JP2015175002A - Electric anticorrosion apparatus for outer surface of steel building structure - Google Patents

Electric anticorrosion apparatus for outer surface of steel building structure Download PDF

Info

Publication number
JP2015175002A
JP2015175002A JP2014049473A JP2014049473A JP2015175002A JP 2015175002 A JP2015175002 A JP 2015175002A JP 2014049473 A JP2014049473 A JP 2014049473A JP 2014049473 A JP2014049473 A JP 2014049473A JP 2015175002 A JP2015175002 A JP 2015175002A
Authority
JP
Japan
Prior art keywords
coating film
conductive coating
anticorrosion
steel building
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014049473A
Other languages
Japanese (ja)
Inventor
貢 加藤
Mitsugi Kato
貢 加藤
北村 透
Toru Kitamura
透 北村
松島 俊久
Toshihisa Matsushima
俊久 松島
修和 篠田
Nobuyasu Shinoda
修和 篠田
實 大谷
Minoru Otani
實 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CPC KK
Pialex Technologies Corp
Original Assignee
CPC KK
Pialex Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CPC KK, Pialex Technologies Corp filed Critical CPC KK
Priority to JP2014049473A priority Critical patent/JP2015175002A/en
Publication of JP2015175002A publication Critical patent/JP2015175002A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric anticorrosion apparatus for outer surfaces of steel building structures which is usable in electric anticorrosion of outer surfaces of steel building structures exposed to the atmosphere and is provided with a conductive coating film excellent in water and weather resistances.SOLUTION: An electric anticorrosion apparatus includes one or more anticorrosion coating films 2 and 3 applied to the outer surface of a steel building structure 1 exposed to the atmosphere, a conductive coating film applied to the outermost layer or interlayer of anticorrosion coating films and a power source flowing a DC current with the steel building structure as the cathode and the conductive coating film as the anode, and the conductive coating film is an ion conductive coating film 4 containing, as a composition, a graft polymer including a fluororesin ionomer as the trunk and sulfonate groups in side chains.

Description

本発明は、鉄鋼建造物外表面の電気防食装置に係り、具体的には、鉄鋼製のタンク、橋梁、鉄架構、配管設備、電力機器、クレーンなどの気中に露出した外表面を有する鉄鋼建造物外表面の防食技術に関する。   The present invention relates to an anticorrosion device for an outer surface of a steel building, and specifically, steel having an outer surface exposed to the air such as a steel tank, a bridge, a steel frame, a piping facility, a power device, a crane, and the like. The present invention relates to anticorrosion technology for the outer surface of buildings.

一般に、気中に露出した鉄鋼建造物の外表面の防食は、専ら複数層の防食塗装膜を外表面に施すことにより行われている。しかし、例えば、相対湿度が60%以上になると、空気中の水分が防食塗装膜の表面に凝縮して水膜が形成されることが知られている。通常、塗装膜には、ピンホールなどの細孔が無数にあることから、その細孔に雨水あるいは凝縮した結露水が浸入して塗装膜下の鋼材を腐食させることになる。特に、細孔内に浸入する水に海塩が含まれていると、鋼材の腐食を速めることになる。また、防食塗装膜が紫外線などの影響を受けて経年劣化すると、防食性能が損なわれることから、防食塗装膜の補修又は塗り替えサイクルが早まるという問題がある。   In general, corrosion prevention of an outer surface of a steel structure exposed to the air is performed by applying a plurality of layers of anticorrosion coating films exclusively on the outer surface. However, for example, it is known that when the relative humidity is 60% or more, moisture in the air is condensed on the surface of the anticorrosion coating film to form a water film. Usually, since a coating film has innumerable pores such as pinholes, rainwater or condensed condensed water enters the pores and corrodes the steel material under the coating film. In particular, when sea salt is contained in the water entering the pores, the corrosion of the steel material is accelerated. In addition, when the anticorrosion coating film is deteriorated with the influence of ultraviolet rays or the like, the anticorrosion performance is impaired, so that there is a problem that the anticorrosion coating film is repaired or repainted earlier.

そこで、気中に露出した鉄鋼建造物の外表面に電気防食を適用する提案がなされている(特許文献1〜3)。これらによれば、複数層の防食塗装膜の1層に導電性の塗装膜を形成し、その導電性塗装膜を陽極とし、鉄鋼建造物を陰極として、それらの間に直流電流を流して鉄鋼建造物を防食するようにしている。つまり、防食塗装膜の細孔に雨水や結露水などの水が浸入しても、導電性塗装膜を電流経路にして細孔内の水を通って鉄鋼建造物に防食電流が流れ、鉄鋼建造物の電位を鉄鋼腐食の不活性領域に維持することができる。これにより、気中に露出した鉄鋼建造物外表面の電気防食を行うことができる。   In view of this, proposals have been made to apply cathodic protection to the outer surface of steel buildings exposed in the air (Patent Documents 1 to 3). According to these, a conductive coating film is formed on one layer of a plurality of anticorrosion coating films, the conductive coating film is used as an anode, a steel building is used as a cathode, and a direct current is passed between them to steel. The building is protected from corrosion. In other words, even if rainwater or dew condensation water enters the pores of the anticorrosion coating film, the anticorrosion current flows through the water in the pores through the conductive coating film as a current path and flows into the steel building. The potential of the object can be maintained in an inert region of steel corrosion. Thereby, the electric corrosion protection of the steel building outer surface exposed to the air can be performed.

また、特許文献3には、気中に露出した鉄鋼建造物の外表面に濡れ性の高い親水性塗装膜を形成し、その親水性塗装膜の表面に形成される水膜を陽極とし、鉄鋼建造物を陰極として、それらの間に直流電流を流して鉄鋼建造物を防食することが提案されている。すなわち、雨水や気中の凝縮水によって親水性塗装膜の表面に水膜を形成し、その水膜を電流経路にして防食塗装膜の細孔内の水を通って鉄鋼建造物に防食電流を流して電気防食することができる。   In Patent Document 3, a hydrophilic coating film having high wettability is formed on the outer surface of a steel building exposed to the air, and a water film formed on the surface of the hydrophilic coating film is used as an anode. It has been proposed to use a building as a cathode and to prevent corrosion of the steel building by passing a direct current between them. That is, a water film is formed on the surface of the hydrophilic coating film by rainwater or condensed water in the air, and the anticorrosive current is applied to the steel building through the water in the pores of the anticorrosion coating film using the water film as a current path. It can be flowed to prevent corrosion.

特開平9−268388号公報JP-A-9-268388 特開平11−314309号公報JP 11-314309 A 特開平10−121274号公報JP-A-10-121274

ところで、特許文献1〜3では、塗装膜を形成する樹脂にカーボンや金属などの電子伝導体を配合して導電性塗装膜を形成し、又は、スルホン基などの親水性を有する水溶性もしくは水分散性のアクリル系、エポキシ系などの樹脂を変成したバインダー樹脂などにより親水性塗装膜を形成している。   By the way, in Patent Documents 1 to 3, a resin for forming a coating film is blended with an electronic conductor such as carbon or metal to form a conductive coating film, or water-soluble or water having hydrophilicity such as a sulfone group. A hydrophilic coating film is formed of a binder resin obtained by modifying a dispersible acrylic or epoxy resin.

しかし、特許文献1〜3のような塗装樹脂にカーボンや金属などの電子伝導体を配合した導電性塗装膜、あるいは特許文献3の親水性塗装膜は、気中に露出した鉄鋼建造物の外表面に要求される耐水性及び耐候性(特に、耐紫外線)について、十分な配慮がなされていないという問題がある。   However, a conductive coating film in which an electronic conductor such as carbon or metal is blended with a coating resin as described in Patent Documents 1 to 3, or a hydrophilic coating film in Patent Document 3 is an outside of a steel building exposed to the air. There is a problem that sufficient consideration has not been given to water resistance and weather resistance (particularly, UV resistance) required for the surface.

例えば、電子伝導体を配合した導電性塗装膜は、電子伝導体と塗装樹脂の結合が単なる物理的なものであるから、風雨や紫外線に曝されると塗装膜の耐水性及び耐候性が劣化し易いという問題がある。また、一般に親水性と耐水性は相反する性質であるから、親水性塗装膜は風雨や紫外線に曝されると劣化が早まるという問題がある。したがって、電子伝導体を配合した導電性塗装膜、あるいは特許文献3の親水性塗装膜は、使用期間の経過に伴って劣化すると、剥がれて浮き上がり長期の使用に耐えられないという問題がある。しかも、親水性塗装膜の外表面に形成される水膜にムラができると、必ずしも全面を防食することができないという問題がある。   For example, a conductive coating film containing an electron conductor is simply a physical bond between the electron conductor and the coating resin, so that the water resistance and weather resistance of the coating film deteriorate when exposed to wind and rain or ultraviolet rays. There is a problem that it is easy to do. Further, since hydrophilicity and water resistance are generally contradictory properties, there is a problem that the hydrophilic coating film deteriorates rapidly when exposed to wind and rain or ultraviolet rays. Therefore, the conductive coating film in which the electron conductor is blended or the hydrophilic coating film of Patent Document 3 has a problem that when it deteriorates with the passage of the use period, it peels off and cannot withstand long-term use. In addition, if the water film formed on the outer surface of the hydrophilic coating film is uneven, there is a problem that the entire surface cannot be protected.

本発明が解決しようとする課題は、気中に露出した鉄鋼建造物外表面の電気防食に用いることができ、耐水性及び耐候性に優れた導電性塗装膜を備えた電気防食装置を提供することにある。   The problem to be solved by the present invention is to provide an anti-corrosion device that can be used for the anti-corrosion of the outer surface of a steel structure exposed in the air and has a conductive coating film excellent in water resistance and weather resistance. There is.

上記の課題を解決するため、本発明の鉄鋼建造物外表面の電気防食装置は、 気中に露出した鉄鋼建造物の外表面に施された少なくとも一層の防食塗装膜と、前記防食塗装膜の最外層又は層間に施された導電性塗装膜と、前記鉄鋼建造物を陰極とし前記導電性塗装膜を陽極として直流電流を流す電源とを備え、前記導電性塗装膜は、フッ素樹脂アイオノマーを主幹とし側鎖にスルホン酸基を有するグラフト重合体を組成物として含むイオン伝導性塗装膜であることを特徴とする。   In order to solve the above-mentioned problems, an electro-corrosion protection device for an outer surface of a steel building according to the present invention comprises at least one anti-corrosion coating film applied to the outer surface of the steel building exposed to the air, and the anti-corrosion coating film. A conductive coating film applied between the outermost layer or the interlayer and a power source for passing a direct current using the steel structure as a cathode and the conductive coating film as an anode, and the conductive coating film is mainly composed of a fluororesin ionomer. And an ion conductive coating film containing a graft polymer having a sulfonic acid group in the side chain as a composition.

すなわち、フッ素樹脂アイオノマーは、C−F結合の結合エネルギが大きく、緻密で安定した分子鎖を形成している。そのため、高結晶度であり、耐水性及び耐候性に優れ、電気化学反応に対して高度に安定であり、かつ下地の防食塗装膜との密着性に優れている。しかも、スルホン酸基(−SOH)の水素イオンHが遊離してイオン伝導性を呈する。さらに、スルホン酸基は優れた親水性を呈することから、最外層に施した場合は安定な水膜を形成でき、イオン伝導性塗装膜とともに電流経路として作用する。これらのことから、本発明のイオン伝導性塗装膜によれば、鉄鋼建造物外表面の電気防食に優れた導電性塗装膜を形成することができ、かつ長期にわたって安定した電気防食を行うことができる。その結果、防食塗装膜の補修や塗替えサイクルを長期化することができる。 That is, the fluororesin ionomer has a high C—F bond energy and forms a dense and stable molecular chain. Therefore, it has high crystallinity, excellent water resistance and weather resistance, is highly stable against electrochemical reaction, and is excellent in adhesion to the underlying anticorrosion coating film. In addition, hydrogen ions H + of the sulfonic acid group (—SO 3 H) are liberated and exhibit ionic conductivity. Furthermore, since the sulfonic acid group exhibits excellent hydrophilicity, when it is applied to the outermost layer, a stable water film can be formed and acts as a current path together with the ion conductive coating film. From these things, according to the ion conductive coating film of the present invention, it is possible to form a conductive coating film having excellent anticorrosion on the outer surface of a steel building, and to perform stable anticorrosion over a long period of time. it can. As a result, it is possible to prolong the repair and repaint cycle of the anticorrosion coating film.

また、本発明のイオン伝導性塗装膜は、フッ素樹脂アイオノマーを主幹とし側鎖にスルホン酸基を有するグラフト重合体の組成物100重量部に、遷移金属酸化物を主成分とする光触媒100重量部を超えない範囲で加えて形成することができる。これによれば、光触媒によってイオン伝導性塗装膜の親水性を著しく向上させることができるから、イオン伝導性塗装膜の表面抵抗を一層低くすることができる。その結果、後述するように、イオン伝導性塗装膜に埋設する金属材からなる1つの陽極電極から、均等に流すことができる防食電流の範囲を広げることができ、外表面の面積が広い鉄鋼建造物に設ける陽極電極の個数を少なくでき、あるいは陽極電極の相互間隔を広げることができる。   In addition, the ion conductive coating film of the present invention has 100 parts by weight of a photocatalyst mainly composed of a transition metal oxide in 100 parts by weight of a graft polymer composition having a fluororesin ionomer as a main backbone and a sulfonic acid group in the side chain. Can be added within the range not exceeding. According to this, since the hydrophilicity of the ion conductive coating film can be remarkably improved by the photocatalyst, the surface resistance of the ion conductive coating film can be further reduced. As a result, as will be described later, from one anode electrode made of a metal material embedded in the ion conductive coating film, the range of the anticorrosion current that can be evenly flown can be expanded, and the steel construction with a large outer surface area The number of anode electrodes provided on the object can be reduced, or the distance between the anode electrodes can be increased.

ここで、陽極電極は、例えばアルミニウム、白金、銅などの金属材で形成され、イオン伝導性塗装膜の下層の防食塗装膜の表面に絶縁性を有する接着剤で貼り付けられ、イオン伝導性塗装膜に少なくとも一部が埋め込まれ、イオン伝導性塗装膜を含む防食塗装膜の最外層の表面に露出して設けることができる。これによれば、金属材で形成された陽極電極の少なくとも一部をイオン伝導性塗装膜内に埋め込んだことから、陽極電極とイオン伝導性塗装膜との電気的な接続面積を広くすることができ、安定して防食電流を流すことができる。なお、陽極電極の外表面は、仕上げ塗装膜により被覆することができる。   Here, the anode electrode is formed of, for example, a metal material such as aluminum, platinum, or copper, and is attached to the surface of the anticorrosion coating film below the ion conductive coating film with an insulating adhesive, and the ion conductive coating. At least a part of the film is embedded in the film, and can be provided exposed on the outermost surface of the anticorrosion coating film including the ion conductive coating film. According to this, since at least a part of the anode electrode formed of a metal material is embedded in the ion conductive coating film, the electrical connection area between the anode electrode and the ion conductive coating film can be increased. It is possible to flow the anticorrosion current stably. The outer surface of the anode electrode can be covered with a finish coating film.

本発明によれば、気中に露出した外表面を有する鉄鋼建造物の外表面の電気防食に用いることができる耐候性に優れたイオン伝導性塗装膜を備えた電気防食装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, providing the anticorrosion apparatus provided with the ion conductive coating film excellent in the weather resistance which can be used for the anticorrosion of the outer surface of the steel building which has the outer surface exposed to the air. it can.

本発明の鉄鋼建造物外表面の電気防食装置の一実施形態の構成図である。It is a block diagram of one Embodiment of the anti-corrosion apparatus of the steel building outer surface of this invention. 本発明の一実施形態を適用して実施した比較試験の結果を説明する線図である。It is a diagram explaining the result of the comparative test implemented by applying one embodiment of the present invention.

以下、本発明を実施形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

本発明の鉄鋼建造物外表面の電気防食装置を、液体あるいは気体などの流体を貯留する鉄鋼製タンクの外表面の電気防食に適用した一実施形態に基づいて説明する。しかし、本発明の鉄鋼建造物外表面の電気防食装置は、鉄鋼製タンクの外表面に限られるものではなく、鉄鋼製の橋梁、鉄架構、配管設備、電力機器、クレーンなどの気中に露出した外表面を有する鉄鋼建造物外表面の電気防食に適用できる。   The electro-corrosion protection device for the outer surface of a steel building according to the present invention will be described based on an embodiment in which it is applied to the electro-corrosion protection of the outer surface of a steel tank that stores fluid such as liquid or gas. However, the cathodic protection device for the outer surface of the steel building of the present invention is not limited to the outer surface of the steel tank, and is exposed to the air such as steel bridges, steel frames, piping facilities, electric power equipment, cranes, etc. The present invention can be applied to the anticorrosion of the outer surface of a steel structure having an outer surface.

図1は、鉄鋼製タンクの側壁1の一部分の断面及び防食電源の系統構成を示している。図示のように、鉄鋼製タンクの側壁1の外表面1aに、下塗りの防食塗装膜2、上塗りの防食塗装膜3、イオン伝導性塗装膜4が順次重ねて形成されている。防食塗装膜2は、周知の例えばエポキシ系防食塗料を塗布等により形成する。また、防食塗装膜3は、周知の例えば撥水性塗料を塗布等により形成する。   FIG. 1 shows a cross section of a part of a side wall 1 of a steel tank and a system configuration of an anticorrosion power source. As shown in the figure, an undercoat anticorrosion coating film 2, an overcoat anticorrosion coating film 3, and an ion conductive coating film 4 are sequentially stacked on the outer surface 1a of the side wall 1 of the steel tank. The anticorrosion coating film 2 is formed by applying a well-known epoxy anticorrosion paint, for example. The anticorrosion coating film 3 is formed by applying a well-known water-repellent paint, for example.

イオン伝導性塗装膜4には、陽極電極5の一部が埋め込まれて設けられている。陽極電極5は、本実施形態では平板状の金属材から形成され、電気絶縁性を有する接着材6により防食塗装膜3の外表面に接着して設けられている。陽極電極5は、電線(又はケーブル)7を介して直流電源10の陽極側に接続されている。また、直流電源10の陰極側は電線(又はケーブル)8を介して鉄鋼製タンクの側壁1に電気的に接続されている。   A part of the anode electrode 5 is embedded in the ion conductive coating film 4. In the present embodiment, the anode electrode 5 is formed of a flat metal material, and is provided by being bonded to the outer surface of the anticorrosion coating film 3 with an adhesive material 6 having electrical insulating properties. The anode electrode 5 is connected to the anode side of the DC power supply 10 via an electric wire (or cable) 7. Further, the cathode side of the DC power supply 10 is electrically connected to the side wall 1 of the steel tank via an electric wire (or cable) 8.

次に、イオン伝導性塗装膜4の構成について詳細に説明する。本実施形態のイオン伝導性塗装膜4は、下記の化1の式に示す分子構造を有するナフィオン(デュポン社の登録商標)を組成物として含む塗料を生成し、防食塗装膜3の外表面に塗布等により設けられている。具体的には、イオン伝導性塗装膜4は、フッ素樹脂アイオノマーの1種である4フッ化エチレンモノマーを主幹とし、側鎖にスルホン酸基(−SOH)を有するグラフト重合体を組成物として含む塗装膜である。化1において、m、nはいずれも任意の整数である。また、Rfは、パーフルオル化されたアルキル鎖、アルキルエーテル鎖、アルキルエステル鎖、シクロアルキル鎖のいずれか1つである。パーフルオル化されたアルキル鎖に属する一例として、下記の化2の式に示す分子構造を有するパーフルオロ基を挙げることができる。

Figure 2015175002
Figure 2015175002
Next, the configuration of the ion conductive coating film 4 will be described in detail. The ion conductive coating film 4 of the present embodiment generates a paint containing Nafion (registered trademark of DuPont) having a molecular structure represented by the following chemical formula 1 as a composition, and is formed on the outer surface of the anticorrosion coating film 3. It is provided by application or the like. Specifically, the ion conductive coating film 4 is composed of a graft polymer having a main component of a tetrafluoroethylene monomer which is one kind of fluororesin ionomer and having a sulfonic acid group (—SO 3 H) in the side chain. As a coating film. In Formula 1, m and n are both arbitrary integers. Rf is any one of a perfluorinated alkyl chain, an alkyl ether chain, an alkyl ester chain, and a cycloalkyl chain. As an example belonging to a perfluorinated alkyl chain, a perfluoro group having a molecular structure represented by the following chemical formula 2 can be given.
Figure 2015175002
Figure 2015175002

ナフィオン(デュポン社の登録商標)を組成物として含むイオン伝導性塗装膜4は、次に述べる特徴を有することから、鉄鋼構造物外表面の電気防食に用いる導電性塗装膜として好適である。
(1)フッ素樹脂アイオノマーの1種である4フッ化エチレンモノマーは、C−F結合の結合エネルギが大きく、緻密で安定した分子鎖を形成している。そのため、高結晶度であり、耐水性及び耐候性に優れ、電気化学反応に対して高度に安定である(プラスチック・機能性高分子材料事典:産業調査会事典出版センター発行、2004年、第306ページ参照)。
(2)スルホン酸基(−SOH)は、水素イオンHが遊離し、本実施形態のイオン伝導性塗装膜4の組成物であるナフィオン(デュポン社の登録商標)は、固体電解質としてイオン伝導性を有する。
(3)スルホン酸基(−SOH)は優れた親水性を有する(特許文献3)。
これらのことから、本実施形態のイオン伝導性塗装膜4によれば、鉄鋼建造物外表面の電気防食に優れ、下地の防食塗装膜との密着性に優れた導電性塗装膜を形成することができ、かつ耐水性と耐候性及び導電性が安定しているから、長期にわたって安定した電気防食を行うことができる。
Since the ion conductive coating film 4 containing Nafion (registered trademark of DuPont) as a composition has the following characteristics, it is suitable as a conductive coating film used for the electric protection of the outer surface of the steel structure.
(1) A tetrafluoroethylene monomer, which is a kind of fluororesin ionomer, has a large binding energy of C—F bond and forms a dense and stable molecular chain. Therefore, it has high crystallinity, is excellent in water resistance and weather resistance, and is highly stable against electrochemical reaction (Plastics and Functional Polymer Material Dictionary: Published by Industry Research Association Dictionary Publishing Center, 2004, No. 306) Page).
(2) The sulfonic acid group (—SO 3 H) liberates hydrogen ions H + , and Nafion (registered trademark of DuPont), which is a composition of the ion conductive coating film 4 of this embodiment, is used as a solid electrolyte. It has ionic conductivity.
(3) The sulfonic acid group (—SO 3 H) has excellent hydrophilicity (Patent Document 3).
From these things, according to the ion conductive coating film 4 of this embodiment, forming the conductive coating film which is excellent in the electrocorrosion prevention of the steel building outer surface and excellent in the adhesion with the base anticorrosion coating film. In addition, since water resistance, weather resistance, and conductivity are stable, stable anticorrosion can be performed over a long period of time.

このように構成される本実施形態のイオン伝導性塗装膜4を用いた鉄鋼製タンクの側壁1の外表面1aの電気防食装置における電気防食作用について、図1を参照して説明する。なお、本実施形態では、側壁1を例に説明するが、本発明は側壁に限らず鉄鋼製タンクの天板に適用することができるのは言うまでもない。一般に、塗装膜には、ピンホールなどの細孔が無数にあることから、その細孔に雨水あるいは凝縮した結露水が浸入して塗装膜下の鋼材を腐食させる。特に、細孔内にする水に海塩が含まれていると、鋼材を一層腐食させる。例えば、図1に模式的に示したように、下塗り防食塗装膜2、上塗り防食塗装膜3、イオン伝導性塗装膜4の間に連通する細孔9が、鉄鋼製タンクの側壁1の外表面1aに達しているものとする。なお、細孔9は、実際には無数にあるが、図では簡単化のために1つのみを示している。この細孔9に雨水や結露水などの水が浸入して外表面1aに達すると、側壁1の鉄が細孔9内の水にイオン化されて溶出し、腐食が進行する。   With reference to FIG. 1, an explanation will be given of the anticorrosion action in the anticorrosion device of the outer surface 1 a of the side wall 1 of the steel tank using the ion conductive coating film 4 of the present embodiment configured as described above. In addition, although this embodiment demonstrates the side wall 1 as an example, it cannot be overemphasized that this invention can be applied not only to a side wall but to the top plate of steel tanks. In general, since a coating film has numerous pores such as pinholes, rainwater or condensed condensed water enters the pores and corrodes the steel material under the coating film. In particular, when sea salt is contained in the water in the pores, the steel material is further corroded. For example, as schematically shown in FIG. 1, pores 9 communicating between the undercoat anticorrosion coating film 2, the topcoat anticorrosion coating film 3, and the ion conductive coating film 4 are formed on the outer surface of the side wall 1 of the steel tank. It is assumed that 1a has been reached. Note that the pores 9 are actually innumerable, but only one is shown in the figure for the sake of simplicity. When water such as rain water or condensed water enters the pores 9 and reaches the outer surface 1a, the iron in the side wall 1 is ionized and eluted in the water in the pores 9 and corrosion proceeds.

この点、本実施形態によれば、イオン伝導性塗装膜4内に埋め込まれた陽極電極5には電線7を介して直流電源装置10の陽極電圧が印加され、一方の陰極を構成する鉄鋼製タンクの側壁1には、電線8を介して直流電源装置10の陰極電圧が印加されている。この状態で細孔9に雨水や結露水などの水が浸入して外表面1aに達していると、一般に水は導電性を有するから、直流電源装置10から陽極5、イオン伝導性塗装膜4、細孔9内の水、鉄鋼製タンクの側壁1に至る電流経路が形成されて直流電流が流れる。この直流電流により、鉄鋼製タンクの側壁1の電位が鉄鋼腐食の周知の不活性領域に低下すると、細孔9内の水へ側壁1の鉄がイオン化して溶出するのを抑制あるいは阻止して鉄鋼の腐食が防止される。このとき流れる電流を、側壁1の電位を鉄鋼腐食の不活性領域に維持するのに要する防食電流を流すように、直流電源装置10の直流電圧を調整する。   In this respect, according to the present embodiment, the anode voltage 5 of the DC power supply device 10 is applied to the anode electrode 5 embedded in the ion conductive coating film 4 via the electric wire 7, and is made of steel constituting one cathode. A cathode voltage of a DC power supply device 10 is applied to the side wall 1 of the tank via an electric wire 8. In this state, when water such as rain water or dew condensation water enters the pores 9 and reaches the outer surface 1a, the water generally has conductivity, so that the DC power supply 10 to the anode 5 and the ion conductive coating film 4 A current path from the water in the pore 9 to the side wall 1 of the steel tank is formed, and a direct current flows. When the potential of the side wall 1 of the steel tank is lowered to a well-known inactive region of steel corrosion by this direct current, iron of the side wall 1 is suppressed or prevented from being ionized and eluted into the water in the pores 9. Corrosion of steel is prevented. The direct current voltage of the direct current power supply device 10 is adjusted so that the current flowing at this time flows the anticorrosion current required to maintain the potential of the side wall 1 in the inactive region of the steel corrosion.

このようにして、本実施形態によれば、防食塗装膜2,3の細孔9に雨水や結露水などの水が浸入しても、イオン伝導性塗装膜4を電流経路にして細孔内の水を通して鉄鋼製タンクの側壁1に防食電流が流れ、側壁1の電位を鉄鋼腐食の不活性領域に維持することができるから、気中に露出した鉄鋼製タンクである鉄鋼建造物の外表面の電気防食を行うことができる。   Thus, according to this embodiment, even if water such as rain water or dew condensation water enters the pores 9 of the anticorrosion coating films 2 and 3, the ion conductive coating film 4 is used as a current path in the pores. Since the anticorrosion current flows to the side wall 1 of the steel tank through the water, and the potential of the side wall 1 can be maintained in the inactive region of the steel corrosion, the outer surface of the steel building that is a steel tank exposed to the air The anticorrosion can be performed.

図2及び表1を参照して、本実施形態を適用して実施した比較試験の結果を説明する。比較試験は、同一に形成した長方形の平板を試験片とし、表1に示すように試験片No.1、2に示す比較例1,2及び試験片No.3に示す実施形態のように、それぞれ異なる塗装膜を形成した。また、各試験片No.1〜3には、平板の長手方向の一端部に陽極電極を絶縁性の接着材により貼付し、他端部の塗装膜に傷をつけて人工的に欠陥部を形成した。また、各試験片No.1〜3に塩水噴霧(2時間、35℃、5%NaCl)→乾燥(4時間、60℃、20〜30%RH)→湿潤(2時間、50℃、>95%RH超)からなる複合サイクルを繰り返した。なお、RHは相対湿度である。そのサイクル過程で、試験片No.1〜No.3について、陽極電極と各試験片の塗装部と欠陥部に直流電流を流して、それぞれの直流電流を計測記録した。その試験結果を、図2のグラフに示す。図2は、横軸が時間、縦軸が電流mAである。また、陽極と各試験片の塗装部又は欠陥部の陰極との間に印加した直流電圧は12Vである。

Figure 2015175002
With reference to FIG. 2 and Table 1, the result of the comparative test performed by applying this embodiment will be described. In the comparative test, a rectangular flat plate formed in the same way is used as a test piece, as shown in Table 1, as shown in Comparative Examples 1 and 2 and Test Piece No. 3 shown in Test Piece Nos. 1 and 2, Different coating films were formed. Moreover, in each test piece No. 1-3, an anode electrode is stuck to one end part of the longitudinal direction of a flat plate with an insulating adhesive, and the coating film on the other end part is scratched to artificially provide a defective part. Formed. In addition, each test piece No. 1 to 3 was sprayed with salt water (2 hours, 35 ° C., 5% NaCl) → dried (4 hours, 60 ° C., 20-30% RH) → wet (2 hours, 50 ° C.,> 95). The combined cycle consisting of>% RH was repeated. Note that RH is relative humidity. In the cycle process, with respect to the test pieces No. 1 to No. 3, a direct current was passed through the anode electrode, the painted portion and the defective portion of each test piece, and the respective direct currents were measured and recorded. The test results are shown in the graph of FIG. In FIG. 2, the horizontal axis represents time and the vertical axis represents current mA. Moreover, the DC voltage applied between the anode and the coating part of each test piece or the cathode of a defective part is 12V.
Figure 2015175002

図2において、試験片No.1の比較例1は、塗装膜表面に形成された水膜を電流経路として電流を流している。また、試験片No.2の比較例2は、撥水性塗装膜を形成したため、水分を弾き、電流経路としての水膜が形成されないので、必要な電流値が満たされてない。一方、試験片No.3の実施形態は、イオン伝導性塗装膜を形成したので、人工欠陥部には0.8mA以上、塗装部には0.2mA程度の防食電流が流れている。なお、この比較試験において、塗装部には細孔などの塗装欠陥が少ないために、防食電流は小さくなっている。ちなみに、計算によると欠陥部に必要な防食電流密度は64mA/mであり、欠陥の少ない塗装部の防食電流密度は1.9mA/mであった。この比較試験によれば、本実施形態のイオン伝導性塗装膜を用いることにより、気中に露出した鉄鋼建造物の外表面の電気防食を効果的に行うことができることが分かる。 In FIG. 2, the comparative example 1 of test piece No. 1 is carrying the electric current by making the water film formed in the coating film surface into an electric current path. In Comparative Example 2 of test piece No. 2, since the water-repellent coating film was formed, water was repelled and a water film as a current path was not formed, so that the necessary current value was not satisfied. On the other hand, in the embodiment of test piece No. 3, since the ion conductive coating film was formed, an anticorrosion current of about 0.8 mA or more flows through the artificial defect portion and about 0.2 mA flows through the coating portion. In this comparative test, since the coating portion has few coating defects such as pores, the anticorrosion current is small. Incidentally, according to the calculation, the anticorrosive current density required for the defective portion was 64 mA / m 2 , and the anticorrosive current density of the coated portion with few defects was 1.9 mA / m 2 . According to this comparative test, it can be seen that by using the ion conductive coating film of the present embodiment, it is possible to effectively perform the anticorrosion of the outer surface of the steel building exposed to the air.

なお、上述した比較試験の電流値は、主として各試験片の相対値として意味を有するものであり、人工欠陥部の欠陥の大きさ及び塗装部の細孔の数などに応じて、さらに印加する直流電圧に依存して変動することは、周知のとおりである。   In addition, the electric current value of the comparative test mentioned above has a meaning mainly as a relative value of each test piece, and is further applied according to the size of the defect in the artificial defect portion and the number of pores in the coating portion. As is well known, it varies depending on the DC voltage.

上述したとおり、本実施形態のナフィオン(デュポン社の登録商標)を組成物として含むイオン伝導性塗装膜4によれば、気中に露出した鉄鋼建造物の外表面の電気防食を効果的に行うことができる。しかし、スルホン酸基(−SOH)は強酸性である。そこで、アルカリ金属の水酸化物(例えば、NaOH、LiOH、KOH等)と反応させて、下式のように例えば−SONaに置換することが望ましい。
−SOH+NaOH→−SONa+H
これにより、強い酸性を示すスルホン酸基(−SOH)を中性ないしは弱アルカリ性に変えることができる。なお、イオン伝導体は元々のHに、Naが加わる。
As described above, according to the ion conductive coating film 4 containing Nafion (registered trademark of DuPont) of the present embodiment as a composition, the outer surface of the steel building exposed to the air is effectively subjected to the electric protection. be able to. However, the sulfonic acid group (—SO 3 H) is strongly acidic. Therefore, it is desirable to react with an alkali metal hydroxide (for example, NaOH, LiOH, KOH, etc.) and replace with, for example, —SO 3 Na as shown in the following formula.
-SO 3 H + NaOH → -SO 3 Na + H 2 O
Thus, it is possible to alter the sulfonic acid group exhibiting a strong acidic (-SO 3 H) in a neutral or weakly alkaline. In the ion conductor, Na + is added to the original H + .

また、本発明のイオン伝導性塗装膜は、フッ素樹脂アイオノマーを主幹とし側鎖にスルホン酸基を有するグラフト重合体の組成物100重量部に、遷移金属酸化物を主成分とする光触媒100重量部を超えない範囲で加えて形成することができる。これによれば、光触媒によってイオン伝導性塗装膜の親水性を著しく向上させることができるから、イオン伝導性塗装膜の表面抵抗を一層低くすることができる。その結果、後述するように、イオン伝導性塗装膜に埋設する金属材からなる1つの陽極電極から、均等に流すことができる防食電流の外表面の領域を広げることができ、外表面の面積が広い鉄鋼建造物に設ける陽極電極の個数を少なくすることができる。   In addition, the ion conductive coating film of the present invention has 100 parts by weight of a photocatalyst mainly composed of a transition metal oxide in 100 parts by weight of a graft polymer composition having a fluororesin ionomer as a main backbone and a sulfonic acid group in the side chain. Can be added within the range not exceeding. According to this, since the hydrophilicity of the ion conductive coating film can be remarkably improved by the photocatalyst, the surface resistance of the ion conductive coating film can be further reduced. As a result, as will be described later, the area of the outer surface of the anticorrosive current that can be flowed uniformly can be expanded from one anode electrode made of a metal material embedded in the ion conductive coating film, and the area of the outer surface can be increased. The number of anode electrodes provided in a wide steel structure can be reduced.

また、陽極電極は、アルミニウムなどの金属材で形成され、イオン伝導性塗装膜の下層の防食塗装膜の表面に絶縁性を有する接着剤で貼り付けられ、イオン伝導性塗装膜に少なくとも一部が埋め込まれ、イオン伝導性塗装膜を含む防食塗装膜の最外層の表面に露出して設けることができる。これによれば、金属材で形成された陽極電極の少なくとも一部をイオン伝導性塗装膜内に埋め込んだことから、陽極電極とイオン伝導性塗装膜との電気的な接続面積を広くすることができ、安定して防食電流を流すことができる。なお、陽極電極の外表面は、仕上げ塗装膜により被覆することができる。なお、陽極電極の全部を塗装膜内に埋め込んだときは、電線を接続する端子を塗装膜外に突出させることは言うまでもない。   The anode electrode is made of a metal material such as aluminum, and is attached to the surface of the anticorrosion coating film below the ion conductive coating film with an insulating adhesive, and at least a part of the ion conductive coating film is formed. It can be embedded and exposed on the surface of the outermost layer of the anticorrosion coating film including the ion conductive coating film. According to this, since at least a part of the anode electrode formed of a metal material is embedded in the ion conductive coating film, the electrical connection area between the anode electrode and the ion conductive coating film can be increased. It is possible to flow the anticorrosion current stably. The outer surface of the anode electrode can be covered with a finish coating film. Needless to say, when all of the anode electrode is embedded in the coating film, the terminal to which the electric wire is connected protrudes from the coating film.

また、上記の実施形態では、本発明のフッ素樹脂アイオノマーとして、4フッ化エチレンを採用したが、本発明はこれに限られるものではない。例えば、4フッ化エチレン(PTFE)、化式3に示すポリフッ化ビニリデン(PVdF)、化式4に示すポリ3フッ化塩化エチレン(PCTFE)、化式5に示すポリフッ化ビニル(PFE)、化式6に示すポリ6フッ化プロピレン(HFEP)の群より選ばれた1種又は2種以上のモノマーの共重合体を使用することができる。これらの共重合体は、4フッ化エチレンモノマーと同様、結合エネルギが大きいC−F結合を有するので、緻密で安定した分子鎖を形成して高結晶度であり、耐水性及び耐候性に優れ、電気防食に伴う電気化学反応に対して高度に安定であり、かつ下地の防食塗装膜との密着性に優れている。

Figure 2015175002
Figure 2015175002
Figure 2015175002
Figure 2015175002
Moreover, in said embodiment, although tetrafluoroethylene was employ | adopted as a fluororesin ionomer of this invention, this invention is not limited to this. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF) represented by Chemical Formula 3, polytrifluoroethylene chloride (PCTFE) represented by Chemical Formula 4, polyvinyl fluoride (PFE) represented by Chemical Formula 5, A copolymer of one or two or more monomers selected from the group of polyhexafluoropropylene (HFEP) represented by Formula 6 can be used. These copolymers, like the tetrafluoroethylene monomer, have a C—F bond with a large binding energy, so they form dense and stable molecular chains, have high crystallinity, and are excellent in water resistance and weather resistance. It is highly stable against the electrochemical reaction associated with anticorrosion, and has excellent adhesion to the underlying anticorrosion coating film.
Figure 2015175002
Figure 2015175002
Figure 2015175002
Figure 2015175002

以上、本発明を一実施形態に基づいて説明したが、本発明はこれらに限定されるものではなく、本発明の主旨の範囲で変形又は変更された形態で実施することが可能であることは、当業者にあっては明白なことであり、そのような変形又は変更された形態が本願の特許請求の範囲に属することは当然のことである。   As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to these, It is possible to implement in the form deform | transformed or changed in the range of the main point of this invention. It will be obvious to those skilled in the art, and it is obvious that such modifications or alterations belong to the scope of the claims of the present application.

1 側壁
2 防食塗装膜
3 防食塗装膜
4 イオン伝導性塗装膜
5 陽極電極
7、8 電線
10 直流電源装置
10a 直流電源
10b 電流計
10c 電圧計
DESCRIPTION OF SYMBOLS 1 Side wall 2 Anticorrosion coating film 3 Anticorrosion coating film 4 Ion conductive coating film 5 Anode electrode 7, 8 Electric wire 10 DC power supply device 10a DC power supply 10b Ammeter 10c Voltmeter

Claims (5)

気中に露出した鉄鋼建造物の外表面に施された少なくとも一層の防食塗装膜と、前記防食塗装膜の最外層又は層間に施された導電性塗装膜と、前記鉄鋼建造物を陰極とし前記導電性塗装膜を陽極として直流電流を流す電源とを備え、
前記導電性塗装膜は、フッ素樹脂アイオノマーを主幹とし側鎖にスルホン酸基を有するグラフト重合体を組成物として含むイオン伝導性塗装膜であることを特徴とする鉄鋼建造物外表面の電気防食装置。
At least one anticorrosion coating film applied to the outer surface of the steel building exposed in the air, an electroconductive coating film applied between the outermost layer or the interlayer of the anticorrosion coating film, and the steel building as a cathode With a conductive paint film as an anode and a DC power supply
The electrically conductive coating film is an ion-conductive coating film containing a graft polymer having a fluoropolymer ionomer as a main backbone and a sulfonic acid group in the side chain as a composition, and an anticorrosion device for an outer surface of a steel structure, .
前記フッ素樹脂アイオノマーは、下記の化学式で表すナフィオン(デュポン社の登録商標)であることを特徴とする請求項1に記載の鉄鋼建造物外表面の電気防食装置。
Figure 2015175002
ここで、化学式1におけるRfは、パーフルオル化されたアルキル鎖、アルキルエーテル鎖、アルキルエステル鎖、シクロアルキル鎖のいずれか1つである。
The said anti-corrosion apparatus of the steel building outer surface of Claim 1 whose said fluororesin ionomer is Nafion (registered trademark of DuPont) represented by the following chemical formula.
Figure 2015175002
Here, Rf in Formula 1 is any one of a perfluorinated alkyl chain, an alkyl ether chain, an alkyl ester chain, and a cycloalkyl chain.
前記フッ素樹脂アイオノマーは、ポリ4フッ化エチレン、ポリフッ化ビニリデン、ポリ3フッ化塩化エチレンポリフッ化ビニル、ポリ6フッ化プロピレン、ポリフッ化ビニリデンの群より選ばれた1種又は2種以上のモノマーの共重合体であることを特徴とする請求項1又は2に記載の鉄鋼建造物外表面の電気防食装置。   The fluororesin ionomer is composed of one or more monomers selected from the group consisting of polytetrafluoroethylene, poly (vinylidene fluoride), poly (trifluorofluoroethylene) polyvinyl fluoride, poly (hexafluoropropylene), and poly (vinylidene fluoride). It is a copolymer, The cathodic protection apparatus of the steel building outer surface of Claim 1 or 2 characterized by the above-mentioned. 前記イオン伝導性塗装膜は、前記組成物100重量部に、遷移金属酸化物を成分とする光触媒100重量部を超えない範囲で加えて形成されてなることを特徴とする請求項1乃至3のいずれか1項に記載の鉄鋼建造物外表面の電気防食装置。   The ion-conductive coating film is formed by adding to 100 parts by weight of the composition within a range not exceeding 100 parts by weight of a photocatalyst containing a transition metal oxide as a component. The anti-corrosion apparatus of the steel building outer surface of any one of Claims 1. 金属材で形成され前記イオン伝導性塗装膜の下層の防食塗装膜の表面に絶縁性を有する接着剤で貼り付けられた陽極電極を備え、該陽極電極は、前記イオン伝導性塗装膜に少なくとも一部が埋め込まれ、前記イオン伝導性塗装膜を含む防食塗装膜の最外層の外表面に露出して設けられてなることを特徴とする請求項1に記載の鉄鋼建造物外表面の電気防食装置。   An anode electrode formed of a metal material and attached to the surface of the anticorrosion coating film under the ion conductive coating film with an insulating adhesive, and the anode electrode is at least one piece of the ion conductive coating film; 2. The apparatus for catalyzing an outer surface of a steel structure according to claim 1, wherein a portion is embedded and exposed on the outer surface of the outermost layer of the anticorrosion coating film including the ion conductive coating film. .
JP2014049473A 2014-03-12 2014-03-12 Electric anticorrosion apparatus for outer surface of steel building structure Withdrawn JP2015175002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049473A JP2015175002A (en) 2014-03-12 2014-03-12 Electric anticorrosion apparatus for outer surface of steel building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049473A JP2015175002A (en) 2014-03-12 2014-03-12 Electric anticorrosion apparatus for outer surface of steel building structure

Publications (1)

Publication Number Publication Date
JP2015175002A true JP2015175002A (en) 2015-10-05

Family

ID=54254477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049473A Withdrawn JP2015175002A (en) 2014-03-12 2014-03-12 Electric anticorrosion apparatus for outer surface of steel building structure

Country Status (1)

Country Link
JP (1) JP2015175002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017137814A1 (en) * 2016-02-09 2017-08-17 Universiti Brunei Darussalam Anti-corrosion electrolyte coating system and method
JP2018070764A (en) * 2016-10-28 2018-05-10 北村 透 Exterior coating material for electrolytically protecting reinforced concrete, and anode film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017137814A1 (en) * 2016-02-09 2017-08-17 Universiti Brunei Darussalam Anti-corrosion electrolyte coating system and method
JP2018070764A (en) * 2016-10-28 2018-05-10 北村 透 Exterior coating material for electrolytically protecting reinforced concrete, and anode film

Similar Documents

Publication Publication Date Title
JP5160981B2 (en) Aluminum alloy material with excellent corrosion resistance and plate heat exchanger
Ren et al. Electrochemical corrosion characteristics of conducting polypyrrole/polyaniline coatings in simulated environments of a proton exchange membrane fuel cell
US20040265603A1 (en) Composite polyelectrolyte films for corrosion control
Conde et al. Anti-corrosion coating for metal surfaces based on superhydrophobic electrosprayed carbon layers
Kainuma et al. Corrosion protection of steel members using an Al-Zn base sacrificial anode and fiber sheet in an atmospheric environment
Akula et al. Electrodeposition of conductive PAMT/PPY bilayer composite coatings on 316L stainless steel plate for PEMFC application
JP2015175002A (en) Electric anticorrosion apparatus for outer surface of steel building structure
Teng et al. Stable underwater superoleophobic and low adhesive polypyrrole nanowire mesh in highly corrosive environments
WO2016112976A1 (en) Ionomer coated electrode
Wang et al. Corrosion protection performance of nano-SiO 2/epoxy composite coatings in acidic desulfurized flue gas condensates
JP2017078201A (en) Electric anticorrosion apparatus for outer surface of steel building structure
Bashir et al. Ageing studies on transmission line glass insulators using dielectric dissipation factor test
US20230299324A1 (en) Anion exchange polymers and anion exchange membranes for direct ammonia fuel cells
JP5459035B2 (en) Durability judgment method for coated steel
CN114836069A (en) Super-hydrophobic corrosion-resistant coating for grounding electrode and preparation method of coating thereof
JP6970497B2 (en) Anode coating for reinforced concrete electric corrosion protection using exterior paint for inorganic materials-based buildings
Abdulrazzaq et al. Enhancement of low carbon steel corrosion resistance in acidic and saline media using superhydrophobic nanocomposite
ES2655715T3 (en) Coating antifouling (antifouling) and its use, as well as procedure to protect surfaces against biofouling (bioincrustation)
LV15479B (en) Method for reducing galvanic errosion of marine vessel transporting and storing tanks
JP3658484B2 (en) Steel corrosion protection method
TW201704743A (en) Magnetic electrode for monitoring degradation of coating of steel sheet and system of the same
RU2782788C1 (en) Method for obtaining conductive superhydrophobic coatings on magnesium alloys
KR200316562Y1 (en) Pile for ocean structure with ceramic coated layer
Muthirulan et al. In-situ electrochemical fabrication of porous organic-inorganic hybrid nanocomposites on stainless steel for proton exchange membrane fuel cell application
CN217499426U (en) Device for improving corrosion resistance of ocean steel structure corrosion prevention system

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150908