JP2015175010A - Vacuum deposition apparatus, vacuum deposition apparatus system and method for manufacturing organic el display device - Google Patents

Vacuum deposition apparatus, vacuum deposition apparatus system and method for manufacturing organic el display device Download PDF

Info

Publication number
JP2015175010A
JP2015175010A JP2014050583A JP2014050583A JP2015175010A JP 2015175010 A JP2015175010 A JP 2015175010A JP 2014050583 A JP2014050583 A JP 2014050583A JP 2014050583 A JP2014050583 A JP 2014050583A JP 2015175010 A JP2015175010 A JP 2015175010A
Authority
JP
Japan
Prior art keywords
substrate
mask
speed
glass substrate
peeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014050583A
Other languages
Japanese (ja)
Inventor
三宅 竜也
Tatsuya Miyake
竜也 三宅
松浦 宏育
Hiroyasu Matsuura
宏育 松浦
英明 峰川
Hideaki Minekawa
英明 峰川
祐司 秋葉
Yuji Akiba
祐司 秋葉
楠 敏明
Toshiaki Kusunoki
敏明 楠
山本 健一
Kenichi Yamamoto
健一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Fine Systems Corp
Original Assignee
Hitachi High Tech Fine Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Fine Systems Corp filed Critical Hitachi High Tech Fine Systems Corp
Priority to JP2014050583A priority Critical patent/JP2015175010A/en
Publication of JP2015175010A publication Critical patent/JP2015175010A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum deposition apparatus and vacuum deposition apparatus system, capable of suppressing peeling electrification of a glass substrate while maintaining high speed deposition treatment to continuously deposit a film, and a method for manufacturing an organic EL display device.SOLUTION: A vacuum deposition apparatus comprises: an evaporation source 3 for evaporating a vapor deposition material on a glass substrate 11; a mask 41 having a vapor deposition pattern and consisting of a magnetic material; a substrate presser 14 having a magnet for closely contacting the glass substrate 11 with the mask 41, in a vacuum device; and peel rate reduction means 18 having at least one transfer mechanism of a glass substrate transfer mechanism 13, a mask transfer mechanism 43 and substrate presser transfer mechanism 43, for separating the glass substrate 11 and the mask 41, or the glass substrate 11 and the substrate presser 14 in parallel to each other and for reducing a peel rate when at least one of mask peeling between the glass substrate 11 and the mask 41 and substrate presser peeling between the glass substrate 11 and the substrate presser 14 is performed.

Description

本発明は、真空蒸着装置及び真空蒸着装置システム並びに有機EL表示装置の製造方法に係り、特に大型の基板上に有機EL表示装置を形成するために有効な真空蒸着装置及び真空蒸着装置システム並びに有機EL表示装置の製造方法に関する。   The present invention relates to a vacuum vapor deposition apparatus, a vacuum vapor deposition apparatus system, and a method for manufacturing an organic EL display device, and more particularly to a vacuum vapor deposition apparatus, a vacuum vapor deposition apparatus system, and an organic effective for forming an organic EL display device on a large substrate. The present invention relates to a method for manufacturing an EL display device.

有機EL表示装置や照明装置に用いられる有機EL素子は、有機材料からなる有機層を上下から陽極と陰極の一対の電極で挟み込んだ構造であり、電極に電圧を印加することにより、陽極側から正孔が、陰極側から電子が、それぞれ有機層に注入され、それらが再結合することにより発光する仕組みになっている。
この有機層は、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を含む多層膜が積層された構造になっている。この有機層を形成する材料として、高分子材料と低分子材料を用いたものがある。このうち、低分子材料を用いる場合には、真空蒸着装置を用いて有機薄膜を形成する。
An organic EL element used in an organic EL display device or a lighting device has a structure in which an organic layer made of an organic material is sandwiched between a pair of electrodes, an anode and a cathode, from above and below, and a voltage is applied to the electrodes from the anode side. Holes and electrons are injected into the organic layer from the cathode side and recombined to emit light.
This organic layer has a structure in which a multilayer film including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer is laminated. As materials for forming the organic layer, there are materials using a high molecular material and a low molecular material. Among these, when using a low molecular material, an organic thin film is formed using a vacuum evaporation system.

有機ELデバイスの特性は、有機薄膜の影響を大きく受ける。量産プロセスでは、有機薄膜の形成は真空一貫プロセスで実施され、有機薄膜形成するガラス基板は年々大形化してきている。ガラス基板の成膜時や搬送時には、マスク等の様々な器具と接触・剥離が繰り返される。前記接触・剥離の際、ガラス基板は帯電が発生し問題となっている。帯電による静電気放電(ESD)により有機薄膜等のデバイスの破壊、ガラス基板の張り付き、ごみ付着等の様々な問題が発生している。各プロセスは真空中であるため、発生した静電気を大気中のコロナ放電を利用したイオナイザのような除電装置で除去することは困難である。量産プロセスではこれらの帯電による問題を解決し、コスト低減をはかるため高速成膜処理を実施し長時間安定に連続稼動する必要がある。
なお、真空蒸着において、基板の剥離帯電を除電して薄膜を連続させて形成するための構成として、特許文献1には、蒸着によるパターン形成の際に発生する剥離帯電をマグネット、ガラス基板、マスクの間に紫外線照射可能な装置により除電する技術が開示されている。特許文献2には、マグネット、ガラス基板、マスク等の分離工程を別の工程とし、窒素ガス雰囲気での紫外線照射により除電する製造方法が開示されている。
The characteristics of the organic EL device are greatly affected by the organic thin film. In the mass production process, the organic thin film is formed by a vacuum integrated process, and the glass substrate on which the organic thin film is formed has become larger year by year. When a glass substrate is formed or transported, contact and peeling with various instruments such as a mask are repeated. At the time of the contact / peeling, the glass substrate is charged and becomes a problem. Various problems such as destruction of devices such as organic thin films, sticking of glass substrates, and dust adhesion have occurred due to electrostatic discharge (ESD) caused by charging. Since each process is in a vacuum, it is difficult to remove generated static electricity with a static eliminator such as an ionizer using corona discharge in the atmosphere. In the mass production process, it is necessary to perform high-speed film formation processing and stably operate continuously for a long time in order to solve these problems caused by charging and reduce costs.
Note that, in vacuum deposition, as a configuration for removing the charge on the substrate and forming a continuous thin film, Patent Document 1 discloses a peeling charge generated during pattern formation by vapor deposition as a magnet, a glass substrate, and a mask. In the meantime, there is disclosed a technique for eliminating static electricity with an apparatus capable of irradiating with ultraviolet rays. Patent Document 2 discloses a manufacturing method in which a separation process of a magnet, a glass substrate, a mask, and the like is a separate process, and static elimination is performed by ultraviolet irradiation in a nitrogen gas atmosphere.

特開2003−257630号公報JP 2003-257630 A 特開2009−140903号公報JP 2009-140903 A

特許文献1には、マスク、マグネットをガラス基板から分離させた後に、紫外線を照射する工程を設けて除電する技術が開示されている。一方、特許文献2には、蒸着工程とは別の真空室にガラス基板を搬送して、分離する工程、もしくは、除電する工程を設けて、前記真空室内にて窒素雰囲気中での紫外線照射により除電する方法が開示されている。しかし、いずれの特許文献も剥離工程で発生する帯電自体を小さく、もしくは、発生しないようにして、課題を解決するような方法は開示されていない。
本発明の目的は、高速成膜処理を維持しつつガラス基板の剥離帯電を抑制して、連続成膜することが可能な真空蒸着装置及び真空蒸着装置システム並びに有機EL表示装置の製造方法を提供することである。
Japanese Patent Application Laid-Open No. H10-228561 discloses a technique for removing static electricity by providing a step of irradiating ultraviolet rays after separating a mask and a magnet from a glass substrate. On the other hand, Patent Document 2 includes a step of transporting and separating a glass substrate to a vacuum chamber different from the vapor deposition step, or a step of eliminating static electricity, and ultraviolet irradiation in a nitrogen atmosphere in the vacuum chamber. A method for static elimination is disclosed. However, none of the patent documents discloses a method for solving the problem by reducing or preventing the charge itself generated in the peeling process.
An object of the present invention is to provide a vacuum vapor deposition apparatus, a vacuum vapor deposition apparatus system, and a method for manufacturing an organic EL display device capable of continuously forming a film while suppressing high-speed film deposition processing while suppressing peeling electrification of a glass substrate. It is to be.

上記の目的を達成するために、本発明は少なくとも下記の構成を有する。   In order to achieve the above object, the present invention has at least the following configurations.

本発明は、ガラス基板に蒸着材料を蒸着させる蒸発源と、蒸着パターンを有し、磁性材料からなるマスクと、ガラス基板とマスクとを密着させるマグネットを有する基板押さえと、を真空装置内に有し、ガラス基板とマスクまたはガラス基板と基板押さえを互いに平行に離間させるガラス基板移動機構、マスク移動機構及び基板押さえ移動機構のうち少なくとも1つの移動機構を設け、ガラス基板とマスクとのマスク剥離、ガラス基板と基板押さえとの基板押さえ剥離のうち少なくとも一方を剥離する際に、剥離速度を低減させる剥離速度低減手段と、を有する。   The present invention includes an evaporation source for depositing a deposition material on a glass substrate, a mask having a deposition pattern and made of a magnetic material, and a substrate presser having a magnet for bringing the glass substrate and the mask into close contact with each other. A glass substrate moving mechanism for separating the glass substrate and the mask or the glass substrate and the substrate holder in parallel with each other, a mask moving mechanism, and a substrate pressing movement mechanism, and a mask peeling between the glass substrate and the mask, A peeling speed reducing means for reducing the peeling speed when peeling at least one of the substrate pressing and peeling between the glass substrate and the substrate press.

また、本発明は、剥離速度低減手段が、剥離する際に、ガラス基板とマスクの組み合わせ、ガラス基板と基板押さえの組み合わせのうち少なくとも一方の組み合わせ間の相対速度を低減させて剥離速度を低減する緩衝機構を有してもよい。   In the present invention, when the peeling speed reducing means peels, the peeling speed is reduced by reducing the relative speed between at least one of the combination of the glass substrate and the mask and the combination of the glass substrate and the substrate presser. You may have a buffer mechanism.

さらに、本発明は、剥離速度低減手段が、剥離する際に、移動機構により、ガラス基板とマスクの組み合わせ、ガラス基板と基板押さえの組み合わせうち少なくとも一方の組み合わせを同一方向に移動させて相対速度を低減させて剥離速度を低減する駆動制御機構であってもよい。   Further, according to the present invention, when the peeling speed reducing means peels, the moving mechanism moves the relative speed by moving at least one of the combination of the glass substrate and the mask and the combination of the glass substrate and the substrate holder in the same direction. A drive control mechanism that reduces the peeling speed may be used.

また、本発明は、ガラス基板の剥離帯電量を計測する電位計を設け、剥離帯電量に基づいて、緩衝機構のバネ定数をまたは移動機構の速度を制御してもよい。   The present invention may also be provided with an electrometer that measures the peel charge amount of the glass substrate, and controls the spring constant of the buffer mechanism or the speed of the moving mechanism based on the peel charge amount.

さらに、本発明は、1台以上の上述した真空蒸着装置と、真空蒸着装置のそれぞれが第1のゲートバルブを介して設けられた搬送室とを有するクラスタを有し、搬送室室内にガラス基板に蓄積した電荷を除電する荷電紫外線発生装置と、除電の効率を上げるガス圧調整装置とを設ける。   Furthermore, the present invention has a cluster having one or more of the above-described vacuum deposition apparatuses and a transfer chamber in which each of the vacuum deposition apparatuses is provided via a first gate valve, and a glass substrate is provided in the transfer chamber chamber. A charged ultraviolet ray generator for discharging the charges accumulated in the gas and a gas pressure adjusting device for increasing the efficiency of the discharging are provided.

また、本発明は、薄膜トランジスタ、有機EL層、及び有機EL層を挟む電極層が形成されたTFT基板を封止基板によって封止した有機EL表示装置の製造方法であって、薄膜卜ランジスタが形成されたTFT基板を請求項1乃至10のいずれかに記載の真空蒸着装置内に配置し、TFT基板に対向して、有機EL層または電極層を成膜するための蒸着材料を収容した蒸発源を配設し、蒸発源によってTFT基板に蒸着材料を蒸着し、有機EL層を形成する。   The present invention also relates to a method for manufacturing an organic EL display device in which a TFT substrate on which a thin film transistor, an organic EL layer, and an electrode layer sandwiching the organic EL layer are formed is sealed with a sealing substrate. An evaporation source in which the formed TFT substrate is disposed in the vacuum evaporation apparatus according to any one of claims 1 to 10 and contains an evaporation material for forming an organic EL layer or an electrode layer facing the TFT substrate. And an evaporation material is deposited on the TFT substrate by an evaporation source to form an organic EL layer.

本発明によれば、高速成膜処理を維持しつつガラス基板の剥離帯電を抑制して、連続成膜することが可能な真空蒸着装置及び真空蒸着装置システム並びに有機EL表示装置の製造方法を提供できる。   According to the present invention, there is provided a vacuum vapor deposition apparatus, a vacuum vapor deposition apparatus system, and an organic EL display device manufacturing method capable of continuous film formation while suppressing high-speed film formation treatment while suppressing peeling electrification of a glass substrate. it can.

本発明の対象となる真空蒸着装置の実施形態の基本的構成の概略を示す模式図である。It is a schematic diagram which shows the outline of the fundamental structure of embodiment of the vacuum evaporation system used as the object of this invention. 従来例の真空蒸着装置における基板剥離後の状態を示す図である。It is a figure which shows the state after board | substrate peeling in the vacuum evaporation system of a prior art example. 剥離速度低減機構として緩衝機構を用いた本発明の第1の実施例である真空蒸着装置における基板剥離後の状態を示す図である。It is a figure which shows the state after board | substrate peeling in the vacuum evaporation system which is a 1st Example of this invention using the buffer mechanism as a peeling speed reduction mechanism. 本実施形態に用いた緩衝機構有無での、ガラス基板剥離帯電量の剥離帯電依存性を示すグラフである。It is a graph which shows the peeling charge dependence of the glass substrate peeling charge amount with and without the buffer mechanism used in this embodiment. 剥離速度低減機構として緩衝機構を用いた本発明の第2の実施例である真空蒸着装置における基板剥離後の状態を示す図である。It is a figure which shows the state after board | substrate peeling in the vacuum evaporation system which is a 2nd Example of this invention using the buffer mechanism as a peeling speed reduction mechanism. 剥離速度低減機構として緩衝機構を用いた本発明の第3の実施例である真空蒸着装置における基板剥離後の状態を示す図である。It is a figure which shows the state after board | substrate peeling in the vacuum evaporation system which is a 3rd Example of this invention using the buffer mechanism as a peeling speed reduction mechanism. 剥離速度低減機構として移動機構を用いた本発明の第4、5の実施例である真空蒸着装置における基板剥離後の状態を示す図である。It is a figure which shows the state after board | substrate peeling in the vacuum evaporation system which is the 4th, 5th Example of this invention which used the moving mechanism as a peeling speed reduction mechanism. 本発明の第6の実施例である真空蒸着装置システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the vacuum evaporation system which is the 6th Example of this invention. 本発明における有機EL表示装置生産工程の一実施例を示す工程図である。It is process drawing which shows one Example of the organic electroluminescent display apparatus production process in this invention.

本発明は、ガラス基板(以下、単に基板という)の取り扱いで問題となる静電気を防止するため、基板と、マスク、あるいは、基板押さえ等を剥離する際に、基板とマスク、あるいは、基板押さえとの剥離速度を低減する剥離速度低減機構を利用する構成を用いている。即ち、本発明は、剥離速度低減機構を設けて、基板から離間するマスク、あるいは、基板押さえの移動速度を低減することなく、剥離の際の剥離速度を抑えて、剥離帯電量を低減、もしくは、防止している。基板の剥離帯電量低減により、静電気放電によるデバイス破壊や基板の張り付き、ごみ付着等のESD問題を回避できる真空蒸着装置を実現できる。   In order to prevent static electricity, which is a problem in handling a glass substrate (hereinafter simply referred to as a substrate), the present invention provides a substrate and mask, or a substrate holder, when peeling the substrate and the mask or the substrate holder. The structure using the peeling rate reduction mechanism which reduces the peeling rate of the is used. That is, the present invention provides a peeling speed reduction mechanism to reduce the peeling charge amount by suppressing the peeling speed at the time of peeling without reducing the moving speed of the mask or substrate pressing away from the substrate, or Is preventing. By reducing the peeling charge amount of the substrate, it is possible to realize a vacuum vapor deposition apparatus that can avoid ESD problems such as device destruction due to electrostatic discharge, substrate sticking, and dust adhesion.

以下に、実施例及び図面を用いて本発明の内容を詳細に説明する。
しかし、本発明は、以下に説明する実施形態に限定されるわけではなく、本発明が属する技術分野において、通常の知識を有する者であれば、本発明の思想と精神に基づいて、本発明を修正若しくは変更できる発明が含まれることは勿論である。
なお、各図の説明において、同一の構成要素には同一の参照番号を付し、重複を避けるため、できるだけ説明を省略する。
The contents of the present invention will be described below in detail with reference to examples and drawings.
However, the present invention is not limited to the embodiments described below, and the present invention is based on the spirit and spirit of the present invention as long as it is a person having ordinary knowledge in the technical field to which the present invention belongs. Of course, inventions that can modify or change the above are included.
In the description of each drawing, the same reference numerals are assigned to the same components, and the description is omitted as much as possible to avoid duplication.

まず、図1、図2を用いて、従来例と、本発明の対象となる真空蒸着装置の実施形態の基本的構成を説明する。図1は、本発明の対象となる真空蒸着装置の実施形態の基本的構成の概略を示す模式図である。図2は、従来例の真空蒸着装置の基板剥離後の状態を示す図である。   First, with reference to FIG. 1 and FIG. 2, a basic configuration of a conventional example and an embodiment of a vacuum vapor deposition apparatus that is an object of the present invention will be described. FIG. 1 is a schematic diagram showing an outline of a basic configuration of an embodiment of a vacuum vapor deposition apparatus that is an object of the present invention. FIG. 2 is a view showing a state after the substrate is peeled off in a conventional vacuum vapor deposition apparatus.

真空蒸着装置20は、真空蒸着室51内に、成膜される基板11、蒸着材料を有する蒸発源3、パターン成膜するためのマスク41、基板11を磁性材料からなるマスク41とマグネットを配設した基板押さえ14で挟み込んで基板11とマスク41の密着性を上げる機構と、基板11を蒸着室51内で保持するための基板保持機構12、及び、膜厚モニタ7がある。   The vacuum deposition apparatus 20 includes a substrate 11 to be deposited, an evaporation source 3 having a deposition material, a mask 41 for pattern deposition, a mask 41 made of a magnetic material, and a magnet in a vacuum deposition chamber 51. There are a mechanism for raising the adhesion between the substrate 11 and the mask 41 by being sandwiched by the provided substrate holder 14, a substrate holding mechanism 12 for holding the substrate 11 in the vapor deposition chamber 51, and a film thickness monitor 7.

また、真空蒸着室51外には、基板11に成膜される膜厚を制御するための膜厚制御計8、および、膜厚制御計8の信号を反映し蒸発源3の温度を制御するための蒸発源電源や蒸発源の移動制御機構を含んだ蒸着制御機構9がある。また、基板移動機構13によって、基板11を上下移動させる。基板押さえ14は基板押さえ移動機構15、マスク41はマスク移動機構43にて、基板11と接触・剥離を実現できる。   Further, outside the vacuum deposition chamber 51, the film thickness controller 8 for controlling the film thickness formed on the substrate 11 and the signal of the film thickness controller 8 are reflected to control the temperature of the evaporation source 3. There is a vapor deposition control mechanism 9 including an evaporation source power source and a movement control mechanism for the evaporation source. Further, the substrate 11 is moved up and down by the substrate moving mechanism 13. The substrate presser 14 can be brought into contact with and peeled from the substrate 11 by the substrate presser moving mechanism 15 and the mask 41 by the mask moving mechanism 43.

基板11を蒸着室51外から搬入、搬出する際は、基板搬出搬入用ゲートバルブ16を介してロボットアームにより基板11を出し入れする。蒸着室51の真空は、バルブ62を介し、ポンプ61にて排気される。   When the substrate 11 is carried in and out of the vapor deposition chamber 51, the substrate 11 is taken in and out by the robot arm via the substrate carry-in and carry-in gate valve 16. The vacuum in the vapor deposition chamber 51 is exhausted by a pump 61 through a valve 62.

図1のように基板11とマスク41、基板押さえ14を密着させた状態で、蒸発源3から蒸気2をマスク開口部42から基板11へ照射しパターン成膜を実施する。成膜後、従来例では、基板11を停止した状態で、マスク41と基板押さえ14をそれぞれの移動機構により上下させて、それぞれを基板11から剥離し、図2に示す構成としている。   In a state where the substrate 11, the mask 41, and the substrate presser 14 are in close contact as shown in FIG. 1, pattern vapor deposition is performed by irradiating the substrate 11 with vapor 2 from the evaporation source 3 through the mask opening 42. After the film formation, in the conventional example, with the substrate 11 stopped, the mask 41 and the substrate presser 14 are moved up and down by the respective moving mechanisms, and each is peeled from the substrate 11 to have the configuration shown in FIG.

成膜後の基板11は、基板搬出搬入ゲートバルブ16より蒸着室51から搬出される。成膜後、図2の構成時に基板11を剥離する際に剥離帯電により電荷10が発生し、静電気放電によるデバイスの破壊、基板の張り付き、ごみ付着等のESD問題が発生する。   The substrate 11 after film formation is unloaded from the deposition chamber 51 through the substrate unloading / loading gate valve 16. After the film formation, when the substrate 11 is peeled off in the configuration shown in FIG. 2, an electric charge 10 is generated due to peeling electrification, and ESD problems such as destruction of the device due to electrostatic discharge, sticking of the substrate, and dust adhesion occur.

量産プロセスのタクトタイムは、現実的には60秒以内になるように開発されており、基板の搬出搬入で許与できる時間は非常に短いため、基板11やマスク41、基板押さえ14の移動速度は、数十mm/秒以上が必要とされる。剥離帯電量は剥離速度が速いほど増加するため、従来例では、マスク11や基板押さえ14の移動速度を速くするほど、剥離帯電量が多くなりESD問題が顕著となる。   The tact time of the mass production process has been developed to be practically within 60 seconds, and the time allowed for carrying out and carrying in the substrate is very short. Therefore, the moving speed of the substrate 11, the mask 41, and the substrate holder 14 Tens of mm / sec or more is required. Since the peeling charge amount increases as the peeling speed increases, in the conventional example, as the moving speed of the mask 11 and the substrate holder 14 increases, the peeling charge amount increases and the ESD problem becomes significant.

また、有機EL製造工程はこれらの蒸着工程を何段も真空一貫プロセスで実施するため、真空中で発生した電荷10はリークすることなく、次の工程へ持ち込まれ、剥離帯電量は工程を重ねるごとに増加して、よりESD問題が大きくなってしまう。それ故、一段の蒸着工程における剥離帯電量の増加より、よりESD問題が顕著となる。   In addition, since the organic EL manufacturing process performs these vapor deposition processes in a vacuum integrated process, the electric charge 10 generated in the vacuum is brought into the next process without leaking, and the peeling charge amount is repeated. Each time, the ESD problem becomes larger. Therefore, the ESD problem becomes more conspicuous than the increase in the peel charge amount in a single vapor deposition step.

一方、本発明では、基板をマスク41や基板押さえ14から互いに平行に離間させる剥離速度低減機構を設けて、基板11から離間するマスク41、あるいは、基板押さえ14の移動速度を低減することなく、剥離の際の剥離速度を低減する。その結果、本発明は、剥離帯電量を低減でき、ESD問題を低減できる。なお、ESD問題において、有機薄膜等のデバイスの破壊の観点では、基板11とマスク41との剥離速度がより重要である。   On the other hand, in the present invention, a peeling speed reduction mechanism for separating the substrate from the mask 41 and the substrate holder 14 in parallel with each other is provided, and without reducing the movement speed of the mask 41 or the substrate holder 14 separated from the substrate 11, Reduces the peeling speed during peeling. As a result, the present invention can reduce the peel charge amount and reduce the ESD problem. In the ESD problem, the peeling rate between the substrate 11 and the mask 41 is more important from the viewpoint of destruction of a device such as an organic thin film.

次に、本実施形態の真空蒸着装置51における本発明の各実施例を説明する。
(実施例1)
図3は、剥離速度低減機構として緩衝機構を用いた本発明の第1の実施例を有する真空蒸着装置21における基板11の剥離後を示す図である。図4は、本実施例に用いた緩衝機構有無での、ガラス基板の剥離帯電量の剥離速度依存性を示すグラフである。以下、図3を用いて実施例1を説明すると共に、図3、図4を用いて、剥離帯電量を低減する原理と、その効果を説明する。
Next, each example of the present invention in the vacuum deposition apparatus 51 of the present embodiment will be described.
Example 1
FIG. 3 is a view showing a state after the substrate 11 is peeled in the vacuum vapor deposition apparatus 21 having the first embodiment of the present invention using the buffer mechanism as the peeling speed reduction mechanism. FIG. 4 is a graph showing the peeling rate dependence of the peeling charge amount of the glass substrate with and without the buffer mechanism used in this example. Hereinafter, the first embodiment will be described with reference to FIG. 3, and the principle of reducing the peeling charge amount and the effect thereof will be described with reference to FIGS. 3 and 4.

実施例1は、基板保持機構12と基板移動機構13の間に、基板保持緩衝機構18を設けることにより、基板11とマスク41の剥離時の相対的な速度、即ち剥離速度を低減でき、剥離帯電量を減らすことができた例である。   In the first embodiment, by providing the substrate holding buffer mechanism 18 between the substrate holding mechanism 12 and the substrate moving mechanism 13, the relative speed at the time of peeling the substrate 11 and the mask 41, that is, the peeling speed can be reduced. This is an example in which the charge amount can be reduced.

例えば、従来例では、マスク41の移動速度を100mm/秒とすると、その移動速度即ち剥離速度に応じた剥離帯電が発生する。一方、実施例1では、蒸着中は基板11をマスク41に所定の力で押付け、蒸着後マスク41が100mm/秒で移動し始めると、基板11をマスク41の同一移動方向に速度50mm/秒の飛出し速度で移動させ、その後停止させる基板保持緩衝機構18を有する。この基板保持緩衝機構18によって、マスク41の移動速度は100mm/秒と変わらないが、マスク41が基板11から剥離するときは、基板11とマスク41及び基板11と基板押さえ14とのそれぞれの相対速度即ち剥離速度は50mm/秒となる。その結果、基板11の両面における剥離帯電量は、大幅に低減できた。なお、剥離後は、基板搬出搬入ゲートバルブ16からロボットアームにより基板11を出し入れするためのスペースを作るために、基板11または基板押さえ14を基板移動機構13または基板押さえ移動機構15で移動させる。   For example, in the conventional example, when the moving speed of the mask 41 is 100 mm / second, peeling charging corresponding to the moving speed, that is, the peeling speed is generated. On the other hand, in Example 1, during deposition, the substrate 11 is pressed against the mask 41 with a predetermined force, and after the deposition, when the mask 41 starts moving at 100 mm / second, the substrate 11 is moved in the same movement direction of the mask 41 at a speed of 50 mm / second. The substrate holding buffer mechanism 18 is moved at a jumping speed and then stopped. Although the moving speed of the mask 41 is not changed to 100 mm / second by the substrate holding buffer mechanism 18, when the mask 41 is peeled off from the substrate 11, the relative relationship between the substrate 11 and the mask 41, and the substrate 11 and the substrate pressing member 14. The speed, that is, the peeling speed is 50 mm / second. As a result, the peel charge amount on both surfaces of the substrate 11 could be greatly reduced. After the separation, the substrate 11 or the substrate presser 14 is moved by the substrate moving mechanism 13 or the substrate presser moving mechanism 15 in order to create a space for taking in and out the substrate 11 from the substrate carry-in / carry-in gate valve 16 by the robot arm.

実施例1の基板保持緩衝機構18は、具体的には機械式バネで構成しているが、ガス圧式、油圧式、摩擦式のバネでも実施可能である。   The substrate holding and buffering mechanism 18 of the first embodiment is specifically configured by a mechanical spring, but can be implemented by a gas pressure type, a hydraulic type, or a friction type spring.

図4に基板剥離帯電量の剥離速度依存性を示し、横軸がマスクの移動速度[mm/秒]、縦軸が剥離帯電量[V]を示す。基板保持緩衝機構18等の緩衝機構無しの場合、図4の実線(理論値)で示すように、剥離帯電量は剥離速度の増加とともに増加する。特に、マスクの移動速度が10mm/秒以上になると急激に増えている。
一方、緩衝機構を設けることにより、図4の一点鎖線(実験値)で示すように、剥離帯電量は、実際のプロセスの使用範囲内において、一般的な静電気放電によるデバイス破壊防止できる許容電圧の50V以下に抑えることができている。前述のマスク41の移動速度を100mm/秒では、緩衝機構無しの場合では剥離帯電量は100V以上となるが、緩衝機構ありの場合は、マスク41の移動速度を変えることなく、剥離帯電量40V以下に収めることができた。
FIG. 4 shows the dependence of the substrate peeling charge amount on the peeling speed, where the horizontal axis represents the moving speed of the mask [mm / sec] and the vertical axis represents the peel charge amount [V]. In the absence of a buffer mechanism such as the substrate holding buffer mechanism 18, as shown by the solid line (theoretical value) in FIG. 4, the peel charge amount increases as the peel speed increases. In particular, it rapidly increases when the moving speed of the mask is 10 mm / second or more.
On the other hand, by providing a buffer mechanism, as shown by the one-dot chain line (experimental value) in FIG. 4, the peel charge amount is within an allowable voltage that can prevent device breakdown due to general electrostatic discharge within the actual process use range. It can be suppressed to 50V or less. When the moving speed of the mask 41 is 100 mm / sec, the peeling charge amount is 100 V or more when there is no buffer mechanism, but when the buffer mechanism is provided, the peeling charge amount is 40 V without changing the moving speed of the mask 41. I was able to keep it below.

本実施例1によれば、基板保持機構12と基板移動機構13の間に、基板保持緩衝機構18を設けることにより、マスク41の移動速度を低下させることなく、ガラス基板の剥離速度を抑え、即ちタクトタイムを増加させることなく高速に基板処理が可能で剥離荷電量の発生を低減できる。
また、本実施例1によれば、基板保持機構12と基板移動機構13の間に、基板保持緩衝機構18を設けることにより、複雑な制御をすることなく、ガラス基板の剥離速度を抑え、即ちタクトタイムを増加させることなく高速に基板処理が可能で剥離荷電量の発生を低減できる。
According to the first embodiment, by providing the substrate holding buffer mechanism 18 between the substrate holding mechanism 12 and the substrate moving mechanism 13, it is possible to suppress the peeling rate of the glass substrate without reducing the moving speed of the mask 41, That is, the substrate can be processed at high speed without increasing the tact time, and the generation of the peeling charge amount can be reduced.
Further, according to the first embodiment, by providing the substrate holding buffer mechanism 18 between the substrate holding mechanism 12 and the substrate moving mechanism 13, it is possible to suppress the peeling rate of the glass substrate without complicated control. Substrate processing can be performed at high speed without increasing the tact time, and the generation of peeling charge can be reduced.

これらの結果、静電気放電によるデバイスの破壊や、マスクや基板押さえのガラス基板への張り付き、ごみ付着によるデバイス不良を低減することができる。   As a result, it is possible to reduce device failure due to electrostatic discharge, sticking of a mask or substrate holder to a glass substrate, and device failure due to dust adhesion.

以上説明した実施例1では、基板11を水平状態で蒸着する所謂横型蒸着を行う真空蒸着装置の実施形態について説明したが、図3を上から見た図、上面図として基板搬送、各移動機構についても基本的には変わらないので、基板11及びマスク41を垂直状態に蒸着する所謂縦型蒸着装置にも適用できる。   In the first embodiment described above, an embodiment of a vacuum deposition apparatus that performs so-called horizontal deposition for depositing the substrate 11 in a horizontal state has been described. However, FIG. Since there is basically no change, the present invention can also be applied to a so-called vertical deposition apparatus for depositing the substrate 11 and the mask 41 in a vertical state.

(実施例2)
図5は、剥離速度低減機構として緩衝機構を用いた本発明の第2の実施例を有する真空蒸着装置22における基板11の剥離後の状態を示す図である。
実施例1では緩衝機構18は機械式バネを用いているが、マスク41の移動速度を可変した場合は、剥離帯電量が変化してしまう。そこで、基板11の剥離帯電量を蒸着室51内に設置した電位計111で計測し、その剥離帯電量が最小になるように学習し、緩衝制御機構112が基板保持緩衝機構18のバネ定数、即ちマスク41ヘの移動速度、即ち基板11とマスク41及び基板押さえ14から剥離速度を制御する。この学習の結果は、次に蒸着する基板11から適用する。
(Example 2)
FIG. 5 is a view showing a state after peeling of the substrate 11 in the vacuum vapor deposition apparatus 22 having the second embodiment of the present invention using a buffer mechanism as a peeling speed reduction mechanism.
In the first embodiment, the buffer mechanism 18 uses a mechanical spring. However, when the moving speed of the mask 41 is varied, the peel charge amount changes. Therefore, the peeling charge amount of the substrate 11 is measured by an electrometer 111 installed in the vapor deposition chamber 51 and learned so that the peeling charge amount is minimized, and the buffer control mechanism 112 has a spring constant of the substrate holding buffer mechanism 18. That is, the moving speed to the mask 41, that is, the peeling speed from the substrate 11, the mask 41 and the substrate holder 14 is controlled. The result of this learning is applied from the substrate 11 to be deposited next.

本実施例では、電位計111は振動容量型の表面電位計を用いたが、セクタ型や集電型でも同様の効果を得ることができた。基板保持緩衝機構18は、緩衝制御機構112により電気的に制御するため、機械式バネより、ガス圧式、油圧式バネの方がより精度よく制御することが可能であった。   In this embodiment, a vibration capacitance type surface electrometer is used as the electrometer 111, but the same effect can be obtained with a sector type or a current collection type. Since the substrate holding buffer mechanism 18 is electrically controlled by the buffer control mechanism 112, it is possible to control the gas pressure and hydraulic springs more accurately than the mechanical springs.

本実施例では、電位計111により剥離帯電量をモニタして最小の剥離帯電量になるように制御したが、マスク41や基板押さえ14の移動速度のみに基づいて、緩衝制御機構112が基板保持緩衝機構18のバネ定数を制御しても可能であった。
例えば、実施例1ではマスク41の移動速度を100mm/秒としたが、マスク41の移動速度を80mmとし、マスク41及び基板押さえ14に対する剥離速度を均等にするとすれば、基板保持緩衝機構18の飛出し速度を40mm/秒になるようにバネ定数を制御する。この場合、マスク41の移動速度に対しての最適なバネ定数を前もって計測して、その計測データを元に制御することにより剥離帯電量を低減できた。
In this embodiment, the peeling charge amount is monitored by the electrometer 111 and controlled to be the minimum peeling charge amount. However, the buffer control mechanism 112 holds the substrate based only on the moving speed of the mask 41 and the substrate holder 14. It was also possible to control the spring constant of the buffer mechanism 18.
For example, in the first embodiment, the moving speed of the mask 41 is set to 100 mm / second. However, if the moving speed of the mask 41 is set to 80 mm and the peeling speed with respect to the mask 41 and the substrate presser 14 is made uniform, the substrate holding buffer mechanism 18 The spring constant is controlled so that the jumping speed is 40 mm / sec. In this case, the amount of peeling charge can be reduced by measuring in advance the optimum spring constant for the moving speed of the mask 41 and controlling based on the measurement data.

本実施例2によれば、緩衝制御機構112による制御が必要なるが、マスク41の移動速度が変化しても、基板11に発生する剥離荷電量を低減でき、静電気放電によるデバイスの破壊や、マスクや基板押さえのガラス基板への張り付き、ごみ付着によるデバイス不良を低減することができる効果を奏することができる。   According to the second embodiment, control by the buffer control mechanism 112 is necessary. However, even if the moving speed of the mask 41 changes, the amount of peeling charge generated on the substrate 11 can be reduced, and the destruction of the device due to electrostatic discharge, It is possible to achieve an effect of reducing device defects due to sticking of a mask or a substrate press to a glass substrate and adhesion of dust.

実施例1、2では、マスク41を移動させて基板押さえ14を停止させたが、基板押さえ14を移動させてマスク41を停止させてもよい。   In the first and second embodiments, the mask 41 is moved to stop the substrate holder 14, but the substrate holder 14 may be moved to stop the mask 41.

(実施例3)
図6は、剥離速度低減機構として緩衝機構を用いた本発明の第3の実施例を有する真空蒸着装置23における基板11の剥離後の状態を示す図である。
実施例1および実施例2では、基板移動機構13側に基板保持緩衝機構18を設け、基板押さえ14を停止させた状態でマスク41を移動させ、マスク41と基板押さえ14を同時に剥離した。しかし、この場合、マスク41と基板押さえ14を同時に移動させた場合、基板保持緩衝機構18を活用できない。
(Example 3)
FIG. 6 is a diagram showing a state after the substrate 11 is peeled in the vacuum vapor deposition apparatus 23 having the third embodiment of the present invention using a buffer mechanism as the peeling speed reduction mechanism.
In Example 1 and Example 2, the substrate holding buffer mechanism 18 was provided on the substrate moving mechanism 13 side, the mask 41 was moved in a state where the substrate presser 14 was stopped, and the mask 41 and the substrate presser 14 were peeled off simultaneously. However, in this case, when the mask 41 and the substrate presser 14 are moved simultaneously, the substrate holding buffer mechanism 18 cannot be utilized.

そのため、本実施例3では、マスク保持緩衝機構19と基板押さえ緩衝機構110をマスク移動機構43と基板押さえ移動機構15側に設け、基板11を停止させた状態で、マスク41と基板押さえ14をそれぞれマスク移動機構43、基板押さえ移動機構15により、例えば100mm/秒の移動側で基板11から離間するように移動させて、マスク41と基板押さえ14の同時剥離を可能にする。   Therefore, in the third embodiment, the mask holding buffer mechanism 19 and the substrate pressing buffer mechanism 110 are provided on the mask moving mechanism 43 and the substrate pressing moving mechanism 15 side, and the mask 41 and the substrate pressing 14 are held in a state where the substrate 11 is stopped. The mask moving mechanism 43 and the substrate pressing movement mechanism 15 are moved away from the substrate 11 on the moving side of 100 mm / second, for example, and the mask 41 and the substrate pressing 14 can be peeled off simultaneously.

マスク保持緩衝機構19と基板押さえ緩衝機構110の作動方向が基板保持緩衝機構18と異なる。基板保持緩衝機構18は、蒸着中は基板11をマスク41に押付け、蒸着後剥離するときは、基板11をマスク41の移動と同一方向に移動させてマスク41との相対速度を低減させて、剥離速度を低減させた。   The operation directions of the mask holding buffer mechanism 19 and the substrate holding buffer mechanism 110 are different from those of the substrate holding buffer mechanism 18. The substrate holding buffer mechanism 18 presses the substrate 11 against the mask 41 during vapor deposition, and when separating after vapor deposition, the substrate 11 is moved in the same direction as the movement of the mask 41 to reduce the relative speed with the mask 41, The peel rate was reduced.

一方、マスク保持緩衝機構19と基板押さえ緩衝機構110は、蒸着中はそれぞれマスク41と基板押さえ14を基板11に押さえ付け、蒸着後剥離するときは、マスク41と基板押さえ14の移動速度を抑制するように、それぞれの移動方向とは反対方向に作動させ、それぞれの相対速度を、例えば50mm/秒でとなるように低減させて、剥離速度を低減させる。剥離後は、マスク41と基板押さえ14は、それぞれマスク移動機構43、基板押さえ移動機構の移動速度100mm/秒で移動する。   On the other hand, the mask holding buffer mechanism 19 and the substrate pressing buffer mechanism 110 suppress the movement speed of the mask 41 and the substrate presser 14 when pressing the mask 41 and the substrate presser 14 against the substrate 11 during vapor deposition and peeling after vapor deposition. As described above, the peeling speed is reduced by operating in a direction opposite to each moving direction and reducing each relative speed to be, for example, 50 mm / sec. After peeling, the mask 41 and the substrate holder 14 move at a movement speed of 100 mm / second of the mask moving mechanism 43 and the substrate pressing movement mechanism, respectively.

なお、剥離後は、実施例1と同様に、基板搬出搬入ゲートバルブ16からロボットアームにより基板11を出し入れするためのスペースを作るために、基板11または基板押さえ14を基板移動機構13または基板押さえ移動機構15で移動させる。しかし、実施例3では、既に基板押さえ14は移動しているので、スペースを作るために処理時間を多少短縮できる。
従って、実施例3においても、実施例1、2と同様に、マスク41と基板押さえ14の移動速度を変えることなく、剥離速度を低減でき、タクトタイムの短縮等の効果を奏することができる。また、実施例1と同様に、複雑に制御することなく、剥離速度を低減できる。
After the peeling, as in the first embodiment, the substrate 11 or the substrate presser 14 is moved to the substrate moving mechanism 13 or the substrate presser in order to make a space for taking in and out the substrate 11 from the substrate carry-in / take-in gate valve 16 by the robot arm. It is moved by the moving mechanism 15. However, in the third embodiment, since the substrate holder 14 has already moved, the processing time can be shortened to make a space.
Accordingly, also in the third embodiment, as in the first and second embodiments, the peeling speed can be reduced without changing the moving speed of the mask 41 and the substrate presser 14, and effects such as a reduction in tact time can be achieved. Further, as in Example 1, the peeling speed can be reduced without complicated control.

また、本実施例3においても、実施例2で用いた電位計111や緩衝制御機構112を図示していないが、基板の剥離帯電量をモニタし、その剥離帯電量によって緩衝機構のバネ定数を調整することにより、剥離帯電量をより低減できた。   In the third embodiment, the electrometer 111 and the buffer control mechanism 112 used in the second embodiment are not shown, but the peeling charge amount of the substrate is monitored, and the spring constant of the buffer mechanism is determined by the peeling charge amount. By adjusting, the peel charge amount could be further reduced.

(実施例4)
図7は、剥離速度低減機構として移動機構を用いた本発明の第4の実施例、第5の実施例を実現できる真空蒸着装置における基板11の剥離後の状態を示す図である。実施例1から3は、緩衝機構を設けて、基板11とマスク41・基板押さえ14の剥離速度を低減し、剥離帯電量を減らした構成であるが、本実施例4、5は、各移動機構を用いて剥離速度を低減させた例である。
Example 4
FIG. 7 is a view showing a state after peeling of the substrate 11 in a vacuum vapor deposition apparatus that can implement the fourth and fifth embodiments of the present invention using a moving mechanism as the peeling speed reduction mechanism. In the first to third embodiments, a buffering mechanism is provided to reduce the peeling speed between the substrate 11 and the mask 41 / substrate holding member 14 and reduce the peeling charge amount. This is an example in which the peeling rate is reduced using a mechanism.

実施例4は、実施例1における基板保持緩衝機構18の役目を、基板移動機構13に持たせた例である。即ち、蒸着後基板11を剥離するために、例えば、基板押さえ14を停止させ、その後、マスク41が100mm/秒で移動し始めると、駆動制御機構113により基板移動機構13を制御し、基板11をマスク41の同一移動方向に速度50mm/秒で移動させ、その後停止させる。この場合、マスク41が先行して移動しないように基板11の移動を開始する必要がある。   The fourth embodiment is an example in which the substrate moving mechanism 13 has the role of the substrate holding buffer mechanism 18 in the first embodiment. That is, in order to peel off the substrate 11 after vapor deposition, for example, when the substrate holder 14 is stopped, and then the mask 41 starts to move at 100 mm / second, the substrate moving mechanism 13 is controlled by the drive control mechanism 113, and the substrate 11. Is moved in the same movement direction of the mask 41 at a speed of 50 mm / second, and then stopped. In this case, it is necessary to start the movement of the substrate 11 so that the mask 41 does not move in advance.

剥離後は、実施例1と同様に、基板搬出搬入ゲートバルブ16からロボットアームにより基板11を出し入れするためのスペースを作る処理を行う。前記処理において、基板11を停止せずに引き続き基板を移動させてもよい。   After the peeling, as in the first embodiment, a process for creating a space for taking in and out the substrate 11 by the robot arm from the substrate carry-in / carry-in gate valve 16 is performed. In the process, the substrate may be continuously moved without stopping the substrate 11.

本実施例4によれば、実施例1と異なり、基板移動機構13の制御が必要であるが、実施例1と同様に、マスク41の移動速度を低下させることなく、即ちタクトタイムを増加させることなく高速に基板処理が可能で剥離荷電量の発生を低減できる。その結果、それがもたらす効果も奏することができる。
また、基板11の剥離速度を低減でき、それがもたらす効果も奏することができる。
According to the fourth embodiment, unlike the first embodiment, the substrate moving mechanism 13 needs to be controlled. However, as in the first embodiment, the movement speed of the mask 41 is not decreased, that is, the tact time is increased. Therefore, the substrate can be processed at high speed without generating a peeling charge amount. As a result, the effect that it brings can also be produced.
Moreover, the peeling speed of the board | substrate 11 can be reduced and the effect which it brings about can also be show | played.

実施例3に対して、実施例1に対する実施例4の手法を応用することに、実施例4と同様な効果を奏することができる。   By applying the method of the fourth embodiment to the first embodiment to the third embodiment, the same effect as the fourth embodiment can be obtained.

(実施例5)
実施例5は、実施例4と異なり、基板11からのマスク41及び基板押さえ14の剥離を別々に行ない、各剥離において3つの移動機構の移動方向を同一方向にそろえて制御して、剥離速度を低減させた例である。
(Example 5)
In the fifth embodiment, unlike the fourth embodiment, the mask 41 and the substrate holder 14 are peeled off from the substrate 11 separately, and in each peeling, the movement directions of the three moving mechanisms are aligned in the same direction to control the peeling speed. This is an example in which

例として、基板押さえ14を最初に剥離する場合を考える。まず、基板押さえ14を上方に例えば100mm/秒の速度で移動開始させ、同時に基板11とマスク41とを上方へ50mm/秒の同一速度で移動させて実施した。その後、基板11とマスク41を剥離する場合はマスク41を下方に100mm/秒の速度で移動開始させ、同時に基板11を同時に下方へ50mm/秒の速度で移動させ実施した。
上記は、基板押さえ14、マスク41の順で剥離したが、その逆でもよい、
実施例5においても、マスク41の移動速度を低下させることなく、基板11の剥離速度を低減でき、即ちタクトタイムを増加させることなく高速に基板処理が可能で剥離荷電量の発生を低減できる。その結果、それがもたらす効果も奏することができる。
また、本実施例4、5では、実施例2で用いた電位計111を図示していないが、基板の剥離帯電量をモニタし、その剥離帯電量によって駆動制御機構のパラメタを調整することにより、剥離帯電量をより低減できた。
As an example, consider the case where the substrate holder 14 is peeled first. First, the substrate holder 14 was started to move upward at a speed of, for example, 100 mm / second, and at the same time, the substrate 11 and the mask 41 were moved upward at the same speed of 50 mm / second. Thereafter, when the substrate 11 and the mask 41 were peeled off, the movement of the mask 41 was started downward at a speed of 100 mm / second, and simultaneously the substrate 11 was simultaneously moved downward at a speed of 50 mm / second.
The above is peeled in the order of the substrate holder 14 and the mask 41, but the reverse may be possible.
Also in the fifth embodiment, the peeling speed of the substrate 11 can be reduced without reducing the moving speed of the mask 41, that is, the substrate can be processed at high speed without increasing the tact time, and the generation of the peeling charge amount can be reduced. As a result, the effect that it brings can also be produced.
In the fourth and fifth embodiments, the electrometer 111 used in the second embodiment is not shown, but the peeling charge amount of the substrate is monitored, and the parameters of the drive control mechanism are adjusted by the peeling charge amount. Further, the peel charge amount could be further reduced.

実施例3や上述した実施例5では、マスク41と基板押さえ14とを別々に剥離できるので、実施例3及び実施例5のように同一場所でなく、異なった場所でも基板押さえからの基板11の剥離を行うことはできる。例えば、前述した縦型蒸着装置では、基板11を搬送して真空蒸着装置の基板押さえ14に載置する場合もある。この場合には、垂直の状態でマスク41と基板11を剥離し、水平の状態で基板11と基板押さえを剥離する場合もある。   In the third embodiment and the fifth embodiment described above, the mask 41 and the substrate holder 14 can be peeled separately, so that the substrate 11 from the substrate holder is not located in the same place as in the third and fifth embodiments but in different places. Can be peeled off. For example, in the above-described vertical deposition apparatus, the substrate 11 may be transported and placed on the substrate holder 14 of the vacuum deposition apparatus. In this case, the mask 41 and the substrate 11 may be peeled off in a vertical state, and the substrate 11 and the substrate retainer may be peeled off in a horizontal state.

(実施例6)
図8は、本発明の第6の実施例である真空蒸着装置システム25の構成を示す模式図である。図8は、搬送室111と左右に2つの蒸着室からなるクラスタをゲートバルブ112を介して多段構成とした真空蒸着装置システムである。実施例1から5では真空蒸着装置にて1種類の薄膜を成膜する構成例を示したが、有機EL製造ラインでは、蒸着により積層構造を作成するため真空一貫ラインで多層膜を成膜する必要がある。その場合、例えば実施例1から5までのいずれかの方法を用い真空蒸着装置1段では問題とならない剥離帯電量としたとしても、真空一貫ラインでは基板11に各段の剥離帯電量が蓄積されるため、後段のプロセス装置ではESD問題が発生することがある。本実施例6では、真空蒸着室間の基板搬送を実施する搬送室内にて、除電して多段の装置構成でもESD問題を防止する構成例を説明する。
(Example 6)
FIG. 8 is a schematic diagram showing a configuration of a vacuum evaporation system 25 that is a sixth embodiment of the present invention. FIG. 8 shows a vacuum vapor deposition apparatus system in which a cluster composed of a transfer chamber 111 and two vapor deposition chambers on the left and right sides has a multi-stage configuration via a gate valve 112. In Examples 1 to 5, a configuration example in which one type of thin film is formed by a vacuum vapor deposition apparatus is shown. However, in an organic EL production line, a multilayer film is formed by a vacuum integrated line in order to create a laminated structure by vapor deposition. There is a need. In that case, for example, even if any one of the methods from Examples 1 to 5 is used and the peeling charge amount is not problematic in the first stage of the vacuum evaporation apparatus, the peel charge amount of each stage is accumulated on the substrate 11 in the integrated vacuum line. Therefore, an ESD problem may occur in a subsequent process apparatus. In the sixth embodiment, a configuration example will be described in which static electricity is eliminated in a transfer chamber for carrying a substrate between vacuum deposition chambers, and an ESD problem is prevented even in a multi-stage apparatus configuration.

図8は、蒸着室A52〜蒸着室F57の間に搬送室115を設置し、蒸着室52〜57と搬送室115の間は基板搬出搬入用ゲートバルブ16を介して接続し、搬送室間は搬送室ゲートバルブ114にて接続して多段の蒸着システムを構築した例である。蒸着室内では真空内で用いられる紫外線発生装置121による除電は真空紫外線や除電効率を上げるためのガス導入のため、デバイスの劣化が問題となる。本実施例6では、蒸着室と蒸着室間に設けた搬送室115内に、紫外線発生装置121と除電効率を上げるためのガス圧調整装置131を配設し、複数段の蒸着プロセスによる剥離帯電量が増加をする前に、各搬送室115内にて除電することにより、真空一貫ラインでの剥離帯電量蓄積を各段で低減して、ESD問題とならない帯電電圧に維持して、長時間安定に連続稼動する量産プロセスを構築できた。   In FIG. 8, a transfer chamber 115 is installed between the vapor deposition chamber A52 and the vapor deposition chamber F57, the vapor deposition chambers 52 to 57 and the transfer chamber 115 are connected via the substrate loading / unloading gate valve 16, and the transfer chambers are connected to each other. This is an example in which a multi-stage deposition system is constructed by connecting with a transfer chamber gate valve 114. In the vapor deposition chamber, the static electricity removal by the ultraviolet ray generator 121 used in the vacuum introduces vacuum ultraviolet rays and gas for increasing the static elimination efficiency, so that degradation of the device becomes a problem. In the sixth embodiment, an ultraviolet ray generator 121 and a gas pressure adjusting device 131 for increasing the charge removal efficiency are disposed in a transfer chamber 115 provided between the vapor deposition chambers, and peeling charging is performed by a multi-stage vapor deposition process. Before the amount increases, the charge in each transfer chamber 115 is neutralized to reduce the amount of peeled charge accumulated in the integrated vacuum line at each stage and maintain a charging voltage that does not cause an ESD problem. We were able to build a mass production process that can be operated stably and continuously.

また、本実施例6では、実施例2で用いた電位計111を図示していないが、各搬送室に設置して、基板の剥離帯電量をモニタし、その剥離帯電量によって紫外線発生装置121やガス圧調整装置131を調整することにより、剥離帯電量をより低減できた。   Further, in the sixth embodiment, the electrometer 111 used in the second embodiment is not illustrated, but it is installed in each transfer chamber to monitor the peeling charge amount of the substrate, and the ultraviolet ray generator 121 is determined by the peeling charge amount. Further, by adjusting the gas pressure adjusting device 131, the peel charge amount can be further reduced.

実施例6によれば、高速成膜処理を維持しつつガラス基板の剥離帯電を抑制して、連続成膜することが可能な真空蒸着装置システムを提供できる。   According to the sixth embodiment, it is possible to provide a vacuum vapor deposition apparatus system capable of continuously forming films while suppressing high-speed film formation processing while suppressing peeling charging of the glass substrate.

(実施例7)
図9は、有機EL表示装置生産工程の一例を示した工程図である。実施例1〜実施例6では、この生産工程の有機蒸着の工程のみを主に説明した。
図9の工程図では、有機層と有機層に流れる電流を制御する薄膜トランジスタ(TFT)が形成されたTFT基板と、有機層を外部の湿気から保護する封止基板は別々に形成され、封止工程/シール硬化工程の封止工程において組み合わされる。
(Example 7)
FIG. 9 is a process diagram showing an example of an organic EL display device production process. In Examples 1 to 6, only the organic vapor deposition process of this production process was mainly described.
In the process diagram of FIG. 9, a TFT substrate on which an organic layer and a thin film transistor (TFT) for controlling a current flowing in the organic layer are formed, and a sealing substrate for protecting the organic layer from external moisture are separately formed and sealed. Combined in the sealing process of the process / seal curing process.

図9のTFT基板の製造工程において、ウェット洗浄された基板に対してドライ洗浄を行う。ドライ洗浄は、紫外線照射による洗浄を含む場合もある。
ドライ洗浄されたTFT基板に先ず、TFTが形成される。TFTの上にパッシベション膜および平坦化膜が形成され、その上に有機EL層の下部電極が形成される。下部電極はTFTのドレイン電極と接続している。下部電極をアノードとする場合は、例えば、ITO(Indium Tin Oxide)膜が使用される。
In the TFT substrate manufacturing process of FIG. 9, dry cleaning is performed on the wet-cleaned substrate. Dry cleaning may include cleaning by ultraviolet irradiation.
First, a TFT is formed on the dry-cleaned TFT substrate. A passivation film and a planarizing film are formed on the TFT, and a lower electrode of the organic EL layer is formed thereon. The lower electrode is connected to the drain electrode of the TFT. When the lower electrode is an anode, for example, an ITO (Indium Tin Oxide) film is used.

次に、下部電極の上に有機EL層が形成される。有機EL層は複数の層から構成される。下部電極がアノードの場合には、下から、例えば、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層である。このような有機EL層は蒸着によって形成され、その上に上部電極層が形成される。上部電極層は、実施例1〜実施例6で述べたような真空蒸着装置あるいは有機EL表示装置の製造方法によって形成する。
有機EL層の上には、各画素共通に、ベタ膜で上部電極が形成される。有機EL表示装置がトップエミッションの場合は、上部電極にはIZO(登録商標、InZnO)等の透明電極が使用され、有機EL表示装置がボトムエミッションの場合は、アルミニウム等の金属膜が使用される。
図9の封止基板投入工程において、ウェット洗浄およびドライ洗浄を行った封止基板に対してデシカント(乾燥剤)が配置される。有機EL層は、水分があると劣化をするので、内部の水分を除去するためにデシカントが使用される。デシカントには種々な材料を用いることができるが、有機EL表示装置がトップエミッションかボトムエミッションかによってデシカントの配置方法が異なる。
Next, an organic EL layer is formed on the lower electrode. The organic EL layer is composed of a plurality of layers. When the lower electrode is an anode, from the bottom, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. Such an organic EL layer is formed by vapor deposition, and an upper electrode layer is formed thereon. The upper electrode layer is formed by a method for manufacturing a vacuum vapor deposition apparatus or an organic EL display apparatus as described in the first to sixth embodiments.
On the organic EL layer, an upper electrode is formed of a solid film in common for each pixel. When the organic EL display device is top emission, a transparent electrode such as IZO (registered trademark, In 2 O 3 ZnO) is used as the upper electrode. When the organic EL display device is bottom emission, a metal film such as aluminum is used. Is used.
In the sealing substrate loading step of FIG. 9, a desiccant (desiccant) is disposed on the sealing substrate that has been subjected to wet cleaning and dry cleaning. Since the organic EL layer deteriorates when there is moisture, a desiccant is used to remove the moisture inside. Although various materials can be used for the desiccant, the desiccant arrangement method differs depending on whether the organic EL display device is a top emission or a bottom emission.

このように、別々に製造されたTFT基板と封止基板は、封止工程において、組み合わされる。TFT基板と封止基板を封止するためのシール材は、封止基板に形成される。封止基板とTFT基板を組み合わせた後、シール部に紫外線を照射して、シール部を硬化させ、封止を完了させる。
このようにして形成された有機EL表示装置に対して点灯検査を行う。点灯検査において、黒点、白点等の欠陥が生じている場合でも欠陥修正可能なものは修正を行い、有機EL表示装置が完成する。
Thus, the TFT substrate and the sealing substrate manufactured separately are combined in the sealing step. A sealing material for sealing the TFT substrate and the sealing substrate is formed on the sealing substrate. After combining the sealing substrate and the TFT substrate, the sealing portion is irradiated with ultraviolet rays to cure the sealing portion and complete the sealing.
A lighting test is performed on the organic EL display device thus formed. In the lighting inspection, even if defects such as black spots and white spots have occurred, those that can be corrected can be corrected to complete the organic EL display device.

本発明により、複数の層によって形成される有機EL層を異物による汚染を抑え、かつ、短いタクト時間で形成することができるので、有機EL表示装置の製造コストを低下させ、歩留まりを向上させることができる。さらに、有機EL層の各層の成分を正確に制御することができるので、特性の再現性が高く、かつ、信頼性の高い有機EL表示装置を製造することができる。   According to the present invention, an organic EL layer formed of a plurality of layers can be formed in a short tact time while suppressing contamination by foreign matters, thereby reducing the manufacturing cost of the organic EL display device and improving the yield. Can do. Furthermore, since the components of each layer of the organic EL layer can be accurately controlled, an organic EL display device having high reproducibility of characteristics and high reliability can be manufactured.

2:蒸気 3:蒸発源 7:膜厚モニタ
8:膜厚制御計 9:蒸発源制御機構 10:電荷
11:基板 12:基板保持機構 13:基板移動機構
14:基板押さえ(マグネットを含む) 15:基板押さえ移動機構
16:基板搬出搬入用ゲートバルブ 17:基板搬出搬入方向
18:基板保持緩衝機構 19:マスク保持緩衝機構 20乃至25:真空蒸着装置
41:マスク 42マスク開口部 43:マスク移動機構
51:蒸着室 52:蒸着室A 53:蒸着室B
54:蒸着室C 55:蒸着室D 56:蒸着室E
57:蒸着室F 61:ポンプ 62:バルブ
110:基板押さえ緩衝機構 111:電位計
112:緩衝制御機構 113:駆動制御機構
114:搬送室用ゲートバルブ 115:搬送室
121:紫外線発生装置 131:ガス圧調整装置、
2: Vapor 3: Evaporation source 7: Film thickness monitor 8: Film thickness controller 9: Evaporation source control mechanism 10: Charge 11: Substrate 12: Substrate holding mechanism 13: Substrate moving mechanism 14: Substrate holder (including magnet) 15 : Substrate holding and moving mechanism 16: Gate valve for loading and unloading the substrate 17: Direction of loading and unloading the substrate 18: Substrate holding buffer mechanism 19: Mask holding buffer mechanism 20 to 25: Vacuum deposition apparatus 41: Mask 42 Mask opening 43: Mask moving mechanism 51: Deposition chamber 52: Deposition chamber A 53: Deposition chamber B
54: Deposition chamber C 55: Deposition chamber D 56: Deposition chamber E
57: Deposition chamber F 61: Pump 62: Valve 110: Substrate holding buffer mechanism 111: Electrometer 112: Buffer control mechanism 113: Drive control mechanism 114: Transfer chamber gate valve 115: Transfer chamber 121: Ultraviolet generator 131: Gas Pressure regulator,

Claims (15)

ガラス基板に蒸着材料を蒸着させる蒸発源と、蒸着パターンを有し磁性材料からなるマスクと、ガラス基板と前記マスクとを密着させるマグネットを有する基板押さえと、を真空装置内に有し、
前記ガラス基板と前記マスクまたは前記ガラス基板と前記基板押さえを互いに平行に離間させるガラス基板移動機構、マスク移動機構及び基板押さえ移動機構のうち少なくとも1つの移動機構を設け、
前記ガラス基板と前記マスクとのマスク剥離、前記ガラス基板と前記基板押さえとの基板押さえ剥離の少なくとも一方の剥離する際に、剥離速度を低減させる剥離速度低減手段と、有する、
ことを特徴とする真空蒸着装置。
An evaporation source for depositing a deposition material on a glass substrate, a mask made of a magnetic material having a deposition pattern, and a substrate press having a magnet for closely attaching the glass substrate and the mask, are included in the vacuum device,
A glass substrate moving mechanism that separates the glass substrate and the mask or the glass substrate and the substrate holder in parallel with each other, a mask moving mechanism, and a substrate holding mechanism; provided with at least one moving mechanism;
A peeling speed reducing means for reducing the peeling speed when peeling off at least one of the mask peeling between the glass substrate and the mask and the substrate pressing peeling between the glass substrate and the substrate press;
A vacuum evaporation apparatus characterized by that.
請求項1に記載の真空蒸着装置において、
前記剥離速度低減手段は、前記剥離する際に、前記ガラス基板と前記マスクの組み合わせ、前記ガラス基板と前記基板押さえの組み合わせのうち少なくとも一方の組み合わせ間の相対速度を低減させて前記剥離速度を低減する緩衝機構を有している、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation system according to claim 1,
The peeling speed reducing means reduces the peeling speed by reducing a relative speed between at least one of the combination of the glass substrate and the mask and the combination of the glass substrate and the substrate pressing when the peeling is performed. Having a buffering mechanism,
A vacuum evaporation apparatus characterized by that.
請求項2に記載の真空蒸着装置において、
前記緩衝機構は、前記剥離する際に、前記基板押さえを停止させた状態で、または、前記ガラス基板と前記基板押さえを一体にした状態で、前記ガラス基板を保持する基板保持機構に接続され、前記マスクの移動方向と同一方向に前記ガラス基板を第1の移動速度で移動させる基板保持緩衝機構を有し、
前記マスク移動機構は、前記マスクを前記第1の移動速度よりも速い速度で移動させる、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation system according to claim 2,
The buffer mechanism is connected to a substrate holding mechanism that holds the glass substrate in a state in which the substrate pressing is stopped when the peeling is performed, or in a state where the glass substrate and the substrate pressing are integrated. A substrate holding buffer mechanism for moving the glass substrate at a first movement speed in the same direction as the movement direction of the mask;
The mask moving mechanism moves the mask at a speed faster than the first moving speed;
A vacuum evaporation apparatus characterized by that.
請求項2に記載の真空蒸着装置において、
前記緩衝機構は、前記剥離する際に、前記基板マスクを停止させた状態で、前記ガラス基板を保持する基板保持機構に接続され、前記基板押さえの移動方向と同一方向に前記ガラス基板を第2の移動速度で移動させる基板保持緩衝機構を有し、
前記マスク移動機構は、前記基板押さえを前記第2の移動速度より速く移動させる、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation system according to claim 2,
The buffer mechanism is connected to a substrate holding mechanism that holds the glass substrate in a state where the substrate mask is stopped when the peeling is performed, and the second glass substrate is moved in the same direction as the moving direction of the substrate presser. A substrate holding buffer mechanism that moves at a moving speed of
The mask moving mechanism moves the substrate press faster than the second moving speed;
A vacuum evaporation apparatus characterized by that.
請求項2に記載の真空蒸着装置において、
前記緩衝機構は、前記剥離する際に、前記ガラス基板を停止させた状態で、前記マスク移動機構に設けられ、前記マスクの移動方向とは反対方向に前記マスクを第3の速度で移動させるマスク保持緩衝機構と、前記基板押さえ移動機構に設けられ、前記基板押さえの移動方向とは反対方向に前記基板押さえを第4の速度で移動させる基板押さえ保持緩衝機構を有し、
前記マスク移動機構は前記マスクを前記第3の速度より速い移動速度で移動させ、前記基板押さえ移動機構は前記基板押さえを前記第4の速度より速い移動速度で移動させる、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation system according to claim 2,
The buffer mechanism is provided in the mask moving mechanism in a state where the glass substrate is stopped when the peeling is performed, and the mask moves the mask at a third speed in a direction opposite to the moving direction of the mask. A holding buffer mechanism, and a substrate pressing holding buffer mechanism that is provided in the substrate pressing moving mechanism and moves the substrate pressing at a fourth speed in a direction opposite to a moving direction of the substrate pressing;
The mask moving mechanism moves the mask at a moving speed faster than the third speed, and the substrate pressing moving mechanism moves the substrate pressing at a moving speed faster than the fourth speed;
A vacuum evaporation apparatus characterized by that.
請求項2乃至5のいずれかに記載の真空蒸着装置において、
前記ガラス基板の剥離帯電量を計測する電位計と、
前記剥離帯電量に基づいて、前記緩衝機構のバネ定数を制御する緩衝制御機構と、を設けた、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation system in any one of Claims 2 thru | or 5,
An electrometer that measures the amount of charge peeled from the glass substrate;
A buffer control mechanism for controlling a spring constant of the buffer mechanism based on the peel charge amount;
A vacuum evaporation apparatus characterized by that.
請求項1に記載の真空蒸着装置において、
前記剥離速度低減手段は、前記剥離する際に、前記移動機構により、前記ガラス基板と前記マスクの組み合わせ、前記ガラス基板と前記基板押さえの組み合わせのうち少なくとも一方の組み合わせを同一方向に移動させて相対速度を低減させて前記剥離速度を低減する駆動制御機構である、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation system according to claim 1,
The peeling speed reduction means moves the at least one of the combination of the glass substrate and the mask and the combination of the glass substrate and the substrate pressing member in the same direction by the moving mechanism when the peeling is performed. A drive control mechanism that reduces the peeling speed by reducing the speed,
A vacuum evaporation apparatus characterized by that.
請求項7に記載の真空蒸着装置において、
前記駆動制御機構は、前記剥離する際に、前記基板押さえを停止させた状態で、または、前記ガラス基板と前記基板押さえを一体にした状態で、前記マスク移動機構と前記基板移動機構により、前記ガラス基板を前記マスクより遅い移動速度で移動させる機構である、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation system of Claim 7,
In the state where the substrate pressing is stopped or when the glass substrate and the substrate pressing are integrated when the driving control mechanism is peeled off, the mask moving mechanism and the substrate moving mechanism It is a mechanism for moving the glass substrate at a slower moving speed than the mask,
A vacuum evaporation apparatus characterized by that.
請求項7に記載の真空蒸着装置において、
前記駆動制御機構は、前記剥離する際に、前記マスクを停止させた状態で、前記基板移動機構と前記基板押さえ移動機構により前記ガラス基板と前記マスクとの相対速度を低減するように同一方向に移動させる機構である、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation system of Claim 7,
The drive control mechanism is arranged in the same direction so as to reduce the relative speed between the glass substrate and the mask by the substrate movement mechanism and the substrate pressing movement mechanism in a state where the mask is stopped at the time of peeling. It is a mechanism to move,
A vacuum evaporation apparatus characterized by that.
請求項7に記載の真空蒸着装置において、
前記駆動制御機構は、前記剥離する際に、前記マスク移動機構、前記基板移動機構及び前記基板押さえ移動機構により、前記マスクまたは前記基板押さえの一方を第5の移動速度で移動開始させ、同時基板と他方を前記第5の移動速度より遅い第6の移動速度で前記一方と同一方向に移動させ、その後、前記他方を第7の速度で移動開始させ、前記ガラス基板を第7の移動速度より遅い第8の移動速度で前記他方と同一方向に移動させ、機構である、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation system of Claim 7,
The drive control mechanism starts the movement of one of the mask and the substrate holder at a fifth movement speed by the mask movement mechanism, the substrate movement mechanism, and the substrate holding movement mechanism when the peeling is performed, And the other is moved in the same direction as the one at a sixth movement speed slower than the fifth movement speed, and then the other is started to move at the seventh speed, and the glass substrate is moved from the seventh movement speed. It is a mechanism that moves in the same direction as the other at a slow eighth movement speed,
A vacuum evaporation apparatus characterized by that.
請求項7乃至10のいずれかに記載の真空蒸着装置において、
前記ガラス基板の剥離帯電量を計測する電位計と、
前記駆動制御機構は、前記剥離帯電量に基づいて、前記移動機構の速度を制御する、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation system according to any one of claims 7 to 10,
An electrometer that measures the amount of charge peeled from the glass substrate;
The drive control mechanism controls the speed of the moving mechanism based on the peel charge amount.
A vacuum evaporation apparatus characterized by that.
請求項5または請求項10の真空蒸着装置において、
前記ガラス基板と前記マスクとの剥離と前記ガラス基板と前記基板押さえの剥離を別の場所で行う、
ことを特徴とする真空蒸着装置。
In the vacuum evaporation apparatus of Claim 5 or Claim 10,
The separation of the glass substrate and the mask and the separation of the glass substrate and the substrate holder are performed at different locations.
A vacuum evaporation apparatus characterized by that.
1台以上の請求項1乃至12に記載の真空蒸着装置と、前記真空蒸着装置のそれぞれが第1のゲートバルブを介して設けられた搬送室と有するクラスタを有し、
前記搬送室室内に前記ガラス基板に蓄積した電荷を除電する荷電紫外線発生装置と、前記除電の効率を上げるガス圧調整装置と、
を設けたことを特徴とする真空蒸着装置システム。
One or more vacuum deposition apparatuses according to claims 1 to 12, and each of the vacuum deposition apparatuses includes a cluster having a transfer chamber provided via a first gate valve,
A charged ultraviolet ray generator that neutralizes charges accumulated in the glass substrate in the transfer chamber, a gas pressure regulator that increases the efficiency of the static elimination, and
A vacuum deposition apparatus system characterized by comprising:
請求項13に記載の真空蒸着装置システムにおいて、
前記クラスタを多段に設け、前記搬送室間を第2のゲートバルブで接続した、
ことを特徴とする真空蒸着装置システム。
In the vacuum evaporation system of Claim 13,
The clusters are provided in multiple stages, and the transfer chambers are connected by a second gate valve.
A vacuum evaporation system characterized by that.
薄膜トランジスタ、有機EL層、及び前記有機EL層を挟む電極層が形成されたTFT基板を封止基板によって封止した有機EL表示装置の製造方法であって、
前記薄膜卜ランジスタが形成された前記TFT基板を請求項1乃至10のいずれかに記載の真空蒸着装置内に配置し、前記TFT基板に対向して、前記有機EL層または前記電極層を成膜するための蒸着材料を収容した蒸発源を配設し、前記蒸発源によって前記TFT基板に前記蒸着材料を蒸着し、前記有機EL層を形成する、
ことを特徴とする有機EL表示装置の製造方法。
A method of manufacturing an organic EL display device in which a TFT substrate on which a thin film transistor, an organic EL layer, and an electrode layer sandwiching the organic EL layer are formed is sealed with a sealing substrate,
The TFT substrate on which the thin film transistor is formed is disposed in the vacuum evaporation apparatus according to any one of claims 1 to 10, and the organic EL layer or the electrode layer is formed to face the TFT substrate. An evaporation source containing an evaporation material for performing, and depositing the evaporation material on the TFT substrate by the evaporation source to form the organic EL layer,
An organic EL display device manufacturing method characterized by the above.
JP2014050583A 2014-03-13 2014-03-13 Vacuum deposition apparatus, vacuum deposition apparatus system and method for manufacturing organic el display device Pending JP2015175010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014050583A JP2015175010A (en) 2014-03-13 2014-03-13 Vacuum deposition apparatus, vacuum deposition apparatus system and method for manufacturing organic el display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014050583A JP2015175010A (en) 2014-03-13 2014-03-13 Vacuum deposition apparatus, vacuum deposition apparatus system and method for manufacturing organic el display device

Publications (1)

Publication Number Publication Date
JP2015175010A true JP2015175010A (en) 2015-10-05

Family

ID=54254483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050583A Pending JP2015175010A (en) 2014-03-13 2014-03-13 Vacuum deposition apparatus, vacuum deposition apparatus system and method for manufacturing organic el display device

Country Status (1)

Country Link
JP (1) JP2015175010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192579A (en) * 2017-05-18 2018-12-06 ファナック株式会社 Robot system
CN115369358A (en) * 2021-09-08 2022-11-22 广东聚华印刷显示技术有限公司 Vapor deposition apparatus and vapor deposition substrate separation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192579A (en) * 2017-05-18 2018-12-06 ファナック株式会社 Robot system
CN108942880A (en) * 2017-05-18 2018-12-07 发那科株式会社 Robot system
US10525592B2 (en) 2017-05-18 2020-01-07 Fanuc Corporation Robot system
CN115369358A (en) * 2021-09-08 2022-11-22 广东聚华印刷显示技术有限公司 Vapor deposition apparatus and vapor deposition substrate separation method
CN115369358B (en) * 2021-09-08 2023-12-05 广东聚华印刷显示技术有限公司 Vapor deposition device and vapor deposition substrate separation method

Similar Documents

Publication Publication Date Title
US9257649B2 (en) Method of manufacturing organic layer on a substrate while fixed to electrostatic chuck and charging carrier using contactless power supply module
KR101375334B1 (en) Organic light emitting display apparatus and method of manufacturing thereof
US7942716B2 (en) Frit sealing system and method of manufacturing organic light emitting display device
JP7278541B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
KR20140048734A (en) Electrostatic chuck
WO2015180408A1 (en) Packaging device and packaging equipment
WO2007078090A1 (en) Method and apparatus for encapsulating organic light emitting diodes
JP7278193B2 (en) Deposition equipment
JP2015175010A (en) Vacuum deposition apparatus, vacuum deposition apparatus system and method for manufacturing organic el display device
US9680098B2 (en) Element manufacturing method and element manufacturing apparatus
KR100722803B1 (en) Apparatus for encapsulation of organic electroluminescent devices
KR101086880B1 (en) Method of fabricating organic light emitting display device having getter layer
KR102303243B1 (en) Apparatus and method for manufacturing display apparatus
US9692019B2 (en) Element manufacturing method and element manufacturing apparatus utilizing differential pressure for covering a substrate
KR100942498B1 (en) Method of producing organic light emitting apparatus
EP3399551B1 (en) Method for preparing oled display device
JP7007688B2 (en) Adsorption device, film forming device, adsorption method, film forming method and manufacturing method of electronic device
US7799584B2 (en) Attaching device and method of fabricating organic light emmiting device using the same
CN112779503A (en) Film forming apparatus and method for controlling film forming apparatus
KR20190005929A (en) Method and apparatus for vacuum processing
JP2008293957A (en) Manufacturing method of organic light emitting device
KR100350321B1 (en) An apparatus for recycling the bad OELD and a method of producing OELD using the apparatus
KR100606815B1 (en) method for aging of organics electroluminunce device
JP2014232689A (en) Defect inspection device and defect inspection method
WO2016132583A1 (en) Method for manufacturing thin film electronic device, etching apparatus, and apparatus for manufacturing thin film electronic device