JP2015174056A - Carbon dioxide gas dissolution device - Google Patents

Carbon dioxide gas dissolution device Download PDF

Info

Publication number
JP2015174056A
JP2015174056A JP2014053530A JP2014053530A JP2015174056A JP 2015174056 A JP2015174056 A JP 2015174056A JP 2014053530 A JP2014053530 A JP 2014053530A JP 2014053530 A JP2014053530 A JP 2014053530A JP 2015174056 A JP2015174056 A JP 2015174056A
Authority
JP
Japan
Prior art keywords
carbon dioxide
flow
water
dioxide gas
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014053530A
Other languages
Japanese (ja)
Inventor
啓雄 白井
Hiroo Shirai
啓雄 白井
芳樹 柴田
Yoshiki Shibata
芳樹 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kai Hidehiro
Shibata & Co Ltd
Shibazuka Masakatsu
Shibata Corp
Original Assignee
Kai Hidehiro
Shibata & Co Ltd
Shibazuka Masakatsu
Shibata Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kai Hidehiro, Shibata & Co Ltd, Shibazuka Masakatsu, Shibata Corp filed Critical Kai Hidehiro
Priority to JP2014053530A priority Critical patent/JP2015174056A/en
Publication of JP2015174056A publication Critical patent/JP2015174056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Medical Bathing And Washing (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon dioxide gas dissolution device capable of extremely efficiently dissolving various carbon dioxide gases, without using a complicated gas-liquid mixing mechanism.SOLUTION: A carbon dioxide gas dissolution device comprises a water treatment member 1 having a member body 6 for forming a water flow passage in a penetration form and forming an orifice part 2c smaller in the flow cross-sectional area than an inflow port in a midway position of the flow passage and a collision part of projecting from an inner peripheral surface of the flow passage in the form of partitioning an axial cross section of the flow passage into two or more of segment areas 2e by the orifice part 2c, having a plurality of turns of orifice ribs in the circumferential direction on an outer peripheral surface and further reducing the flow passage cross-sectional area of the orifice part 2c and a carbon dioxide gas supply part 12 for making carbon dioxide gas flow in from a carbon dioxide gas supply source positioned in an external part of the member body in the water flow passage of the member body 6. A flow of water supplied to the inflow end of the member body 6 of the water treatment member 1, is passed by increasing a speed while distributing to the respective segment areas 2e after colliding with the collision part 3, and carbon dioxide gas is dissolved by mixedly crushing by rolling in a turbulent flow area formed just downstream of the collision part.

Description

本発明は、炭酸ガス溶解装置に関するものである。   The present invention relates to a carbon dioxide gas dissolving apparatus.

近年、炭酸ガスの温浴効果が注目され、種々の製品が提案されている。炭酸泉に入浴すれば、人体に血行促進効果や保温効果等の効果が表れるということが知られている。すなわち、炭酸ガスが皮膚呼吸系や脂肪腺等を経由して体内に入り込み(以下これを経皮吸収と称する)、組織を活性化したり、血管を拡張したり、血液の粘度を下げたりなどして、血圧を下げたり、酸素の供給を増大させたりするためである。炭酸ガスの経皮吸収においては、皮膚表面が湿潤状態にある方が効率的であると言われているが、これは次の理由による。炭酸ガスは脂溶性かつ水溶性であって、経皮吸収の経路としては、前者の特性により皮脂に溶け込み、毛穴から皮脂腺を介して毛細血管に到達し吸収される場合と、後者の特性により水に溶けた形で皮膚全体が吸収の入口になる場合とがある。後者の経路においては、通常の状態では表皮内に存在するバリアゾーンと呼ばれる部位の作用で水分の体内への浸透が遮られているが、皮膚表面の角質層が水分を吸収し膨潤すると、このバリアゾーンの一部が開放されるため、水溶性の成分が表皮から真皮に達し、毛細血管に到達し吸収される。前者の毛穴から皮脂腺に至る経路は皮膚全体の中で限られた割合であるので、後者の表皮全体が吸収経路となりうる後者の方が効率的であることは当然である。従って、炭酸泉による全身入浴においては、表皮の角質層を膨潤させる手段も有効に作用するため、炭酸ガスの経皮吸収が効果的に行われることになる。炭酸泉においてはさらに、温熱刺激による血流の増加も伴うため、毛細血管に吸収された炭酸ガスを効率よく循環させる作用も期待できる。特許文献1、2には、シャワー水に炭酸ガスを溶存させて浴用に用い、体表面における血行促進を図ることにより寒冷期においても不必要に高めることなく温熱効果を得る方法が開示されている。   In recent years, the warm bath effect of carbon dioxide gas has attracted attention, and various products have been proposed. It is known that effects such as blood circulation promotion effects and heat retention effects appear in the human body when bathing in carbonated springs. That is, carbon dioxide enters the body via the skin respiratory system and fatty glands (hereinafter referred to as transdermal absorption), activates tissues, dilates blood vessels, lowers blood viscosity, etc. This is to lower the blood pressure and increase the supply of oxygen. It is said that the percutaneous absorption of carbon dioxide gas is more efficient when the skin surface is moist, for the following reason. Carbon dioxide is fat-soluble and water-soluble. The route of percutaneous absorption is that it dissolves in sebum due to the characteristics of the former, reaches the capillaries through the sebaceous glands from the pores, and is absorbed by the latter characteristics. In some cases, the entire skin becomes the entrance of absorption in a dissolved form. In the latter route, in the normal state, the penetration of moisture into the body is blocked by the action of a region called a barrier zone that exists in the epidermis, but when the stratum corneum on the skin surface absorbs moisture and swells, Since a part of the barrier zone is opened, water-soluble components reach the dermis from the epidermis, reach the capillaries, and are absorbed. Since the path from the former pore to the sebaceous gland is a limited ratio in the whole skin, it is natural that the latter is more efficient because the latter epidermis can be an absorption path. Therefore, in the whole body bathing with carbonated spring, means for swelling the stratum corneum of the epidermis also works effectively, so that percutaneous absorption of carbon dioxide gas is effectively performed. Since carbonated springs are also accompanied by an increase in blood flow due to thermal stimulation, an effect of efficiently circulating carbon dioxide absorbed in capillaries can be expected. Patent Documents 1 and 2 disclose a method of obtaining a thermal effect without unnecessarily increasing even in the cold season by dissolving carbon dioxide in shower water and using it for bathing to promote blood circulation on the body surface. .

特開平2−252423号公報JP-A-2-252423 特開2002− 272805号公報JP 2002-272805 A

上記特許文献1、2のシャワー装置では、炭酸ガスの溶解効率に難点がある。また、炭酸ガス分離膜を反転利用して、炭酸ガス溶解効率を高める装置も散られているが、炭酸ガス分離膜を用いたガス溶解ユニットが非常に高価である。他方、特許文献2には、炭酸ガス発生剤(固形発泡剤)をシャワーヘッド内に組み込む構成が開示されているが、炭酸ガス気泡をそのままシャワーヘッドの散水板から吐出させる構成なので、炭酸ガス気泡が粗く、効果の持続性に難点がある。   In the shower apparatus of the said patent document 1, 2, there exists a difficulty in melt | dissolution efficiency of a carbon dioxide gas. In addition, there are scattered devices that increase the carbon dioxide dissolution efficiency by reversing the carbon dioxide separation membrane, but the gas dissolution unit using the carbon dioxide separation membrane is very expensive. On the other hand, Patent Document 2 discloses a configuration in which a carbon dioxide gas generating agent (solid foaming agent) is incorporated in a shower head, but the carbon dioxide gas bubbles are discharged from the water spray plate of the shower head as they are. However, there is a difficulty in sustaining the effect.

本発明の課題は、複雑な気液混合機構を用いずとも炭酸ガスを極めて効率よく溶解できる炭酸ガス溶解装置を提供することにある   An object of the present invention is to provide a carbon dioxide gas dissolving apparatus that can dissolve carbon dioxide gas extremely efficiently without using a complicated gas-liquid mixing mechanism.

上記の課題を解決するために、本発明の炭酸ガス溶解装置は、
水流入側となる流入端と水流出側となる流出端とが定められ、流入端に開口する流入口と流出端に開口する流出口とをつなぐ水流路が貫通形態に形成されるとともに、流路の途中位置に流入口よりも流通断面積が小さい絞り部が形成された部材本体と、絞り部にて流路の軸断面を2以上のセグメント領域に区画する形態で流路の内周面から突出するとともに外周面に周方向の絞りリブを複数巻備え絞り部の流路断面積をさらに減少させる衝突部とを有した水処理部材と、
部材本体の水流路内に当該部材本体の外部に位置する炭酸ガス供給源から炭酸ガスを流入させる炭酸ガス供給部とを備え、
水理部材の部材本体の流入端に供給された水の流れを衝突部に衝突させた後、各セグメント領域に分配しつつ増速して通過させ、当該衝突部の直下流に形成される乱流域に炭酸ガスを巻き込んで混合粉砕し溶解させるようにしたことを特徴とする。
In order to solve the above problems, the carbon dioxide gas dissolving apparatus of the present invention is:
An inflow end that is the water inflow side and an outflow end that is the water outflow side are defined, and a water flow path that connects the inflow opening that opens to the inflow end and the outflow opening that opens to the outflow end is formed in a through-hole configuration. A member main body in which a throttle part having a smaller flow cross-sectional area than the inlet is formed at an intermediate position of the path, and an inner peripheral surface of the flow path in a form in which the axial cross section of the flow path is divided into two or more segment regions at the throttle part A water treatment member that has a collision portion that protrudes from the outer circumferential surface and has a plurality of circumferentially-oriented throttle ribs and further reduces the flow passage cross-sectional area of the throttle portion;
A carbon dioxide gas supply section for introducing carbon dioxide gas from a carbon dioxide gas supply source located outside the member main body into the water flow path of the member main body,
After the water flow supplied to the inflow end of the hydraulic member main body collides with the collision portion, the water flow is increased while being distributed to each segment area, and the disturbance formed immediately downstream of the collision portion. It is characterized in that carbon dioxide gas is entrained in the basin and mixed and ground to dissolve.

部材本体において水の流れは、衝突部に衝突してセグメント領域に迂回する際に激しい乱流を発生する。また、衝突部の外周面には絞りリブが複数巻形成されており、衝突部を迂回しようと水はその外周面接線方向に流れ込むので、絞りリブ間の溝部(あるいは谷状部)内にて絞られることによりさらに増速し、乱流発生効果は高められる。この乱流により、水とともに流れ込む炭酸ガスの剪断・粉砕効果が向上し、顕著な炭酸ガス溶解効果が達成される。   In the member main body, the water flow generates a violent turbulent flow when it collides with the collision portion and detours to the segment area. In addition, a plurality of throttle ribs are formed on the outer peripheral surface of the collision part, and water flows in a direction tangential to the outer peripheral surface so as to bypass the collision part. Therefore, in the groove (or valley) between the throttle ribs By being throttled, the speed is further increased, and the effect of generating turbulence is enhanced. By this turbulent flow, the effect of shearing / pulverizing carbon dioxide flowing together with water is improved, and a remarkable carbon dioxide dissolution effect is achieved.

また、こうして一旦溶解した炭酸ガスは、セグメント領域に瞬時的に増速して分配される。特に、絞りリブ間の溝部(あるいは谷状部)では局所的・瞬時的な増速効果が一層高められる。このように流れが増速された領域では、ベルヌーイの原理に従い負圧域が形成され、水中の溶存炭酸ガス(あるいは、水に元から溶解していた空気等のガス成分)が析出して微細な気泡が発生する。この炭酸ガスの析出は沸騰現象的に激しく進行し、水の撹拌効果及び乱流発生効果をさらに高めることとなる。   Further, the carbon dioxide gas once dissolved in this way is instantaneously accelerated and distributed to the segment region. In particular, the local and instantaneous speed-up effect is further enhanced in the groove (or valley) between the diaphragm ribs. In the region where the flow rate is increased in this manner, a negative pressure region is formed according to Bernoulli's principle, and dissolved carbon dioxide gas (or gas components such as air originally dissolved in water) precipitates and becomes fine. Bubbles are generated. This deposition of carbon dioxide proceeds violently in a boiling phenomenon, and further enhances the water stirring effect and turbulent flow generation effect.

一旦溶解した炭酸ガスが減圧により沸騰析出するということは、水中の溶存炭酸ガス量を減少させるのであるが、減圧領域を水が通過する時間は極めて瞬時的であり、外部から導入される炭酸ガスに対する撹拌並びに強制溶解効果はそれをさらに上回る形で進行する。結果、一見矛盾するようではあるが、この溶存炭酸ガスの沸騰による撹拌効果により、炭酸ガスの粉砕・溶解促進効果はさらに高められることとなるのである。   The fact that once dissolved carbon dioxide is boiled and precipitated by decompression reduces the amount of dissolved carbon dioxide in the water, but the time for water to pass through the decompression zone is extremely instantaneous, and carbon dioxide introduced from the outside. The agitation and forced dissolution effect on the water proceeds in a way that exceeds that. As a result, although seemingly contradictory, the effect of promoting the pulverization / dissolution of carbon dioxide is further enhanced by the stirring effect of the boiling of the dissolved carbon dioxide.

また、沸騰析出により生成する気泡は、極めて微小な気泡生成核から周囲の溶存炭酸ガス成分の流入に伴い、水が減圧領域に留まる間は徐々に気泡径を増大させつつ成長する。しかし、上記の通り水が減圧領域に留まる期間は極めて瞬時的であり、減圧領域を脱すればその成長は速やかに停止する。したがって、発生する気泡は極めて微小であり、いわゆるファインバブル(1μm以上500μm以下)あるいはウルトラファインバブル(30nm〜1μm未満)(以下、両者を総称して微小気泡と称する)として生成する。その結果、炭酸ガスの溶解量を増すことができるのみならず、溶存せずに残存する炭酸ガスも浮上速度の非常に小さい微小気泡として液中に留まり、これが微小気泡特有の種々知られている効果(たとえば、洗浄効果、水の浸透性促進効果など)が発揮される利点も生ずるのである。   Bubbles generated by boiling precipitation grow while gradually increasing the bubble diameter while water stays in the reduced pressure region due to the inflow of the surrounding dissolved carbon dioxide component from the extremely fine bubble generation nuclei. However, as described above, the period during which water stays in the reduced pressure region is extremely instantaneous, and when the pressure is removed from the reduced pressure region, the growth stops quickly. Accordingly, the generated bubbles are extremely small and are generated as so-called fine bubbles (1 μm or more and 500 μm or less) or ultrafine bubbles (30 nm to less than 1 μm) (hereinafter collectively referred to as microbubbles). As a result, not only can the amount of carbon dioxide dissolved be increased, but the carbon dioxide remaining without being dissolved also remains in the liquid as microbubbles with a very low ascent rate, and this is known in various ways unique to microbubbles. There is also an advantage that effects (for example, cleaning effect, water permeability promoting effect, etc.) are exhibited.

そして、この発明では、絞り部にて流路の軸断面を複数のセグメント領域に区画する形態で、当該絞り部の流路断面積をさらに減少させる衝突部が配置されている。つまり、流路の断面積を高流速となる断面中心に向けて径方向に相似的に縮小するのではなく、衝突部を障害物として用いることで、水が流通可能な領域を周方向にいわば間引く形で流路の断面縮小を図るのである。その結果、絞り部での流体抵抗が過度に増加せず、流速の増加効果ひいては負圧発生効果を大幅に増すことができる。これにより、各セグメント領域(及びその下流)での減圧効果が大幅に高められ、例えば、溶存炭酸ガス濃度が同じであってもより微細で多量の気泡を析出させることができる。また、流量が過度に減じないことで、撹拌・剪断による炭酸ガス溶解効果も良好に維持される。こうした効果は、衝突部が、絞り部にて流路の軸断面を3以上のセグメント領域に区画する形態で形成される場合に一層顕著である。   And in this invention, the collision part which further reduces the flow-path cross-sectional area of the said aperture | diaphragm | squeeze part is arrange | positioned in the form which partitions the axial cross section of a flow path into a some segment area | region in an aperture | diaphragm | squeeze part. In other words, instead of reducing the cross-sectional area of the flow path in the radial direction toward the cross-sectional center where the flow velocity is high, the area where water can flow is said to be in the circumferential direction by using the collision part as an obstacle. This is because the cross section of the flow path is reduced by thinning out. As a result, the fluid resistance at the throttle portion does not increase excessively, and the effect of increasing the flow velocity and thus the effect of generating negative pressure can be greatly increased. Thereby, the depressurization effect in each segment region (and downstream thereof) is greatly enhanced. For example, even if the dissolved carbon dioxide gas concentration is the same, finer and more bubbles can be deposited. In addition, since the flow rate is not excessively reduced, the carbon dioxide dissolution effect by stirring and shearing can be maintained well. Such an effect is more remarkable when the collision part is formed in a form in which the axial cross section of the flow path is divided into three or more segment regions at the throttle part.

次に、セグメント領域に流れ込む流体は衝突部の先端部を迂回して流れ込むものが主体的となり、流速が最も大きくなる断面中心付近の流れは、その迂回により減速する傾向にある。そこで、複数の衝突部の2つ以上のものの先端部同士の間に、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップを形成しておくことが有効である。これにより、断面中心付近の流れを大きく減速させずに高速流ギャップを経て通過させることができる。その結果、高速流ギャップでは水の流速が非常に高められ、撹拌・剪断による炭酸ガスの溶解効果を促進することができる。また、衝突部の迂回流は、衝突部周囲の絞りリブ部の存在により、高速流ギャップ直下流域に前述のごとく激しい乱流域を生ずるから、乱流域を通過する際に気泡成長が抑制され、炭酸ガス気泡が残存する場合も、さらなる微細化を図ることができるようになる。   Next, the fluid that flows into the segment region mainly flows around the tip of the collision portion, and the flow near the center of the cross section where the flow velocity becomes the highest tends to be decelerated due to the detour. Therefore, it is effective to form a high-speed flow gap for passing the central flow of the cross section, which is relatively high speed with respect to the flow around the cross section, between the tip portions of two or more of the plurality of collision portions. is there. Thereby, the flow near the center of the cross section can be passed through the high-speed flow gap without greatly decelerating. As a result, the flow rate of water is greatly increased in the high-speed flow gap, and the dissolution effect of carbon dioxide gas by stirring and shearing can be promoted. In addition, since the detour flow around the collision part causes a violent turbulent region in the region immediately downstream of the high-speed flow gap due to the presence of the narrowed rib portion around the collision unit, bubble growth is suppressed when passing through the turbulent region, so Even when gas bubbles remain, further miniaturization can be achieved.

高速流ギャップは種々の形態に形成できる。例えば、複数の衝突部の少なくとも1対のものを、絞り部の断面中心を挟んで内径方向に対向する形で配置し、それら衝突部の先端間に、高速流ギャップを構成する中心ギャップを形成することもできる。この構成によると、最も高流速となる断面中心の流れを、中心ギャップを経て大きな損失を生じることなく通過させることが可能となる。その断面中心の流れは中心ギャップの通過によりさらに絞られて高速化しようとするが、セグメント領域側への流れ迂回が許容されているため流体抵抗の増加が効果的に抑制される。その結果、減圧効果が大幅に高められ、断面中心における流速を大幅に増加できるので、撹拌・剪断による炭酸ガスの溶解効果を促進することができる。また、炭酸ガス気泡が残存する場合も、そのさらなる微細化を図ることができるようになる。   The high velocity flow gap can be formed in various forms. For example, at least one pair of a plurality of collision portions is arranged in a shape facing the inner diameter direction across the center of the section of the throttle portion, and a central gap constituting a high-speed flow gap is formed between the tips of the collision portions You can also According to this configuration, the flow at the center of the cross section having the highest flow velocity can be passed through the center gap without causing a large loss. The flow at the center of the cross section is further narrowed by the passage of the central gap to increase the speed, but since the flow detour to the segment region side is permitted, an increase in fluid resistance is effectively suppressed. As a result, the depressurization effect is greatly enhanced, and the flow velocity at the center of the cross section can be greatly increased, so that the dissolution effect of carbon dioxide gas by stirring and shearing can be promoted. Further, even when carbon dioxide bubbles remain, further refinement thereof can be achieved.

セグメント領域を3以上に形成する場合は、衝突部の先端部に先端に向かうほど軸断面を縮小させる錐状部を形成し、セグメント領域を挟んで互いに隣接する2つの衝突部において錐状部の外周面間に、高速流ギャップを構成するスリット部を形成することができる。スリット部は錐状部の外周面母線方向に形成されるので、該スリット部に向かう流れは錐状部の該母線に沿う膨らみをいわば乗り越える形で絞られ、導入した炭酸ガスとともに圧縮される。その結果、炭酸ガスの溶解効果が高められ、たとえば大気圧下での飽和濃度を超えて炭酸ガスの溶解促進を図るようなことも可能となる。   When the segment region is formed in three or more, a cone-shaped portion that reduces the axial cross section toward the tip is formed at the tip of the collision portion, and the cone-shaped portion of the two collision portions adjacent to each other across the segment region is formed. A slit portion constituting a high-speed flow gap can be formed between the outer peripheral surfaces. Since the slit portion is formed in the direction of the outer peripheral surface bus of the cone-shaped portion, the flow toward the slit portion is constricted so as to overcome the bulge along the bus-line of the cone-shaped portion, and is compressed together with the introduced carbon dioxide gas. As a result, the effect of dissolving carbon dioxide gas is enhanced, and for example, it is possible to promote the dissolution of carbon dioxide gas exceeding the saturation concentration under atmospheric pressure.

また、スリット部の長手方向に圧縮された水の流動代が与えられるので流速が低下しにくく、これも減圧効果がさらに高められる要因となる。そして、減圧領域が、従来のベンチュリ管やオリフィスでは絞り中心の近傍でポイント状に形成されていたのが、上記構成ではスリット部に沿って線状に形成されるため減圧領域が大幅に拡張し、炭酸ガスの溶解促進効果がさらに高められる。また炭酸ガス気泡が残存する場合も、そのさらなる微細化を図ることができる。   Moreover, since the flow allowance of the water compressed in the longitudinal direction of the slit part is given, the flow rate is hardly lowered, which also increases the pressure reduction effect. In the conventional venturi tube or orifice, the decompression area was formed in the shape of a point in the vicinity of the center of the throttle, but in the above configuration, the decompression area is formed linearly along the slit portion, so that the decompression area is greatly expanded. Further, the effect of promoting the dissolution of carbon dioxide gas is further enhanced. Further, even when carbon dioxide bubbles remain, further miniaturization thereof can be achieved.

衝突部は、各々その突出方向が絞り部の軸断面にて互いに直交する十字形態に設けることができ、それら衝突部により絞り部を4つの絞りセグメント領域に分割することができる。衝突部を互いに直交する向きに配置して4つの絞りセグメント領域に分割することで、断面中心に関する衝突部ひいては絞りセグメント領域の配置の対象性も良好となり、炭酸ガスの溶解促進効果も高められる。また、炭酸ガス気泡が残存する場合も、より均質に微細気泡を析出することができるようになる。   The collision parts can be provided in a cross shape in which the protruding directions are orthogonal to each other in the axial section of the diaphragm part, and the diaphragm part can be divided into four diaphragm segment regions by these collision parts. By disposing the collision portions in directions orthogonal to each other and dividing the four throttle segment regions, the object of arrangement of the collision portions and the throttle segment regions with respect to the center of the cross section is improved, and the effect of promoting the dissolution of carbon dioxide gas is enhanced. Further, even when carbon dioxide gas bubbles remain, fine bubbles can be deposited more uniformly.

この場合も、絞り部の断面中心部に向けて突出する複数の衝突部の2つ以上のものの先端部同士の間に、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップを形成できる。4つの衝突部は流路の内周面から該流路の中心部に向けて突出する形で設けることができる。また、各衝突部の先端部には先端に向かうほど軸断面を縮小させる錐状部を形成することで、セグメント領域を挟んで互いに隣接する衝突部において錐状部の外周面間に、高速流ギャップを構成するスリット部を形成できる。その結果、絞り部の断面中心を挟んで内径方向に対向して配置される衝突部の先端間に、高速流ギャップの一部を構成する中心ギャップが形成され、高速流ギャップは、4つのスリット部が中心ギャップを介して一体化された十字形態に形成される。   Also in this case, in order to pass the cross-sectional center flow that is relatively high speed with respect to the cross-sectional peripheral flow, between the tip portions of two or more of the plurality of collision portions that protrude toward the central portion of the cross-section of the throttle portion. The high-speed flow gap can be formed. The four collision portions can be provided so as to protrude from the inner peripheral surface of the flow channel toward the central portion of the flow channel. In addition, by forming a cone-shaped portion that reduces the axial cross section toward the tip of each collision portion, a high-speed flow is generated between the outer peripheral surfaces of the cone-shaped portions in the collision portions adjacent to each other across the segment region. The slit part which comprises a gap can be formed. As a result, a central gap that constitutes a part of the high-speed flow gap is formed between the tips of the collision portions that are arranged opposite to each other in the inner diameter direction across the center of the cross section of the throttle portion. The part is formed in a cross shape integrated through a central gap.

上記の構成によると、最も高流速となる断面中心の流れは、断面中心を取り囲むように配置される4つの錐状部により効果的に絞られて中心ギャップに増速しつつ流れ込む。そして、中心ギャップには周囲の4つのスリット部が連通し、中心ギャップ内で絞られて圧縮される流れは、スリット部へ迂回することで流体抵抗の増加が極めて効果的に抑制され、かつ、スリットにより絞られているので迂回先での流速低下も低く抑えられる。その結果、中心ギャップだけでなくスリット部でも減圧効果は極めて活発となり、撹拌・剪断による炭酸ガスの溶解効果を促進することができる。また、気泡が残存する場合も、そのさらなる微細化を図ることができるようになり、特にウルトラファインバブルの生成に関しては有効となる。   According to said structure, the flow of the cross-sectional center used as the highest flow velocity is effectively restrict | squeezed by the four cone-shaped parts arrange | positioned so that a cross-sectional center may be surrounded, and it will flow in while increasing at a center gap. And the surrounding four slit portions communicate with the center gap, and the flow that is squeezed and compressed in the center gap is extremely effectively suppressed from increasing the fluid resistance by detouring to the slit portion, and Since it is squeezed by a slit, a decrease in flow velocity at the detour destination can be suppressed to a low level. As a result, not only the central gap but also the slit portion has a very reduced pressure effect, and the carbon dioxide dissolution effect by stirring and shearing can be promoted. Further, even when bubbles remain, it becomes possible to further reduce the size, and this is particularly effective for the generation of ultrafine bubbles.

この場合、中心ギャップに臨む衝突部の先端を先鋭に形成しておくことにより、その近傍を通過する流れを特に局所的に高速化でき、中心ギャップ直下領域にて炭酸ガス溶解に好都合な乱流発生をさらに促進することができる。   In this case, by sharply forming the tip of the collision part facing the center gap, the flow passing through the vicinity can be accelerated particularly locally, and turbulent flow that is convenient for carbon dioxide dissolution in the region immediately below the center gap. Generation can be further promoted.

次に、衝突部の外周面に形成する絞りリブの谷状部は、谷低に向かうほど幅が縮小する形状とすることが、谷状部内での流れ絞り効果ひいては水撹拌効果を高める上で望ましい。この場合、谷状部内の複数の絞りリブは頂部を鋭角としつつ互いに隣接して形成するのが好適である。また、絞りリブの頂角は、上記効果を適正化する観点において60°以下20°以上に設定するのがよい。   Next, in order to enhance the flow throttling effect and thus the water agitation effect in the trough-shaped portion, the trough-shaped portion of the throttling rib formed on the outer peripheral surface of the collision portion should have a shape that decreases in width toward the bottom of the trough. desirable. In this case, it is preferable that the plurality of throttle ribs in the valley portion are formed adjacent to each other with the apex portion having an acute angle. Further, the apex angle of the aperture rib is preferably set to 60 ° or less and 20 ° or more from the viewpoint of optimizing the above effect.

また、複数巻の絞りリブは、らせん状に一体形成することができる。このようにすると、絞りリブの形成が容易になるほか、流れに対し絞りリブが傾斜することで、絞りリブの稜線部を横切る流れ成分が増加し、流れ剥離に伴う乱流発生効果が著しくなるので、気泡のさらなる微細化を図ることができる。この場合、衝突部は、脚部末端側が流路内に突出するねじ部材にて形成しておくと、該ねじ部材の脚部の外周面に形成されるねじ山を絞りリブとして利用でき、製造が容易である。   Further, the plurality of winding ribs can be integrally formed in a spiral shape. In this way, formation of the throttle rib is facilitated, and the throttle rib is inclined with respect to the flow, so that the flow component crossing the ridge line portion of the throttle rib increases, and the turbulent flow generation effect accompanying flow separation becomes remarkable. Therefore, the bubbles can be further miniaturized. In this case, if the collision part is formed with a screw member whose leg end side protrudes into the flow path, the thread formed on the outer peripheral surface of the leg part of the screw member can be used as a throttle rib, and manufactured. Is easy.

次に、炭酸ガス供給部は、衝突部よりも上流側にて部材本体の壁部に形成され水通路の内周面に一端がガス流出口として開口するとともに、他端が部材本体の外面に炭酸ガス供給口として開口するガス供給通路を備えるものとして構成できる。部材本体にガス供給通路を設けることで、水処理部材が炭酸ガス供給部を兼ねる構成となり、部品点数の削減を図ることができる。この場合、ガス供給通路のガス流出口を絞り部に開口させることで、絞り部における減圧効果により炭酸ガスを吸引注入することができ、ガス混合効率を向上させることができる。ガス流出口は衝突部の先端に開口させてもよいが、要求される炭酸ガスの到達溶解濃度が大きい場合は、絞り部において衝突部よりも上流側にて、衝突部とは別位置にガス流出口を開口させることが、衝突部の寸法成約を受けることなく、水通路ならびにガス流出口の断面寸法を設定できるので好都合である。   Next, the carbon dioxide supply part is formed in the wall part of the member main body on the upstream side of the collision part, and one end is opened as a gas outlet on the inner peripheral surface of the water passage, and the other end is formed on the outer surface of the member main body. It can comprise as a gas supply path opened as a carbon dioxide gas supply port. By providing the gas supply passage in the member body, the water treatment member serves as the carbon dioxide supply part, and the number of parts can be reduced. In this case, by opening the gas outlet of the gas supply passage to the throttle portion, carbon dioxide gas can be sucked and injected by the pressure reducing effect in the throttle portion, and the gas mixing efficiency can be improved. The gas outlet may be opened at the tip of the collision part. However, when the required dissolved concentration of carbon dioxide gas is large, the gas outlet is located upstream of the collision part at the throttle part and at a position different from the collision part. Opening the outlet is advantageous because the cross-sectional dimensions of the water passage and the gas outlet can be set without receiving a contraction of the size of the collision portion.

一方、炭酸ガス供給部は、部材本体の流入口に接続される水流入配管上に設けられたガス注入ノズルとして構成することも可能である。これにより、水処理部材の寸法や形状の成約を受けることなく炭酸ガスの注入量をより自由に設定できるようになる。また、後述のごとく、水処理部材を複数並列に分配配置する場合、その分配分岐点よりも上流側にガス注入ノズルを設ければ、各水処理部材への炭酸ガスの分配を均一に行うことができる。   On the other hand, the carbon dioxide supply part can be configured as a gas injection nozzle provided on a water inflow pipe connected to the inlet of the member body. Thereby, the injection amount of the carbon dioxide gas can be set more freely without receiving a contract of the size or shape of the water treatment member. Further, as will be described later, when a plurality of water treatment members are distributed and arranged in parallel, if a gas injection nozzle is provided upstream from the distribution branch point, carbon dioxide gas is uniformly distributed to each water treatment member. Can do.

次に、水処理部材は水の流れ方向に直列に配置される上流側の第一の水処理部材と下流側の及び第二の水処理部材とを含むものとして構成できる。この場合、炭酸ガス供給部は第一の水処理部材に炭酸ガスを供給するものであり、第二の水処理部材は第一の水処理部材にて未溶解の炭酸ガスをさらに粉砕・溶解するものとすることができる。このように直列接続された複数の水処理部材により、炭酸ガスを段階的に粉砕・溶解することにより、炭酸ガスの溶解効率を大幅に高めることができる。これは、ガス溶解量を増やしたい場合、あるいは未溶解炭酸ガスの比率を減じたい場合に特に有効な手法である。直列配置する水処理部材の数は、もちろん3段以上とすることも可能である。このとき、これら複数の水処理部材の2以上のもののそれぞれに、炭酸ガスを別経路にて分配供給することも可能である。また、水の流通管路を途中で複数に分岐させ、複数の水処理部材をそれら分岐した流通管路上に並列に設けることができる。炭酸ガス供給部はそれら並列接続された水処理部材の少なくともいずれかに炭酸ガスを供給するものとして構成できる。複数の水処理部材を並列に用いることで、処理対象の水の流量が大きい場合でも、必要な量の炭酸ガスを効率よく溶解することができる。   Next, the water treatment member can be configured to include an upstream first water treatment member and a downstream and second water treatment member arranged in series in the water flow direction. In this case, the carbon dioxide supply unit supplies carbon dioxide to the first water treatment member, and the second water treatment member further pulverizes and dissolves the undissolved carbon dioxide by the first water treatment member. Can be. By dissolving and pulverizing the carbon dioxide gas stepwise by the plurality of water treatment members connected in series in this way, the dissolution efficiency of the carbon dioxide gas can be greatly increased. This is a particularly effective method when it is desired to increase the amount of dissolved gas or to decrease the proportion of undissolved carbon dioxide. Of course, the number of water treatment members arranged in series can be three or more. At this time, it is also possible to distribute and supply carbon dioxide gas to each of two or more of the plurality of water treatment members through separate paths. Moreover, the water distribution pipe can be branched into a plurality of parts in the middle, and a plurality of water treatment members can be provided in parallel on the branched distribution pipes. The carbon dioxide supply unit can be configured to supply carbon dioxide to at least one of the water treatment members connected in parallel. By using a plurality of water treatment members in parallel, a necessary amount of carbon dioxide can be efficiently dissolved even when the flow rate of water to be treated is large.

水処理部材に供給される水流の動水圧が0.06MPa以上(上限は限定されないが、便宜的に0.5MPa以下とする)のとき、絞り部における水流の平均流速は3.3m/秒以上(上限は限定されないが、便宜的に10m/秒以下とする)なるように絞り部の水流通断面積を調整することが望ましい。そして、炭酸ガス供給部による水処理部材への大気圧換算での炭酸ガス流量をA、水流量をBとしたとき、A/Bの値が0.2以上1.3以下となるように、炭酸ガスの流量を調整することで、炭酸ガスの水への溶解効率を70%以上に高めることが可能となる。特に、A/Bの値が0.6を超えるような多量の炭酸ガスを流通した場合でも、本発明特有の構成の水処理部材の構成を採用することにより、これを極めて迅速に、かつ70%以上の高効率にて溶解することが可能となるのである。このとき、炭酸ガスの溶解濃度は200ppm以上1500ppm以下の高濃度とすることができる。水流の動水圧が0.06MPa未満、絞り部における水流の平均流速が3.3m/秒未満のとき、A/Bの値が上記範囲内におさまっていても炭酸ガスの水への溶解効率は70%未満となり、無駄に消費される炭酸ガス量が増加して不経済である。   When the dynamic water pressure of the water flow supplied to the water treatment member is 0.06 MPa or more (the upper limit is not limited, but it is 0.5 MPa or less for convenience), the average flow velocity of the water flow in the throttle portion is 3.3 m / sec or more. (The upper limit is not limited, but it is desirable to adjust the water flow cross-sectional area of the throttle portion so that it is 10 m / second or less for convenience). And when the carbon dioxide gas flow rate in terms of atmospheric pressure to the water treatment member by the carbon dioxide gas supply unit is A and the water flow rate is B, so that the value of A / B is 0.2 or more and 1.3 or less, By adjusting the flow rate of the carbon dioxide gas, the dissolution efficiency of the carbon dioxide gas in water can be increased to 70% or more. In particular, even when a large amount of carbon dioxide gas having an A / B value exceeding 0.6 is circulated, by adopting the configuration of the water treatment member having a configuration unique to the present invention, this can be achieved very quickly and 70 It is possible to dissolve at a high efficiency of at least%. At this time, the dissolution concentration of carbon dioxide gas can be set to a high concentration of 200 ppm to 1500 ppm. When the hydrodynamic pressure of the water flow is less than 0.06 MPa and the average flow velocity of the water flow at the throttle portion is less than 3.3 m / sec, the dissolution efficiency of carbon dioxide in water is not limited even if the A / B value is within the above range. It becomes less than 70%, and the amount of carbon dioxide consumed in vain increases, which is uneconomical.

なお、水として次亜塩素酸ナトリウム水溶液を使用することができる。炭酸ガスが効率よく溶解することで、次亜塩素酸ナトリウム水溶液のpH値が例えば4.3〜6前後の弱酸性に保たれ、殺菌や消毒に有効な解離状態の次亜塩素酸濃度を大幅に高めることができるとともに、炭酸特有のpH緩衝作用によりpH値の変動も小さくすることができる。例えば、従来行われていた塩酸添加によるpH調整方式よりも、pH値が3以下の低い値にアンダーシュートする現象が極めて生じにくくなり、有害な遊離塩素ガスの発生も抑えることができる。該効果を高める観点において、次亜塩素酸ナトリウム水溶液は、次亜塩素酸イオン濃度が10ppm以上1000ppm以下に調整されていることが望ましく、炭酸ガスの溶解濃度は200ppm以上1500ppm以下に調整されることが望ましい。次亜塩素酸イオン濃度が10ppm未満では消毒作用が不足し、1000ppmを超えると次亜塩素酸ナトリウム水溶液のコストアップを招く。また、炭酸ガスの溶解濃度は200ppm以上1500ppm以下に調整されることで、次亜塩素酸ナトリウム水溶液のpH値を4.3〜6の、消毒効果が最適されるpH域に安定して維持することができる。   In addition, a sodium hypochlorite aqueous solution can be used as water. Efficient dissolution of carbon dioxide keeps the pH value of the sodium hypochlorite aqueous solution weakly acidic, for example, around 4.3 to 6, greatly increasing the concentration of hypochlorous acid in a dissociated state effective for sterilization and disinfection. In addition, the fluctuation of the pH value can be reduced by the pH buffering action peculiar to carbonic acid. For example, the phenomenon of undershooting to a low pH value of 3 or less is less likely to occur than in the conventional pH adjustment method by adding hydrochloric acid, and generation of harmful free chlorine gas can be suppressed. From the viewpoint of enhancing the effect, it is desirable that the sodium hypochlorite aqueous solution is adjusted to have a hypochlorite ion concentration of 10 ppm to 1000 ppm, and the dissolved concentration of carbon dioxide gas is adjusted to 200 ppm to 1500 ppm. Is desirable. When the hypochlorite ion concentration is less than 10 ppm, the disinfection action is insufficient, and when it exceeds 1000 ppm, the cost of the sodium hypochlorite aqueous solution is increased. In addition, by adjusting the dissolution concentration of carbon dioxide gas to 200 ppm or more and 1500 ppm or less, the pH value of the sodium hypochlorite aqueous solution is stably maintained in a pH range of 4.3 to 6 where the disinfection effect is optimized. be able to.

本発明の炭酸ガス溶解装置の一構成例を示す模式図。The schematic diagram which shows the example of 1 structure of the carbon dioxide dissolving apparatus of this invention. 図1の水処理部材の詳細を示す断面図。Sectional drawing which shows the detail of the water treatment member of FIG. 図2の水処理部材の要部を拡大して示す図。The figure which expands and shows the principal part of the water treatment member of FIG. A 衝突部の作用説明図。B 絞りリブの作用説明図。A Action explanatory drawing of a collision part. B is an operation explanatory view of the diaphragm rib. 衝突部の第一変形例を示す図。The figure which shows the 1st modification of a collision part. 衝突部の第二変形例を示す図。The figure which shows the 2nd modification of a collision part. 衝突部の第三変形例を示す図。The figure which shows the 3rd modification of a collision part. 衝突部の第四変形例を示す図。The figure which shows the 4th modification of a collision part. 衝突部の第五変形例を示す図。The figure which shows the 5th modification of a collision part. 衝突部の第六変形例を示す図。The figure which shows the 6th modification of a collision part. 衝突部の第七変形例を示す図。The figure which shows the 7th modification of a collision part. 衝突部の第八変形例を示す図。The figure which shows the 8th modification of a collision part. 衝突部の第九変形例を示す図。The figure which shows the 9th modification of a collision part. 衝突部の第十変形例を示す図。The figure which shows the 10th modification of a collision part. 衝突部の第十一変形例を示す図。The figure which shows the 11th modification of a collision part. 衝突部の第十二変形例を示す図。The figure which shows the 12th modification of a collision part. 衝突部の第十三変形例を示す図。The figure which shows the 13th modification of a collision part. 衝突部の第十四変形例を示す図。The figure which shows the 14th modification of a collision part. 衝突部の第十五変形例を示す図。The figure which shows the 15th modification of a collision part. 衝突部の第十六変形例を示す図。The figure which shows the 16th modification of a collision part. 水処理装置を直列に複数段接続する例を示す断面図。Sectional drawing which shows the example which connects a plurality of water treatment apparatuses in series. 炭酸ガス供給部を水処理装置と別体のガス注入ノズルとして構成する例を示す断面図。Sectional drawing which shows the example which comprises a carbon dioxide gas supply part as a gas injection nozzle separate from a water treatment apparatus. 衝突部にガス供給通路を形成する例を示す断面図。Sectional drawing which shows the example which forms a gas supply path in a collision part. 同じく別の例を示す断面図。Sectional drawing which similarly shows another example. 複数の水処理装置を並列接続する第一の例を示す模式図。The schematic diagram which shows the 1st example which connects a some water treatment apparatus in parallel. 同じく第二の例を示す模式図。The schematic diagram which similarly shows a 2nd example. 同じく第三の例を示す模式図。The schematic diagram which similarly shows a 3rd example. 同じく第四の例を示す模式図。The schematic diagram which similarly shows a 4th example. 循環管路上に水処理部材を設ける例を示す模式図。The schematic diagram which shows the example which provides a water treatment member on a circulation pipe line. 次亜塩素酸ナトリウム水溶液を用いる場合の炭酸ガス溶解装置の構成例を示す模式図。The schematic diagram which shows the structural example of the carbon dioxide melt | dissolution apparatus in the case of using sodium hypochlorite aqueous solution.

以下、本発明を実施するための形態を添付の図面を用いて説明する。
図1は、本発明の炭酸ガス溶解装置の一構成例を示す模式図である。炭酸ガス溶解装置100は、本体ケース100Cの内部には、配管部材にて構成された水流路18が設けられ、その両端が本体ケース100Cに対し水流入口19及び水流出口20を開口している。水流入口19には温水供給配管51(本実施形態では水配管)が接続され、給湯器50からの温水が水流路18に供給されるようになっている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing a configuration example of the carbon dioxide gas dissolving apparatus of the present invention. In the carbon dioxide gas dissolving device 100, a water flow path 18 made of a piping member is provided inside the main body case 100C, and both ends thereof open the water inlet 19 and the water outlet 20 with respect to the main body case 100C. A hot water supply pipe 51 (water pipe in this embodiment) is connected to the water inlet 19 so that hot water from the water heater 50 is supplied to the water flow path 18.

供給水流路18の途上には水処理装置1が設けられており、該水処理装置1にはガス供給管路12が接続され、これを介して炭酸ガスが水処理装置1に供給される。本実施形態では、ガス供給管路12は本体ケース100C上にガス供給口14を開口し、ここにガス配管31が接続される。本実施形態では、炭酸ガス(たとえば、酸素、窒素、空気、塩素等)のボンベ41にガス配管31が接続され、該ボンベ41からの炭酸ガスが減圧弁42及び流量調整弁32にて圧力及び流量が調整されつつガス供給管路12に導かれるようになっている。該炭酸ガスは水処理装置1にて水流路18内の水に溶解されることにより炭酸ガス溶液GWとなり、水流出口20から流出・供給される。水流出口20は水供給ホース52を介して洗面台53の水栓金具54に接続されている。この水洗金具54の操作により、炭酸ガス溶液GWはシャワーホース55を介してシャワーヘッド56から噴射され、洗面台53における洗髪等に使用することができる。炭酸ガス特有の髪への水の浸透効果や血行促進効果(ひいてはそれに伴うリラックスる効果)に加え、同時に発生する炭酸ガスファインバブルあるいはウルトラファインバブルの効果により、皮脂や頭皮汚れ、毛穴を埋める角栓質の除去効果が促進される。また、洗髪を行う作業員の手荒れ防止効果も顕著となる。   A water treatment apparatus 1 is provided in the middle of the supply water flow path 18, and a gas supply pipe 12 is connected to the water treatment apparatus 1, and carbon dioxide gas is supplied to the water treatment apparatus 1 through this. In the present embodiment, the gas supply line 12 opens the gas supply port 14 on the main body case 100C, and the gas pipe 31 is connected thereto. In the present embodiment, a gas pipe 31 is connected to a cylinder 41 of carbon dioxide gas (for example, oxygen, nitrogen, air, chlorine, etc.), and the carbon dioxide gas from the cylinder 41 is reduced in pressure and pressure by a pressure reducing valve 42 and a flow rate adjusting valve 32. The flow rate is adjusted and guided to the gas supply line 12. The carbon dioxide gas is dissolved in the water in the water flow path 18 by the water treatment device 1 to become a carbon dioxide gas solution GW, which flows out and is supplied from the water outlet 20. The water outlet 20 is connected to a faucet fitting 54 of a wash basin 53 through a water supply hose 52. By the operation of the water-washing metal fitting 54, the carbon dioxide solution GW is sprayed from the shower head 56 via the shower hose 55, and can be used for hair washing or the like in the wash basin 53. In addition to carbon dioxide-specific hair penetration effect and blood circulation promotion effect (and thus relaxation effect), carbon dioxide fine bubble or ultra fine bubble effect that occurs at the same time, sebum, scalp dirt, corner to fill pores The removal effect of plug material is promoted. In addition, the effect of preventing rough hands of workers performing hair washing is also remarkable.

炭酸ガス溶解装置100には、供給水流路18の途上に流れ検知センサ22が設けられ、ガス供給管路12の途上には電磁弁13が設けられている。また、本体ケース100C内には電源回路16が設けられており、電源プラグ22及び電源コード21を介して入力される商用交流入力ACを、電磁弁13の駆動電圧及び信号電圧に変換し、出力するようになっている。さらに、ケース100C内には制御回路17が設けられ、切り替えスイッチ15(たとえば、足踏みスイッチ)及び流れ検知センサ22が接続されている。制御回路17は、流れ検知センサ22が供給水流路18内の流れを検知していないか(すなわち、水栓金具55が閉状態となった場合である)、または切り替えスイッチ15が(炭酸ガス供給の)オフ状態になっているかのいずれかを検知した時、電磁バルブ13を閉状態として、水処理装置1への炭酸ガスの供給を自動遮断するようになっている。切り替えスイッチ15をオフ状態とすれば、炭酸ガスの供給はなされないが、供給される温水中に溶存空気が存在すれば、その溶存空気がファインバブルあるいはウルトラファインバブルとして析出し、髪への水分の浸透効果や洗浄促進効果、保湿効果等は享受することができる。   In the carbon dioxide gas dissolving device 100, a flow detection sensor 22 is provided in the middle of the supply water flow path 18, and an electromagnetic valve 13 is provided in the middle of the gas supply pipe 12. Further, a power circuit 16 is provided in the main body case 100C, and the commercial AC input AC input through the power plug 22 and the power cord 21 is converted into a drive voltage and a signal voltage for the electromagnetic valve 13, and output. It is supposed to be. Further, a control circuit 17 is provided in the case 100C, and a changeover switch 15 (for example, a foot switch) and a flow detection sensor 22 are connected to the case 100C. In the control circuit 17, the flow detection sensor 22 does not detect the flow in the supply water flow path 18 (that is, when the faucet fitting 55 is closed) or the changeover switch 15 (the carbon dioxide supply) When any one of the OFF states is detected, the electromagnetic valve 13 is closed and the supply of the carbon dioxide gas to the water treatment apparatus 1 is automatically shut off. If the changeover switch 15 is turned off, carbon dioxide is not supplied, but if dissolved air is present in the supplied hot water, the dissolved air will precipitate as fine bubbles or ultra fine bubbles, and moisture to the hair. It is possible to enjoy the permeation effect, cleaning promotion effect, moisturizing effect and the like.

図2は、水処理装置1を取り出して示す拡大図である。部材本体6には、流入端に開口する流入口2nと流出端に開口する流出口2xとをつなぐ流路2が貫通形態に形成され、その流路2の途中位置に流入口2nよりも流通断面積が小さい絞り部2cが形成されている。絞り部2cには、図3に示すように、流路2の軸断面を3以上、この実施形態では4つのセグメント領域2eに区画する形態で、当該絞り部2cの流路断面積をさらに減少させる衝突部3が配置されている。各衝突部3はねじ部材として構成され、図2に示すように、絞り部2cに向けて部材本体6の外周面側から半径方向に孔設されたねじ孔3hにねじ込まれる形で4本取り付けられている。各セグメント領域2eは、流路断面積が互いに等しくなるように形成されている。   FIG. 2 is an enlarged view showing the water treatment apparatus 1 taken out. The member body 6 is formed with a passage 2 connecting the inlet 2n opening at the inflow end and the outlet 2x opening at the outflow end in a penetrating form, and flows in the middle of the channel 2 from the inlet 2n. A narrowed portion 2c having a small cross-sectional area is formed. As shown in FIG. 3, the throttle section 2c further reduces the channel cross-sectional area of the throttle section 2c by dividing the axial section of the flow path 3 into three or more, in this embodiment, four segment regions 2e. The collision part 3 to be made is arranged. Each collision portion 3 is configured as a screw member, and as shown in FIG. 2, four are attached so as to be screwed into a screw hole 3h formed in a radial direction from the outer peripheral surface side of the member body 6 toward the throttle portion 2c. It has been. Each segment region 2e is formed such that the flow path cross-sectional areas are equal to each other.

衝突部2cよりも上流側にて部材本体6の壁部には、一端がその内周面に他端が外周面に開口するガス供給通路10hが半径方向に貫通形成され、ここにガス噴射管10がはめ込まれている。ガス噴射管10の先端はガス流出口として開口し、他端側は部材本体6の外面に炭酸ガス供給口として開口している。この実施形態では、ガス供給通路10hの炭酸ガス供給口を、ここに嵌着されたコネクタ11により形成しており、ここにガス供給管路12が接続されている。   A gas supply passage 10h having one end opened on the inner peripheral surface and the other end opened on the outer peripheral surface is formed in the wall portion of the member main body 6 upstream of the collision portion 2c in the radial direction. 10 is inserted. The distal end of the gas injection pipe 10 is opened as a gas outlet, and the other end is opened as a carbon dioxide supply port on the outer surface of the member body 6. In this embodiment, the carbon dioxide gas supply port of the gas supply passage 10h is formed by a connector 11 fitted therein, and a gas supply line 12 is connected thereto.

図2において、部材本体6の流入端に供給された水の流れは、ガス供給通路10hから供給される炭酸ガスGの気泡を巻き込みつつ衝突部3に衝突した後、各セグメント領域2eに分配されつつ増速して通過するとともに、そのセグメント領域2eに迂回する際に激しい乱流を発生する。また、衝突部3の外周面には後述のごとく、ねじ山、すなわち絞りリブ5r(図4A参照)が複数巻形成されており、衝突部3を迂回しようと水はその外周面接線方向に流れ込むので、絞りリブ間の溝部(あるいは谷状部)21(図4A及び図4B参照)内にて絞られることによりさらに増速し、乱流発生効果が飛躍的に高められる。この乱流により、水とともに流れ込む炭酸ガスGの剪断・粉砕効果が向上し、溶解効果が高められる。また、こうして一旦溶解した炭酸ガスは、セグメント領域2eに瞬時的に増速して分配される。特に、絞りリブ5r間の溝部21(あるいは谷状部)では局所的・瞬時的な増速効果が一層高められる。このような増速された領域では、ベルヌーイの原理に従い負圧域LPA(図4B)が形成され、水中の溶存炭酸ガスが析出して微細な気泡が発生する。この炭酸ガスの析出は沸騰現象的に激しく進行し、水の撹拌効果及び乱流発生効果をさらに高めることとなる。   In FIG. 2, the flow of water supplied to the inflow end of the member main body 6 collides with the collision part 3 while entraining bubbles of carbon dioxide G supplied from the gas supply passage 10h, and is then distributed to each segment region 2e. While increasing the speed while passing, intense turbulence is generated when detouring to the segment area 2e. Further, as will be described later, a plurality of threads, that is, throttle ribs 5r (see FIG. 4A) are formed on the outer peripheral surface of the collision portion 3, and water flows in the tangential direction of the outer peripheral surface to bypass the collision portion 3. Therefore, the speed is further increased and the effect of generating turbulence is drastically enhanced by narrowing in the groove (or valley) 21 (see FIGS. 4A and 4B) between the narrowing ribs. By this turbulent flow, the shearing / pulverizing effect of the carbon dioxide gas G flowing together with water is improved, and the dissolution effect is enhanced. Further, the carbon dioxide gas once dissolved in this way is instantaneously increased and distributed to the segment region 2e. In particular, the local / instantaneous speed increasing effect is further enhanced in the groove 21 (or valley) between the narrowed ribs 5r. In such an accelerated region, a negative pressure region LPA (FIG. 4B) is formed in accordance with Bernoulli's principle, and dissolved carbon dioxide in water precipitates to generate fine bubbles. This deposition of carbon dioxide proceeds violently in a boiling phenomenon, and further enhances the water stirring effect and turbulent flow generation effect.

図3に示すように、絞り部2cの断面中心部に向けて突出する複数の衝突部3の2つ以上のものの先端部同士の間には、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップ2g,2kが形成されている。衝突部3の先端部には、先端に向かうほど軸断面を縮小させる錐状部5tが形成され(この実施形態では円錐状であるが、四角錐や六角錐などの他の錐体形状であってもよい)、セグメント領域2eを挟んで互いに隣接する2つの衝突部3において、それら錐状部5tの外周面間に、高速流ギャップを構成するスリット部2gが形成されている。一方、4つの衝突部3の、絞り部2cの断面中心を挟んで内径方向に対向するもの同士の先端間には、高速流ギャップを構成する中心ギャップ2kが形成されている。   As shown in FIG. 3, a cross-section that is relatively high-speed relative to the cross-section peripheral flow between two or more tip portions of the plurality of collision portions 3 that protrude toward the central portion of the cross-section of the throttle portion 2 c. High-speed flow gaps 2g and 2k for passing the central flow are formed. A conical portion 5t that reduces the axial cross section toward the distal end is formed at the distal end portion of the collision portion 3 (in this embodiment, it is conical, but other conical shapes such as a quadrangular pyramid and a hexagonal pyramid are formed. However, in the two collision portions 3 adjacent to each other across the segment region 2e, a slit portion 2g constituting a high-speed flow gap is formed between the outer peripheral surfaces of the conical portions 5t. On the other hand, a center gap 2k constituting a high-speed flow gap is formed between the tips of the four collision portions 3 facing each other in the inner diameter direction across the center of the section of the throttle portion 2c.

図3に示すごとく、衝突部3は、各々その突出方向が絞り部2cの軸断面にて互いに直交する十字形態に設けられており、それら衝突部3により絞り部は4つの絞りセグメント領域2eに分割されている。4つの衝突部3は流路2の内周面から該流路2の中心部に向けて突出している。そして、セグメント領域2eを挟んで互いに隣接する衝突部3には、錐状部5tの外周面間にスリット部2gが4つ形成されるとともに、内径方向に対向して配置される衝突部3の先端間に中心ギャップ2kが形成される。その結果、高速流ギャップは、4つのスリット部2gが中心ギャップ2kを介して一体化された十字形態に形成されることとなる。   As shown in FIG. 3, the collision portions 3 are provided in a cross shape in which the projecting directions are orthogonal to each other in the axial section of the restriction portion 2c. The collision portions 3 cause the restriction portions to be divided into four restriction segment regions 2e. It is divided. The four collision portions 3 protrude from the inner peripheral surface of the flow channel 2 toward the central portion of the flow channel 2. Further, in the collision part 3 adjacent to each other across the segment region 2e, four slit parts 2g are formed between the outer peripheral surfaces of the cone-shaped part 5t, and the collision part 3 arranged opposite to the inner diameter direction is formed. A central gap 2k is formed between the tips. As a result, the high-speed flow gap is formed in a cross shape in which the four slit portions 2g are integrated via the center gap 2k.

また、図3に示すように、各衝突部3の外周面には、周方向の絞りリブ5rが衝突部3の突出方向に沿って複数巻形成されている。谷状部は谷低に向かうほど幅が縮小する形状となっている。また、複数の絞りリブ5rは頂部を鋭角としつつ互いに隣接して形成されている。該絞りリブ5rの頂角は、例えば60°以下20°以上に設定されている。前述のごとく衝突部3はねじ部材であり、複数巻の絞りリブ5rはらせん状に一体形成されている。   Further, as shown in FIG. 3, a plurality of circumferential restriction ribs 5 r are formed on the outer peripheral surface of each collision portion 3 along the protruding direction of the collision portion 3. The valley portion has a shape in which the width is reduced toward the valley low. The plurality of diaphragm ribs 5r are formed adjacent to each other with the apex being an acute angle. The apex angle of the aperture rib 5r is set to 60 ° or less and 20 ° or more, for example. As described above, the collision portion 3 is a screw member, and the plurality of winding ribs 5r are integrally formed in a spiral shape.

図2に示すごとく、水処理装置1は、絞り部2cにおいて流路2の断面積が、高流速となる断面中心Oに向けて径方向に相似的に縮小するのではなく、衝突部3を障害物として用いることにより、水が流通可能な領域が断面中心に関する周方向にいわば間引く形で縮小される。絞り部2cでの流体抵抗が過度に増加せず、流速の増加効果ひいては負圧発生効果を大幅に増すことができる。これにより、各セグメント領域2e(及びその下流)での減圧効果が大幅に高められ、例えば、溶存炭酸ガス濃度が同じであってもより微細で多量の気泡を析出させることができる。また、流量が過度に減じないことで、撹拌・剪断による炭酸ガス溶解効果も良好に維持される。流入側テーパ部2aと流出側テーパ部2bとの間には絞り部2cが断面一定部として形成され、衝突部3が該断面一定部(2c)に配置されているので、流入側テーパ部2aにより増速された流れを断面一定部(2c)にて安定化させつつ、衝突部3に導くことができる。   As shown in FIG. 2, the water treatment apparatus 1 does not reduce the cross-sectional area of the flow path 2 in the throttle portion 2c in a similar manner in the radial direction toward the cross-sectional center O where the flow velocity is high, By using it as an obstacle, the area through which water can flow is reduced in a thinned form in the circumferential direction with respect to the center of the cross section. The fluid resistance at the throttle portion 2c does not increase excessively, and the effect of increasing the flow velocity, and hence the negative pressure generating effect, can be greatly increased. Thereby, the decompression effect in each segment area | region 2e (and its downstream) is improved significantly, for example, even if the dissolved carbon dioxide gas density | concentration is the same, more fine and a lot of bubbles can be deposited. In addition, since the flow rate is not excessively reduced, the carbon dioxide dissolution effect by stirring and shearing can be maintained well. Between the inflow side taper portion 2a and the outflow side taper portion 2b, the throttle portion 2c is formed as a constant cross-section portion, and the collision portion 3 is disposed in the constant cross-section portion (2c). Thus, the flow increased in speed can be guided to the collision part 3 while being stabilized at the constant section (2c).

そして、絞り部2cにおいては、流速が最も大きくなる断面中心付近の流れが衝突部3の先端部を迂回して各セグメント領域2eに分配される。図3に示すように、衝突部3の先端部間に高速流ギャップ2g,2kが形成されているので、断面中心付近の高流速は該高速流ギャップ2g,2kにて大きく減速することなく通過できる。その結果、高速流ギャップ2g,2kでは水の流速が非常に高められ、撹拌・剪断による炭酸ガスの溶解効果を促進することができる。また、衝突部3の迂回流は、衝突部周囲の絞りリブ部絞りリブ5rの存在により、高速流ギャップ直下流域2g,2kに前述のごとく激しい乱流域を生ずるから、乱流域を通過する際に気泡成長が抑制され、気泡が残存する場合も、さらなる微細化を図ることができるようになる。   In the throttle portion 2c, the flow in the vicinity of the center of the cross section where the flow velocity is maximized is distributed to each segment region 2e, bypassing the tip portion of the collision portion 3. As shown in FIG. 3, since the high-speed flow gaps 2g and 2k are formed between the front end portions of the collision portion 3, the high flow velocity near the center of the cross section passes through the high-speed flow gaps 2g and 2k without significantly decelerating. it can. As a result, in the high-speed flow gaps 2g and 2k, the flow rate of water is greatly increased, and the carbon dioxide dissolution effect by stirring and shearing can be promoted. In addition, the detour flow of the collision portion 3 causes a strong turbulent flow region in the immediately downstream regions 2g and 2k of the high-speed flow gap due to the presence of the restriction rib portion restriction rib 5r around the collision portion. Even when bubble growth is suppressed and bubbles remain, further miniaturization can be achieved.

高速流ギャップ2g,2kのうち、セグメント領域2eを挟んで隣接する衝突部3の先端部(錐状部)5t,5t間に形成されるスリット部2gは、該錐状部5tの外周面母線方向に形成される。従って、該スリット部2gに向かう流れは錐状部5tの該母線に沿う膨らみをいわば乗り越える形で絞られ圧縮される。その結果、炭酸ガスの溶解効果が高められ、たとえば大気圧下での飽和濃度を超えて炭酸ガスの溶解促進を図るようなことも可能となる。このとき、スリット部2gの長手方向には、圧縮された水の流動代が与えられるので流速が低下しにくく、キャビテーション(減圧)効果がさらに高められる。また、キャビテーション発生領域はスリット部2gに沿って線状に形成されるため、気泡が減圧析出する領域が大幅に拡張し、炭酸ガスの溶解促進効果がさらに高められる。また気泡が残存する場合も、そのさらなる微細化を図ることができる。   Of the high-speed flow gaps 2g and 2k, the slit portion 2g formed between the tip portions (cone portions) 5t and 5t of the collision portion 3 adjacent to each other across the segment region 2e is an outer peripheral surface bus of the conical portion 5t. Formed in the direction. Accordingly, the flow toward the slit portion 2g is squeezed and compressed so as to overcome the bulge along the generatrix of the cone-shaped portion 5t. As a result, the effect of dissolving carbon dioxide gas is enhanced, and for example, it is possible to promote the dissolution of carbon dioxide gas exceeding the saturation concentration under atmospheric pressure. At this time, since the flow rate of the compressed water is given in the longitudinal direction of the slit portion 2g, the flow rate is hardly lowered, and the cavitation (decompression) effect is further enhanced. Further, since the cavitation generation region is formed linearly along the slit portion 2g, the region where bubbles are deposited under reduced pressure is greatly expanded, and the effect of promoting the dissolution of carbon dioxide gas is further enhanced. Further, even when bubbles remain, further miniaturization can be achieved.

一方、中心ギャップ2kは断面中心を包含する形で形成され、流速最大となる中心流れは、この中心ギャップ2kにより迂回の影響を受けずに通過できる。また、中心流れは中心ギャップ2kの通過によりさらに絞られて高速化しようとするが、セグメント領域2e側への流れ迂回が許容されているため流体抵抗の増加が効果的に抑制される。これにより、断面中心部でのキャビテーション(減圧)効果はさらに高められ、撹拌・剪断による炭酸ガスの溶解効果を促進することができる。また、気泡が残存する場合も、そのさらなる微細化を図ることができるようになり、特にウルトラファインバブルの生成に関しては有効となる。セグメント領域2eに分配される各流れは、個々の衝突部3の下流で渦流ないし乱流を発生させるので、溶解効果ないし気泡の粉砕・微細化効果が高められる。   On the other hand, the center gap 2k is formed so as to include the center of the cross section, and the center flow having the maximum flow velocity can pass through the center gap 2k without being influenced by detours. In addition, the center flow is further narrowed by the passage of the center gap 2k to increase the speed, but since the flow detour to the segment region 2e side is permitted, an increase in fluid resistance is effectively suppressed. As a result, the cavitation (decompression) effect at the center of the cross section can be further enhanced, and the carbon dioxide dissolution effect by stirring and shearing can be promoted. Further, even when bubbles remain, it becomes possible to further reduce the size, and this is particularly effective for the generation of ultrafine bubbles. Each flow distributed to the segment region 2e generates a vortex or a turbulent flow downstream of the individual impingement portions 3, so that the dissolution effect or the bubble crushing / miniaturization effect is enhanced.

そして、断面中心付近の高速流は、図4Aに示すように、断面中心を取り囲むように配置される4つの錐状部5tにより効果的に絞られて中心ギャップ2kに増速しつつ流れ込む。図3に示すように、中心ギャップ2kには周囲の4つのスリット部2gが連通し、中心ギャップ2k内で絞られて圧縮される流れはスリット部2gへ迂回することで流体抵抗の増加が極めて効果的に抑制される。また、スリット部2gへ迂回する流れ自体もスリット長手方向に自由度を有するため、流速低下は低く抑えられる。その結果、中心ギャップ2kおよびスリット部2gでもキャビテーション(減圧)効果は極めて活発となり、撹拌・剪断による炭酸ガスの溶解効果を促進することができる。また、気泡が残存する場合も、そのさらなる微細化を図ることができるようになり、特にウルトラファインバブルの生成に関しては有効となる。また、中心ギャップ2kに臨む衝突部3(錐状部5t)の先端は先鋭に形成されており、その近傍を通過する流れを特に高速化できるので、中心ギャップ2kの直下領域にて炭酸ガス溶解に好都合な乱流発生をさらに促進することができる。   Then, as shown in FIG. 4A, the high-speed flow near the center of the cross-section is effectively constricted by the four conical portions 5t arranged so as to surround the cross-sectional center and flows into the center gap 2k while being accelerated. As shown in FIG. 3, four slit portions 2g around the center gap 2k communicate with each other, and the flow compressed and compressed in the center gap 2k bypasses the slit portion 2g, so that the fluid resistance is extremely increased. Effectively suppressed. Moreover, since the flow detouring to the slit portion 2g itself also has a degree of freedom in the slit longitudinal direction, a decrease in the flow velocity can be suppressed low. As a result, the cavitation (decompression) effect is extremely active even in the center gap 2k and the slit portion 2g, and the carbon dioxide dissolution effect by stirring and shearing can be promoted. Further, even when bubbles remain, it becomes possible to further reduce the size, and this is particularly effective for the generation of ultrafine bubbles. Further, the tip of the collision part 3 (conical part 5t) facing the center gap 2k is sharply formed, and the flow passing through the vicinity thereof can be made particularly fast, so that carbon dioxide is dissolved in the region immediately below the center gap 2k. It is possible to further promote the generation of turbulent flow that is advantageous to the above.

また、衝突部3の外周面には周方向の絞りリブ5rが衝突部3の突出方向に沿って複数巻形成されている。衝突部3の外周面接線方向に流れ込む気体溶解水は、絞りリブ5r間の溝部(あるいは谷状部)21内にて絞られることによりさらに増速し、減圧効果が高められる。図4Bに示すように、谷開口側の流れは相対的に低速となり、特に谷底側の高速流に対して圧力は高くなる。つまり、谷開口側に低速の高圧域HPAが、谷低側に高速の低圧域LPAが形成され、谷開口側の水の気体飽和溶解量が増加し、谷底側の飽和溶解量が減少する。その結果、水流中の溶存空気(溶解水)SGFは、図6に示すように、谷開口側の低速流域LF(高圧域HPA:図4A)から谷低側の高速流域FF(低圧域LPA:図4B)に流れ、気泡MBが極めて活発に析出する。   Further, a plurality of circumferential narrowing ribs 5 r are formed on the outer peripheral surface of the collision part 3 along the protruding direction of the collision part 3. The dissolved gas flowing in the tangential direction of the outer peripheral surface of the collision part 3 is further increased in speed by being squeezed in the groove part (or valley-like part) 21 between the throttle ribs 5r, and the pressure reduction effect is enhanced. As shown in FIG. 4B, the flow on the valley opening side is relatively slow, and the pressure is particularly high with respect to the high-speed flow on the valley bottom side. That is, a low-speed high-pressure area HPA is formed on the valley opening side, and a high-speed low-pressure area LPA is formed on the valley low side, so that the gas saturation dissolution amount of water on the valley opening side increases and the saturation dissolution amount on the valley bottom side decreases. As a result, as shown in FIG. 6, the dissolved air (dissolved water) SGF in the water flow is changed from the low-speed flow region LF (high pressure region HPA: FIG. 4A) on the valley opening side to the high-speed flow region FF (low pressure region LPA: In FIG. 4B), the bubbles MB are deposited very actively.

また、図3に示すごとく、衝突部3をねじ部材5にて形成しており、複数巻の絞りリブ5rを、らせん状に一体形成している。ねじ山を絞りリブ5rとして簡易に利用できるほか、流れに対し絞りリブ5rが傾斜することで、絞りリブ5rの稜線部を横切る流れ成分が増加し、流れ剥離に伴う乱流発生効果が著しくなるので、炭酸ガス溶解効果及び気泡のさらなる微細化が図れる利点も生じている。   Further, as shown in FIG. 3, the collision portion 3 is formed by a screw member 5, and a plurality of winding ribs 5r are integrally formed in a spiral shape. In addition to being able to easily use the thread as the throttle rib 5r, when the throttle rib 5r is inclined with respect to the flow, the flow component crossing the ridge portion of the throttle rib 5r increases, and the effect of generating turbulent flow accompanying flow separation becomes significant. Therefore, the carbon dioxide dissolving effect and the advantage that the bubbles can be further refined are also produced.

以下、本発明の種々の変形例について説明する。図5及び図6は、水処理装置における突出部3の形成形態にかかる変形例であり、いずれも絞り部2cの断面を2つのセグメント領域2e,2eに分割する形態で衝突部を形成している。図5の構成では、ねじ部材からなる1対の衝突部30’,30’を絞り部2cの直径方向に対向させ、その先端面5u,5u間に高速流ギャップ2kを形成している。他方、図6の構成では高速流ギャップを形成せず、絞り部2cの断面を直径方向に横切る衝突部30をねじ部材により形成している。また、図7の水処理装置70では、部材本体6に対し絞り部2cを複数孔設し、図5と同様の衝突部30(もちろん、図7のごとく高速流ギャップ2kを有するものであってもよい)を各絞り部2cに形成した例を示すものである。   Hereinafter, various modifications of the present invention will be described. FIGS. 5 and 6 are modifications according to the form of the protrusion 3 in the water treatment apparatus, both of which form the collision part in the form of dividing the section of the throttle part 2c into two segment regions 2e and 2e. Yes. In the configuration of FIG. 5, a pair of collision parts 30 ′ and 30 ′ made of screw members are opposed to each other in the diameter direction of the throttle part 2 c, and a high-speed flow gap 2 k is formed between the tip surfaces 5 u and 5 u. On the other hand, in the configuration of FIG. 6, the high-speed flow gap is not formed, and the collision portion 30 that crosses the cross section of the throttle portion 2c in the diameter direction is formed by a screw member. Further, in the water treatment device 70 of FIG. 7, a plurality of throttle portions 2c are provided in the member body 6, and the collision portion 30 similar to FIG. 5 (of course, has a high-speed flow gap 2k as shown in FIG. This is an example in which each of the narrowed portions 2c is formed.

次に、図3のごとく、全ての衝突部3の外周面に絞りリブ5rを連続的に形成する構成では、絞り部2cに流れ込む流れの流速が大きいときに気泡析出が過剰となることも懸念される。そこで、図8、図9及び図10に示すごとく、衝突部の外周面の一部にのみ絞りリブ5rを形成して、谷状部での気泡析出頻度を抑制することも可能である。   Next, as shown in FIG. 3, in the configuration in which the throttle ribs 5r are continuously formed on the outer peripheral surfaces of all the collision parts 3, there is a concern that the bubble deposition becomes excessive when the flow velocity of the flow flowing into the throttle part 2c is large. Is done. Therefore, as shown in FIGS. 8, 9, and 10, it is also possible to form the squeezing rib 5r only on a part of the outer peripheral surface of the collision portion to suppress the bubble deposition frequency in the valley portion.

図8は、複数ある衝突部3の一部を絞りリブ5r付きとし、残余を絞りリブ5rなしとして構成した例である。この実施形態では、絞りリブ5r付きのものと絞りリブ5rなしのものとを周方向に交互に配置してある。また、特に高流速となる断面中心部に位置する衝突部3の先端部には絞りリブ5rを形成せず、残余の領域に絞りリブ5rを形成することが、気泡の過剰発生を抑制したい場合は有効である。図3においても、衝突部3の先端部をなす錐状部5tの外周面には絞りリブ5rを形成していなかったが、気泡発生が過剰である場合には、図9に示すように、錐状部5tに続く円筒状の周側面部の先端側領域において絞りリブ5rの形成を省略する構成も可能である。さらに、図10は、円筒状の周側面部に対し、絞りリブ5rを軸線方向にて断続的に形成した例を示している。また、図7のごとく、衝突部の外周面に絞りリブを形成しない構成とすることも可能である。   FIG. 8 shows an example in which a part of the plurality of collision portions 3 is provided with the throttle rib 5r and the remainder is not provided with the throttle rib 5r. In this embodiment, the ones with the diaphragm ribs 5r and the ones without the diaphragm ribs 5r are alternately arranged in the circumferential direction. Further, when it is desired to suppress the excessive generation of bubbles by forming the throttle rib 5r in the remaining region without forming the throttle rib 5r at the tip of the collision part 3 located at the center of the cross section where the flow velocity is particularly high. Is valid. Also in FIG. 3, the diaphragm rib 5r was not formed on the outer peripheral surface of the conical portion 5t that forms the tip of the collision portion 3, but when the bubble generation is excessive, as shown in FIG. A configuration in which the formation of the diaphragm rib 5r is omitted in the tip side region of the cylindrical peripheral side surface portion following the conical portion 5t is also possible. Further, FIG. 10 shows an example in which the diaphragm rib 5r is intermittently formed in the axial direction on the cylindrical peripheral side surface portion. Further, as shown in FIG. 7, it is also possible to adopt a configuration in which no diaphragm rib is formed on the outer peripheral surface of the collision portion.

次に、絞りリブは、図11に示すように、衝突部3の軸線周りにて周方向に閉じる形で独立した絞りリブ5sを、軸線方向に複数密接させて形成することも可能である。図11においては、独立した個々の絞りリブ5sを衝突部3の軸線と直交する向きに形成しているが、これを該軸線と直交する面に対し傾斜させて形成することも可能である。このようにすれば、図3と同様に、絞りリブが傾斜することで、流れ剥離に伴う乱流発生効果が著しくなり、炭酸ガス溶解に有効な撹拌効果が高められ、また、気泡のさらなる微細化を図ることができる。   Next, as shown in FIG. 11, it is possible to form a plurality of independent diaphragm ribs 5s in close contact with each other in the axial direction so as to be closed in the circumferential direction around the axis of the collision portion 3. In FIG. 11, independent individual restricting ribs 5 s are formed in a direction orthogonal to the axis of the collision portion 3, but it is also possible to form them by inclining with respect to a plane orthogonal to the axis. In this way, as in FIG. 3, the squeezing rib is inclined, so that the effect of generating turbulent flow accompanying flow separation becomes significant, the stirring effect effective for dissolving carbon dioxide gas is enhanced, and the bubbles are further refined. Can be achieved.

図3において、衝突部3の先端部をなす錐状部5tの先端角は、衝突部3の軸線を含む平面で切断した断面に表われる角度にて90°(つまり、全周角360°を衝突部3の数(4)で割った値)に設定されている。従って、図12に示すように、衝突部3の先端を絞り部2cの断面中心に合わせる形で、隣接する錐状部5tの側面同士が密接するように各衝突部3を位置決めすれば、高速流ギャップを非形成とすることも可能である。これにより、水の流れは各セグメント領域2eにもれなく分配され、絞りリブ5rを主体としたキャビテーション効果により気泡発生が可能となる。また、図13に示すように、内径方向に対向する1対の衝突部3,3について錐状部5tの先端を接触させ、残余の1対の衝突部3,3を軸線方向に後退させる配置とすることで、スリット部5tを形成することができる。   In FIG. 3, the tip angle of the cone-shaped portion 5t that forms the tip of the collision portion 3 is 90 ° (that is, the entire circumferential angle is 360 °) expressed by a cross section cut by a plane including the axis of the collision portion 3. (Value divided by the number (4) of the collision parts 3). Therefore, as shown in FIG. 12, if each collision part 3 is positioned so that the side surfaces of the adjacent cone-shaped parts 5t are in close contact with each other so that the tip of the collision part 3 is aligned with the center of the cross section of the throttle part 2c, It is also possible to have no flow gap. Thereby, the flow of water is distributed to each segment region 2e without any problem, and bubbles can be generated by the cavitation effect mainly composed of the throttle rib 5r. Further, as shown in FIG. 13, the tip of the cone-shaped part 5t is brought into contact with the pair of collision parts 3 and 3 opposed in the inner diameter direction, and the remaining pair of collision parts 3 and 3 are retracted in the axial direction. By doing so, the slit portion 5t can be formed.

衝突部3の先端は平坦に形成することも可能である。図14及び図15に示す例では、図3と同様の錐状部5tの先端部を切り欠く形で平坦な先端面5uを形成している。これにより、中心ギャップ2kの拡張と流れ均一化とを図ることができる。図14では、隣接する錐状部5tの側面同士を密接させているが、平坦な先端面5uを形成することで、中心ギャップ2kを周囲が閉じた形で形成している。また、図15では、隣接する錐状部5tの側面間にスリット部2gを形成した例を示す。   The tip of the collision portion 3 can be formed flat. In the example shown in FIGS. 14 and 15, the flat tip surface 5u is formed by cutting out the tip portion of the conical portion 5t similar to FIG. Thereby, expansion of the center gap 2k and flow uniformity can be achieved. In FIG. 14, the side surfaces of the adjacent conical portions 5t are brought into close contact with each other, but the center gap 2k is formed in a closed shape by forming a flat front end surface 5u. FIG. 15 shows an example in which the slit portion 2g is formed between the side surfaces of the adjacent conical portions 5t.

図16の構成においては、絞り部2cの断面を内径に沿って横切るように主衝突部130を配置し、さらに、該主衝突部130と直交する形で、絞り部2cの断面中心を挟んで内径方向に対向する1対の対向衝突部30とを設けた例である。対向衝突部30の各先端面と主衝突部130の外周面との間には、高速流ギャップを構成する外周ギャップ2jが形成されている。絞り部2cの内径寸法を縮小せざるを得ない場合、上記構成は中心ギャップ2kを形成する構成よりも簡略化できる。断面中心付近の流れは主衝突部130に衝突して迂回する形となるが、主衝突部130を迂回する遠心力の影響により増速しつつ対向衝突部30が形成する外周ギャップ2jを通過する形となるので、主衝突部130との衝突による流れ減速の影響がそれほど大きくない利点がある。   In the configuration of FIG. 16, the main collision portion 130 is disposed so as to cross the cross section of the throttle portion 2c along the inner diameter, and further, the cross section center of the throttle portion 2c is sandwiched between the main collision portion 130 and the main collision portion 130. This is an example in which a pair of opposed collision portions 30 opposed in the inner diameter direction are provided. An outer peripheral gap 2j constituting a high-speed flow gap is formed between each front end surface of the opposing collision unit 30 and the outer peripheral surface of the main collision unit 130. In the case where the inner diameter of the narrowed portion 2c must be reduced, the above configuration can be simplified as compared with the configuration in which the center gap 2k is formed. The flow in the vicinity of the center of the cross-section collides with the main collision portion 130 and detours, but passes through the outer peripheral gap 2j formed by the opposing collision portion 30 while being accelerated by the influence of centrifugal force detouring the main collision portion 130. Therefore, there is an advantage that the influence of the flow deceleration due to the collision with the main collision portion 130 is not so great.

図16の構成では、対向衝突部30の先端は平坦に形成され、外周ギャップ2jがスリット状に形成されている。スリット長手方向にキャビテーション領域を拡張できるので、微細気泡をより高濃度で発生することができる。主衝突部130は両端部が部材本体6に埋設される内径方向に一体の部材であり、絞り部2c内に露出する部分にてその外周面の全面に絞りリブ5rが形成されている。外周ギャップ2jにおいては、対向衝突部30の先端面と対向する主衝突部130の外周面が絞りリブ5rにより凹凸化しており、絞りリブ5r(山)位置ではギャップ間隔が狭小化して高速流領域が生じ、谷状部21ではギャップ間隔が拡大して低流速領域が生じる。その結果、隣接するこれら2領域間の圧力差に伴い低流速領域から高流速領域に向けて溶存気体の流れが生じ、さらに、図4Aないし図4Bにて示した谷状部21内で生ずる溶存気体の流れが加わることで、気泡析出が極めて活発化し、水の撹拌効果ひいては溶解効果が向上する。また、主衝突部130の外周面は、水流入側から対向衝突部30の先端面との対向位置に向けて間隔を縮小し,その絞り効果により流速が上昇することも、水の撹拌効果ひいては溶解効果を高める上で有利となっている。なお、図16中に破線で示すごとく、対向衝突部30の先端面を主衝突部130の外周面の絞りリブ5に当接させても、谷状部21の空間が外周ギャップ2jを形成する形とすることができる。   In the configuration of FIG. 16, the tip of the opposing collision part 30 is formed flat, and the outer peripheral gap 2j is formed in a slit shape. Since the cavitation region can be expanded in the slit longitudinal direction, fine bubbles can be generated at a higher concentration. The main collision part 130 is an integral member in the inner diameter direction in which both end parts are embedded in the member main body 6, and a throttle rib 5 r is formed on the entire outer peripheral surface of the part exposed in the throttle part 2 c. In the outer peripheral gap 2j, the outer peripheral surface of the main collision portion 130 facing the tip surface of the opposing collision portion 30 is uneven by the restriction rib 5r, and the gap interval is narrowed at the position of the restriction rib 5r (mountain) so that the high-speed flow region In the valley portion 21, the gap interval is increased and a low flow velocity region is generated. As a result, a flow of dissolved gas is generated from the low flow rate region to the high flow rate region due to the pressure difference between these two adjacent regions, and the dissolved gas is generated in the valley portion 21 shown in FIGS. 4A to 4B. By adding a gas flow, bubble deposition is extremely activated, and the stirring effect of water and the dissolution effect are improved. Further, the outer peripheral surface of the main collision part 130 is reduced in distance from the water inflow side to the position facing the front end surface of the opposite collision part 30, and the flow velocity increases due to the throttling effect. It is advantageous for enhancing the dissolution effect. Note that, as indicated by broken lines in FIG. 16, the space of the valley-shaped portion 21 forms the outer peripheral gap 2j even if the front end surface of the opposing collision portion 30 is brought into contact with the diaphragm rib 5 on the outer peripheral surface of the main collision portion 130. It can be shaped.

また、図17は、対向衝突部3,3の先端を先鋭に形成した例である。外周ギャップ2jにおいて対向衝突部3の先端付近の絞り効果が高められ、高流速化による炭酸ガス溶解効果向上を図ることができる。主衝突部は、各々平坦な先端面5uを有するとともに該先端面5uの外周に沿って面取り部3tが形成された1対の衝突部30,30を、該先端面5u,5uにて互いに接するように絞り部2cの内径方向に対向して配置形成している。対向衝突部3,3の先端は、主衝突部をなす2つの衝突部30,30の面取り部3tが作るV字状断面の溝部と対向する形で外周ギャップ2jを形成している。これにより、上記の対向衝突部3先端付近の高流速化効果が一層高められている。   FIG. 17 shows an example in which the front ends of the opposing collision portions 3 and 3 are sharply formed. In the outer circumferential gap 2j, the squeezing effect near the tip of the opposing collision portion 3 is enhanced, and the carbon dioxide dissolution effect can be improved by increasing the flow velocity. Each of the main collision parts has a flat front end surface 5u and a pair of collision parts 30 and 30 each having a chamfered portion 3t formed along the outer periphery of the front end surface 5u are in contact with each other at the front end surfaces 5u and 5u. In this manner, it is arranged so as to face the inner diameter direction of the throttle portion 2c. The front ends of the opposing collision portions 3 and 3 form an outer peripheral gap 2j so as to face a groove portion having a V-shaped cross section formed by the chamfered portion 3t of the two collision portions 30 and 30 forming the main collision portion. As a result, the effect of increasing the flow velocity in the vicinity of the tip of the opposed collision portion 3 is further enhanced.

また、図18、図19に示すように、主衝突部は、各々平坦な先端面5u,5uを有する1対の衝突部30’,30’(以下、主衝突部30’,30’と表示する)を、それら先端面5u,5u間に絞り部2cの断面中心を包含する中心ギャップ2kを形成する形で、絞り部2cの内径方向に対向して配置する形とすることも可能である。図18は、主衝突部30’,30’の先端部外周面(ひいては絞りリブ5r)に対し、対向衝突部30,30の各先端面を当接させた構成を示す。このように2つの衝突部30’,30’に分割し、その先端面間に中心ギャップ2kを形成することで、流速が最も大きくなる断面中心付近の流れは中心ギャップ2kにより絞られてさらに高速化する。また、図19は、対向衝突部30,30の各先端面5u,5uを主衝突部30’,30’の先端部外周面(ひいては絞りリブ5r)から離間させて、スリット状の外周ギャップ2jをさらに形成した例を示す。中心ギャップ2k内で絞られて圧縮される流れは、スリット状の外周ギャップ2jへ迂回することで流体抵抗の増加が極めて効果的に抑制される。また、外周ギャップ2jもスリット状に絞られているので迂回先での流速低下も低く抑えられる。   Further, as shown in FIGS. 18 and 19, the main collision portion is indicated by a pair of collision portions 30 ′, 30 ′ (hereinafter referred to as main collision portions 30 ′, 30 ′) each having flat tip surfaces 5u, 5u. It is also possible to form a central gap 2k that includes the center of the cross section of the throttle portion 2c between the tip surfaces 5u and 5u, and to be disposed opposite to the inner diameter direction of the throttle portion 2c. . FIG. 18 shows a configuration in which the distal end surfaces of the opposing collision portions 30 and 30 are brought into contact with the outer peripheral surfaces of the leading end portions of the main collision portions 30 ′ and 30 ′ (as a result, the diaphragm rib 5 r). By dividing into two collision portions 30 ′ and 30 ′ and forming the center gap 2k between the front end surfaces in this way, the flow in the vicinity of the center of the cross section where the flow velocity is maximized is restricted by the center gap 2k and further increased in speed. Turn into. FIG. 19 shows a slit-like outer peripheral gap 2j in which the front end surfaces 5u and 5u of the opposing collision portions 30 and 30 are separated from the outer peripheral surface of the front end portion of the main collision portions 30 ′ and 30 ′ (and consequently the diaphragm rib 5r). An example in which is further formed will be shown. The flow that is squeezed and compressed in the center gap 2k is diverted to the slit-shaped outer peripheral gap 2j, so that an increase in fluid resistance is extremely effectively suppressed. Further, since the outer peripheral gap 2j is also narrowed in a slit shape, a decrease in flow velocity at the detour destination can be suppressed to a low level.

図20は、3つの衝突部3によりセグメント領域2eを3つ形成した例である。また、セグメント領域の形成個数を5以上とすることも可能である。   FIG. 20 is an example in which three segment regions 2 e are formed by three collision portions 3. Further, the number of segment regions formed can be 5 or more.

図21は、水処理部材を、水の流れ方向に直列に配置される上流側の第一の水処理部材1と下流側の及び第二の水処理部材1’とを含むものとして構成した例である。上流側の第一の水処理部材1は、図2と全く同様の構成による炭酸ガス供給部を有しており、第二の水処理部材1’はその炭酸ガス供給部を省略した構造となっている。炭酸ガスは第一の水処理部材1に供給され、そこで第1段階目の炭酸ガスの粉砕・溶解が行われ、第二の水処理部材1’はその第一の水処理部材1にて未溶解の炭酸ガスをさらに粉砕・溶解する。直列接続された複数の水処理部材1,1’により、炭酸ガスは段階的に粉砕・溶解し、炭酸ガスの溶解効率を大幅に高めることができる。直列配置する水処理部材の数は、もちろん3段以上とすることも可能である。なお、複数の水処理部材の2以上のもののそれぞれに炭酸ガスを別経路にて分配供給する構成、たとえば、図21において、第二の水処理部材1’を、炭酸ガス供給部を有した第一の水処理部材1と同一のものに置き換えた構成とすることも可能である。   FIG. 21 shows an example in which the water treatment member is configured to include an upstream first water treatment member 1 and a downstream and second water treatment member 1 ′ arranged in series in the water flow direction. It is. The first water treatment member 1 on the upstream side has a carbon dioxide supply part having the same configuration as that in FIG. 2, and the second water treatment member 1 ′ has a structure in which the carbon dioxide supply part is omitted. ing. Carbon dioxide gas is supplied to the first water treatment member 1, where the first stage carbon dioxide gas is pulverized and dissolved, and the second water treatment member 1 ′ is not yet removed by the first water treatment member 1. The dissolved carbon dioxide gas is further pulverized and dissolved. The plurality of water treatment members 1, 1 ′ connected in series can pulverize and dissolve the carbon dioxide step by step, thereby greatly increasing the carbon dioxide dissolution efficiency. Of course, the number of water treatment members arranged in series can be three or more. In addition, the structure which distributes and supplies carbon dioxide gas to each of two or more of several water treatment members by another path | route, for example, in FIG. 21, 2nd water treatment member 1 'is the 1st which had the carbon dioxide gas supply part. It is also possible to adopt a configuration in which the same water treatment member 1 is replaced.

また、図22は、炭酸ガス供給部を、部材本体6の流入口に接続される水流入配管18上に設けられたガス注入ノズル60として構成されている。ガス注入ノズル60は周知のベンチュリ管として形成され、その絞り部に連通するガス吸引孔60hにガス供給管路12が接続され、炭酸ガスGが供給されるとともに、下流側の水処理部材1’にて粉砕・溶解されることとなる。   In FIG. 22, the carbon dioxide supply unit is configured as a gas injection nozzle 60 provided on the water inflow pipe 18 connected to the inlet of the member body 6. The gas injection nozzle 60 is formed as a well-known venturi pipe, and the gas supply line 12 is connected to the gas suction hole 60h communicating with the throttle portion to supply the carbon dioxide gas G, and the downstream water treatment member 1 ′. Will be crushed and dissolved.

一方、図23の水処理部材1”においては、衝突部3(ねじ部材)の軸線方向にガス供給通路3hを形成し、ここにコネクタ11を介してガス供給管路12を接続することにより、炭酸ガス供給部を構成している。この場合、ガス供給通路3hの内径は衝突部3の外形寸法による成約を受けるが、もしそれでガス供給流量が不足するようであれば、図24に示すように、複数の衝突部3の少なくとも2以上のものに同様のガス供給通路3hを形成し、炭酸ガスを分配供給することにより、炭酸ガス供給量を増加させることが可能である。   On the other hand, in the water treatment member 1 ″ of FIG. 23, a gas supply passage 3h is formed in the axial direction of the collision portion 3 (screw member), and a gas supply conduit 12 is connected thereto via a connector 11 here. In this case, the inner diameter of the gas supply passage 3h is contracted by the outer dimensions of the collision portion 3, but if the gas supply flow rate is insufficient, as shown in FIG. In addition, it is possible to increase the amount of carbon dioxide supplied by forming the same gas supply passage 3h in at least two of the plurality of collision portions 3 and distributing and supplying carbon dioxide.

また、図25〜図27に示すように、水の流通管路18を途中で複数に分岐させ、複数の水処理部材1をそれら分岐した流通管路上に並列に設けることも可能である。炭酸ガス供給部はそれら並列接続された水処理部材の少なくともいずれかに炭酸ガスを供給するものとして構成される。複数の水処理部材を並列に用いることで、処理対象の水の流量が大きい場合でも、必要な量の炭酸ガスを効率よく溶解することができる。   Moreover, as shown in FIGS. 25-27, it is also possible to branch the water distribution pipe 18 into a plurality on the way, and to provide a plurality of water treatment members 1 in parallel on the branched flow pipes. The carbon dioxide supply unit is configured to supply carbon dioxide to at least one of the water treatment members connected in parallel. By using a plurality of water treatment members in parallel, a necessary amount of carbon dioxide can be efficiently dissolved even when the flow rate of water to be treated is large.

図25においては、炭酸ガス供給部を形成した図2と同じ構成の水処理部材1を、分岐した流通管路のそれぞれに設けている。なお、各水処理部材1に対しては、同一の炭酸ガス源(たとえば、ガスボンベ)につながるガス供給管12を分岐させ、各水処理部材1に分配供給するようにしている。分岐したガス供給管12のそれぞれに、供給する炭酸ガスの流量を個別に調整する流量調整バルブ29を設けておくと、各水処理部材1に対する水の供給状況に応じて炭酸ガスの供給量を適正化することができるようになる(ただし、省略も可能)。   In FIG. 25, the water treatment member 1 having the same configuration as that of FIG. 2 in which the carbon dioxide supply part is formed is provided in each of the branched flow pipes. For each water treatment member 1, a gas supply pipe 12 connected to the same carbon dioxide gas source (for example, gas cylinder) is branched and distributed to each water treatment member 1. If each of the branched gas supply pipes 12 is provided with a flow rate adjusting valve 29 that individually adjusts the flow rate of the supplied carbon dioxide gas, the supply amount of the carbon dioxide gas can be adjusted according to the water supply status to each water treatment member 1. It can be optimized (but can be omitted).

また、図26に示すように、図22と同様の、炭酸ガス供給部を形成しない水処理部材1’を複数並列に分配配置し、その分配分岐点よりも上流側にガス注入ノズル60(図22も参照)を設けることもできる。各水処理部材1’への炭酸ガスの分配を均一に行うことができる。   Further, as shown in FIG. 26, a plurality of water treatment members 1 ′ that do not form a carbon dioxide supply section are distributed and arranged in parallel, and the gas injection nozzle 60 (FIG. 26) is located upstream from the distribution branch point. 22 can also be provided. Carbon dioxide gas can be uniformly distributed to each water treatment member 1 ′.

一方、図27に示すように、複数並列に分配配置された水処理部材1,1’のうち、一部のもの(ここでは図面下側の水処理部材1’)にのみ炭酸ガス供給部(ガス供給管12+ガス注入管10、図2と同様)を設け、炭酸ガスを溶解して水と溶解しない水とを混合して流出させる構成も可能である。また、図28に示すように、図21に開示したような、直列接続される複数の水処理部材1,1’の組を、複数並列に分岐接続することも可能である。   On the other hand, as shown in FIG. 27, a carbon dioxide gas supply unit (only a part of the water treatment members 1 and 1 ′ distributed and arranged in parallel (here, the water treatment member 1 ′ on the lower side of the drawing)) ( A gas supply pipe 12 + gas injection pipe 10 (similar to FIG. 2) may be provided, and a structure in which carbon dioxide gas is dissolved and water and undissolved water are mixed and discharged is also possible. As shown in FIG. 28, a plurality of sets of water treatment members 1 and 1 'connected in series as disclosed in FIG. 21 can be branched and connected in parallel.

次に、図30に示すように(図1と同じ構成の部分には同一の符号を付与して詳細な説明は省略する。水の代わりに次亜塩素酸ナトリウム水溶液を使用することもできる。この構成では、次亜塩素酸ナトリウム水溶液を収容するタンク50が設けられ、ポンプ53により該溶液が水流入口19に供給される。これにより、次亜塩素酸ナトリウム水溶液に炭酸ガスが効率よく溶解し、次亜塩素酸ナトリウム水溶液のpH値が4.3〜6前後の弱酸性に保たれ、殺菌や消毒に有効な解離状態の次亜塩素酸濃度を大幅に高めることができる。また、炭酸特有のpH緩衝作用によりpH値の変動も小さくすることができ、例えば、従来行われていた塩酸添加によるpH調整方式よりも、pH値が3以下の低い値にアンダーシュートする現象が極めて生じにくくなり、有害な遊離塩素ガスの発生を抑えることができる。次亜塩素酸ナトリウム水溶液は、次亜塩素酸イオン濃度が10ppm以上1000ppm以下に調整されており、炭酸ガスの溶解濃度は200ppm以上1500ppm以下に調整される。炭酸ガスの溶解濃度は200ppm以上1500ppm以下に調整されることで、次亜塩素酸ナトリウム水溶液のpH値を4.3〜6の、消毒効果が最適されるpH域に安定して維持することができる。   Next, as shown in FIG. 30 (the same reference numerals are given to the same components as in FIG. 1 and the detailed description is omitted. An aqueous sodium hypochlorite solution can be used instead of water. In this configuration, a tank 50 for storing a sodium hypochlorite aqueous solution is provided, and the solution is supplied to the water inlet 19 by a pump 53. Thereby, carbon dioxide gas is efficiently dissolved in the sodium hypochlorite aqueous solution. The pH value of the aqueous sodium hypochlorite solution is kept at a weak acidity of about 4.3 to 6, and the concentration of hypochlorous acid in a dissociated state effective for sterilization and disinfection can be greatly increased. The pH buffering action can also reduce the fluctuation of the pH value. For example, the phenomenon of undershooting to a lower value of 3 or less than the conventional pH adjustment method by adding hydrochloric acid is extremely generated. The sodium hypochlorite aqueous solution has a concentration of hypochlorite ions adjusted to 10 ppm or more and 1000 ppm or less, and the dissolved concentration of carbon dioxide gas is 200 ppm or more and 1500 ppm. The dissolution concentration of carbon dioxide is adjusted to 200 ppm or more and 1500 ppm or less, so that the pH value of the sodium hypochlorite aqueous solution is 4.3 to 6 and stable in the pH range where the disinfection effect is optimized. Can be maintained.

図2の流路及び衝突部の具体的寸法を次のように定めた水処理部材を用意した。
・流入口2n及び流出口2x: 内径=10mm
・絞り部2c: 内径D2=5.3mm、流路長L2=6mm
・衝突部3: ねじ外径:M2、先端部は軸線含む断面にて先端角90°のとがり先(ただし、表1の番号9はねじ山なし)
・中心ギャップ2kの大きさ(対向する衝突部3のとがり先間長):0.18mm(ただし、表1の番号8及び9はギャップなし)
A water treatment member in which specific dimensions of the flow path and the collision portion in FIG. 2 were determined as follows was prepared.
Inlet 2n and outlet 2x: Inner diameter = 10 mm
-Restricted portion 2c: inner diameter D2 = 5.3 mm, flow path length L2 = 6 mm
-Collision part 3: Screw outer diameter: M2, the tip part is a point including a shaft with a tip angle of 90 ° (however, number 9 in Table 1 has no thread)
The size of the center gap 2k (the length between the pointed ends of the opposing collision part 3): 0.18 mm (however, numbers 8 and 9 in Table 1 have no gap)

該水処理部材にホースを接続し、流入口2nに表1に示す種々の供給圧力となるように38℃の温水を供給し流量を測定し、絞り部における平均流速を算出した。この水処理部材を2本用意し、これを図27に示す形態で並列接続し、その一方にのみ炭酸ガスを元供給圧力を0.3MPaとして、種々の流量となるように供給した。得られた炭酸ガス溶解水のpH及び炭酸ガス濃度を測定するとともに、未溶解の炭酸ガスを水上置換により捕集し、その体積を測定するとともに、炭酸ガス溶解効率を算出した。以上の結果を表1にまとめて示す。   A hose was connected to the water treatment member, hot water at 38 ° C. was supplied to the inlet 2n at various supply pressures as shown in Table 1, the flow rate was measured, and the average flow velocity at the throttle portion was calculated. Two water treatment members were prepared and connected in parallel in the form shown in FIG. 27, and carbon dioxide was supplied to only one of them at various flow rates with an original supply pressure of 0.3 MPa. While measuring the pH and carbon dioxide concentration of the obtained carbon dioxide-dissolved water, undissolved carbon dioxide was collected by water replacement, and its volume was measured, and the carbon dioxide dissolution efficiency was calculated. The above results are summarized in Table 1.

Figure 2015174056
Figure 2015174056

水処理部材に供給される水流の動水圧が0.06MPa以上、絞り部における水流の平均流速が3.3m/秒以上、炭酸ガス供給部による水処理部材への大気圧換算での炭酸ガス流量をA、水流量をBとしたとき、A/Bの値が0.2以上1.3以下となるように、炭酸ガスの流量を調整することで、炭酸ガスの水への溶解効率を70%以上に高めることが可能となることがわかる。特に、A/Bの値が0.6を超えるような多量の炭酸ガスを流通した場合でも、本発明特有の構成の水処理部材の構成を採用することにより、これを極めて迅速に、かつ70%以上の高効率にて溶解することが可能となっている。このとき、炭酸ガスの溶解濃度は200ppm以上1500ppm以下の高濃度とできている。   The dynamic water pressure of the water flow supplied to the water treatment member is 0.06 MPa or more, the average flow velocity of the water flow at the throttle part is 3.3 m / second or more, and the carbon dioxide gas flow rate in terms of atmospheric pressure to the water treatment member by the carbon dioxide supply part Is A and the water flow rate is B, the carbon dioxide gas flow rate is adjusted so that the value of A / B is 0.2 or more and 1.3 or less, so that the dissolution efficiency of carbon dioxide gas in water is 70. It can be seen that it can be increased to more than%. In particular, even when a large amount of carbon dioxide gas having an A / B value exceeding 0.6 is circulated, by adopting the configuration of the water treatment member having a configuration unique to the present invention, this can be achieved very quickly and 70 It is possible to dissolve at a high efficiency of at least%. At this time, the dissolution concentration of carbon dioxide gas is set to a high concentration of 200 ppm to 1500 ppm.

なお、表1の各番号の水サンプルについては、水槽に水をため、1分間放置して粗い気泡を浮上させた後、レーザー回折式粒度分布測定装置((株)島津製作所:SALD7100H)により、気泡径分布を測定した。すると、番号9を除くすべての水について、平均径が0.1μm〜0.4μmのウルトラファインバブルが検出された。   In addition, about the water sample of each number of Table 1, after letting water in a water tank and letting it stand for 1 minute and raising a rough bubble, with a laser diffraction type particle size distribution measuring device (Corporation Shimadzu Corporation: SALD7100H), The bubble size distribution was measured. Then, ultra fine bubbles having an average diameter of 0.1 μm to 0.4 μm were detected for all the water except for No. 9.

1,1 水処理部材
2c 絞り部
2e セグメント領域
2n 流入口
2x 流出口
3,30,30’,130 衝突部
5t 錐状部
5r 絞りリブ
6 部材本体
12 ガス供給管路(炭酸ガス供給部)
DESCRIPTION OF SYMBOLS 1,1 Water treatment member 2c Restriction part 2e Segment area | region 2n Inlet 2x Outlet 3,30,30 ', 130 Colliding part 5t Conical part 5r Restriction rib 6 Member main body 12 Gas supply line (carbon dioxide supply part)

Claims (14)

水流入側となる流入端と水流出側となる流出端とが定められ、前記流入端に開口する流入口と前記流出端に開口する流出口とをつなぐ水流路が貫通形態に形成されるとともに、前記流路の途中位置に前記流入口よりも流通断面積が小さい絞り部が形成された部材本体と、前記絞り部にて前記流路の軸断面を2以上のセグメント領域に区画する形態で前記流路の内周面から突出するとともに外周面に周方向の絞りリブを複数巻備え前記絞り部の流路断面積をさらに減少させる衝突部とを有した水処理部材と、
前記部材本体の前記水流路内に当該部材本体の外部に位置する炭酸ガス供給源から炭酸ガスを流入させる炭酸ガス供給部とを備え、
前記水理部材の前記部材本体の前記流入端に供給された水の流れを、前記衝突部に衝突させた後、各前記セグメント領域に分配しつつ増速して通過させ、当該衝突部の直下流に形成される乱流域に前記炭酸ガスを巻き込んで混合粉砕し溶解させるようにしたことを特徴とする炭酸ガス溶解装置。
An inflow end that is a water inflow side and an outflow end that is a water outflow side are defined, and a water flow path that connects an inflow opening that opens to the inflow end and an outflow opening that opens to the outflow end is formed in a through shape. A member main body in which a throttle part having a smaller flow cross-sectional area than the inlet is formed at an intermediate position of the flow path, and the axial section of the flow path is divided into two or more segment regions by the throttle part A water treatment member having a collision portion that protrudes from the inner peripheral surface of the flow path and has a plurality of circumferentially-shaped throttle ribs on the outer peripheral surface, and further reduces the flow path cross-sectional area of the throttle portion;
A carbon dioxide gas supply section for introducing carbon dioxide gas from a carbon dioxide gas supply source located outside the member main body into the water flow path of the member main body,
After the water flow supplied to the inflow end of the member body of the hydraulic member collides with the collision part, the water flow is increased while passing through the segment areas, and is directly passed to the collision part. A carbon dioxide gas dissolving apparatus, wherein the carbon dioxide gas is involved in a turbulent flow region formed downstream, mixed, pulverized, and dissolved.
前記絞り部の前記内周面から突出する複数の前記衝突部の2つ以上のものの先端部同士の間に前記絞り部内の水流をさらに高速化する高速流ギャップが形成されている請求項1記載の炭酸ガス溶解装置。 The high-speed flow gap which further speeds up the water flow in the said throttle part is formed between the front-end | tip parts of two or more things of the said collision part which protrudes from the said internal peripheral surface of the said throttle part. Carbon dioxide gas dissolving device. 前記衝突部は前記絞り部にて前記水流路の軸断面を3以上のセグメント領域に区画する形態で形成されている請求項1記載の炭酸ガス溶解装置。 The carbon dioxide gas dissolving device according to claim 1, wherein the collision portion is formed by the throttle portion so as to divide an axial cross section of the water flow path into three or more segment regions. 前記絞り部の前記内周面から突出する複数の前記衝突部の2つ以上のものの先端部同士の間に前記絞り部内の水流をさらに高速化する高速流ギャップが形成されている請求項3記載の炭酸ガス溶解装置。 The high-speed flow gap which further speeds up the water flow in the said throttle part is formed between the front-end | tip parts of two or more things of the said some collision part which protrudes from the said internal peripheral surface of the said throttle part. Carbon dioxide gas dissolving device. 前記衝突部の先端部には先端に向かうほど軸断面を縮小させる錐状部が形成されてなり、前記セグメント領域を挟んで互いに隣接する2つの前記衝突部において前記錐状部の外周面間に、前記高速流ギャップを構成するスリット部が形成されている請求項2記載の炭酸ガス溶解装置。 A conical portion that reduces the axial cross section toward the distal end is formed at the distal end portion of the collision portion, and the two collision portions adjacent to each other with the segment region interposed between the outer peripheral surfaces of the conical portions. The carbon dioxide gas dissolving device according to claim 2, wherein a slit portion constituting the high-speed flow gap is formed. 前記炭酸ガス供給部は、前記衝突部よりも上流側にて前記部材本体の壁部に形成され前記水通路の内周面に一端がガス流出口として開口するとともに、他端が前記部材本体の外面に炭酸ガス供給口として開口するガス供給通路を備える請求項1ないし請求項5のいずれか1項に記載の炭酸ガス溶解装置。 The carbon dioxide supply part is formed in the wall part of the member main body on the upstream side of the collision part, and has one end opened as a gas outlet on the inner peripheral surface of the water passage, and the other end of the member main body. The carbon dioxide dissolving apparatus according to any one of claims 1 to 5, further comprising a gas supply passage that opens as a carbon dioxide supply port on an outer surface. 前記ガス供給通路の前記ガス流出口が前記絞り部に開口してなる請求項6記載の炭酸ガス溶解装置。 The carbon dioxide dissolving apparatus according to claim 6, wherein the gas outlet of the gas supply passage is opened to the throttle portion. 前記炭酸ガス供給部は、前記部材本体の前記流入口に接続される水流入配管上に設けられたガス注入ノズルである請求項1ないし請求項5のいずれか1項に記載の炭酸ガス溶解装置。 6. The carbon dioxide gas dissolving device according to claim 1, wherein the carbon dioxide supply unit is a gas injection nozzle provided on a water inflow pipe connected to the inflow port of the member main body. . 前記水処理部材は前記水の流れ方向に直列に配置される上流側の第一の水処理部材と下流側の及び第二の水処理部材とを含むものであり、前記炭酸ガス供給部は前記第一の水処理部材に前記炭酸ガスを供給するものであり、前記第二の水処理部材は前記第一の水処理部材にて未溶解の前記炭酸ガスをさらに粉砕・溶解するものである請求項1ないし請求項8のいずれか1項に記載の炭酸ガス溶解装置。 The water treatment member includes an upstream first water treatment member and a downstream and second water treatment member arranged in series in the water flow direction, and the carbon dioxide supply unit is The carbon dioxide gas is supplied to a first water treatment member, and the second water treatment member further pulverizes and dissolves the undissolved carbon dioxide gas in the first water treatment member. The carbon dioxide gas dissolving device according to any one of claims 1 to 8. 前記水の流通管路が途中で複数に分岐するとともに、複数の前記水処理部材がそれら分岐した流通管路上に並列に設けられ、前記炭酸ガス供給部はそれら並列接続された前記水処理部材の少なくともいずれかに前記炭酸ガスを供給するものである請求項1ないし請求項9のいずれか1項に記載の炭酸ガス溶解装置。 The water distribution pipe is branched into a plurality of parts along the way, and a plurality of the water treatment members are provided in parallel on the branched flow pipes, and the carbon dioxide supply part is connected to the water treatment members connected in parallel. The carbon dioxide gas dissolving device according to any one of claims 1 to 9, wherein the carbon dioxide gas is supplied to at least one of them. 前記水処理部材に供給される水流の動水圧が0.06MPa以上0.5MPa以下であり、前記絞り部における水流の平均流速が3.3m/秒以上10m/秒以下であり、前記炭酸ガス供給部による前記水処理部材への大気圧換算での炭酸ガス流量をA、水流量をBとしたとき、A/Bの値が0.2以上1.3以下となるように、前記炭酸ガスの流量が調整される請求項1記載の炭酸ガス溶解装置。 The dynamic water pressure of the water flow supplied to the water treatment member is 0.06 MPa or more and 0.5 MPa or less, the average flow velocity of the water flow in the throttle portion is 3.3 m / second or more and 10 m / second or less, and the carbon dioxide supply When the carbon dioxide flow rate in terms of atmospheric pressure to the water treatment member by the part is A and the water flow rate is B, the carbon dioxide gas flow rate is adjusted so that the value of A / B is 0.2 or more and 1.3 or less. The carbon dioxide dissolving apparatus according to claim 1, wherein the flow rate is adjusted. 前記炭酸ガスの溶解濃度が200ppm以上1500ppm以下である請求項11記載の炭酸ガス溶解装置。 The carbon dioxide gas dissolving device according to claim 11, wherein a dissolution concentration of the carbon dioxide gas is 200 ppm to 1500 ppm. 前記水として次亜塩素酸ナトリウム水溶液が使用される請求項1ないし請求項12のいずれか1項に記載の炭酸ガス溶解装置。 The carbon dioxide dissolving apparatus according to any one of claims 1 to 12, wherein an aqueous sodium hypochlorite solution is used as the water. 前記次亜塩素酸ナトリウム水溶液における次亜塩素酸イオン濃度が10ppm以上1000ppm以下に調整され、前記炭酸ガスの溶解濃度が200ppm以上1500ppm以下に調整される請求項13記載の炭酸ガス溶解装置。 The carbon dioxide dissolving apparatus according to claim 13, wherein a hypochlorite ion concentration in the sodium hypochlorite aqueous solution is adjusted to 10 ppm to 1000 ppm, and a dissolution concentration of the carbon dioxide gas is adjusted to 200 ppm to 1500 ppm.
JP2014053530A 2014-03-17 2014-03-17 Carbon dioxide gas dissolution device Pending JP2015174056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053530A JP2015174056A (en) 2014-03-17 2014-03-17 Carbon dioxide gas dissolution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053530A JP2015174056A (en) 2014-03-17 2014-03-17 Carbon dioxide gas dissolution device

Publications (1)

Publication Number Publication Date
JP2015174056A true JP2015174056A (en) 2015-10-05

Family

ID=54253772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053530A Pending JP2015174056A (en) 2014-03-17 2014-03-17 Carbon dioxide gas dissolution device

Country Status (1)

Country Link
JP (1) JP2015174056A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6126728B1 (en) * 2016-07-25 2017-05-10 丸福水産株式会社 Mixed processing body, mixed processing method, fluid mixer, gas-liquid mixing processing device, and fishery culture system
JPWO2016178436A1 (en) * 2015-05-07 2017-05-18 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method, gas dissolving method and gas dissolving apparatus using the same
JPWO2018021092A1 (en) * 2016-07-25 2018-07-26 丸福水産株式会社 Mixed processing body, mixed processing method, mixed product fluid, fluid mixer, fluid mixing processing device, fish culture system, and fish culture method
JP2018144018A (en) * 2017-03-06 2018-09-20 株式会社ウォーターデザイン Liquid treatment nozzle and core element for liquid treatment nozzle
JP2020189286A (en) * 2019-05-22 2020-11-26 啓雄 加藤 Liquid processing nozzle
JP2020189274A (en) * 2019-05-22 2020-11-26 株式会社リスニ Liquid treatment device
JP2022079413A (en) * 2020-11-16 2022-05-26 株式会社アクアフューチャー研究所 Liquid processing nozzle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016178436A1 (en) * 2015-05-07 2017-05-18 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method, gas dissolving method and gas dissolving apparatus using the same
JP6126728B1 (en) * 2016-07-25 2017-05-10 丸福水産株式会社 Mixed processing body, mixed processing method, fluid mixer, gas-liquid mixing processing device, and fishery culture system
JPWO2018021092A1 (en) * 2016-07-25 2018-07-26 丸福水産株式会社 Mixed processing body, mixed processing method, mixed product fluid, fluid mixer, fluid mixing processing device, fish culture system, and fish culture method
JP2018144018A (en) * 2017-03-06 2018-09-20 株式会社ウォーターデザイン Liquid treatment nozzle and core element for liquid treatment nozzle
JP2020189286A (en) * 2019-05-22 2020-11-26 啓雄 加藤 Liquid processing nozzle
JP2020189274A (en) * 2019-05-22 2020-11-26 株式会社リスニ Liquid treatment device
JP7370534B2 (en) 2019-05-22 2023-10-30 株式会社リスニ liquid processing equipment
JP7376904B2 (en) 2019-05-22 2023-11-09 株式会社タケシタ liquid handling nozzle
JP2022079413A (en) * 2020-11-16 2022-05-26 株式会社アクアフューチャー研究所 Liquid processing nozzle
WO2023027136A1 (en) * 2020-11-16 2023-03-02 株式会社タケシタ Liquid treatment nozzle
JP7260925B2 (en) 2020-11-16 2023-04-19 株式会社タケシタ liquid handling nozzle

Similar Documents

Publication Publication Date Title
JP2015174056A (en) Carbon dioxide gas dissolution device
JP5712292B2 (en) Bubble generation mechanism and shower head with bubble generation mechanism
JP2015174055A (en) Gas dissolution device
JP6182715B2 (en) Liquid processing nozzle, liquid processing method, gas dissolving method and gas dissolving apparatus using the same
WO2014192896A1 (en) Micronanobubble generation method, micronanobubble generator, and micronanobubble generation device
JP2012040448A (en) Microbubble generator
JP2008161832A (en) Bubble generator
CN207770105U (en) A kind of micro-nano bubble showerhead
JP4807967B2 (en) Bathing equipment
JP2008161819A (en) Gas dissolving device
JP2014121689A (en) Carbon dioxide microbubble generating unit
JP2008161822A (en) Gas dissolving device and microbubble feeding device
CN101157488A (en) Micro-fine air bubble generating device
WO2015072461A1 (en) Microbicidal liquid-generating device
JP2011240268A (en) Mechanism for generating microbubbles
JP3174668U (en) Shower nozzle that generates microbubbles of air and carbon dioxide
KR101286480B1 (en) Apparatus for dissolving a gases into liquids for generating micro bubble
JP2007089702A (en) Shower apparatus
JP6067201B2 (en) Fine bubble generating method, fine bubble generating device, etc.
KR20080105008A (en) Apparatus and method for generating micro bubbles
JP2011240267A (en) Mechanism for generating microbubble
CN106731935B (en) Self-aeration microbubble generator
JP2022111961A (en) Liquid processing nozzle
JP2008161830A (en) Bubble generator
CN107625470A (en) Milk foot bath bathtub