリウム−酸化ジルコニウムは79%が正方晶または立方晶で、単斜晶の割合は21%であると計算された。単斜晶がすべて酸化ジルコニウムからなるとすると、この酸化セリウム−酸化ジルコニウム(すなわち無機酸化物担体)に占める単斜晶酸化ジルコニウムの割合は20%程度である。
Ptとして10.1質量%を含有するジニトロジアンミン白金硝酸溶液(硝酸20質量%含有)3.17gとRuとして12.5%を含有するトリニトラトニトロシルルテニウム(Ru(NO)(NO33)水溶液0.256gとを混合し、10gの純水で希釈した。これを前記の酸化セリウム−酸化ジルコニウム担体16gに含浸し、蒸発乾固した後、120℃で1時間乾燥し、さらに空気中550℃で6時間焼成して2%Pt−0.2%Ru/酸化セリウム−酸化ジルコニウム(以下では、触媒Cとする)を得た。
(Comparative Example 3)
Zirconium hydroxide (manufactured by Hayashi Pure Chemical Industries, Ltd., containing 85% as ZrO 2 ) 122.5 g and cerium nitrate hexahydrate (Ce (NO 3 ) 3 .6H 2 O) 50 g were dissolved in 100 g of pure water. It was immersed in an aqueous solution for 15 hours and evaporated to dryness. Furthermore, after drying at 120 ° C. for 1 hour and baking at 700 ° C. for 6 hours, a cerium oxide-zirconium oxide having a BET specific surface area of 33 m 2 / g (composite oxide having a mass ratio of cerium oxide: zirconium oxide = 16: 84) )
In the X-ray diffraction measurement using Cu-Kα ray, a tetragonal diffraction line near 2θ = 30 ° was strongly observed, and monoclinic diffraction lines near 2θ = 28 ° and 31.5 ° were weak. Observed. From these strength ratios, it was calculated that 79% of this cerium oxide-zirconium oxide was tetragonal or cubic, and the proportion of monoclinic crystal was 21%. If all monoclinic crystals are composed of zirconium oxide, the proportion of monoclinic zirconium oxide in the cerium oxide-zirconium oxide (that is, the inorganic oxide carrier) is about 20%.
3.17 g of dinitrodiammine platinum nitric acid solution containing 10.1% by mass as Pt (containing 20% by mass of nitric acid) and trinitratonitrosylruthenium (Ru (NO) (NO 3 ) 3 ) containing 12.5% as Ru 0.256 g of the aqueous solution was mixed and diluted with 10 g of pure water. This was impregnated in 16 g of the cerium oxide-zirconium oxide support, evaporated to dryness, dried at 120 ° C. for 1 hour, and further calcined in air at 550 ° C. for 6 hours to give 2% Pt−0.2% Ru / Cerium oxide-zirconium oxide (hereinafter referred to as catalyst C) was obtained.

(実施例1)
酸化ジルコニウム(日本電工(株)製、N−PC、比表面積28m2/g)を空気中700℃で6時間焼成し、BET比表面積17m2/gの焼成酸化ジルコニウムを得た。Cu−Kα線を用いたX線回折測定では、2θ=28°及び31.5°付近の単斜晶の回折線のみが観測されたことから、焼成酸化ジルコニウムはほぼ単斜晶酸化ジルコニウムのみからなっていると考えられる。
比較例3の酸化セリウム−酸化ジルコニウム担体16gに代えて、前記の焼成酸化ジルコニウム10gと比較例3の酸化セリウム−酸化ジルコニウム6gを混合したものを担体としたほかは、比較例3と同様にして、2%Pt−0.2%Ru/酸化セリウム−酸化ジルコニウム混合担体(以下では、触媒Dとする)を得た。触媒DのBET比表面積は22m2/gであった。また、触媒Dの無機酸化物担体に占める単斜晶の酸化ジルコニウムの割合(質量基準)は70%と計算される。また、触媒Dの無機酸化物担体に占める酸化セリウムの割合(質量基準)は6.0%である。
Example 1
Zirconium oxide (Nippon Denko, N-PC, specific surface area 28 m 2 / g) was calcined in air at 700 ° C. for 6 hours to obtain calcined zirconium oxide having a BET specific surface area of 17 m 2 / g. In the X-ray diffraction measurement using Cu-Kα rays, only monoclinic diffraction lines near 2θ = 28 ° and 31.5 ° were observed. It is thought that it has become.
Instead of 16 g of the cerium oxide-zirconium oxide support 16 of Comparative Example 3, 10 g of the above-mentioned calcined zirconium oxide and 6 g of cerium oxide-zirconium oxide of Comparative Example 3 were used as a support in the same manner as Comparative Example 3. A 2% Pt-0.2% Ru / cerium oxide-zirconium oxide mixed carrier (hereinafter referred to as catalyst D) was obtained. The BET specific surface area of the catalyst D was 22 m 2 / g. Further, the ratio (mass basis) of monoclinic zirconium oxide in the inorganic oxide support of catalyst D is calculated to be 70%. Further, the proportion (mass basis) of cerium oxide in the inorganic oxide carrier of the catalyst D is 6.0%.

(実施例2、3)
Ru担持量を担体に対する質量比で0.1%および0.5%に変えたほかは、実施例1と同様にして、2%Pt−0.1%Ru/酸化セリウム−酸化ジルコニウム混合担体(以下では、触媒Eとする)および2%Pt−0.5%Ru/酸化セリウム−酸化ジルコニウム混合担体(以下では、触媒Fとする)を得た。
(Examples 2 and 3)
2% Pt-0.1% Ru / cerium oxide-zirconium oxide mixed carrier (similar to Example 1 except that the Ru loading was changed to 0.1% and 0.5% by mass ratio to the carrier) Hereinafter, catalyst E) and 2% Pt-0.5% Ru / cerium oxide-zirconium oxide mixed carrier (hereinafter referred to as catalyst F) were obtained.

(比較例4、5)
実施例1と同様の焼成酸化ジルコニウム10gと比較例3の酸化セリウム−酸化ジルコニウム6gを混合したものを担体として用い、特許文献3の実施例3と同様にして、2%Pt−0.2%Ir/酸化セリウム−酸化ジルコニウム混合担体(以下では、触媒Gとする)および2%Pt−0.5%Ir/酸化セリウム−酸化ジルコニウム混合担体(以下では、触媒Hとする)を得た。
(Comparative Examples 4 and 5)
A mixture of 10 g of calcined zirconium oxide similar to Example 1 and 6 g of cerium oxide-zirconium oxide of Comparative Example 3 was used as a carrier, and 2% Pt-0.2% in the same manner as Example 3 of Patent Document 3. An Ir / cerium oxide-zirconium oxide mixed carrier (hereinafter referred to as catalyst G) and a 2% Pt-0.5% Ir / cerium oxide-zirconium oxide mixed carrier (hereinafter referred to as catalyst H) were obtained.

(実施例4)
水酸化ジルコニウム(林純薬工業社製、ZrO2として79%含有)39.4gを、硝酸セリウム6水和物(Ce(NO33・6H2O)36.6gを60gの純水に溶解した水溶液に15時間浸漬し、蒸発乾固した。さらに、120℃で1時間乾燥後、700℃で6時間焼成して、BET比表面積35m2/gの酸化セリウム−酸化ジルコニウムB(質量比で酸化セリウム:酸化ジルコニウム=32:68)を得た。
Cu−Kα線を用いたX線回折測定では、2θ=28°及び31.5°付近の単斜晶酸化ジルコニウムの回折線は観測されなかった。従って、この酸化セリウム−酸化ジルコニウムBには単斜晶は実質的に含まれていない。
Ptとして10.1質量%を含有するジニトロジアンミン白金硝酸溶液(硝酸20質量%含有)3.09gとRuとして3.9%を含有する硝酸ルテニウム(Ru(NO33)水溶液0.80gとを混合し、11gの純水で希釈した。これを前記の酸化セリウム−酸化ジルコニウム担体B3.6gと実施例1で得た焼成酸化ジルコニウム12.0gとを混合してなる担体に含浸し、蒸発乾固した後、120℃で1時間乾燥し、さらに空気中550℃で6時間焼成して2%Pt−0.2%Ru/酸化セリウム−酸化ジルコニウム混合担体(以下では、触媒Iとする)を得た。触媒IのBET比表面積は21m2/gであった。また、触媒Iの無機酸化物担体に占める単斜晶の酸化ジルコニウムの割合(質量基準)は77%と計算される。また、触媒Iの無機酸化物担体に占める酸化セリウムの割合(質量基準)は7.38%である。
Example 4
Zirconium hydroxide (produced by Hayashi Junyaku Kogyo Co., Ltd., containing 79% as ZrO 2 ) 39.4 g and cerium nitrate hexahydrate (Ce (NO 3 ) 3 .6H 2 O) 36.6 g in 60 g of pure water It was immersed in the dissolved aqueous solution for 15 hours and evaporated to dryness. Furthermore, after drying at 120 ° C. for 1 hour and firing at 700 ° C. for 6 hours, cerium oxide-zirconium oxide B having a BET specific surface area of 35 m 2 / g (cerium oxide: zirconium oxide = 32: 68 by mass ratio) was obtained. .
In the X-ray diffraction measurement using Cu-Kα ray, diffraction lines of monoclinic zirconium oxide around 2θ = 28 ° and 31.5 ° were not observed. Therefore, this cerium oxide-zirconium oxide B is substantially free of monoclinic crystals.
3.09 g of a dinitrodiammine platinum nitrate solution (containing 20% by mass of nitric acid) containing 10.1% by mass as Pt, and 0.80 g of a ruthenium nitrate (Ru (NO 3 ) 3 ) aqueous solution containing 3.9% as Ru, Were mixed and diluted with 11 g of pure water. This was impregnated in a carrier obtained by mixing 3.6 g of the above cerium oxide-zirconium oxide carrier B and 12.0 g of the calcined zirconium oxide obtained in Example 1, evaporated to dryness, and then dried at 120 ° C. for 1 hour. Further, it was calcined in air at 550 ° C. for 6 hours to obtain a 2% Pt-0.2% Ru / cerium oxide-zirconium oxide mixed carrier (hereinafter referred to as catalyst I). The BET specific surface area of the catalyst I was 21 m 2 / g. Further, the ratio (mass basis) of monoclinic zirconium oxide in the inorganic oxide support of catalyst I is calculated to be 77%. Further, the ratio (mass basis) of cerium oxide in the inorganic oxide carrier of catalyst I is 7.38%.

(実施例5)
Ptとして10.1質量%を含有するジニトロジアンミン白金硝酸溶液(硝酸20質量%含有)3.06gとRuとして3.9%を含有する硝酸ルテニウム(Ru(NO33)水溶液0.79gとを混合し、11gの純水で希釈した。これを前記の酸化セリウム−酸化ジルコニウム担体B1.4gと実施例1で得た焼成酸化ジルコニウム14.0gとを混合してなる担体に含浸し、蒸発乾固した後、120℃で1時間乾燥し、さらに空気中550℃で6時間焼成して2%Pt−0.2%Ru/酸化セリウム−酸化ジルコニウム混合担体(以下では、触媒Jとする)を得た。触媒JのBET比表面積は19m2/gであった。また、触媒Jの無機酸化物担体に占める単斜晶の酸化ジルコニウムの割合(質量基準)は91%と計算される。また、触媒Jの無機酸化物担体に占める酸化セリウムの割合(質量基準)は2.91%である。
(Example 5)
3.06 g of a dinitrodiammine platinum nitrate solution (containing 20% by mass of nitric acid) containing 10.1% by mass as Pt, and 0.79 g of an aqueous ruthenium nitrate (Ru (NO 3 ) 3 ) solution containing 3.9% as Ru, Were mixed and diluted with 11 g of pure water. This was impregnated in a carrier obtained by mixing 1.4 g of the above cerium oxide-zirconium oxide carrier B and 14.0 g of calcined zirconium oxide obtained in Example 1, evaporated to dryness, and then dried at 120 ° C. for 1 hour. Further, it was calcined in air at 550 ° C. for 6 hours to obtain a 2% Pt-0.2% Ru / cerium oxide-zirconium oxide mixed carrier (hereinafter referred to as catalyst J). The BET specific surface area of the catalyst J was 19 m 2 / g. Further, the ratio (mass basis) of monoclinic zirconium oxide in the inorganic oxide support of catalyst J is calculated to be 91%. Further, the ratio (mass basis) of cerium oxide in the inorganic oxide carrier of the catalyst J is 2.91%.

(実施例6)
担体の混合比を酸化セリウム−酸化ジルコニウム担体B7.7gと実施例1で得た焼成酸化ジルコニウム7.7gに代えたほかは実施例5を同様にして2%Pt−0.2%Ru/酸化セリウム−酸化ジルコニウム混合担体(以下では、触媒Kとする)を得た。触媒Kの無機酸化物担体に占める単斜晶の酸化ジルコニウムの割合(質量基準)は50%と計算される。また、触媒Kの無機酸化物担体に占める酸化セリウムの割合(質量基準)は16.0%である。
(Example 6)
2% Pt-0.2% Ru / oxidized in the same manner as in Example 5 except that the mixing ratio of the carrier was changed to 7.7 g of cerium oxide-zirconium oxide carrier B and 7.7 g of calcined zirconium oxide obtained in Example 1. A cerium-zirconium oxide mixed carrier (hereinafter referred to as catalyst K) was obtained. The ratio (mass basis) of monoclinic zirconium oxide in the inorganic oxide support of catalyst K is calculated to be 50%. Further, the ratio (mass basis) of cerium oxide in the inorganic oxide carrier of the catalyst K is 16.0%.

(実施例7)
Ptとして10.1質量%を含有するジニトロジアンミン白金硝酸溶液(硝酸20質量%含有)6.18gとRuとして3.9%を含有する硝酸ルテニウム(Ru(NO33)水溶液0.80gとを混合し、11gの純水で希釈した。これを前記の酸化セリウム−酸化ジルコニウム担体B3.6gと実施例1で得た焼成酸化ジルコニウム12.0gとを混合してなる担体に含浸し、蒸発乾固した後、120℃で1時間乾燥し、さらに空気中550℃で6時間焼成して4%Pt−0.2%Ru/酸化セリウム−酸化ジルコニウム混合担体(以下では、触媒Lとする)を得た。また、触媒Lの無機酸化物担体に占める単斜晶の酸化ジルコニウムの割合(質量基準)は77%と計算される。また、触媒Lの無機酸化物担体に占める酸化セリウムの割合(質量基準)は7.38%である。
(Example 7)
6.18 g of a dinitrodiammine platinum nitrate solution (containing 20% by mass of nitric acid) containing 10.1% by mass as Pt and 0.80 g of an aqueous ruthenium nitrate (Ru (NO 3 ) 3 ) containing 3.9% as Ru, Were mixed and diluted with 11 g of pure water. This was impregnated in a carrier obtained by mixing 3.6 g of the above cerium oxide-zirconium oxide carrier B and 12.0 g of the calcined zirconium oxide obtained in Example 1, evaporated to dryness, and then dried at 120 ° C. for 1 hour. Further, it was calcined in air at 550 ° C. for 6 hours to obtain a 4% Pt-0.2% Ru / cerium oxide-zirconium oxide mixed carrier (hereinafter referred to as catalyst L). Further, the ratio (mass basis) of monoclinic zirconium oxide in the inorganic oxide support of the catalyst L is calculated as 77%. Further, the proportion (mass basis) of cerium oxide in the inorganic oxide carrier of the catalyst L is 7.38%.

(活性評価)
触媒AおよびBはそのまま、触媒C〜Hは打錠成型して粒径を1〜2mmに揃えたものを、それぞれ1.45g(触媒AおよびBは約1.9mL、触媒C〜Hは約1.5mL)石英反応管に充填し、触媒層温度を525,500,475,450,425,400℃に変えて、それぞれの温度で表1に示す組成のガスを毎分1.675リットル(0℃、1気圧の標準状態に換算した体積、以下同様)流通して、窒素酸化物(NOx)、一酸化炭素(CO)および炭化水素(CH4)の転化率を測定した(初期の性能)。なお、転化率はいずれも、100×(1−(出口濃度)/(入口濃度))(%)で定義され、NOxについては一酸化窒素(NO)と二酸化窒素(NO2)の合計濃度を用いている。
(Activity evaluation)
Catalysts A and B were used as they were, and Catalysts C to H were tablet-molded to have a particle size of 1 to 2 mm, and 1.45 g (Catalysts A and B were about 1.9 mL, Catalysts C to H were about 1.5 mL) filled in a quartz reaction tube, the catalyst layer temperature was changed to 525,500,475,450,425,400 ° C., and the gas having the composition shown in Table 1 at each temperature was 1.675 liters per minute ( The volume converted into the standard state at 0 ° C. and 1 atm, the same applies hereinafter, and the conversion rates of nitrogen oxide (NOx), carbon monoxide (CO) and hydrocarbon (CH 4 ) were measured (initial performance) ). The conversion rate is defined as 100 × (1− (outlet concentration) / (inlet concentration)) (%). For NOx, the total concentration of nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) is used. Used.

Figure 2015180490
Figure 2015180490

引き続いて、触媒層温度を400℃に保ち、表2に示すガスを毎分1.675リットルの流量で18時間流通する模擬劣化処理を行った。これは触媒を被毒して活性を低下させる硫黄化合物を付着させるとともに、起動停止時などに発生する酸素濃度が高い状態における劣化を模擬したものである。   Subsequently, a simulated deterioration process was performed in which the catalyst layer temperature was kept at 400 ° C. and the gas shown in Table 2 was circulated at a flow rate of 1.675 liters per minute for 18 hours. This attaches a sulfur compound that reduces the activity by poisoning the catalyst and simulates deterioration in a state where the oxygen concentration generated at the time of starting and stopping is high.

Figure 2015180490
Figure 2015180490

模擬劣化処理に引き続いて、触媒層温度を400,425,450,475,500,525℃に変えて、それぞれの温度で表3に示す組成のガスを毎分1.675リットルの流量で流通して、転化率を測定した(劣化処理後の性能)。   Subsequent to the simulated deterioration treatment, the catalyst layer temperature is changed to 400, 425, 450, 475, 500, and 525 ° C., and the gas having the composition shown in Table 3 is circulated at a flow rate of 1.675 liters per minute at each temperature. The conversion was measured (performance after deterioration treatment).

Figure 2015180490
Figure 2015180490

模擬劣化処理の前後の触媒Aおよび触媒Dの400℃および450℃における窒素酸化物、一酸化炭素および炭化水素の転化率を図1、2に示す。また表4には、模擬劣化処理後の400,450,500℃における各成分の転化率を示す。   The conversion rates of nitrogen oxides, carbon monoxide and hydrocarbons at 400 ° C. and 450 ° C. of catalyst A and catalyst D before and after the simulated deterioration treatment are shown in FIGS. Table 4 shows the conversion rate of each component at 400, 450, and 500 ° C. after the simulated deterioration treatment.

Figure 2015180490
Figure 2015180490

触媒Aはメタン主成分ガスの燃焼排ガス用三元触媒として従来使用されてきたものである(図1)。本触媒では、初期(劣化処理前)においては450℃であれば、理論空燃比付近(λ=0.9995)で窒素酸化物(転化率100%)、一酸化炭素(転化率100%)および炭化水素(転化率98%)の3成分とも90%以上の転化率が得られる。また400℃における転化率は、窒素酸化物(転化率93%)、一酸化炭素(転化率100%)および炭化水素(転化率90%)と若干低下するが、やや燃料過剰側(λ=0.9975)の条件であれば、窒素酸化物(転化率100%)、一酸化炭素(転化率99%)および炭化水素(転化率96%)とも高い転化率が確保できる。しかしながら、模擬劣化後(劣化後)は、その性能は大きく低下し、450℃であっても理論空燃比付近(λ=0.9995)で十分な浄化性能を確保することはできない。特に炭化水素の転化率について、模擬劣化処理後は、空燃比を最適化したとしても、転化率が90%に達しないため、十分な浄化性能が発揮されないことがわかる。すなわち従来の触媒は500℃を超える温度であれば十分な浄化性能が得られるものの、それよりも低い温度での性能は十分ではない。   Catalyst A has been conventionally used as a three-way catalyst for combustion exhaust gas of methane main component gas (FIG. 1). In this catalyst, nitrogen oxide (conversion rate 100%), carbon monoxide (conversion rate 100%), and near the theoretical air-fuel ratio (λ = 0.9995) at 450 ° C. in the initial stage (before deterioration treatment) A conversion rate of 90% or more can be obtained for all three components of hydrocarbon (conversion rate of 98%). Further, the conversion rate at 400 ° C. slightly decreases with nitrogen oxide (conversion rate of 93%), carbon monoxide (conversion rate of 100%) and hydrocarbon (conversion rate of 90%), but is slightly increased on the fuel excess side (λ = 0). 0.9975), high conversion rates can be secured for both nitrogen oxide (conversion rate 100%), carbon monoxide (conversion rate 99%) and hydrocarbons (conversion rate 96%). However, after simulated deterioration (after deterioration), the performance is greatly reduced, and even at 450 ° C., sufficient purification performance cannot be secured near the theoretical air-fuel ratio (λ = 0.9995). In particular, regarding the conversion rate of hydrocarbons, it can be seen that after the simulated deterioration treatment, even if the air-fuel ratio is optimized, the conversion rate does not reach 90%, so that sufficient purification performance is not exhibited. That is, the conventional catalyst can obtain a sufficient purification performance at a temperature exceeding 500 ° C., but the performance at a lower temperature is not sufficient.

これに対し、本発明の触媒である触媒Dでは、模擬劣化後(劣化後)においても高い性能を示す(図2)。例えば、450℃であれば、理論空燃比付近(λ=0.9995)で窒素酸化物(転化率95%)、一酸化炭素(転化率100%)および炭化水素(転化率92%)の3成分とも90%以上の転化率が得られ、400℃でも、やや燃料過剰側(λ=0.9975)の条件であれば、窒素酸化物(転化率98%)、一酸化炭素(転化率100%)および炭化水素(転化率82%)と高い転化率が確保できる。本発明の触媒であれば、400〜450℃程度の温度域でも十分な浄化性能を確保することが可能となる。   On the other hand, the catalyst D which is the catalyst of the present invention shows high performance even after simulated deterioration (after deterioration) (FIG. 2). For example, at 450 ° C., nitrogen oxide (conversion 95%), carbon monoxide (conversion 100%) and hydrocarbon (conversion 92%) 3 in the vicinity of the theoretical air-fuel ratio (λ = 0.9995). Conversion of 90% or more was obtained for both components, and even at 400 ° C., a slight excess of fuel (λ = 0.9975) was obtained under conditions of nitrogen oxide (conversion 98%), carbon monoxide (conversion 100). %) And hydrocarbons (conversion rate 82%) and a high conversion rate can be secured. With the catalyst of the present invention, sufficient purification performance can be ensured even in a temperature range of about 400 to 450 ° C.

つまり、三元触媒によって触媒される三元触媒反応処理であって、燃料に対する燃焼用空気が理論空燃比に調整されたガスの燃焼により発生した一酸化炭素と窒素酸化物とメタンとを含有するメタン含有ガスの三元触媒反応処理において、単斜晶の酸化ジルコニウムを50質量%以上含有する無機酸化物担体にルテニウムと白金とを担持して構成された三元触媒であり、前記メタンを還元力として前記窒素酸化物の還元除去を行う三元触媒を用いることが好ましいことが分かる。   That is, it is a three-way catalytic reaction process catalyzed by a three-way catalyst, and the combustion air for the fuel contains carbon monoxide, nitrogen oxides, and methane generated by combustion of the gas adjusted to the stoichiometric air-fuel ratio. In a three-way catalytic reaction treatment of a methane-containing gas, a three-way catalyst constituted by supporting ruthenium and platinum on an inorganic oxide support containing 50 mass% or more of monoclinic zirconium oxide, and reducing the methane It can be seen that it is preferable to use a three-way catalyst for reducing and removing the nitrogen oxides as force.

特許文献3に記載されている、単斜晶の酸化ジルコニウムを主成分とする無機酸化物にイリジウムおよび白金を担持してなる触媒である触媒GおよびHも、従来触媒である触媒Aよりは、低温における浄化性能は高い。しかしながら、この触媒は希少な金属であるイリジウムを必須とする上に、十分な性能を発揮するには、比較的高いイリジウム担持量を必要とする(触媒Hのイリジウム担持量は0.5%)。これに対して本発明の触媒は、より安価なルテニウムを用い、比較的少ない担持量(触媒Dのルテニウム担持量は0.2%)で十分な性能が得られる。   Catalysts G and H, which are catalysts formed by supporting iridium and platinum on an inorganic oxide mainly composed of monoclinic zirconium oxide, described in Patent Document 3, are also more preferable than catalyst A which is a conventional catalyst. Purification performance at low temperatures is high. However, this catalyst requires iridium, which is a rare metal, and requires a relatively high amount of iridium to exhibit sufficient performance (the amount of iridium supported by Catalyst H is 0.5%). . On the other hand, the catalyst of the present invention uses a less expensive ruthenium, and a sufficient performance can be obtained with a relatively small loading (the ruthenium loading on the catalyst D is 0.2%).

また、表4に示される触媒E,Fの結果より、本発明の触媒に用いるルテニウムの担持量は、無機酸化物単体に対する質量基準で0.1〜0.5%の範囲で十分な性能を維持している。つまり、本発明の触媒に用いるルテニウムの担持量は、無機酸化物担体に対する質量基準で0.1〜0.5%が好ましいことが分かる。   Further, from the results of the catalysts E and F shown in Table 4, the supported amount of ruthenium used in the catalyst of the present invention has sufficient performance in the range of 0.1 to 0.5% on the mass basis with respect to the inorganic oxide alone. Is maintained. That is, it can be seen that the supported amount of ruthenium used in the catalyst of the present invention is preferably 0.1 to 0.5% on a mass basis with respect to the inorganic oxide support.

また、本発明と同様のルテニウムと白金の組み合わせでも、担体が従来と同様の酸化セリウム−酸化アルミニウム担体である場合(触媒B)や、専ら正方晶の酸化セリウム−酸化ジルコニウムからなり、単斜晶の酸化ジルコニウムを主成分としない場合(触媒C)では、その性能は低くなる。   Further, even in the case of the same combination of ruthenium and platinum as in the present invention, when the support is the same cerium oxide-aluminum oxide support as in the prior art (catalyst B), When the main component is not zirconium oxide (catalyst C), the performance is low.

また、本発明の触媒は、その無機酸化物担体の主成分として単斜晶の酸化ジルコニウムを含む。触媒C,D,I,J,Kでは、無機酸化物担体に占める単斜晶の酸化ジルコニウムの割合を比較している。400℃の理論空燃比付近(λ=0.9995)における窒素酸化物の転化率を比較すると、本発明の触媒である触媒D,I,J,Kではそれぞれ表4に示すように、84%、85%、89%、81%となった。一方、触媒Cでは41%であった。これらの無機酸化物担体に占める単斜晶の酸化ジルコニウムの割合(質量基準)は、本発明の触媒である触媒D,I,J,Kについてはそれぞれ70%、77%、91%、50%である。一方触媒Cについては20%である。つまり、単斜晶の酸化ジルコニウムの割合が高いほど、窒素酸化物の浄化性能が高い。
これらが示すように、単斜晶の酸化ジルコニウムの割合が高いほど、低温の理論空燃比付近における窒素酸化物の浄化性能は向上する。
The catalyst of the present invention contains monoclinic zirconium oxide as a main component of the inorganic oxide support. In the catalysts C, D, I, J, and K, the proportion of monoclinic zirconium oxide in the inorganic oxide support is compared. When the conversion rate of nitrogen oxides in the vicinity of the theoretical air-fuel ratio at 400 ° C. (λ = 0.9995) is compared, the catalysts D, I, J, and K, which are the catalysts of the present invention, each have 84% as shown in Table 4. 85%, 89%, and 81%. On the other hand, it was 41% for catalyst C. The proportion (mass basis) of monoclinic zirconium oxide in these inorganic oxide supports is 70%, 77%, 91%, and 50% for the catalysts D, I, J, and K, which are the catalysts of the present invention, respectively. It is. On the other hand, the catalyst C is 20%. That is, the higher the proportion of monoclinic zirconium oxide, the higher the purification performance of nitrogen oxides.
As these show, the higher the ratio of monoclinic zirconium oxide, the better the nitrogen oxide purification performance near the low-temperature stoichiometric air-fuel ratio.

ただし、セリウムは三元触媒における酸素吸蔵能を確保する上で必須の成分であり、単斜晶の酸化ジルコニウムの割合を高める際には、酸素吸蔵能とのバランスに留意が必要である。本発明の触媒の評価において最も酸化セリウムの含有量が少ない触媒Jの結果を考慮すると、本発明の触媒において適切な窒素酸化物の浄化性能を発揮させるためには、無機酸化物担体に占める酸化セリウムの割合(質量基準)は、少なくとも2.9%以上であることが好ましいと言える。   However, cerium is an essential component for securing the oxygen storage capacity in the three-way catalyst, and attention must be paid to the balance with the oxygen storage capacity when increasing the proportion of monoclinic zirconium oxide. In consideration of the result of the catalyst J having the smallest cerium oxide content in the evaluation of the catalyst of the present invention, the oxidation in the inorganic oxide support is necessary in order to exert an appropriate nitrogen oxide purification performance in the catalyst of the present invention. It can be said that the ratio (based on mass) of cerium is preferably at least 2.9% or more.

つまり、無機酸化物担体として、酸化セリウムを含有することが好ましい。
そして当該酸化セリウムは、一旦酸化セリウムと酸化ジルコニウムとの複合酸化物として調整したものを、別途単斜晶の酸化ジルコニウムと混合し、前記無機酸化物担体として用いる方法で前記無機酸化物担体として用いられることが好ましい。
That is, it is preferable to contain cerium oxide as the inorganic oxide carrier.
The cerium oxide, once prepared as a composite oxide of cerium oxide and zirconium oxide, is separately mixed with monoclinic zirconium oxide and used as the inorganic oxide carrier. It is preferred that

さらに酸化セリウムと酸化ジルコニウムとの複合酸化物は、少なくとも単斜晶以外の結晶系を主成分とし、好ましくは正方晶もしくは立方晶であるとよい。   Further, the composite oxide of cerium oxide and zirconium oxide has at least a crystal system other than a monoclinic crystal as a main component, and is preferably tetragonal or cubic.

また、前記複合酸化物を調整する際の酸化セリウムと酸化ジルコニウムとの混合比率は、1:2〜1:6とすることが好ましい。   The mixing ratio of cerium oxide and zirconium oxide when adjusting the composite oxide is preferably 1: 2 to 1: 6.

触媒Lでは、Pt担持量の効果を示している。触媒Iと比較すると、Pt担持量を4%に増加すると、表4に示すように低温の理論空燃比付近における浄化性能が大幅に向上することが判る。一般に、白金の担持量は前記無機酸化物担体に対する質量基準で0.5〜5%であることが好ましい。   The catalyst L shows the effect of the amount of Pt supported. Compared with catalyst I, it can be seen that when the amount of Pt supported is increased to 4%, as shown in Table 4, the purification performance near the low-temperature stoichiometric air-fuel ratio is greatly improved. In general, the supported amount of platinum is preferably 0.5 to 5% on a mass basis with respect to the inorganic oxide support.

本発明の三元触媒は、低温性能に優れるとともに、リーン側でのメタン除去性能に優れるので、これを用いてメタン含有ガス浄化装置を構成することにより、排気温度が低い条件でも高いメタン含有ガス浄化性能を得ることができ、経済的に有利な条件で高度のメタン含有ガス浄化が可能となる。   The three-way catalyst of the present invention is excellent in low-temperature performance and excellent in methane removal performance on the lean side, so that a methane-containing gas purification device is used to construct a methane-containing gas even under low exhaust temperature conditions. Purification performance can be obtained, and high-level methane-containing gas purification can be performed under economically advantageous conditions.

Claims (7)

単斜晶の酸化ジルコニウムを主成分とする無機酸化物担体にルテニウムおよび白金を担持して構成され、燃料に対する燃焼用空気が理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスの三元触媒反応処理において、前記メタンを還元力として前記窒素酸化物の還元除去を行う三元触媒。   Composed of ruthenium and platinum supported on an inorganic oxide carrier mainly composed of monoclinic zirconium oxide, combustion air for fuel is generated by combustion of gas adjusted to the theoretical air-fuel ratio, carbon monoxide, A three-way catalyst for reducing and removing the nitrogen oxide by using the methane as a reducing power in a three-way catalytic reaction treatment of a methane-containing gas containing nitrogen oxides and methane. ルテニウムの担持量が、前記無機酸化物担体に対する質量基準で0.1〜0.5%である請求項1に記載の三元触媒。   The three-way catalyst according to claim 1, wherein the supported amount of ruthenium is 0.1 to 0.5% on a mass basis with respect to the inorganic oxide support. 白金の担持量が前記無機酸化物担体に対する質量基準で0.5〜5%である請求項1または2に記載の三元触媒。   The three-way catalyst according to claim 1 or 2, wherein a supported amount of platinum is 0.5 to 5% on a mass basis with respect to the inorganic oxide support. 前記無機酸化物担体に単斜晶の酸化ジルコニウムが50質量%より多く含まれる請求項1〜3のいずれか一項に記載の三元触媒。   The three-way catalyst according to any one of claims 1 to 3, wherein the inorganic oxide support contains more than 50 mass% of monoclinic zirconium oxide. 理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスを、単斜晶の酸化ジルコニウムを主成分とする無機酸化物担体にルテニウムおよび白金を担持して構成される三元触媒に接触させ、前記メタン含有ガス中のメタンを還元力として利用して、前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンを三元触媒反応により除去するメタン含有ガスの浄化方法。   A methane-containing gas containing carbon monoxide, nitrogen oxides, and methane generated by combustion of a gas adjusted to a theoretical air-fuel ratio is converted to ruthenium and platinum on an inorganic oxide carrier mainly composed of monoclinic zirconium oxide. The carbon monoxide, nitrogen oxide, and methane in the methane-containing gas are brought into contact by a three-way catalytic reaction using methane in the methane-containing gas as a reducing power. A method for purifying methane-containing gas to be removed. 前記メタン含有ガスの空燃比を、λ=0.998〜1.000に調整して前記三元触媒に接触させる請求項5に記載のメタン含有ガスの浄化方法。   The method for purifying a methane-containing gas according to claim 5, wherein an air-fuel ratio of the methane-containing gas is adjusted to λ = 0.998 to 1.000 and brought into contact with the three-way catalyst. 前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンの除去反応を、400℃〜550℃の反応温度で行う請求項5又は6に記載のメタン含有ガスの浄化方法。   The method for purifying a methane-containing gas according to claim 5 or 6, wherein the removal reaction of carbon monoxide, nitrogen oxides, and methane in the methane-containing gas is performed at a reaction temperature of 400 ° C to 550 ° C.
JP2015003472A 2014-03-06 2015-01-09 Three-way catalyst and methane-containing gas purification method using the same Active JP6448371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003472A JP6448371B2 (en) 2014-03-06 2015-01-09 Three-way catalyst and methane-containing gas purification method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014044105 2014-03-06
JP2014044105 2014-03-06
JP2015003472A JP6448371B2 (en) 2014-03-06 2015-01-09 Three-way catalyst and methane-containing gas purification method using the same

Publications (2)

Publication Number Publication Date
JP2015180490A true JP2015180490A (en) 2015-10-15
JP6448371B2 JP6448371B2 (en) 2019-01-09

Family

ID=54329024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003472A Active JP6448371B2 (en) 2014-03-06 2015-01-09 Three-way catalyst and methane-containing gas purification method using the same

Country Status (1)

Country Link
JP (1) JP6448371B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040152A1 (en) * 2000-11-17 2002-05-23 Osaka Gas Company Limited Catalyst for purifying methane-containing waste gas and method of purifying methane-containing waste gas
JP2006326433A (en) * 2005-05-24 2006-12-07 Osaka Gas Co Ltd Method for cleaning methane-containing exhaust gas, method for pretreating three-way catalyst for cleaning methane-containing exhaust gas and three-way catalyst pretreated thereby
JP2007090331A (en) * 2005-09-02 2007-04-12 Osaka Gas Co Ltd Catalyst for oxidizing and removing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040152A1 (en) * 2000-11-17 2002-05-23 Osaka Gas Company Limited Catalyst for purifying methane-containing waste gas and method of purifying methane-containing waste gas
JP2006326433A (en) * 2005-05-24 2006-12-07 Osaka Gas Co Ltd Method for cleaning methane-containing exhaust gas, method for pretreating three-way catalyst for cleaning methane-containing exhaust gas and three-way catalyst pretreated thereby
JP2007090331A (en) * 2005-09-02 2007-04-12 Osaka Gas Co Ltd Catalyst for oxidizing and removing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas

Also Published As

Publication number Publication date
JP6448371B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP7206045B2 (en) Nitrous oxide removal catalyst for exhaust system
JP5376261B2 (en) Exhaust gas purification catalyst
JP5216189B2 (en) Exhaust gas purification catalyst
JP5910833B2 (en) Exhaust gas purification catalyst
WO2005092481A1 (en) Nitrogen oxide storage material and nitrogen oxide storage catalyst produced therefrom
WO1997037761A1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
WO2001019510A1 (en) Auxiliary catalyst for purifying exhaust gas
WO2019088302A1 (en) Oxygen absorbing and releasing material, catalyst, exhaust gas purifying system, and exhaust gas treatment method
JP4688646B2 (en) Three-way catalyst and methane-containing gas purification method using the same
JP5865110B2 (en) Methane oxidation catalyst and production method thereof
JP4901366B2 (en) Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JP5018882B2 (en) Catalyst carrier and exhaust gas purification catalyst
JP2013166130A (en) Exhaust gas cleaning three way catalyst
JP2007105632A (en) Exhaust gas cleaning catalyst
JP4835028B2 (en) Exhaust gas purification catalyst
JP2017189761A (en) Method for producing catalyst for exhaust purification
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2017503634A (en) Use of mixed oxides as oxygen storage components
JP6448371B2 (en) Three-way catalyst and methane-containing gas purification method using the same
JP2007301471A (en) Catalyst for cleaning exhaust gas
JP2007330879A (en) Catalyst for cleaning exhaust gas
JP7262975B2 (en) Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst
JP4239679B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
KR20190125086A (en) Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom
JP5051009B2 (en) NOx storage reduction catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181204

R150 Certificate of patent or registration of utility model

Ref document number: 6448371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150