JP2015179581A - 高周波電源装置 - Google Patents

高周波電源装置 Download PDF

Info

Publication number
JP2015179581A
JP2015179581A JP2014055790A JP2014055790A JP2015179581A JP 2015179581 A JP2015179581 A JP 2015179581A JP 2014055790 A JP2014055790 A JP 2014055790A JP 2014055790 A JP2014055790 A JP 2014055790A JP 2015179581 A JP2015179581 A JP 2015179581A
Authority
JP
Japan
Prior art keywords
switch
drive signal
power supply
load
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014055790A
Other languages
English (en)
Other versions
JP6313080B2 (ja
Inventor
高広 松岡
Takahiro Matsuoka
高広 松岡
勝之 深野
Katsuyuki Fukano
勝之 深野
史雄 田中
Fumio Tanaka
史雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2014055790A priority Critical patent/JP6313080B2/ja
Publication of JP2015179581A publication Critical patent/JP2015179581A/ja
Application granted granted Critical
Publication of JP6313080B2 publication Critical patent/JP6313080B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】DC/RF変換部のスイッチで生じる損失を低減させることができる高周波電源装置を提供する。【解決手段】DC/RF変換部5のスイッチング回路5Aの各レグのハイサイドスイッチQ1及びローサイドスイッチQ2で生じる損失を低減するために、両スイッチへの駆動信号の供給を停止するデッドタイムがとるべき適正値と、各スイッチに与える駆動信号の波高値がとるべき適正値と、スイッチング回路5Aから負荷側を見た負荷側インピーダンスとの間の関係を与えるマップを記憶したマップ記憶部8Cと、負荷側インピーダンスに対してマップを検索してデッドタイムの適正値と駆動信号の波高値の適正値とを演算するマップ演算部8Dとを設けて、デッドタイム及び各スイッチに与える駆動信号の波高値をマップ演算部により演算された適正値に等しくするようにした。【選択図】 図1

Description

本発明は、プラズマ負荷などの負荷に高周波電力を供給する高周波電源装置に関するものである。
プラズマ負荷などに高周波電力を供給する高周波電源装置として、特許文献1に示されているように、直流出力を調整する機能を有する可変DC電源部と、可変DC電源部から出力される直流出力をスイッチ素子のオンオフ動作により高周波交流出力に変換するDC/RF変換部(直流/高周波交流変換部)とを備えて、可変DC電源部を制御することにより、DC/RF変換部から設定値に保たれた高周波電力を出力するようにしたものが用いられている。
図21は、従来のこの種の高周波電源装置を負荷とともに示したものである。同図において、1は高周波電源装置、2は高周波電源装置1から高周波電力が供給される負荷、3は高周波電源装置1と負荷2との間に設けられたインピーダンス整合器である。
図21に示された高周波電源装置1は、出力制御信号Sdcに応じて、出力する直流電力の大きさを調整する機能を有する可変DC電源部(可変直流電源部)4と、可変DC電源部4から出力される直流電力を高周波電力に変換するDC/RF変換部(直流/高周波変換部)5と、DC/RF変換部5の出力から高調波成分を除去するローパスフィルタ6と、ローパスフィルタ6の出力端と高周波電源装置の出力端子1aとの間に挿入されて、負荷2に供給される高周波電力の進行波成分と負荷2で反射して戻ってくる高周波電力の反射波成分とをそれぞれ検出して進行波成分検出信号Pfと反射波成分検出信号Prとを出力するパワー検出部7と、可変DC電源部4及びDC/RF変換部5を制御する制御部8とを備えている。
DC/RF変換部5は、互いに直列に接続されたハイサイドスイッチとローサイドスイッチとからなるレグを少なくとも一つ有して、該少なくとも一つのレグを可変DC電源部4の出力端子間に並列に接続した構成を有するスイッチング回路と、可変DC電源部4の出力がスイッチング回路を通して印加される直列共振回路とを備えたD級アンプ(スイッチングアンプ)により構成される。
制御部8は、パワー検出部7から出力される検出信号に応じて可変DC電源部4に所定の出力制御信号Sdcを与えることにより、負荷2に供給される高周波電力の進行波成分を設定値に保つ出力制御と、パワー検出部7で検出された反射波成分が設定された規定値を超えたときに、該反射波成分を規定値以下に抑えるように可変DC電源部4の出力を抑制する反射保護制御とを行うと同時に、スイッチング回路のレグを構成するハイサイドスイッチ及びローサイドスイッチの何れにも駆動信号を与えない期間であるデッドタイムを設けながら、ハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えることにより、可変DC電源部4の直流出力を所定の周波数を有する高周波電力に変換する変換動作をDC/RF変換部5に行わせる。
一般に、高周波電源装置1と負荷2との間に設けられているインピーダンス整合器3は、インピーダンス可変素子である可変コンデンサ又は可変インダクタをモータで制御して、該インピーダンス整合器の入力端から負荷側を見たインピーダンスを調整することにより整合動作を行うように構成されているため、瞬時にインピーダンスの整合を図ることはできず、インピーダンスの整合には通常100msecないし数secの時間を要する。インピーダンスの整合がとれるまでの間は負荷で反射が生じるため、負荷2からDC/RF変換部5に戻ってくる反射波電力が多くなり、DC/RF変換部5のスイッチング回路を構成するスイッチで生じる損失が増加する。
高周波電力を供給する負荷2がプラズマ負荷である場合には、負荷のインピーダンスが不安定で、印加電力、チャンバ内のガスの圧力、チャンバ内に供給されるガスの流量、処理時間などの条件により負荷インピーダンスが細かく変化するため、インピーダンスの不整合状態が頻繁に生じ、DC/RF変換部5のスイッチング回路を構成するスイッチで多くの損失が生じる。特にDC/RF変換部から負荷側を見たインピーダンスが短絡に近い低インピーダンスの状態になって、全反射が生じる状態に近い状態になった場合には、スイッチング回路のスイッチに大電流が流れるため、スイッチのオン抵抗により大きな導通損失が生じる。またインピーダンスの不整合時に負荷側のインピーダンスが誘導性になった場合及び容量性になった場合には、スイッチング回路を構成するスイッチで生じるスイッチング損失が無視できない大きさになる。
特開2003−143861号公報
上記のように、高周波電源装置においては、DC/RF変換部から負荷側を見たインピーダンスが短絡に近い低インピーダンスの状態になった場合や、インピーダンスの不整合時にDC/RF変換部5のスイッチング回路を構成するスイッチで無視できない損失が生じる。この損失は、装置の効率の改善を妨げるだけでなく、各スイッチの温度の上昇を招くため、スイッチング回路を構成するスイッチからの放熱を図るために設けるヒートシンクとして大型のものを用いることが必要になって、装置が大形化するという問題があった。
本発明の目的は、直流電力を高周波電力に変換するDC/RF変換部に設けられるスイッチング回路のスイッチで生じる損失の低減を図って、装置の効率の改善を図ることを可能にするとともに、スイッチング回路の各スイッチからの放熱を図るために設けるヒートシングの小形化を図ることができるようにした高周波電源装置を提供することにある。
本発明は、直流出力の制御が可能な可変DC電源部と、互いに直列に接続されたハイサイドスイッチとローサイドスイッチとを有するレグを少なくとも一つ有して、該少なくとも一つのレグを前記可変DC電源部の出力端子間に並列に接続した構成を有するスイッチング回路と前記可変DC電源部の出力が前記スイッチング回路を通して供給される直列共振回路とを備えて前記スイッチング回路のスイッチング動作により前記可変DC電源部の直流出力を高周波交流出力に変換するDC/RF変換部と、前記DC/RF変換部から負荷に与えられる高周波電力の進行波成分及び反射波成分を検出するパワー検出部と、前記可変DC電源部及びDC/RF変換部を制御する制御部とを備えた高周波電源装置を対象とする。
本発明が対象とする高周波電源装置においては、上記制御部が、前記レグを構成するハイサイドスイッチ及びローサイドスイッチ双方への駆動信号の供給を休止する期間であるデッドタイムを設けながら、該ハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えるスイッチ駆動部を備えている。
本願においては、前記の目的を達成するために、少なくとも第1ないし第13の発明が開示される。
本願に開示された第1の発明においては、上記制御部に、スイッチング回路から負荷側を見たインピーダンスである負荷側インピーダンスを検出する負荷側インピーダンス検出部と、負荷側インピーダンスとスイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値(適切な値)との間の関係を与えるマップを記憶したマップ記憶部と、負荷側インピーダンス検出部により検出された負荷側インピーダンスに対してマップ記憶部に記憶されているマップを検索することにより各スイッチに与える駆動信号の波高値の適正値を演算するマップ演算部とを設ける。この場合スイッチ駆動部は、マップ演算部により演算された適正値に等しい波高値を有する駆動信号を各スイッチに与えるように構成される。
DC/RF変換部のスイッチング回路の各レグのスイッチで生じる損失は、各スイッチのオン抵抗(オン時の抵抗)と通電電流の自乗との積により決まる導通損失と、各スイッチがスイッチング動作(オン状態からオフ状態に遷移する動作及びオフ状態からオン状態に遷移する動作)を行う際のスイッチの両端の電圧とスイッチを流れている電流との積により決まるスイッチング損失とからなる。
これらの損失の内、スイッチング損失は、デッドタイムの開始時及び終了時にのみ発生するが、導通損失は、スイッチがオン状態にある期間の間継続的に発生する。スイッチがオン状態になる期間はデッドタイムに比べて格段に長いため、スイッチで生じる損失の大部分は導通損失である。従って、スイッチで生じる損失の低減を図ってスイッチの温度上昇を抑制するためには、先ず導通損失の低減を図ることが重要である。スイッチング回路の各スイッチで生じる導通損失は、各スイッチのオン抵抗と各スイッチを流れる電流の自乗との積により決まる。ここで、MOSFET等の半導体能動素子からなるスイッチのオン抵抗は、スイッチの制御端子に与える駆動信号の波高値により変り、各スイッチを流れる電流は、スイッチング回路から負荷側を見たインピーダンスである負荷側インピーダンスにより変るため、各スイッチで生じる導通損失は、負荷側インピーダンスに応じて各スイッチに与える駆動信号の波高値を適正値に調整して各スイッチのオン抵抗を適正値に調整することにより減らすことができ、各スイッチに与える駆動信号の波高値を、負荷側インピーダンスに対して求めた適正値に等しくすることにより、減らすことができる。
本願に開示された第2の発明では、上記負荷側インピーダンス検出部が、定められたタイミングが到来する毎に負荷側インピーダンスの検出を行うように構成され、マップ演算部は、負荷側インピーダンスが検出される毎に前記マップを検索して駆動信号の波高値の適正値を演算するように構成される。
DC/RF変換部のスイッチング回路の各スイッチで発生する損失を更に低減するためには、各スイッチで生じる導通損失の低減を図るだけでなく、各スイッチで生じるスイッチング損失の低減をも図ることが好ましい。
そのため、本願に開示された第3の発明においては、前記制御部に、スイッチング回路から負荷側を見たインピーダンスである負荷側インピーダンスを検出する負荷側インピーダンス検出部と、負荷側インピーダンスとスイッチング回路の各スイッチで生じる損失の低減を図るためにデッドタイムがとるべき適正値とスイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを記憶したマップ記憶部と、負荷側インピーダンス検出部により検出された負荷側インピーダンスに対してマップ記憶部に記憶されているマップを検索することによりデッドタイムの適正値と各スイッチに与える駆動信号の波高値の適正値とを演算するマップ演算部とを設ける。この場合、スイッチ駆動部は、デッドタイムを前記マップ演算部により演算された適正値に保ちながら、マップ演算部により演算された適正値に等しい波高値を有する駆動信号を各スイッチに与えるように構成される。
スイッチング回路の各スイッチで生じるスイッチング損失は、負荷側インピーダンスが誘導性であるときにデッドタイムの長短の影響を受ける。この場合、各スイッチで生じるスイッチング損失の低減を図ることができるデッドタイムの適正値は、負荷側インピーダンスにより変る。また負荷側インピーダンスが容量性であるときには主として各スイッチのオン抵抗と各スイッチを流れる電流とにより各スイッチで生じるスイッチング損失が決まり、負荷側インピーダンスに応じて各スイッチに与える駆動信号の波高値を適正値に調整して各スイッチのオン抵抗を適正値に調整することにより、各スイッチで生じるスイッチング損失の低減を図ることができる。また前述のように、負荷側インピーダンスに対して各スイッチに与える駆動信号の波高値の適正値をマップ演算することにより、各スイッチで生じる導通損失の低減を図ることができる。
従って上記のように、負荷側インピーダンス検出部により検出されている負荷側インピーダンスに対してデッドタイムの適正値と各スイッチに与える駆動信号の波高値の適正値とをマップ演算して、デッドタイム及び各スイッチに与える駆動信号の波高値を演算された適正値に等しくするようにすると、DC/RF変換部のスイッチング回路の各スイッチで生じる導通損失とスイッチング損失との双方の低減を図ることができる。
本願に開示された第4の発明は第3の発明に適用されるもので、本発明においては、負荷側インピーダンス検出部が、定められたタイミングが到来する毎に前記負荷側インピーダンスの検出を行うように構成され、マップ演算部は、負荷側インピーダンスが検出される毎にマップを検索してデッドタイムの適正値と駆動信号の波高値の適正値とを演算するように構成される。
本願に開示された第5の発明は、第1の発明ないし第4の発明の何れかに適用されるもので、本発明においては、負荷側インピーダンス検出部が、パワー検出部により検出された進行波成分及び反射波成分から求めた反射係数を用いて演算した負荷インピーダンスと、スイッチング回路とパワー検出部との間の回路のインピーダンスとから負荷側インピーダンスを求めるように構成される。
本願に開示された第6の発明は、第1の発明ないし第4の発明の何れかに適用されるもので、本発明においては、スイッチング回路を通して出力される電圧と電流とを検出する出力電圧・電流検出部が設けられ、負荷側インピーダンス検出部は、出力電圧・電流検出部により検出されたスイッチング回路の出力電圧と出力電流とから負荷側インピーダンスを求めるように構成される。
上記の各構成では、スイッチング回路から負荷側を見たインピーダンスを負荷側インピーダンスとして、この負荷側インピーダンスと駆動信号の波高値がとるべき適正値との間の関係を与えるマップを作成するようにしているが、上記負荷側インピーダンスは、パワー検出部により検出された進行波成分と反射波成分とから求めた反射係数の絶対値と位相角とを用いて演算することができる負荷インピーダンス(高周波電源装置の出力端から負荷側を見たインピーダンス)と、スイッチング回路と高周波電源装置の出力端との間に存在する回路のインピーダンスとから演算することができるので、負荷側インピーダンスと駆動信号の波高値の適正値との間の関係を与えるマップに代えて、パワー検出部の出力から演算される反射係数の絶対値及び位相角と駆動信号の波高値がとるべき適正値との間の関係を与えるマップを作成して、反射係数の絶対値及び位相角に対してこのマップを検索することにより、駆動信号の波高値がとるべき適正値を決定するようにすることもできる。
そこで本願に開示された第7の発明では、制御部に、パワー検出部により検出された進行波成分と反射波成分とから反射係数の絶対値|Γ|と位相角θとを演算する反射係数演算部と、この反射係数演算部により演算される反射係数の絶対値及び位相角とスイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを記憶したマップ記憶部と、反射係数演算部により演算された反射係数の絶対値及び位相角に対してマップ記憶部に記憶されているマップを検索することにより各スイッチに与える駆動信号の波高値の適正値を演算するマップ演算部とを設けて、パワー検出部の検出出力から求められる反射係数の絶対値及び位相角に対して各スイッチに与える駆動信号の波高値がとるべき適正値をマップ演算する。
このように構成すると、負荷側インピーダンスの検出を行うことなしに、各スイッチに与える駆動信号の波高値の適正値を定めて、スイッチで生じる導通損失を低減させるための制御を迅速に行わせることができる。
本願に開示された第8の発明は、第7の発明に適用されるもので、本発明においては、反射係数演算部が、定められたタイミングが到来する毎に反射係数の絶対値と位相角とを演算するように構成され、マップ演算部は、反射係数の絶対値と位相角とが演算される毎にマップを検索して駆動信号の波高値の適正値を演算するように構成される。
本願に開示された第9の発明では、前記制御部に、パワー検出部により検出された進行波成分と反射波成分とから反射係数の絶対値と位相角とを演算する反射係数演算部と、反射係数演算部により演算される反射係数の絶対値及び位相角とスイッチング回路の各スイッチで生じる損失の低減を図るためにデッドタイムがとるべき適正値とスイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを記憶したマップ記憶部と、反射係数演算部により演算された反射係数の絶対値及び位相角に対してマップ記憶部に記憶されているマップを検索することによりデッドタイムの適正値と各スイッチに与える駆動信号の波高値の適正値とを演算するマップ演算部とを設ける。この場合、スイッチ駆動部は、デッドタイムをマップ演算部により演算された適正値に保ちながら、マップ演算部により演算された適正値に等しい波高値を有する駆動信号を各スイッチに与えるように構成される。
このように、反射係数演算部により演算される反射係数の絶対値及び位相角とスイッチング回路の各スイッチで生じる損失の低減を図るためにデッドタイムがとるべき適正値とスイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを用いることによっても、デッドタイムの適正値と、各スイッチに与える駆動信号の波高値がとるべき適正値とを決定することができる。
本願に開示された第10の発明は、第9の発明に適用されるもので、本発明においては、反射係数演算部が、定められたタイミングが到来する毎に反射係数の絶対値と位相角とを演算するように構成され、マップ演算部は、反射係数の絶対値と位相角とが演算される毎にマップを検索してデッドタイムの適正値と駆動信号の波高値の適正値とを演算するように構成される。
本願に開示された第11の発明は、第1ないし第10の発明に適用されるもので、本発明においては、スイッチ駆動部が、DC/RF変換部の出力端子間に発生させる高周波電圧の半周期に相当する時間と前記デッドタイムとからスイッチング回路のハイサイドスイッチに与える駆動信号が持つべき信号幅及びローサイドスイッチに与える駆動信号が持つべき信号幅を演算する信号幅演算部と、ハイサイドスイッチに与えるハイサイドスイッチ用駆動信号の信号幅を信号幅演算部により演算された信号幅とし、ハイサイドスイッチ用駆動信号の波高値をマップ演算部により演算された波高値の適正値に等しくすることを指示するハイサイドスイッチ用駆動信号発生指令と、ローサイドスイッチに与えるローサイドスイッチ用駆動信号の信号幅を信号幅演算部により演算された信号幅とし、ローサイドスイッチ用駆動信号の波高値をマップ演算部により演算された波高値の適正値に等しくすることを指示するローサイドスイッチ用駆動信号発生指令とを、デッドタイムに等しい時間間隔で交互に発生する駆動信号波形指示部と、前記駆動信号波形指示部がハイサイドスイッチ用駆動信号発生指令を発生したときにハイサイドスイッチに与えるパルス波形のハイサイドスイッチ用駆動信号を発生し、前記駆動信号発生指令発生手段がローサイドスイッチ用駆動信号発生指令を発生したときにローサイドスイッチに与えるパルス波形のローサイドスイッチ用駆動信号を発生するドライブ回路とを備えている。
本願に開示された第12の発明は、第1ないし第11の発明に適用されるもので、本発明においては、スイッチング回路がレグを一つだけ備えて,該レグのハイサイドスイッチとローサイドスイッチを交互にオン状態にすることにより可変DC電源部の出力を高周波出力に変換するハーフブリッジ回路からなっていて、ローサイドスイッチの両端の電圧が直列共振回路に印加される。スイッチ駆動部は、スイッチング回路に変換動作を行わせるべくスイッチング回路のハイサイドスイッチ及びローサイドスイッチのうちの一方に与えていた駆動信号を消滅させるタイミングと他方に与える駆動信号を発生させるタイミングとの間にデッドタイムを設けながらハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えるように構成される。
本願に開示された第13の発明は、第1ないし第11の発明に適用されるもので、本発明においては、スイッチング回路が、レグを二つ備えて、該二つのレグの対角位置にある一方の組のハイサイドスイッチ及びローサイドスイッチをオンにする状態と、該二つのレグの対角位置にある他方の組のハイサイドスイッチ及びローサイドスイッチをオンにする状態とを交互に生じさせることにより可変DC変換部の出力を高周波出力に変換するフルブリッジ回路からなっていて、該スイッチング回路の出力端子間の電圧が前記直列共振回路に印加される。この場合スイッチ駆動部は、スイッチング回路の各レグのハイサイドスイッチ及びローサイドスイッチのうちの一方に与えていた駆動信号を消滅させるタイミングと他方に与える駆動信号を発生させるタイミングとの間にデッドタイムを設けながらスイッチング回路に変換動作を行わせるべくスイッチング回路の各レグのハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えるように構成される。
請求項1に記載された発明によれば、負荷側インピーダンスと、DC/RF変換部のスイッチング回路の各スイッチで生じる損失を低減するために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを記憶させておいて、負荷側インピーダンスに対してこのマップを検索することにより、スイッチング回路の各スイッチに与える駆動信号の波高値の適正値とを演算して、各スイッチに与える駆動信号の波高値を演算された適正値に保ちながら各スイッチに駆動信号を与えるようにしたので、スイッチング回路の各スイッチで生じる導通損失の低減を図って、各スイッチで生じる発熱を少なくすることができ、各スイッチからの放熱を図るために用いるヒートシンクの小形化を図ることができる。また各スイッチで生じる損失の低減を図ることができるため、高周波電源装置の効率の向上を図ることができる。
また請求項7に記載された発明によった場合には、パワー検出部により検出される進行波成分と反射波成分とから求める反射係数の絶対値と位相角とスイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを記憶させておいて、反射係数の絶対値と位相角とに対してこのマップを検索することにより、スイッチング回路の各スイッチに与える駆動信号の波高値の適正値を求めることができるため、負荷側インピーダンスの検出を行うことなく、各スイッチに与える駆動信号の波高値の適正値を定めて、損失の低減を図るための制御を迅速に行わせることができる。
請求項3又は9に記載された発明によれば、スイッチング回路の各スイッチに与える駆動信号の波高値だけでなく、デッドタイムがとるべき適正値をも定めて、各スイッチで発生する導通損失とスイッチング損失との双方を低減させることができるようにしたので、各スイッチで発生する損失のいっそうの低減を図って、各スイッチで生じる発熱の抑制と、装置の効率の改善とを図ることができる。
本発明の一実施形態の構成を示したブロック図である。 本発明の他の実施形態の構成を示したブロック図である。 本発明の更に他の実施形態の構成を示したブロック図である。 図1の実施形態で用いるDC/RF変換部の構成例を示した回路図である。 図1ないし図3に示した実施形態で用いるスイッチ駆動部の構成例を示した回ブロック図である。 図1の実施形態で用いるDC/RF変換部の他の構成例を示した回路図である。 図1の実施形態において負荷側インピーダンスが誘導性である場合に流れるスイッチング回路の負荷電流及び出力電圧の波形を、スイッチング回路のハイサイドスイッチ及びローサイドスイッチに与える駆動信号の波形とともに模式的に示した波形図である。 図6に示したDC/RF変換部の動作の一過程を説明するための回路図である。 図6に示したDC/RF変換部の動作の他の過程を説明するための回路図である。 図6に示したDC/RF変換部の動作の更に他の過程を説明するための回路図である。 図6に示したDC/RF変換部の動作の更に他の過程を説明するための回路図である。 図6に示したDC/RF変換部の動作の更に他の過程を説明するための回路図である。 図6に示したDC/RF変換部の動作の更に他の過程を説明するための回路図である。 図6に示したDC/RF変換部の動作の更に他の過程を説明するための回路図である。 図6に示したDC/RF変換部の動作の更に他の過程を説明するための回路図である。 負荷側インピーダンスが容量性である場合に図6に示したDC/RF変換部に流れる負荷電流及び出力電圧の波形を、スイッチング回路のハイサイドスイッチ及びローサイドスイッチに与える駆動信号の波形とともに模式的に示した波形図である。 負荷側インピーダンスが容量性である場合にDC/RF変換部の動作の一過程で回路内を電流が流れる様子を説明するための回路図である。 本発明を適用することができる他の高周波電源装置のDC/RF変換部の構成例を示した回路図である。 本発明の実施形態で用いるマップの構造の一例を示した図表である。 本発明の実施形態で用いるマップの構造の他の例を示した図表である。 従来の高周波電源装置の構成を示したブロック図である。
以下図面を参照して本発明の実施形態につき詳細に説明する。
図1は本発明に係る高周波電源装置の一実施形態の構成を、負荷及びインピーダンス整合器とともに示したものである。同図において1は高周波電源装置、2は高周波電源装置1から高周波電力が供給される負荷、3は高周波電源装置1と負荷2との間に設けられたインピーダンス整合器である。
本実施形態では、負荷2がプラズマ負荷であるとする。プラズマ負荷は、高周波電源装置1から与えられる高周波電力によりプラズマを発生する負荷で、半導体等の被処理物にプラズマを照射することによりエッチング等の処理を行うプラズマ処理装置等である。プラズマ負荷は通常チャンバ内にプラズマ発生用の電極を備えていて、該電極に高周波電力が与えられた際にプラズマを発生する。プラズマ負荷のインピーダンスは、電極間に与えられる電力の大きさ、チャンバ内のガスの圧力、チャンバ内に供給されるガスの流量、プラズマを発生させる時間などの種々の条件により細かく変化する。
インピーダンス整合器3は、インピーダンス可変素子である可変コンデンサ又は可変インダクタと、モータを駆動源としてインピーダンス可変素子を操作する操作機構とを備えていて、負荷2で消費される高周波電力を最大にするために、高周波電源装置1の出力インピーダンスと、高周波電源装置から負荷側を見たインピーダンスとを共役関係にするように調整する機器である。一般に高周波電源装置の出力インピーダンスは50Ωに設計されているため、インピーダンス整合器3は、高周波電源装置1から負荷側を見たインピーダンスを50Ωに等しくするように動作する。通常インピーダンスの整合には100msecないし数secの時間を要する。インピーダンスの整合がとれるまでの間は負荷で反射が生じるため、DC/RF変換部5に戻ってくる反射波電力が多くなって、DC/RF変換部で生じる損失が増加する。
図示の高周波電源装置1は、可変DC電源部4と、可変DC電源部4から出力される直流出力を高周波交流出力(高周波電力)に変換するDC/RF変換部5と、DC/RF変換部5の出力から高調波成分を除去するローパスフィルタ6と、ローパスフィルタ6の出力端と高周波電源装置の出力端子との間に挿入されて、負荷2に供給される高周波電力の進行波成分及び負荷で反射して戻ってくる高周波電力の反射波成分をそれぞれ検出して進行波成分検出信号Pf及び反射波成分検出信号Prを出力するパワー検出部7と、可変DC電源部4及びDC/RF変換部5を制御する制御部8とを備えている。
可変DC電源部4は、出力する直流電力を後記するDC電源制御部から与えられる出力制御信号Sdcに応じて調整する機能を有するものであれば如何なるものでもよい。本実施形態で用いる可変DC電源部4は、商用周波数の交流電力を直流電力に変換する整流電源部と、この整流電源部の直流出力を任意の大きさを有する直流電力に変換するDC−DCコンバータとにより構成されている。DC−DCコンバータとしては種々の構成を有するものが知られているが、本実施形態では、可変DC電源部を構成するDC−DCコンバータが、入力された直流電力を一旦交流電力に変換するインバータと、このインバータの出力を変成するトランスと、該トランスの出力を整流する整流回路と、該整流回路の出力を平滑する平滑回路とを備えていて、出力制御信号(PWM制御信号)Sdcに応じてインバータの出力をPWM制御することにより任意のレベルの直流電力を得るように構成されている。
本実施形態で用いるDC/RF変換部5は、スイッチング回路5Aと,可変DC電源部4の出力がスイッチング回路5Aを通して供給される直列共振回路5Bと、一次コイルが直列共振回路5Bに直列に接続されたトランス5Cとを備えたD級アンプにより構成されていて、スイッチング回路5Aと直列共振回路5Bとが協働して、可変DC電源部4の直流出力を高周波交流出力に変換する。
本実施形態では、スイッチング回路5Aとして、ハイサイドスイッチ及びローサイドスイッチの直列回路からなるレグを一つだけ備えたハーフブリッジ型の回路が用いられる。スイッチング回路5Aを構成するハイサイドスイッチ及びローサイドスイッチとしては、MOSFET(電界効果トランジスタ)やバイポーラトランジスタ等の半導体増幅素子からなるものを用いる。半導体増幅素子からなるスイッチは、その制御端子にしきい値レベル以上の波高値を有する駆動信号が与えられたときに能動領域でオン動作をし、しきい値レベルを超える一定値以上の波高値を有する駆動信号が与えられている間飽和領域でオン動作をする。DC/RF変換部5が出力する高周波電力の大きさは、可変DC電源部4が出力する直流電力の大きさにより決まるため、可変DC電源部4の出力を変化させることにより、DC/RF変換部5の出力を変化させることができる。
ハーフブリッジ型のスイッチング回路5Aは、ハイサイド(上側の)スイッチと該ハイサイドスイッチに対して直列に接続されたローサイド(下側の)スイッチとからなるレグを一つ備えて、該レグを可変DC電源部4の出力端子間に接続した構成を有する。スイッチング回路5Aは、ハイサイドスイッチとローサイドスイッチとを交互にオン状態にすることにより、直列共振回路5Bと協働して直流電力を高周波交流電力に変換する変換動作を行う。本実施形態では、各スイッチとしてMOSFETを用いるものとする。
図4は、本実施形態で用いるDC/RF変換部5の回路構成を示したものである。図示のDC/RF変換部5は、可変DC電源部4から出力される直流電圧Vdcが印加されるプラス側入力端子5a及びマイナス側入力端子5bを有していて、入力端子5a,5b間にコンデンサCsが接続され、コンデンサCsの両端に(可変DC電源4の出力端子間に)スイッチング回路5Aが接続されている。
図示のスイッチング回路5Aは、ハイサイドスイッチであるMOSFET Q1と、ローサイドスイッチであるMOSFET Q2との直列回路からなる一つのレグを、可変DC電源4の出力端子間に並列に接続したハーフブリッジ型の構成を有している。このスイッチング回路においては、ハイサイドスイッチを構成するMOSFET Q1のドレインが入力端子5aに、ローサイドスイッチを構成するMOSFET Q2のソースがマイナス側入力端子5bにそれぞれ接続されるとともに、MOSFET Q1のソースと、MOSFET Q2のドレインとが共通接続されることにより、MOSFET Q1とMOSFET Q2とが直列に接続されている。MOSFET Q1のソースとMOSFET Q2のドレインとの共通接続点と、MOSFET Q2のソースとがスイッチング回路5Aの出力端子となっていて、MOSFET Q1のソースとMOSFET Q2のドレインとの共通接続点がインダクタLrとコンデンサCrとの直列回路からなる直列共振回路5Bの一端に接続されている。直列共振回路5Bの他端は、トランス5Cの1次コイルW1の一端に接続され、トランスの1次コイルW1の他端は、MOSFET Q2のソース(マイナス側入力端子5b)に接続されている。MOSFET Q1のドレイン・ソース間及びMOSFET Q2のドレイン・ソース間には、アノードをそれぞれのMOSFETのソース側に向けた寄生ダイオードD1及びD2と、出力静電容量(寄生容量)C1及びC2とが存在する。トランス5Cの2次コイルW2の一端及び他端からそれぞれDC/RF変換部部5の出力端子5c及び5dが引出されている。
MOSFET Q1及びQ2のゲート・ソース間には、制御部8内に設けられたドライブ回路8E2から駆動信号S1及びS2が交互に与えられる。駆動信号S1及びS2は例えば、図7(B)及び(C)に示すように矩形波状の信号であって、これらの駆動信号S1及びS2がしきい値以上になっている期間MOSFET Q1及びQ2がオン状態になり、駆動信号S1及びS2がしきい値未満になったときにMOSFET Q1及びQ2がオフ状態になる。
図示のスイッチング回路5Aにおいては、MOSFET Q1とMOSFET Q2とが可変DC電源部4の出力端子間に直列に接続されているため、これらのMOSFETが同時にオン状態になる期間が生じると、可変DC電源部4の出力が短絡されて大電流が流れ、MOSFETが破損する。したがって、この種のスイッチング回路をDC/RF変換部に用いる場合には、互いに直列に接続されたMOSFET Q1及びQ2の一方に与えていた駆動信号を消滅させるタイミングと他方に駆動信号を与えるタイミングとの間及び他方に与えていた駆動信号を消滅させるタイミングと一方に駆動信号を与えるタイミングとの間にデッドタイムtdを設けて、これらのデッドタイムの期間は、両MOSFET Q1,Q2への駆動信号の供給を休止する必要がある。
図4に示されたDC/RF変換部5においては、MOSFET Q1,Q2のスイッチング周波数に対して、直列共振回路5Bの共振周波数とQ(quality factor)とを適当に選ぶことにより、直列共振回路5Bとトランス5Cの1次コイルW1とに、図7(A)に示すように正弦波形の交流電流Izを流して、可変DC電源部4の出力を高周波交流電力に変換する。図7(A)においてVzは、スイッチング回路5Aの出力端子間(MOSFET Q2のドレインソース間) に得られる電圧Vzの波形を模式的に示したものである。この例では、スイッチング回路5Aの出力端子から負荷側を見たインピーダンスである負荷側インピーダンスZLが誘導性であるため、電流Izが電圧Vzに対して遅れている。
図1に示されたパワー検出部7は、方向性結合器からなっていて、高周波電源装置の出力端子の前段で、DC/RF変換部5からローパスフィルタ6を通して負荷に与えられる高周波電力の進行波成分と、負荷で反射して戻ってくる高周波電力の反射波成分とを検出して、検出した進行波成分及び反射波成分に比例した大きさを有する進行波成分検出信号Pf及び反射波成分検出信号Prを出力する。
後記するように、DC/RF変換部のスイッチング回路5Aを構成するスイッチで生じる導通損失(スイッチのオン抵抗と通電電流の自乗との積により決まる損失)は、スイッチング回路から負荷側を見たインピーダンスである負荷側インピーダンスZLに対して、スイッチに与える駆動信号の波高値を適正値に設定することにより低減することができる。
また各スイッチがスイッチング動作を行う際に生じるスイッチング損失は、スイッチング回路の同じレグを構成するハイサイドスイッチ及びローサイドスイッチ双方への駆動信号の供給を休止するデッドタイムtdの長さを負荷側インピーダンスに対して適正値に設定することにより低減することができる。
そこで本発明においては、スイッチング回路5Aの同じレグを構成する各スイッチで生じる導通損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値を種々の負荷側インピーダンスに対して求める実験と、同じレグを構成する各スイッチで生じるスイッチング損失の低減を図るためにデッドタイムtd がとるべき適正値を種々の負荷側インピーダンスZL に対して求める実験とを行って、スイッチに与える駆動信号の波高値の適正値とデッドタイムの適正値と負荷側インピーダンスとの間の関係を与えるマップ(テーブル)を予め作成しておき、適宜の手段により検出した負荷側インピーダンスに対してこのマップを検索することにより、駆動信号の波高値の適正値とデッドタイムの適正値とを求めて、同じレグを構成するハイサイドスイッチ及びローサイドスイッチに与える駆動信号の波高値と、両スイッチへの駆動信号の供給を停止するデッドタイムの長さとを演算された適正値に等しくするように制御する。
本実施形態で用いる制御部8は、反射係数演算部8Aと、負荷側インピーダンス検出部8Bと、マップ記憶部8Cと、マップ演算部8Dと、波高値指示信号発生部8E1及びドライブ回路8E2からなるスイッチ駆動部8Eと、DC電源制御部8Fとを備えている。これらの内、反射係数演算部8Aと、負荷側インピーダンス検出部8Bと、マップ記憶部8Cと、マップ演算部8Dと、波高値指示信号発生部8E1と、DC電源制御部8Fは、コンピュータに所定のプログラムを実行させることにより実現され、ドライブ回路8E2はハードウェア回路により構成される。
制御部8の各部について更に説明すると、反射係数演算部8Aは、パワー検出部7から得られる進行波成分検出信号Pf及び反射波成分検出信号Prを入力として、反射係数の絶対値|Γ|と位相角θとを演算する部分であり、負荷側インピーダンス検出部8Bは、スイッチング回路5Aの出力端子から負荷側を見たインピーダンスである負荷側インピーダンスZLを検出する部分である。
負荷側インピーダンス検出部8Bは、反射係数演算部8Aにより演算された反射係数から負荷側のインピーダンス(パワー検出部7から負荷側を見たインピーダンス)Zを求める演算と、インピーダンスZと、スイッチング回路5Bとパワー検出部7との間の回路の既知のインピーダンスとを合成する演算とを行うことにより、スイッチング回路5Aの出力端子から負荷側を見た負荷側インピーダンスZLを検出する。負荷側のインピーダンスZの演算に用いる反射係数としては,負荷側インピーダンスを演算するタイミングで検出された反射係数そのものを用いるのではなく、移動平均値を用いるのが好ましい。
マップ記憶部8Cは、負荷側インピーダンスZL に対して、デッドタイムtdがとるべき適正値と、MOSFET Q1,Q2に与える駆動信号の波高値がとるべき適正値とを求めるために用いるマップを記憶した部分である。本実施形態では、スイッチング回路5AのMOSFET Q1(ハイサイドスイッチ)及びMOSFET Q2(ローサイドスイッチ)で生じるスイッチング損失を低減するためにデッドタイムtdがとるべき適正値と、MOSFET Q1,Q2で生じる導通損失を低減するためにMOSFET Q1,Q2に与える駆動信号S1、S2の波高値がとるべき適正値と、負荷側インピーダンスZL との間の関係を与えるマップがマップ記憶部8Cに記憶されている。
マップ演算部8Dは、負荷側インピーダンス検出部8Bにより検出された負荷側インピーダンスZLに対してマップ記憶部8Cに記憶されているマップを検索して補間演算又は平均値の演算を行うことにより、デッドタイムtdの適正値とMOSFET Q1,Q2に与える駆動信号の波高値Shの適正値とを演算するように構成されている。
本実施形態では、負荷側インピーダンス検出部8Bが、定められたタイミングが到来する毎に負荷側インピーダンスの検出を行うように構成されている。負荷側インピーダンスを検出するタイミングは、十分に短く設定された一定の時間間隔で到来するタイミングでもよく、ハイサイドスイッチ及びローサイドスイッチに駆動信号を与えるタイミング等、DC/RF変換部が一連の動作を行う過程での特定のタイミング(検出動作を行うタイミングとして予め定めておいたタイミング)でもよい。
マップ演算部8Dは、負荷側インピーダンスが検出される毎に検出された負荷側インピーダンスに対してマップを検索して、駆動信号の波高値の適正値とデッドタイムtdの適正値とを演算するように構成されている。ハイサイドスイッチQ1に与える駆動信号S1の波高値及びローサイドスイッチQ2に与える駆動信号S2の波高値は、通常は等しくしておく。
スイッチ駆動部8Eは、可変DC電源部の出力を高周波出力に変換するべく、スイッチング回路5Aの同じレグの2つのMOSFET Q1及びQ2への駆動信号の供給を休止するデッドタイムtdをマップ演算部8Dにより演算された長さに保ちながら、マップ演算部8Dにより演算された波高値を有する駆動信号S1及びS2をMOSFET Q1及びQ2に与える部分で、駆動信号発生指令部8E1と、ドライブ回路8E2とにより構成される。
駆動信号発生指令部8E1は、図5に示すように、DC/RF変換部5の出力端子間に発生させる高周波電圧の半周期に相当する時間とマップ演算部8Dにより演算されたデッドタイムtd の適正値とから、DC/RF変換部5から希望する周波数を有する高周波電力を出力させるためにスイッチング回路5AのMOSFET Q1(ハイサイドスイッチ)に与える駆動信号が持つべき信号幅を演算する信号幅演算部801と、ハイサイドスイッチ及びローサイドスイッチに与える駆動信号の波形を指示する駆動信号波形指示部802とを備えている。
駆動信号波形指示部802は、ハイサイドスイッチQ1に与えるハイサイドスイッチ用駆動信号S1の信号幅を信号幅演算部801により演算された信号幅とし、ハイサイドスイッチ用駆動信号S1の波高値をマップ演算部8Dにより演算された波高値の適正値に等しくすることを指示するハイサイドスイッチ用駆動信号発生指令Sp1と、ローサイドスイッチに与えるローサイドスイッチ用駆動信号S2の信号幅を信号幅演算部801により演算された信号幅とし、ローサイドスイッチ用駆動信号S2の波高値をマップ演算部8Dにより演算された波高値の適正値に等しくすることを指示するローサイドスイッチ用駆動信号発生指令Sp2とをマップ演算部8Dにより演算されたデッドタイムtdに等しい時間間隔で交互に発生する。
ハイサイドスイッチ用駆動信号発生指令Sp1及びローサイドスイッチ用駆動信号発生指令Sp2はそれぞれドライブ回路8E2を構成する第1の駆動信号発生回路803及び第2の駆動信号発生回路804に与えられる。第1の駆動信号発生回路803は、駆動信号波形指示部802がハイサイドスイッチ用駆動信号発生指令Sp1を発生したときにハイサイドスイッチQ1に与えるパルス波形のハイサイドスイッチ用駆動信号S1を発生し、駆動信号波形指示部802がローサイドスイッチ用駆動信号発生指令Sp2を発生したときにローサイドスイッチQ2に与えるパルス波形のハイサイドスイッチ用駆動信号S2を発生する。第1の駆動信号発生回路803及び第2の駆動信号発生回路804は、指示された通りのパルス波形と周波数とを有する信号を出力するDDS(ダイレクト・デジタル・シンセサイザー)により構成することができる。
図1に示されたDC電源制御部8Fは、可変DC電源部4に所定の出力制御信号Sdcを与えることにより、パワー検出部7により検出される高周波電力の進行波成分を設定値に保つように可変DC電源部4を制御する高周波出力制御と、パワー検出部7により検出される高周波電力の反射波成分が規定値(許容値)を超えているときに、反射波成分を規定値以下に抑えるべく、可変DC電源部4の出力を抑制する反射保護制御とを行う部分である。出力制御信号Sdcは、可変DC電源部4の構成に応じて適宜の形態をとり得るが、本実施形態では、可変DC電源部4を構成するDC−DCコンバータのスイッチング回路をPWM制御するための信号からなる。
図1に示した例では、DC/RF変換部5のスイッチング回路5Aの出力端子から負荷側を見たインピーダンスである負荷側インピーダンスZLを、パワー検出部7により検出された進行波成分検出信号Pfと反射波成分検出信号Prとから演算した反射係数を用いて演算した負荷インピーダンスZと、スイッチング回路5Aとパワー検出部7との間に設けられている回路のインピーダンスとから演算するようにしたが、図2に示すように、スイッチング回路5Aの出力電圧Vzと出力電流Izとを検出する出力電圧・電流検出部8Gを設けて、この検出部により検出された電圧及び電流から負荷側インピーダンスZLを演算するように、負荷側インピーダンス検出部8Bを構成してもよい。
図4に示すようにDC/RF変換部5の出力段にトランス5Cを設けておくと、複数台のDC/RF変換部5のトランス5Cの二次側を並列接続することにより、複数台のDC/RF変換部の出力を合成して負荷に供給することができる。従って、図4に示した構成は、複数の高周波電源装置から負荷2に大きな高周波電力を供給する場合に有利であるが、本発明はDC/RF変換部5を図4に示したように構成する場合に限定されるものではなく、単一の高周波電源装置から負荷に高周波電力を供給する場合には、トランスを省略して、図6に示すように可変DC電源部4の出力をスイッチング回路5Aと直列共振回路5Bとにより変換して得た高周波電力をトランスを介することなく負荷2′に供給するようにDC/RF変換部を構成してもよい。なお図6に示した負荷2′は、DC/RF変換部5の出力端から見た負荷であり、ローパスフィルタ、インピーダンス整合器、電源ライン及び高周波電力を消費する負荷を含む負荷である。
ここで、図6に示したDC/RF変換部5を例にとって、その動作を説明すると下記の通りである。なお以下の説明では、MOSFET Q1,Q2のスイッチング周波数と直列共振回路5Bの共振周波数とが等しいとしている。
[負荷側インピーダンスが抵抗性である場合]
負荷側インピーダンスが抵抗性であるときには、DC/RF変換部の各MOSFETの両端の電圧と各MOSFETを通して流れる電流とが同位相であるため、MOSFET Q1がオン状態にある期間正の半波の振動電流が流れ、MOSFET Q1がオフ状態になってからMOSFET Q2がオン状態になるまでのデッドタイムtdの間に振動電流が正の半波から負の半波に移行する。またMOSFET Q2がオン状態にある期間負の半波の振動電流が流れ、MOSFET Q2がオフ状態になってからMOSFET Q1がオン状態になるまでのデッドタイムの期間に振動電流が正の半波から負の半波に移行する。
即ち、MOSFET Q2がオフ状態になった後、MOSFET Q1がオン状態になると、コンデンサCs→MOSFET Q1のドレイン・ソース間→直列共振回路5B→負荷2′→コンデンサCsの回路を直列共振の正の半波の振動電流が流れる。MOSFET Q1がオフ状態になった後、MOSFET Q2がオン状態になるまでのデッドタイムの期間においては、直列共振回路5B→負荷2′→ダイオードD2→直列共振回路5Bの回路を正の半波の振動電流の最後の部分が流れた後電流の極性が反転して、直列共振回路5B→ダイオードD1→コンデンサCs→負荷2′→直列共振回路5Bの回路を負の半波の振動電流の最初の部分が流れる。次いでMOSFET Q2がオン状態になると、直列共振回路のインダクタLr及びコンデンサCrに蓄積されたエネルギにより、直列共振回路5B→MOSFET Q2→負荷2′→直列共振回路5Bの回路を負の半波の振動電流が流れる。MOSFET Q2がオフ状態になった後、MOSFET Q1がオン状態になるまでの間のデットタイムの期間においては、直列共振回路5B→ダイオードD1→コンデンサCs→負荷2′→直列共振回路5Bの回路を負の半波の振動電流の最後の部分が流れた後電流の極性が反転して、コンデンサCs→出力静電容量C1→直列共振回路5B→負荷2′→コンデンサCsの回路を正の半波の振動電流の最初の部分が流れる。
MOSFET Q1のドレイン・ソース間に存在する出力静電容量C1は、MOSFET Q1がオン状態になったときにそのドレイン・ソース間を通して瞬時に放電し、MOSFET Q1がオフ状態になって、MOSFET Q2がオン状態になったときに、コンデンサCs→ 出力静電容量C1→ MOSFET Q2→コンデンサCsの経路で充電される。またMOSFET Q2のドレイン・ソース間に存在する出力静電容量C2は、該MOSFET Q2がオン状態になったときに放電し、該MOSFET Q2がオフ状態になって、MOSFET Q1がオン状態になったときに、コンデンサCs→MOSFET Q1→出力静電容量C2→コンデンサCsの経路で充電される。上記の動作が繰り返されることにより、可変DC電源部4の出力電圧Vdcが高周波交流電圧に変換される。
図示のDC/RF変換部においては、MOSFET Q1がターンオフする際にMOSFET Q1の出力静電容量C1が直列共振回路を通して充電されることにより、MOSFET Q1の両端の電圧の上昇を抑制して、零電圧スイッチング(ZVS)に近い状態でターンオフを行わせることができるため、スイッチング損失の低減を図ることができる。またMOSFET Q1をターンオンする際には、MOSFET Q1の寄生ダイオードD1を通して共振電流が流れてMOSFET Q1の両端の電圧がほぼ0V(実際にはダイオードD1の順方向電圧)になっている状態でターンオン過程を開始させることができるため、MOSFET Q1を零電圧スイッチングによりターンオンさせることができ、スイッチング損失の低減を図ることができる。
同様に、MOSFET Q2をターンオフする際には、MOSFET Q2の出力静電容量C2が直列共振回路を通して充電されるため、MOSFET Q2の両端の電圧の上昇を抑制して、零電圧スイッチング(ZVS)に近い状態でターンオフさせることができ、スイッチング損失の低減を図ることができる。またMOSFET Q2をターンオンする際には、MOSFET Q2の寄生ダイオードD2を通して共振電流が流れてMOSFET Q2の両端の電圧がほぼ0V(ダイオードD2の順方向電圧)になっている状態でターンオン過程が開始されるため、MOSFET Q2を零電圧スイッチングによりターンオンさせて、スイッチング損失の低減を図ることができる。
[負荷側インピーダンスが誘導性である場合]
次に、負荷側インピーダンスZLが誘導性であって、各MOSFETを流れる電流の位相が各MOSFETの両端の電圧の位相に対して遅れる場合のDC/RF変換部5の動作を、図8ないし図15を参照して説明する。先ず、MOSFET Q1に駆動信号S1が与えられ、MOSFET Q2に駆動信号が与えられていない状態を考える。このときMOSFET Q1がオン状態にあり、MOSFET Q2がオフ状態にあるため、図8に示すように電流I1 が流れて負荷2に電力が供給される。このときMOSFET Q1の両端(ドレインソース間)の電圧はほぼ0[V]であり、MOSFET Q2の両端の電圧はほぼ電源電圧Vdcに等しくなっている。
次いで、デッドタイムtdを開始する図7のタイミングt2 でMOSFET Q1をオフ状態にするために、MOSFET Q1への駆動信号S1の供給を停止すると、MOSFET Q1のターンオフ過程が開始される。このとき図9に示すように、MOSFET Q2の出力静電容量C2に溜まった電荷が直列共振回路5Bと負荷2′とを通して放電を開始して放電電流I2が流れると共に、コンデンサCs→MOSFET Q1の出力静電容量C1→直列共振回路5B→コンデンサCsの経路で充電電流I3が流れて出力静電容量C1の充電が開始され、DC/RF変換部5で直列共振が生じる。MOSFET Q1の両端の電圧が電源電圧Vdcに向けてゆっくりと上昇するため、ZVSに近い形でMOSFET Q1のターンオフが行われる。
デッドタイムtdの期間において、MOSFET Q2の出力静電容量C2の放電及びMOSFET Q1の出力静電容量C1の充電が完了した後は、図10に示したように、負荷に流れる共振電流I4 がMOSFET Q2の寄生ダイオードD2を通して流れるようになる。このときMOSFET Q2の両端の電圧はダイオードD2の順方向電圧降下に等しくなり、ほぼ0Vになる。
デッドタイムtdを終了するタイミング(図7のt3 )で両端の電圧がほほ0VになっているMOSFET Q2に駆動信号S2を与えると、MOSFET Q2をZVSでターンオンさせることができる。MOSFET Q2がターンオンすると、図11に示すように、MOSFET Q2を通しても共振電流I5が流れるようになり、寄生ダイオードD2を通して流れる共振電流I4′が減少する。
共振回路内でのエネルギのやりとりにより共振電流が流れる方向が反転(自然転流)すると、図12に示すように、共振回路5B→MOSFET Q2→負荷2′→共振回路5Bの経路で共振電流I6 が流れるようになる。
次いで、次のデッドタイムtdを開始するタイミング(図7のt4)でMOSFET Q2への駆動信号S2の供給を停止すると、MOSFET Q1の出力静電容量C1に溜まっていた電荷が直列共振回路5Bとの共振により放電を開始し、図13に示すように、出力静電容量C1→コンデンサCs→負荷2′→直列共振開御5B→出力静電容量C1の経路で放電電流I7が流れる。またMOSFET Q2の出力静電容量C2が共振電流I8により充電されるため、MOSFET Q2の両端の電圧が電源電圧Vdcに向けてゆっくりと上昇し、MOSFET Q2のターンオフがZVSに近い形で行われる。
図7のタイミングt4で開始されたデッドタイムtdの期間においてMOSFET Q1の出力静電容量C1の放電及びMOSFET Q2の出力静電容量C2の充電が完了した後は、図14に示すように、負荷2′に流れる共振電流I9 がMOSFET Q1の寄生ダイオードD1を通して流れるようになり、MOSFET Q1の両端の電圧がほぼ0Vになる。この状態でタイミングt4 で開始されたデッドタイムtdを終了させるタイミング(図7のt1)でMOSFET Q1に駆動信号S1を与えると、MOSFET Q1をZVSでターンオンさせることができる。MOSFET Q1がターンオンすると、図15に示すように、直列共振回路5B→MOSFET Q1→コンデンサCs→負荷2′→直列共振回路5Bの経路でも共振電流I10が流れるようになる。次いで、共振回路内でのエネルギのやりとりにより、共振電流の向きが反転して、図8に示すように、コンデンサCs→MOSFET Q1→直列共振回路5B→負荷2′→コンデンサCsの経路で流れる状態に戻る。
[負荷側インピーダンスが容量性である場合]
負荷側インピーダンスが容量性である場合には、図16に示すように、各MOSFETを流れる電流の位相が各MOSFETの両端の電圧の位相に対して進むため、MOSFET Q1がオン状態にある間に振動電流が正の半波から負の半波に移行する。負の半波の振動電流は、MOSFET Q1がオン状態にあり、MOSFET Q2がオフ状態にある期間、及びMOSFET Q1がオフ状態になった後のデッドタイムの期間、直列共振回路5B→寄生ダイオードD1→コンデンサCs→負荷2′→直列共振回路5Bの回路を流れる。次いでMOSFET Q2がオン状態になると、図17に示したように、直列共振回路5B→MOSFET Q2→負荷2′→直列共振回路5Bの回路を通して負の半波の振動電流Iaが流れると同時に、コンデンサCs→出力静電容量C1→MOSFET Q2→コンデンサCsの回路を通して電流Ibが流れ、更に出力静電容量C2→MOSFET Q2→出力静電容量C2を通して電流Icが流れる。
このように、負荷が容量性である場合には、ローサイドのMOSFET Q2がオン状態になった際に、該MOSFET Q2に負の半波の振動電流Iaが流れるだけでなく、ハイサイドのMOSFET Q1がオン状態にある間に放電が完了している出力静電容量C1に流れる大きな充電電流Ibと、ローサイドのMOSFET Q2がオフ状態にある期間に充電が完了している出力静電容量C2の大きな放電電流Icとが流れるため、ローサイドのMOSFET Q2に非常に大きな電流が流れる。
[スイッチング回路の各スイッチで生じる損失の低減について]
上記のように、ハイサイドスイッチとローサイドスイッチの直列回路からなるレグを少なくとも一つ有して、該少なくとも一つのレグを可変DC電源部の出力端子間に並列に接続した構成を有するスイッチング回路5Aと、可変DC電源部4の出力がスイッチング回路5Aを通して供給される直列共振回路5Bとを備えて、スイッチング回路のスイッチング動作により可変DC電源部の直流出力を高周波交流出力に変換するDC/RF変換部を用いる高周波電源装置においては、負荷のインピーダンスが低インピーダンスになって、全反射に近い反射を生じる状態になったときに、スイッチング回路5Aのレグを構成するスイッチに大きな電流が流れる。このようにスイッチング回路のレグを構成するスイッチに大きな電流が流れるときには、各スイッチのオン抵抗により大きな導通損失が生じるため、この導通損失の低減を図ることが重要になる。
上記導通損失は、スイッチのオン抵抗と通電電流とにより決まり、負荷側インピーダンスの増減に伴う負荷電流の増減により増減する。一般に、半導体増幅素子からなるスイッチのオン抵抗は、該スイッチに与える駆動信号(MOSFETの場合はゲート信号)の波高値により変る。従って、スイッチQ1,Q2で生じる導通損失は、スイッチQ1,Q2に与える駆動信号S1,S2の波高値を調整して各スイッチのオン抵抗を調整することにより適宜に調整することができるが、導通損失はスイッチを通して流れる電流の自乗に比例するため、オン抵抗を小さくしすぎると、かえって導通損失が増大する。従って、各スイッチで生じる導通損失の低減を図るためには、スイッチのオン抵抗を決める駆動信号の波高値を、大きすぎず、小さすぎない適正値に設定する必要がある。各スイッチで生じる導通損失の低減を図るために必要なスイッチの駆動信号の波高値の適正値は、スイッチング回路の負荷電流によりに変るため、DC/RF変換部のスイッチング回路から負荷側を見たインピーダンスである負荷側インピーダンスZLに応じて決定する必要がある。
また負荷側インピーダンスが誘導性である場合及び容量性である場合には、デッドタイムの期間にスイッチング回路を構成する各スイッチがスイッチング動作を行う際に大きなスイッチング損失が生じるため、高周波電源装置の効率を高めるためには、各スイッチで生じるスイッチング損失の低減を図ることが必要になる。
負荷側インピーダンスZLが誘導性であるときに生じるスイッチング損失は、デッドタイムの影響を受ける。各デッドタイムtdの期間においては、回路のインダクタンスに蓄積されている電磁エネルギにより生じる共振現象により、デッドタイムの開始時にターンオフさせられる同じレグの一方のスイッチの出力静電容量の充電と、次に(デッドタイムが経過した時に)ターンオンさせられる他方のスイッチの出力静電容量の放電とが同時に行われる。各デッドタイムの開始時にターンオフさせられるレグの一方のスイッチがオン状態からオフ状態に遷移する過程では、前述のように、該一方のスイッチの出力静電容量が回路に蓄積されていたエネルギにより充電されて、該一方のスイッチの両端の電圧がゆっくりと上昇していくため、該一方のスイッチのターンオフを零電圧スイッチングに近い状態で行わせることができ、該一方のスイッチのターンオフを大きな損失の発生を伴うことなく行わせることができる。
これに対し、デッドタイムtdの終了時にレグの他方のスイッチに駆動信号を与えて該他方のスイッチをオフ状態からオン状態に遷移させる過程では、該他方のスイッチに駆動信号が与えられた際に該他方のスイッチの両端に電圧が与えられているか否かにより、該他方のスイッチでスイッチング損失が発生するか否かが決まる。
デッドタイムが短すぎてスイッチの出力静電容量の充放電が完了する前に該他方のスイッチに駆動信号が与えられると、該他方のスイッチの両端に出力静電容量の両端の電圧が印加されている状態で該他方のスイッチのターンオン過程が開始されるため、該他方のスイッチで無視できないスイッチング損失が生じる。またデッドタイムが長すぎると、他方のスイッチの出力静電容量の放電が一旦完了した後、回路の共振により該他方のスイッチの出力静電容量を流れる共振電流の向きが反転して、該出力静電容量の充電が開始された後に該他方のスイッチに駆動信号が与えられてターンオン過程が開始されることになるため、該他方のスイッチで無視できないスイッチング損失が生じる。
従って、各レグで生じるスイッチング損失を低減するためには、各レグのスイッチの出力静電容量の充放電(デッドタイムの開始時にターンオフするスイッチの出力静電容量の充電及びデッドタイムの終了時にターンオンさせられるスイッチの出力静電容量の放電)が丁度完了したときにデッドタイムを終了させて、デッドタイムの終了後にターンオンさせるスイッチの出力静電容量の両端の電圧が零の状態で、該スイッチに駆動信号を与えるようにする必要がある。この場合、各レグのスイッチの出力静電容量の充放電を完了するために必要な時間が、各レグのスイッチで生じるスイッチング損失を低減するために必要なデッドタイムの適正値となる。
各レグのスイッチの出力静電容量の充放電を完了するために必要な時間は、DC/RF変換部の負荷電流が大きく、充放電開始時に回路のインダクタンスに蓄積されているエネルギが大きい場合ほど短くなり、回路のインダクタンスに蓄積されているエネルギが小さい場合ほど長くなるため、各レグのスイッチで生じるスイッチング損失を最小にするために必要なデッドタイムの適正値は、負荷側インピーダンスの大きさにより変化する。従って、各レグのスイッチで生じるスイッチング損失の低減を図るために必要なデッドタイムの適正値も、負荷側インピーダンスに応じて決定する必要がある。
上記のように、負荷側インピーダンスが誘導性であるときには、スイッチング回路のレグのスイッチで生じる導通損失を最小にするために各スイッチに与える駆動信号の波高値の適正値、及びレグのスイッチで生じるスイッチング損失を最小にするために必要なデッドタイムの適正値を、DC/RF変換部のスイッチング回路から負荷側を見たインピーダンスである負荷側インピーダンスに対して決めることができる。従って、本発明のように、DC/RF変換部の各レグのハイサイドスイッチ及びローサイドスイッチで生じる損失を低減するためにデッドタイムがとるべき適正値と、各スイッチ素子で生じる損失を低減するために各スイッチ素子に与える駆動信号の波高値がとるべき適正値と、負荷側インピーダンスとの間の関係を与えるマップを記憶させておいて、負荷側インピーダンスに対してこのマップを検索するようにすると、DC/RF変換部の各スイッチに与える駆動信号の波高値の適正値と、デッドタイムの適正値とを演算することができ、DC/RF変換部の各スイッチに与える駆動信号の波高値を演算された適正値に等しくし、各レグを構成するスイッチの何れにも駆動信号を与えないデッドタイムを演算された適正値に等しくするように各レグのスイッチへの駆動信号の供給を制御することにより、DC/RF変換部のスイッチで生じる損失の低減を図ることができる。
一方、負荷側インピーダンスZLが容量性であるときに生じるスイッチング損失は、デッドタイムが終了した後にオン状態にされるスイッチに駆動信号を与えて該スイッチのターンオン過程を行わせる際に、該スイッチを流れる非常に大きな電流(図17に示された電流)の影響を受ける。この場合、スイッチング損失を低減するためには、デッドタイムが終了した後にオン状態にされるスイッチに与える駆動信号の波高値を適正値まで下げて当該スイッチのオン抵抗を上げることにより、該スイッチを流れる電流のピーク値を下げてやればよい。各スイッチを流れるピーク電流は、負荷側インピーダンスにより変るため、駆動信号の適正値は、負荷インピーダンスにより変る。従って、負荷側インピーダンスが容量性である場合にスイッチング損失を低減するために適した駆動信号の波高値は、負荷側インピーダンスに対して決める必要がある。
なお負荷側インピーダンスに対してデッドタイムを適正値に保つ制御及びスイッチに与える駆動信号の波高値を適正値に保つ制御をフィードバック制御により行うことも考えられる。DC/RF変換部の出力周波数が低い場合には、例えばスイッチング回路の中点(ハイサイドスイッチとローサイドスイッチとの接続点)の電位の低下から、デッドタイムの終了後にターンオンさせられるスイッチの出力静電容量の放電が完了したことを検出して、当該スイッチに駆動信号を与えることにより、スイッチング損失の低減を図ることが行われている。しかしながら、DC/RF変換部の出力周波数がMHzのオーダーになる高周波電源装置においては、デッドタイムが非常に短く、スイッチング動作が非常に短い時間の間に行われるため、スイッチング回路の中点の電位を検出してデッドタイムを適正値に保つ制御を行うことはできない。またスイッチング回路では、スイッチング損失だけでなく、スイッチング損失よりも大きい導通損失が生じるが、デッドタイムを制御するだけでは、各スイッチで生じる導通損失の低減を図ることができない。
そこで、本実施形態では、負荷側インピーダンスと、スイッチング回路の各スイッチで生じる損失の低減を図るためにデッドタイムがとるべき適正値と、各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを実験に基づいて作成しておき、随時検出される負荷側インピーダンスに対してこのマップを検索することによりデッドタイムの適正値と各スイッチに与える駆動信号の波高値の適正値とを演算して、演算された波高値を有する駆動信号を演算されたデッドタイムに等しい時間間隔でハイサイドスイッチ及びローサイドスイッチに交互に与えることにより、負荷電流に応じてスイッチング回路の各スイッチのオン抵抗を調整して導通損失を低減させる制御と、デッドタイムを適正な値に調整して各スイッチで生じるスイッチング損失を低減させる制御とを行う。
このような制御を行うと、出力周波数が高い場合にも、スイッチング回路の各レグのハイサイドスイッチ及びローサイドスイッチへのオン抵抗と、両スイッチへの駆動信号の供給を休止するデッドタイムとの双方を適正値に保つことができるため、スイッチング回路の各スイッチで生じる損失の低減を適確に図って、各スイッチで生じる発熱を抑制することができる。
負荷側インピーダンスの検出を行うタイミングは、設定された一定の微小時間間隔で到来する各タイミングでもよく、ハイサイドスイッチ及びローサイドスイッチに駆動信号を与えるタイミングや、ハイサイドスイッチ及びローサイドスイッチに与えていた駆動信号を消滅させるタイミング等でもよい。各タイミングで検出した負荷側インピーダンスを記憶させておいて、マップ演算を行う際に記憶されている最新の負荷側インピーダンスのデータを用いるようにすることにより、スイッチング損失の低減を図るためのデッドタイムの制御及び導通損失の低減を図るためのスイッチのオン抵抗の制御を適確に行わせて、スイッチング損失及び導通損失の双方を低減させることができる。
本実施形態において、負荷側インピーダンスと、スイッチング回路の各スイッチで生じる損失の低減を図るためにデッドタイムがとるべき適正値と、スイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップとしては、例えば図19に示すように、負荷側インピーダンスR+jXの抵抗分Rとリアクタンス分Xと、負荷側インピーダンスの抵抗分R及びリアクタンス分Xが種々の値R1,R2,…,Rm(R1<R2<…<Rm)及びX1,X2,…,Xn(X1<X2<…<Xn)をとるときにスイッチング回路の各スイッチに与える駆動信号の波高値がとるべき適正値と、デッドタイムがとるべき適正値とを格納したメモリのアドレスA11〜Amnとの関係を与えるテーブルの構造を有するものを用いることができる。
図19に示したマップを用いて、負荷側インピーダンスRa+jXaに対してデッドタイムがとるべき適正値と駆動信号の波高値がとるべき適正値とを演算する場合には、例えば、マップを構成する抵抗値R1,R2,…及びリアクタンス値X1,X2,…の中から負荷側インピーダンスの抵抗分Raを間にして上下に並ぶ値を有する2つの抵抗値と、リアクタンス分Xaを間にして上下に並ぶ値を有する2つのリアクタンス値とを抽出して、抽出した2つの抵抗値及び2つのリアクタンス値に対応する4つのメモリに記憶されたデッドタイムの適正値及び駆動信号の波高値の適正値を平均することにより、負荷側インピーダンスRa+jXaに対してデッドタイムがとるべき適正値と駆動信号の波高値がとるべき適正値とを演算する。
例えば、R1 <Ra<R2 ,X1<Xa<X2 である場合には、R1 ,R2 及びX1 ,X2 に対応する4つのメモリA11,A12,A21及びA22にそれぞれ記憶されているデッドタイムの適正値及び駆動信号の波高値の適正値を読み出して、読み出した4つのデッドタイムの適正値の平均値を実際に用いるデッドタイムの適正値とし、読み出した4つの波高値の適正値の平均値を実際に用いる波高値の適正値とする。
なお負荷側インピーダンスの抵抗分Raがマップに含まれる最小の抵抗値R1 よりも小さい場合には、R1 に対応するメモリA11,A12,A13,…に記憶されているデータを用いて平均値の演算を行い、負荷側インピーダンスの抵抗分Raがマップに含まれる最大の抵抗値Rmよりも大きい場合には、Rmに対応するメモリAm1,Am2,Am3,…に記憶されているデータを用いて平均値の演算を行うものとする。同様に、負荷側インピーダンスのリアクタンス分Xaがマップに含まれる最小のリアクタンスX1よりも小さい場合には、メモリA11,A21,…,Am1に記憶されているデータを用いて平均値の演算を行い、負荷側インピーダンスのリアクタンス分Xaがマップに含まれる最大のリアクタンスXnよりも大きい場合には、メモリA1n,A2n,…,Amnに記憶されているデータを用いて平均値の演算を行うものとする。
例えば、検出された負荷側インピーダンスの抵抗分Raがマップに含まれる最小の抵抗値R1よりも小さく、リアクタンス分Xaが、X1 とX2 との間にある場合には、メモリA11及びA12にそれぞれ記憶されているデッドタイムの適正値のデータ及び駆動信号の波高値の適正値のデータをそれぞれ平均することにより実際に用いるデッドタイムの適正値及び波高値の適正値を演算する。
また検出された負荷側インピーダンスの抵抗分Ra及びリアクタンス分Xaがそれぞれマップに含まれる最小の抵抗値R1及び最小のリアクタンス値X1よりも小さい場合には、平均値の演算を行うことなく、メモリA11に記憶されているデッドタイムの適正値及び波高値の適正値を用いるものとし、検出された負荷側インピーダンスの抵抗分Ra及びリアクタンス分Xaがそれぞれマップに含まれる最大の抵抗値Rn及びリアクタンス値Xnよりも大きい場合には、平均値の演算を行うことなく、メモリAmnに記憶されているデッドタイムの適正値及び波高値の適正値を用いるものとする。
上記の実施形態では、スイッチング回路から負荷側を見たインピーダンスを負荷側インピーダンスとして、この負荷側インピーダンスとデッドタイムの適正値及び駆動信号の波高値がとるべき適正値との間の関係を与えるマップを作成するようにしているが、スイッチング回路から負荷側を見たインピーダンスである負荷側インピーダンスは、パワー検出部7により検出された進行波成分と反射波成分とから求めた反射係数の絶対値と位相角とを用いて演算することができる負荷インピーダンス(高周波電源装置の出力端から負荷側を見たインピーダンス)と、スイッチング回路と高周波電源装置の出力端との間に存在する回路のインピーダンスとを合成することにより演算することができるので、負荷側インピーダンスと駆動信号の波高値の適正値との間の関係を与えるマップに代えて、反射係数の絶対値|Γ|及び位相角θと駆動信号の波高値がとるべき適正値との間の関係を与えるマップを作成しておいて、反射係数の絶対値|Γ|及び位相角θに対してこのマップを検索することにより、デッドタイムがとるべき適正値及び駆動信号の波高値がとるべき適正値を演算するようにすることもできる。
この場合、制御部8は、図3に示したように、パワー検出部7により検出された進行波成分と反射波成分とから反射係数の絶対値|Γ|と位相角θとを演算する反射係数演算部8Aと、この反射係数演算部により演算される反射係数の絶対値及び位相角とスイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを記憶したマップ記憶部8Cと、反射係数演算部8Aにより演算された反射係数の絶対値|Γ|及び位相角θに対してマップ記憶部8Cに記憶されているマップを検索することにより各スイッチに与える駆動信号の波高値の適正値を演算するマップ演算部8Dとを設けて、パワー検出部7の検出出力から求められる反射係数の絶対値|Γ|及び位相角θに対して各スイッチに与える駆動信号の波高値がとるべき適正値をマップ演算するようにする。
この場にマップ記憶部8Cに記憶させておくマップは、図20に示すように、反射係数の絶対値|Γ|及び位相角θと、反射係数の絶対値|Γ|及び位相角θが種々の値|Γ|1,|Γ|2,…|Γ|m(|Γ|1<|Γ|2<…<|Γ|m)及びθ1,θ2,…,θn(θ1<θ2<…<θn)をとるときにスイッチング回路の各スイッチに与える駆動信号の波高値がとるべき適正値と、デッドタイムがとるべき適正値とを格納したメモリのアドレスA11〜Amnとの関係を与えるテーブルの構造とすることができる。
上記のように、反射係数の絶対値及び位相角に対してデッドタイムの適正値及び駆動信号の波高値の適正値をマップ演算する構成をとると、負荷側インピーダンスの検出を行うことなしに、デッドタイムの適正値及び各スイッチに与える駆動信号の波高値の適正値を定めて、スイッチで生じる導通損失を低減させるための制御を迅速に行わせることができる。
上記の実施形態では、制御部8に、デッドタイムを適正値に保つ制御と、スイッチング回路のスイッチに与える駆動信号の波高値を適正値に保つ制御(各スイッチのオン抵抗を適正値に保つ制御)との双方を行わせることにより、各スイッチで生じるスイッチング損失と導通損失との双方の低減を図るようにしているが、各スイッチで生じる損失の大部分は導通損失であるため、導通損失の低減を図るだけでも、各スイッチで生じる温度上昇を抑制する上で大きな効果が得られる。従って、スイッチング損失の低減を図るためにデッドタイムを適正値に保つ制御を省略して、各スイッチに与える駆動信号の波高値を適正値に保って各スイッチで生じる導通損失の低減を図る制御のみを行わせるようにしてもよい。
スイッチング回路の各スイッチで生じる導通損失の低減を図るための制御のみを行う場合には、図1及び図2に示した各実施形態において、負荷側インピーダンスとスイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを制御部8のマップ記憶部8Cに記憶させておいて、負荷側インピーダンス検出部8Bにより検出された負荷側インピーダンスに対してマップを検索することにより、各スイッチに与える駆動信号の波高値がとるべき波高値の適正値のみを演算するようにすればよい。この場合、デッドタイムは,例えば、インピーダンス整合器3によるインピーダンスの整合がとれているときに各スイッチで生じるスイッチング損失を最小にすることができる長さに設定しておく。
また図3に示した実施形態のように、反射係数の絶対値と位相角とに対してマップを検索する構成をとって、スイッチング回路5Aの各スイッチで生じる導通損失の低減を図るための制御のみを行う場合には、パワー検出部7の出力から演算される反射係数の絶対値|Γ|及び位相角θと駆動信号の波高値がとるべき適正値との間の関係を与えるマップをマップ記憶部8Cに記憶させておいて、反射係数演算部8Aにより演算された反射係数の絶対値|Γ|及び位相角θに対してこのマップを検索することにより、駆動信号の波高値がとるべき適正値を決定するようにすればよい。
上記の各実施形態では、DC/RF変換部5のスイッチング回路5Aが、ハイサイドスイッチQ1とローサイドスイッチQ2の直列回路からなるレグを一つだけ備えたハーフブリッジ回路からなっていて,一つのレグのハイサイドスイッチとローサイドスイッチを交互にオン状態にすることにより可変DC電源部の出力を高周波出力に変換するように構成されているが、本発明は、このようなスイッチング回路を用いる場合に限定されるものではなく、ハイサイドスイッチとローサイドスイッチの直列回路からなるレグを少なくとも一つ有して、該少なくとも一つのレグを可変DC電源部4の出力端子間に並列に接続した構成を有するスイッチング回路と直列共振回路とを備えたDC/RF変換部を用いる高周波電源装置であれば本発明を適用することができる。
例えば図18に示すように、ハイサイドのスイッチQ1とローサイドのスイッチQ2との直列回路からなるレグと、ハイサイドのスイッチQ3とローサイドのスイッチQ4との直列回路からなるレグとの二つのレグを有するフルブリッジ回路型のスイッチング回路5Aを備えて、該スイッチング回路の出力端子間の電圧を直列共振回路5Bに印加するようにしたDC/RF変換部5を用いる高周波電源装置にも本発明を適用することができる。図18に示したDC/RF変換部5においては、フルブリッジ回路の対角位置にある一方の組のハイサイドスイッチQ1,Q4をオンにする状態と、対角位置にある他方の組のハイサイドスイッチQ2及びQ3をオンにする状態とを交互に生じさせることにより可変DC変換部4の出力を高周波出力に変換する。なお図18においては、各スイッチの両端に存在する出力静電容量と寄生ダイオードの図示が省略されている。
図18に示したスイッチング回路を用いる場合、スイッチ駆動部8Eは、スイッチング回路5Aの各レグのハイサイドスイッチ及びローサイドスイッチのうちの一方に与えていた駆動信号を消滅させるタイミングと他方に与える駆動信号を発生させるタイミングとの間にデッドタイムを設けながらスイッチング回路に変換動作を行わせるべくスイッチング回路の各レグのハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えるように構成される。
1 高周波電源装置
2 負荷
3 インピーダンス整合器
4 可変DC電源部
5 DC/RF変換部
5A スイッチング回路
5B 直列共振回路
5C トランス
6 ローパスフィルタ
7 パワー検出部
8 制御部
8A 反射係数演算部
8B 負荷側インピーダンス検出部
8C マップ記憶部
8D マップ演算部
8E スイッチ駆動部
8E1 駆動信号発生指令部
8E2 ドライブ回路
801 信号幅演算部
802 駆動信号波形指示部
803 第1の駆動信号発生回路
804 第2の駆動信号発生回路

Claims (13)

  1. 直流出力の制御が可能な可変DC電源部と、互いに直列に接続されたハイサイドスイッチとローサイドスイッチとを有するレグを少なくとも一つ有して、該少なくとも一つのレグを前記可変DC電源部の出力端子間に並列に接続した構成を有するスイッチング回路と前記可変DC電源部の出力が前記スイッチング回路を通して供給される直列共振回路とを備えて前記スイッチング回路のスイッチング動作により前記可変DC電源部の直流出力を高周波交流出力に変換するDC/RF変換部と、前記DC/RF変換部から負荷に与えられる高周波電力の進行波成分及び反射波成分を検出するパワー検出部と、前記可変DC電源部及びDC/RF変換部を制御する制御部とを備え、前記制御部は、前記レグを構成するハイサイドスイッチ及びローサイドスイッチ双方への駆動信号の供給を休止する期間であるデッドタイムを設けながら、該ハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えるスイッチ駆動部を備えている高周波電源装置において、
    前記制御部は、
    前記スイッチング回路から負荷側を見たインピーダンスである負荷側インピーダンスを検出する負荷側インピーダンス検出部と、
    前記負荷側インピーダンスと、前記スイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを記憶したマップ記憶部と、
    前記負荷側インピーダンス検出部により検出された負荷側インピーダンスに対して前記マップ記憶部に記憶されているマップを検索することにより前記各スイッチに与える駆動信号の波高値の適正値を演算するマップ演算部と、
    を具備し、
    前記スイッチ駆動部は、前記マップ演算部により演算された適正値に等しい波高値を有する駆動信号を各スイッチに与えるように構成されていることを特徴とする高周波電源装置。
  2. 前記負荷側インピーダンス検出部は、定められたタイミングが到来する毎に前記負荷側インピーダンスの検出を行うように構成され、
    前記マップ演算部は、前記負荷側インピーダンスが検出される毎に前記マップを検索して駆動信号の波高値の適正値を演算するように構成されていることを特徴とする請求項1に記載の高周波電源装置。
  3. 直流出力の制御が可能な可変DC電源部と、互いに直列に接続されたハイサイドスイッチとローサイドスイッチとを有するレグを少なくとも一つ有して、該少なくとも一つのレグを前記可変DC電源部の出力端子間に並列に接続した構成を有するスイッチング回路と前記可変DC電源部の出力が前記スイッチング回路を通して供給される直列共振回路とを備えて,前記スイッチング回路のスイッチング動作により前記可変DC電源部の直流出力を高周波交流出力に変換するDC/RF変換部と、前記DC/RF変換部から負荷に与えられる高周波電力の進行波成分及び反射波成分を検出するパワー検出部と、前記可変DC電源部及びDC/RF変換部を制御する制御部とを備え、前記制御部は、前記レグを構成するハイサイドスイッチ及びローサイドスイッチ双方への駆動信号の供給を休止する期間であるデッドタイムを設けながら、該ハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えるスイッチ駆動部を備えている高周波電源装置において、
    前記制御部は、
    前記スイッチング回路から負荷側を見たインピーダンスである負荷側インピーダンスを検出する負荷側インピーダンス検出部と、
    前記負荷側インピーダンスと、前記スイッチング回路の各スイッチで生じる損失の低減を図るために前記デッドタイムがとるべき適正値と、前記スイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを記憶したマップ記憶部と、
    前記負荷側インピーダンス検出部により検出された負荷側インピーダンスに対して前記マップ記憶部に記憶されているマップを検索することにより前記デッドタイムの適正値と各スイッチに与える駆動信号の波高値の適正値とを演算するマップ演算部と、
    を具備し、
    前記スイッチ駆動部は、前記デッドタイムを前記マップ演算部により演算された適正値に保ちながら、前記マップ演算部により演算された適正値に等しい波高値を有する駆動信号を各スイッチに与えるように構成されていることを特徴とする高周波電源装置。
  4. 前記負荷側インピーダンス検出部は、定められたタイミングが到来する毎に前記負荷側インピーダンスの検出を行うように構成され、
    前記マップ演算部は、前記負荷側インピーダンスが検出される毎に前記マップを検索して前記デッドタイムの適正値と駆動信号の波高値の適正値とを演算するように構成されていることを特徴とする請求項3に記載の高周波電源装置。
  5. 前記負荷側インピーダンス検出部は、前記パワー検出部により検出された進行波成分及び反射波成分から求めた反射係数を用いて演算した負荷インピーダンスと、前記スイッチング回路とパワー検出部との間の回路のインピーダンスとから前記負荷側インピーダンスを求めるように構成されている請求項1ないし4の何れかに記載の高周波電源装置。
  6. 前記スイッチング回路を通して出力される電圧と電流とを検出する出力電圧・電流検出部が設けられ、
    前記負荷側インピーダンス検出部は、前記出力電圧・電流検出部により検出されたスイッチング回路の出力電圧と出力電流とから前記負荷側インピーダンスを求めるように構成されている請求項1ないし4の何れかに記載の高周波電源装置。
  7. 直流出力の制御が可能な可変DC電源部と、互いに直列に接続されたハイサイドスイッチとローサイドスイッチとを有するレグを少なくとも一つ有して、該少なくとも一つのレグを前記可変DC電源部の出力端子間に並列に接続した構成を有するスイッチング回路と前記可変DC電源部の出力が前記スイッチング回路を通して供給される直列共振回路とを備えて,前記スイッチング回路のスイッチング動作により前記可変DC電源部の直流出力を高周波交流出力に変換するDC/RF変換部と、前記DC/RF変換部から負荷に与えられる高周波電力の進行波成分及び反射波成分を検出するパワー検出部と、前記可変DC電源部及びDC/RF変換部を制御する制御部とを備え、前記制御部は、前記レグを構成するハイサイドスイッチ及びローサイドスイッチ双方への駆動信号の供給を休止する期間であるデッドタイムを設けながら、該ハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えるスイッチ駆動部を備えている高周波電源装置において、
    前記制御部は、
    前記パワー検出部により検出された進行波成分と反射波成分とから反射係数の絶対値と位相角とを演算する反射係数演算部と、
    前記反射係数演算部により演算される反射係数の絶対値及び位相角と前記スイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを記憶したマップ記憶部と、
    前記反射係数演算部により演算された反射係数の絶対値及び位相角に対して前記マップ記憶部に記憶されているマップを検索することにより前記各スイッチに与える駆動信号の波高値の適正値を演算するマップ演算部と、
    を具備し、
    前記スイッチ駆動部は、前記マップ演算部により演算された適正値に等しい波高値を有する駆動信号を各スイッチに与えるように構成されていることを特徴とする高周波電源装置。
  8. 前記反射係数演算部は、定められたタイミングが到来する毎に前記反射係数の絶対値と位相角とを演算するように構成され、
    前記マップ演算部は、前記反射係数の絶対値と位相角とが演算される毎に前記マップを検索して駆動信号の波高値の適正値を演算するように構成されていることを特徴とする請求項7に記載の高周波電源装置。
  9. 直流出力の制御が可能な可変DC電源部と、互いに直列に接続されたハイサイドスイッチとローサイドスイッチとを有するレグを少なくとも一つ有して、該少なくとも一つのレグを前記可変DC電源部の出力端子間に並列に接続した構成を有するスイッチング回路と前記可変DC電源部の出力が前記スイッチング回路を通して供給される直列共振回路とを備えて,前記スイッチング回路のスイッチング動作により前記可変DC電源部の直流出力を高周波交流出力に変換するDC/RF変換部と、前記DC/RF変換部から負荷に与えられる高周波電力の進行波成分及び反射波成分を検出するパワー検出部と、前記可変DC電源部及びDC/RF変換部を制御する制御部とを備え、前記制御部は、前記レグを構成するハイサイドスイッチ及びローサイドスイッチ双方への駆動信号の供給を休止する期間であるデッドタイムを設けながら、該ハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えるスイッチ駆動部を備えている高周波電源装置において、
    前記制御部は、
    前記パワー検出部により検出された進行波成分と反射波成分とから反射係数の絶対値と位相角とを演算する反射係数演算部と、
    前記反射係数演算部により演算される反射係数の絶対値及び位相角と、前記スイッチング回路の各スイッチで生じる損失の低減を図るために前記デッドタイムがとるべき適正値と、前記スイッチング回路の各スイッチで生じる損失の低減を図るために各スイッチに与える駆動信号の波高値がとるべき適正値との間の関係を与えるマップを記憶したマップ記憶部と、
    前記反射係数演算部により演算された反射係数の絶対値及び位相角に対して前記マップ記憶部に記憶されているマップを検索することにより前記デッドタイムの適正値と各スイッチに与える駆動信号の波高値の適正値とを演算するマップ演算部と、
    を具備し、
    前記スイッチ駆動部は、前記デッドタイムを前記マップ演算部により演算された適正値に保ちながら、前記マップ演算部により演算された適正値に等しい波高値を有する駆動信号を各スイッチに与えるように構成されていることを特徴とする高周波電源装置。
  10. 前記反射係数演算部は、定められたタイミングが到来する毎に前記反射係数の絶対値と位相角とを演算するように構成され、
    前記マップ演算部は、前記反射係数の絶対値と位相角とが演算される毎に前記マップを検索して前記デッドタイムの適正値と駆動信号の波高値の適正値とを演算するように構成されていることを特徴とする請求項9に記載の高周波電源装置。
  11. 前記スイッチ駆動部は、
    前記DC/RF変換部の出力端子間に発生させる高周波電圧の半周期に相当する時間と前記デッドタイムとから前記スイッチング回路のハイサイドスイッチに与える駆動信号が持つべき信号幅及びローサイドスイッチに与える駆動信号が持つべき信号幅を演算する信号幅演算部と、
    前記ハイサイドスイッチに与えるハイサイドスイッチ用駆動信号の信号幅を前記信号幅演算部により演算された信号幅とし、前記ハイサイドスイッチ用駆動信号の波高値を前記マップ演算部により演算された波高値の適正値に等しくすることを指示するハイサイドスイッチ用駆動信号発生指令と、前記ローサイドスイッチに与えるローサイドスイッチ用駆動信号の信号幅を前記信号幅演算部により演算された信号幅とし、前記ローサイドスイッチ用駆動信号の波高値を前記マップ演算部により演算された波高値の適正値に等しくすることを指示するローサイドスイッチ用駆動信号発生指令とを前記デッドタイムに等しい時間間隔で交互に発生する駆動信号波形指示部と、
    前記駆動信号波形指示部がハイサイドスイッチ用駆動信号発生指令を発生したときに前記ハイサイドスイッチに与えるパルス波形のハイサイドスイッチ用駆動信号を発生し、前記駆動信号発生指令発生手段がローサイドスイッチ用駆動信号発生指令を発生したときに前記ローサイドスイッチに与えるパルス波形のローサイドスイッチ用駆動信号を発生するドライブ回路と、
    を備えていることを特徴とする請求項1ないし10の何れかに記載の高周波電源装置。
  12. 前記スイッチング回路は、前記レグを一つだけ備えて,該レグのハイサイドスイッチとローサイドスイッチを交互にオン状態にすることにより前記可変DC電源部の出力を高周波出力に変換するハーフブリッジ回路からなっていて、ローサイドスイッチの両端の電圧が前記直列共振回路に印加され、
    前記スイッチ駆動部は、前記スイッチング回路に変換動作を行わせるべく前記スイッチング回路のハイサイドスイッチ及びローサイドスイッチのうちの一方に与えていた駆動信号を消滅させるタイミングと他方に与える駆動信号を発生させるタイミングとの間にデッドタイムを設けながら前記ハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えるように構成されている請求項1ないし11の何れか一つに記載の高周波電源装置。
  13. 前記スイッチング回路は、前記レグを二つ備えて、該二つのレグの対角位置にある一方の組のハイサイドスイッチ及びローサイドスイッチをオンにする状態と、該二つのレグの対角位置にある他方の組のハイサイドスイッチ及びローサイドスイッチをオンにする状態とを交互に生じさせることにより前記可変DC変換部の出力を高周波出力に変換するフルブリッジ回路からなっていて、該スイッチング回路の出力端子間の電圧が前記直列共振回路に印加され、
    前記スイッチ駆動部は、前記スイッチング回路の各レグのハイサイドスイッチ及びローサイドスイッチのうちの一方に与えていた駆動信号を消滅させるタイミングと他方に与える駆動信号を発生させるタイミングとの間にデッドタイムを設けながら前記スイッチング回路に変換動作を行わせるべく前記スイッチング回路の各レグのハイサイドスイッチ及びローサイドスイッチに交互に駆動信号を与えるように構成されている請求項1ないし11の何れか一つに記載の高周波電源装置。
JP2014055790A 2014-03-19 2014-03-19 高周波電源装置 Active JP6313080B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055790A JP6313080B2 (ja) 2014-03-19 2014-03-19 高周波電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055790A JP6313080B2 (ja) 2014-03-19 2014-03-19 高周波電源装置

Publications (2)

Publication Number Publication Date
JP2015179581A true JP2015179581A (ja) 2015-10-08
JP6313080B2 JP6313080B2 (ja) 2018-04-18

Family

ID=54263508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055790A Active JP6313080B2 (ja) 2014-03-19 2014-03-19 高周波電源装置

Country Status (1)

Country Link
JP (1) JP6313080B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143059A (ja) * 2016-01-11 2017-08-17 ラム リサーチ コーポレーションLam Research Corporation プラズマエッチングチャンバのための高速インピーダンス切り替えを備えた変圧器結合容量性同調回路
JP2017184441A (ja) * 2016-03-30 2017-10-05 Tdk株式会社 ワイヤレス電力伝送システム
JP2019096658A (ja) * 2017-11-20 2019-06-20 株式会社タムラ製作所 圧電体駆動装置
JPWO2018062109A1 (ja) * 2016-09-29 2019-07-11 株式会社ダイヘン インピーダンス整合装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169558A (ja) * 1999-12-06 2001-06-22 Matsushita Electric Works Ltd 電源装置
JP2005204405A (ja) * 2004-01-15 2005-07-28 Daihen Corp 高周波電源装置
US9111718B2 (en) * 2011-05-24 2015-08-18 Trumpf Huettinger Gmbh + Co. Kg Method for matching the impedance of the output impedance of a high-frequency power supply arrangement to the impedance of a plasma load and high-frequency power supply arrangement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169558A (ja) * 1999-12-06 2001-06-22 Matsushita Electric Works Ltd 電源装置
JP2005204405A (ja) * 2004-01-15 2005-07-28 Daihen Corp 高周波電源装置
US9111718B2 (en) * 2011-05-24 2015-08-18 Trumpf Huettinger Gmbh + Co. Kg Method for matching the impedance of the output impedance of a high-frequency power supply arrangement to the impedance of a plasma load and high-frequency power supply arrangement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143059A (ja) * 2016-01-11 2017-08-17 ラム リサーチ コーポレーションLam Research Corporation プラズマエッチングチャンバのための高速インピーダンス切り替えを備えた変圧器結合容量性同調回路
TWI735503B (zh) * 2016-01-11 2021-08-11 美商蘭姆研究公司 用於電漿蝕刻室之具有快速阻抗切換的變壓器耦合之電容調諧電路及相關之基板處理系統
JP2017184441A (ja) * 2016-03-30 2017-10-05 Tdk株式会社 ワイヤレス電力伝送システム
JPWO2018062109A1 (ja) * 2016-09-29 2019-07-11 株式会社ダイヘン インピーダンス整合装置
JP2019096658A (ja) * 2017-11-20 2019-06-20 株式会社タムラ製作所 圧電体駆動装置
JP7007873B2 (ja) 2017-11-20 2022-01-25 株式会社タムラ製作所 圧電体駆動装置

Also Published As

Publication number Publication date
JP6313080B2 (ja) 2018-04-18

Similar Documents

Publication Publication Date Title
US8804375B2 (en) PWM-PSM controlled power supply with auxiliary switching circuit for soft-switching
WO2018061286A1 (ja) 電力変換装置
JP6313080B2 (ja) 高周波電源装置
TW201406024A (zh) 用以操作具有適於功率因數校正應用之同步整流能力之非隔離切換式轉換器的方法
Saoudi et al. Induction cooking systems with single switch inverter using new driving techniques
KR101708482B1 (ko) 스위치 구동 회로 및 스위치 구동 방법
JP6425007B2 (ja) 誘導加熱装置
JP6748547B2 (ja) 高周波電源装置
JP2001128462A (ja) インバータ装置の制御方法
JP2003259643A (ja) 電流共振型ソフトスイッチング電源回路
US10848072B2 (en) Power supply control device, power conversion system, and power supply control method
JP6301112B2 (ja) 高周波電源
JP4893120B2 (ja) 誘導加熱装置
JP6361240B2 (ja) 誘導加熱装置の制御回路
JP2017121172A (ja) ゲート双方向デュアルレール直列共振コンバータ電源
JP5917097B2 (ja) 電源装置及びアーク加工用電源装置
JP6341182B2 (ja) 電源装置
JP4811720B2 (ja) 電子トランス
JP2000032751A (ja) コンバータ
JP2012060704A (ja) 負荷駆動装置
JP6441573B2 (ja) 高周波電源装置
JP3501133B2 (ja) 高周波加熱電源装置
CN108321834B (zh) 一种并网逆变器的控制方法及控制器
JP2011041387A (ja) 直流−直流変換回路
JP6234651B1 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180322

R150 Certificate of patent or registration of utility model

Ref document number: 6313080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250