JP2018144018A - Liquid treatment nozzle and core element for liquid treatment nozzle - Google Patents

Liquid treatment nozzle and core element for liquid treatment nozzle Download PDF

Info

Publication number
JP2018144018A
JP2018144018A JP2017058189A JP2017058189A JP2018144018A JP 2018144018 A JP2018144018 A JP 2018144018A JP 2017058189 A JP2017058189 A JP 2017058189A JP 2017058189 A JP2017058189 A JP 2017058189A JP 2018144018 A JP2018144018 A JP 2018144018A
Authority
JP
Japan
Prior art keywords
liquid
core
flow path
liquid flow
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017058189A
Other languages
Japanese (ja)
Other versions
JP6762461B2 (en
Inventor
啓雄 加藤
Haruo Kato
啓雄 加藤
鈴木 文彦
Fumihiko Suzuki
文彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Water Design Co Ltd
Original Assignee
Water Design Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Water Design Co Ltd filed Critical Water Design Co Ltd
Priority to JP2017058189A priority Critical patent/JP6762461B2/en
Publication of JP2018144018A publication Critical patent/JP2018144018A/en
Application granted granted Critical
Publication of JP6762461B2 publication Critical patent/JP6762461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a liquid treatment nozzle which generates fine air bubbles by a cavitation system, and of which the design versatility is drastically improved by raising mutual independence between a core part and surrounding components, and a core element for the liquid treatment nozzle.SOLUTION: A liquid treatment nozzle 100 is provided with: a nozzle casing 50 with an accommodation passage part 56 in a penetrated form for forming an inflow side opening part 54 on one end, and forming an outflow side opening part 55 on the other end, and in which connection joint parts 51, 52 to a piping system are formed at a formation side end at least of the inflow side opening part 54; and a treatment function part 60 which is arranged at the accommodation passage part 56 of the nozzle casing 50, and constituted as an aggregate of a plurality of constituting elements having individual fluid passages 9 and formed to be interpolated at a predetermined position in the accommodation passage part 56 from the inflow side opening part 54 or the outflow side opening part 55, in which one or a plurality of core elements 1 for performing supersaturation deposition of dissolved gas of liquid to perform fine air bubble generation treatment are incorporated in the treatment function part 60.SELECTED DRAWING: Figure 2

Description

この発明は微細気泡発生に使用する液体処理ノズル及び液体処理ノズル用コアエレメントに関するものである。  The present invention relates to a liquid processing nozzle used for generating fine bubbles and a core element for a liquid processing nozzle.

近年、マイクロバブル(ファインバブル)あるいはナノバブル(ウルトラファインバブル)と称される微細気泡が多くの用途に応用され、種々の気泡発生機構が提案されている。特許文献1に開示された二相流旋回方式のものは、外気を旋回流に巻き込んで強制粉砕することにより微細化を図るものであり、気泡径が1μm未満となるナノバブルの発生効率が悪い欠点がある。  In recent years, fine bubbles called microbubbles (fine bubbles) or nanobubbles (ultra fine bubbles) have been applied to many applications, and various bubble generation mechanisms have been proposed. The two-phase flow swirling method disclosed in Patent Document 1 is intended to reduce the size by entraining outside air into the swirling flow and forcibly pulverizing it, and has the disadvantage of poor generation efficiency of nanobubbles with a bubble diameter of less than 1 μm. There is.

一方、水の流路にベンチュリやオリフィスにより絞り孔を設け、水が高流速化して通過する際のベルヌーイの定理に由来して生ずる減圧効果により、溶存空気を微細気泡として析出させる、いわゆるキャビテーション方式による微細気泡発生機構も種々提案されている(特許文献2〜8)。特に、特許文献3〜8に開示された方式は、絞り孔の途中にねじ部材を配置し、そのねじ谷、あるいは対向するねじ部材間に形成されたギャップにて水流のさらなる高速化を図るものであり、キャビテーション効率を向上させてより高密度にナノバブルを発生することができる。この方式の利点は、外部から気泡原料となるガスの供給機構が不要であり、ノズルも小型で構造が単純な点にある。例えば、微細気泡を導入したい液の供給配管があれば、その配管の途上にノズルをインライン設置するだけで微細気泡効果を極めて簡単かつ安価に享受でき、設置スペースも小さくて済む。  On the other hand, a so-called cavitation method is used in which a throttle hole is provided in the water flow path by a venturi or an orifice, and the dissolved air is precipitated as fine bubbles by the pressure reducing effect resulting from Bernoulli's theorem when water passes at a high flow rate. Various microbubble generation mechanisms have been proposed (Patent Documents 2 to 8). In particular, in the methods disclosed in Patent Documents 3 to 8, a screw member is arranged in the middle of the throttle hole, and the water flow is further accelerated by the gap formed between the screw valleys or the opposing screw members. Thus, cavitation efficiency can be improved and nanobubbles can be generated at a higher density. The advantage of this method is that a gas supply mechanism that is a bubble material from the outside is not required, the nozzle is small, and the structure is simple. For example, if there is a supply pipe for a liquid into which fine bubbles are to be introduced, the fine bubble effect can be enjoyed very simply and inexpensively by simply installing a nozzle in-line along the pipe, and the installation space can be reduced.

特開2008−229516号公報JP 2008-229516 A 特開2014−147901号公報JP 2014-147901 A WO2013/011570号公報WO2013 / 011570 WO2010/055702号公報WO2010 / 055702 publication WO2013/012069号公報WO2013 / 012069 特開2011−240206号公報JP 2011-240206 A WO2016−178436号公報WO2016-178436 WO2016−195116号公報WO2016-195116

キャビテーション方式の微細気泡発生装置は、ノズルのねじ部を通過する液の流速を気泡発生に十分な高速に確保する必要があり、送液流量に応じてノズルの流通断面積を個別に設定する必要がある。その結果、求められる流量が異なればノズルの流通断面積や気泡発生を司るねじ部材の仕様も異なるものとなる(特許文献8を参照)。例えば、特許文献4〜8に開示されているノズルは、ねじを組み込んだ気泡発生部であるコア部が、配管接続用の継手部が形成されるノズル本体と一体不可分に構成されている。その結果、種々の設置先における配管系の内径や継手寸法などが規格等により共通していても、要求される流量が異なれば全体を別のノズルとして構成せざるを得ず、パーツ等の共用化を図るといった設計汎用性に乏しい欠点がある。また、設置先配管のスペース上の都合により、ノズルの全長に制約が加わる場合も、コア部の長さは変わらなくとも、前後の絞り部の全長は見直さなければならない。この場合もノズル本体は、絞り部とコア部が一体化されている関係上、全体を個別に設計せざるを得ないのである。  The cavitation type fine bubble generator needs to secure the flow velocity of the liquid passing through the threaded part of the nozzle at a high speed sufficient to generate bubbles, and the flow cross-sectional area of the nozzle needs to be set individually according to the liquid flow rate. There is. As a result, if the required flow rate is different, the cross-sectional area of the nozzle and the specification of the screw member that controls the generation of bubbles are also different (see Patent Document 8). For example, in the nozzles disclosed in Patent Documents 4 to 8, a core portion that is a bubble generating portion incorporating a screw is inseparably configured with a nozzle body in which a joint portion for pipe connection is formed. As a result, even if the internal diameter and joint dimensions of piping systems at various installation locations are common due to standards, etc., if the required flow rate is different, the entire nozzle must be configured as a separate nozzle, and parts can be shared. There is a drawback that the design versatility is poor. In addition, even when the total length of the nozzle is restricted due to the space of the installation destination piping, the total length of the front and rear throttle portions must be reviewed even if the length of the core portion does not change. In this case as well, the entire nozzle body has to be individually designed because of the integrated throttle part and core part.

一方、特許文献2及び3に開示されている構成は、気泡発生を担うノズルの本体を円柱状に構成し、設置先となる配管や機器筐体(例えばシャワーの握り手部)の内側に内挿するようになっている。この構成は、ノズル本体から継手部が分離されてはいるものの、気泡発生するコア部(高流速流路部)に対し、前後のテーパ状の絞り部が一体に形成されている点については同じであり、設置先に応じてノズル本体全体を個別に設計しなければならない点に何ら変わりはない。  On the other hand, in the configurations disclosed in Patent Documents 2 and 3, the main body of the nozzle responsible for generating bubbles is formed in a columnar shape, and is installed inside a pipe or an equipment housing (for example, a handgrip part of a shower) as an installation destination. It comes to insert. This configuration is the same in that the front and rear tapered constrictions are formed integrally with the core (the high flow rate channel) where bubbles are generated, although the joint is separated from the nozzle body. There is no change in that the entire nozzle body must be individually designed according to the installation destination.

本発明の課題は、キャビテーション方式にて微細気泡発生を担う液体処理ノズルを構成するにあたり、気泡発生を担うコア部とその周辺の構成要素との相互独立性を高め、設置先の送液流量や設置スペース等に応じて仕様の異なるノズルが要望される場合にあってもパーツ共用化を容易に図ることができ、ひいては設計汎用性が大幅に改善された液体処理ノズル及び液体処理ノズル用コアエレメントを提供することにある。  The object of the present invention is to increase the mutual independence between the core part responsible for bubble generation and its surrounding components in configuring the liquid processing nozzle responsible for the generation of fine bubbles by the cavitation method, Even when nozzles with different specifications are required depending on the installation space, etc., it is possible to easily share parts, and as a result, the liquid processing nozzle and the core element for the liquid processing nozzle with greatly improved design versatility Is to provide.

本発明は、処理対象となる液体を流通させる配管系に組み込んで使用される液体処理ノズルにかかるものであり、
一端に流入側開口部を他端に流出側開口部を形成する貫通形態の収容通路部を備えるとともに、少なくも流入側開口部の形成側端部に配管系への接続継手部が形成されたノズルケーシングと、
ノズルケーシングの収容通路部に配置され、個別の流通路を有するとともに流入側開口部又は流出側開口部から収容通路部内の所定位置に内挿可能に形成される複数の構成エレメントの集合体として構成された処理機能部とを備える。該集合体を構成する複数の構成エレメントは、
一方の端面に液体入口を開口し他方の端面に液体出口を開口する貫通形態の液体流路が形成され、ノズルケーシングの流入側開口部に向けて供給される液体が液体流路を経て流出側開口部より流出可能となる位置関係にて処理機能部に組み込まれるコア本体と、液体流路の内面から各々突出するとともに外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部とを備え、衝突部と接触した液体が谷部内にて増速するときの減圧作用により、該液体の溶存ガスを過飽和析出させて微細気泡発生処理を行う1又は複数のコアエレメントと、
コアエレメントに供給される液体の前処理又は後処理を行う1又は複数の付加エレメントと、
からなる群より選ばれる、少なくとも1つのコアエレメントを含む2以上の構成エレメントを含むものとして構成されたことを特徴とする。
The present invention relates to a liquid processing nozzle used by being incorporated in a piping system for circulating a liquid to be processed.
In addition to having a through-passage passage portion that forms an inflow side opening at one end and an outflow side opening at the other end, a connection joint to the piping system is formed at the formation end of the inflow side opening. A nozzle casing;
Arranged as an assembly of a plurality of constituent elements that are arranged in the accommodating passage portion of the nozzle casing and have individual flow passages and are formed so as to be insertable from the inflow side opening portion or the outflow side opening portion into predetermined positions in the accommodation passage portion. A processing function unit. A plurality of constituent elements constituting the aggregate are:
A penetrating liquid flow path is formed with a liquid inlet opening on one end face and a liquid outlet opening on the other end face, and the liquid supplied toward the inflow side opening of the nozzle casing flows out through the liquid flow path. There are a plurality of core bodies incorporated in the processing function part in a positional relationship that allows the liquid to flow out from the opening, and a plurality of troughs that protrude from the inner surface of the liquid flow path and are circumferentially formed on the outer peripheral surface and become high flow velocity parts. A collision portion formed so as to be alternately connected, and by performing a pressure reduction action when the liquid in contact with the collision portion is accelerated in the valley portion, the dissolved gas of the liquid is supersaturated to perform fine bubble generation processing. One or more core elements;
One or more additional elements for pre-treatment or post-treatment of the liquid supplied to the core element;
It is configured to include two or more constituent elements including at least one core element selected from the group consisting of:

この発明においては液体処理ノズルを、配管系への接続継手部が形成されたノズルケーシングと、微細気泡の発生を担う処理機能部とを分離形成し、ケーシング内側に形成される収容通路部に処理機能部を内挿配置する。ここまでの構成は、特許文献2ないし3と概念的に共通するが、本発明においては、その処理機能部を単一のパーツとして構成するのではなく、複数の構成エレメントの集合体として形成する。複数の構成エレメントは、衝突部を備えるとともに衝突部と接触した液体が谷部内にて増速するときの減圧作用により溶存ガスを過飽和析出させて微細気泡発生処理を行うコアエレメントを最低1つ含むものとされる。すなわち、該コアエレメントは、キャビテーション方式による気泡発生処理を単独で担うことができる独立エレメントであり、かつ液体流路内に配置された衝突部だけで微細気泡発生が担われるため寸法が小さくて済み、接続継手部が形成されたノズルケーシング内にも容易に挿入できる。  In this invention, the liquid processing nozzle is separately formed into a nozzle casing in which a connection joint to the piping system is formed and a processing function unit responsible for generation of fine bubbles, and is processed into an accommodation passage portion formed inside the casing. The functional part is interpolated. The configuration so far is conceptually common to Patent Documents 2 to 3, but in the present invention, the processing function unit is not configured as a single part, but is formed as an aggregate of a plurality of configuration elements. . The plurality of constituent elements include a collision element and at least one core element that performs a fine bubble generation process by supersaturated deposition of dissolved gas by a pressure reducing action when the liquid in contact with the collision part is accelerated in the valley. It is supposed to be. In other words, the core element is an independent element that can take charge of the bubble generation processing by the cavitation method alone, and the size of the core element is small because only the collision part arranged in the liquid flow path is responsible for the generation of fine bubbles. Also, it can be easily inserted into the nozzle casing in which the connecting joint portion is formed.

そして、残余の構成エレメントは、コアエレメントの前後にて液体の前処理又は後処理を行う付加エレメントか、ないしは別のコアエレメントにより構成される。これにより、1つのコアエレメントを軸として、処理機能部の残余の要素を独立した構成エレメントとして形成することにより、設置先の送液流量や設置スペース等に応じて仕様の異なるノズルが要望される場合にあっても、ノズルケーシングに対する構成エレメントの追加・削除ないし入れ替えにより設計対応することができ、パーツ共用化を容易に図ることができる。これにより、設計汎用性が大幅に改善された液体処理ノズルが実現する。  The remaining constituent elements are constituted by additional elements that perform pre-processing or post-processing of liquid before and after the core element, or by another core element. Accordingly, by forming the remaining elements of the processing function unit as independent constituent elements with one core element as an axis, nozzles having different specifications are required according to the liquid flow rate of the installation destination, the installation space, and the like. Even in such a case, it is possible to cope with the design by adding / deleting / replacement of the constituent elements to / from the nozzle casing, and parts can be easily shared. This realizes a liquid processing nozzle with greatly improved design versatility.

また、従来ノズルケーシングと一体不可分に形成されていた処理機能部、特にコアエレメントがノズルケーシングから分離されることで、ノズルケーシングの形状は極めて単純化され、製造は格段に容易になる。他方、コアエレメントはノズルケーシングの形状の制約を受けることなく、ノズルとは別ラインにて製造することが可能となり、製造効率を高めることができる。  In addition, the processing function part, in particular the core element, that has been inseparably formed with the nozzle casing in the past is separated from the nozzle casing, so that the shape of the nozzle casing is greatly simplified and the manufacturing becomes much easier. On the other hand, the core element can be manufactured on a separate line from the nozzle without being restricted by the shape of the nozzle casing, and the manufacturing efficiency can be increased.

処理機能部は、収容通路部内にて集合体を構築した際に、該集合体全体の外周面が収容通路部の内周面と密着ないし隙間嵌めをなすように、個々の構成エレメントの形状を定めることができる。集合体全体の外周面がノズルケーシングの収容通路部と密着ないし隙間嵌めになっていることで、処理機能部の液流通はノズルケーシングとの隙間にはほとんど迂回せず、コアエレメントの液体流路にもれなく導くことができる。これにより、処理機能部のノズルケーシングへの組付けを極めて簡単に行うことができ、隙間を封止するオーリング等のシールや接着なども不要となり、構成の単純化を図ることができる。  The processing function unit is configured so that when the assembly is constructed in the housing passage portion, the shape of each constituent element is set so that the outer peripheral surface of the entire assembly is in close contact with the inner peripheral surface of the housing passage portion or a gap fit. Can be determined. Since the outer peripheral surface of the entire assembly is in close contact with the accommodation passage portion of the nozzle casing or fitted into a gap, the liquid flow in the processing function portion hardly bypasses the gap with the nozzle casing, and the liquid flow path of the core element I can guide you without any trouble. As a result, the processing function part can be assembled to the nozzle casing very easily, and the seal and bonding such as an O-ring for sealing the gap are not required, and the structure can be simplified.

処理機能部をなす集合体は、互いに独立して微細気泡発生処理を行う複数のコアエレメントを含むものとして構成することができる。液体と衝突部との接触効率の向上を、コアエレメントの個数を増やすことで簡単に実現できる。また、微細気泡発生効率の異なる液体処理ノズルを、コアエレメントの個数の変更により簡単に実現することができる。  The assembly that forms the processing function unit can be configured to include a plurality of core elements that perform microbubble generation processing independently of each other. Improvement of the contact efficiency between the liquid and the collision part can be easily realized by increasing the number of core elements. In addition, liquid processing nozzles with different fine bubble generation efficiencies can be easily realized by changing the number of core elements.

また、処理機能部をなす集合体は、付加エレメントとしてコアエレメントの上流側又は下流側にて液体の流れを調整する流れ調整エレメントを含むものとできる。このような流れ調整エレメントを設けることにより、コアエレメントを通過する液体の気泡発生処理をより適切に実施することができ、また、所望する流れ調整処理の内容に応じて、コアエレメントに対する流れ調整エレメントの設計上の組み合わせを容易にかつ自由に変更することができる。たとえば、流れ調整エレメントの機能のみにかかる設計的なバリエーションが要求される場合でも、コアエレメントの構成はそのままにして流れ調整エレメントのみを置き換える形で容易に対応することが可能となる。  The assembly constituting the processing function unit may include a flow adjusting element that adjusts the flow of liquid on the upstream side or the downstream side of the core element as an additional element. By providing such a flow adjustment element, it is possible to more appropriately perform the bubble generation process of the liquid passing through the core element, and according to the content of the desired flow adjustment process, the flow adjustment element for the core element It is possible to easily and freely change the design combination. For example, even when a design variation relating only to the function of the flow adjustment element is required, it is possible to easily cope with the configuration by replacing only the flow adjustment element while keeping the configuration of the core element.

流れ調整エレメントは、例えば次のようなものを例示できる。
・コアエレメントの上流側にてコアエレメントに流入する液体の流れを、圧損を抑制しつつ漸次縮小して流速を増加させる流入側流れ絞りエレメント。
・コアエレメントの下流側にコアエレメントから流出する液体の流れを漸次拡大して圧損を抑制しつつ流速を減少させる流出側流れ絞り(拡大)エレメント。
・コアエレメントの上流ないし下流側に配置される整流エレメント。
Examples of the flow adjustment element include the following.
An inflow side flow restricting element that gradually reduces the flow of liquid flowing into the core element upstream of the core element while increasing the flow velocity while suppressing pressure loss.
An outflow side flow restricting (expanding) element that gradually reduces the flow velocity while suppressing pressure loss by gradually expanding the flow of liquid flowing out of the core element to the downstream side of the core element.
-A rectifying element arranged upstream or downstream of the core element.

また、処理機能部をなす集合体は、付加エレメントとして、コアエレメントに流入する液体にノズルケーシング外のガス源から供給されるガスを混合するガス混合エレメントを含むように構成できる。このようなガス混合エレメントを設けることにより、コアエレメントに液体とガスの混相流を供給でき、コアエレメントで発生するキャビテーション乱流にガス相を巻き込むことによりガスを効率的に溶解することができる。また、液体の溶存ガスだけでなく混合したガスも微細気泡の原料として利用でき、微細気泡の発生効率をより高めることが可能となる。そして、本発明によればガス混合エレメントを置き換えるだけで、所望されるガス溶解機能の仕様(たとえばガスの種類や、ガスの供給流量)に応じ、容易に設計対応することができる。  Further, the assembly constituting the processing function unit can include a gas mixing element that mixes the gas supplied from the gas source outside the nozzle casing with the liquid flowing into the core element as the additional element. By providing such a gas mixing element, a mixed phase flow of liquid and gas can be supplied to the core element, and the gas can be efficiently dissolved by entraining the gas phase in the cavitation turbulent flow generated in the core element. Further, not only liquid dissolved gas but also mixed gas can be used as a raw material for fine bubbles, and the generation efficiency of fine bubbles can be further increased. According to the present invention, simply by replacing the gas mixing element, it is possible to easily cope with the design according to the specifications of the desired gas dissolution function (for example, the type of gas and the gas supply flow rate).

処理機能部をなす集合体中の構成エレメントの配置関係は種々選定することが可能であるが、たとえば複数の構成エレメントを、収容通路部内の流れ方向において互いに隣接する形態に配置することが可能である。このようにすると、流れ方向に実施するべき液体処理(微細気泡発生処理、流れ調整処理、ガス混合処理など)の順序と対応付けた形で、構成エレメントをノズルケーシングの収容通路部内に順次配置するだけで液体処理ノズルを簡単に構築することができる。また、設計上の所望や制約に応じた構成エレメントの取捨選択も容易である。  Various arrangement relations of the constituent elements in the assembly forming the processing function section can be selected. For example, a plurality of constituent elements can be arranged adjacent to each other in the flow direction in the accommodating passage section. is there. If it does in this way, a constituent element will be sequentially arranged in the accommodation passage part of a nozzle casing in the form matched with the order of the liquid processing (fine bubble generation processing, flow adjustment processing, gas mixing processing, etc.) which should be performed in the flow direction. A liquid treatment nozzle can be easily constructed only by this. In addition, it is easy to select constituent elements in accordance with design requirements and constraints.

他方、複数の構成エレメントを、液体の流通方向と直交する面内にて複数並列に配列することもできる。これは、複数のコアエレメントを並列に設けて微細気泡処理する液体のシンク流量を増やしたり、あるいはあえて微細気泡処理しない(すなわちコアエレメントを迂回する)バイパス流を形成したりする要望がある場合に有益である。前者の場合、処理機能部は、ノズルケーシングの収容通路部に内挿されるとともに、液体の流通方向と直交する面内にて複数のコアエレメント装着孔が貫通形態に設けられるコアホルダ部材を備え、構成エレメントとして複数のコアエレメントがコアホルダ部材のコアエレメント装着孔に装着されるように構成することが可能である。また、単一のノズルケーシング内にて微細気泡発生処理する液体流路を複数組形成したい場合も、コアエレメントを複数作ってコアホルダ部材に装着するだけで、液体流路を種々の個数に自由にレイアウトすることができ、また、種々の設計態様の間でコアエレメントの共用化を図ることができる。さらに、衝突部がコア本体の外周面側から液体流路に向けてねじ込まれるねじ部材とされる場合、コアホルダ部材に相当する部分を最初からコア本体の一部として一体不可分にしようとすると、ねじ部材間の干渉により構成不能となってしまう場合も、より単純な形態である個々のコアエレメントが構成可能である限り、コアホルダ部材にはねじ部材の影響が及ばないため容易に実現可能とあり、設計も単純化される。  On the other hand, a plurality of constituent elements can be arranged in parallel in a plane perpendicular to the liquid flow direction. This is when there is a demand to provide a plurality of core elements in parallel to increase the sink flow rate of the liquid to be treated with fine bubbles, or to create a bypass flow that does not finely treat the bubbles (that is, bypasses the core elements). It is beneficial. In the former case, the processing function part includes a core holder member that is inserted into the accommodation passage part of the nozzle casing and has a plurality of core element mounting holes provided in a penetrating manner in a plane orthogonal to the liquid flow direction. A plurality of core elements as elements can be configured to be mounted in the core element mounting holes of the core holder member. Also, if you want to form multiple sets of liquid flow paths for generating and generating fine bubbles in a single nozzle casing, simply create multiple core elements and attach them to the core holder member to freely adjust the number of liquid flow paths to various numbers. Layout is possible, and the core elements can be shared between various design aspects. Furthermore, when the collision part is a screw member that is screwed into the liquid flow path from the outer peripheral surface side of the core body, if the part corresponding to the core holder member is made integral as a part of the core body from the beginning, Even if it becomes impossible to configure due to interference between the members, as long as the individual core elements that are in a simpler form can be configured, the core holder member is not affected by the screw member and can be easily realized. The design is also simplified.

ノズルケーシングは接続継手部としてのねじ継手部が両端に形成された金属配管部材として構成することができる。これにより、金属配管部材の流路を構成エレメントの収容通路部として流用できる。また、配管部材の開口部から構成エレメントを収容通路部内に装着するだけで液体処理ノズルを容易に製造でき、得られた液体処理ノズルはノズルケーシングのねじ継手部を利用して設置先となる配管上に容易に取り付けることができる。  The nozzle casing can be configured as a metal pipe member in which threaded joint portions as connecting joint portions are formed at both ends. Thereby, the flow path of a metal piping member can be diverted as an accommodation passage part of a constituent element. In addition, a liquid processing nozzle can be easily manufactured simply by mounting a constituent element from the opening of the piping member into the accommodating passage portion, and the obtained liquid processing nozzle is a pipe to be installed by using a screw joint portion of the nozzle casing. Can be easily mounted on top.

複数の構成エレメントを、収容通路部内の流れ方向において互いに隣接する形態に配置する場合、処理機能部をなす集合体は、複数の構成エレメントは、ノズルケーシングの流入側開口部又は流出側開口部をなす同一端側から収容通路部に対し順次内挿可能な形状に形成することができる。これにより、ノズルケーシングの片側の開口から構成エレメントを順次挿入するだけで液体処理ノズルを容易に製造でき、また、挿入の順序により液体処理のシーケンスを容易に設定ないし設計変更することができる。  When arranging a plurality of constituent elements in a form adjacent to each other in the flow direction in the accommodating passage portion, the assembly constituting the processing function unit is configured such that the plurality of constituent elements include the inflow side opening or the outflow side opening of the nozzle casing. It can be formed in a shape that can be sequentially inserted into the accommodation passage portion from the same end side. Accordingly, the liquid processing nozzle can be easily manufactured by simply inserting the constituent elements sequentially from the opening on one side of the nozzle casing, and the liquid processing sequence can be easily set or changed in design according to the order of insertion.

この場合、収容通路部の中間位置に構成エレメントの挿入側において径大となるように段付き面を形成し、液体処理機能部を、該液体処理機能部を構築する構成エレメントのあらかじめ定められたものの端面外周縁部が当該段付き面に当て止め配置するとともに、残余のものをこれに直接または他部材を介して間接的に積層配置する構成を採用できる。この構成では、収容通路部内に構成エレメントを積層配置し、かつその積層体の挿入側先頭に位置するものに対し、段付き面によってノズルケーシング内の挿入位置を規制する。その結果、残余の構成エレメントは当て止めされた挿入先頭側の構成エレメントにより順次位置規制されるので、ノズルケーシング内の液体処理機能部全体の組み立て効率と位置決めの精度を高めることができる。このとき、各構成エレメントを収容通路部に対して隙間嵌めとなるように構成することで、万一構成エレメントの挿入順序を誤った場合でもノズルケーシングからの取り出しと再装着を容易に実施することができる。  In this case, a stepped surface is formed at the intermediate position of the accommodating passage portion so as to have a large diameter on the insertion side of the component element, and the liquid processing function unit is determined in advance for the component element for constructing the liquid processing function unit. It is possible to employ a configuration in which the outer peripheral edge portion of the object is disposed so as to abut against the stepped surface, and the remaining object is stacked and disposed directly or indirectly through another member. With this configuration, the constituent elements are stacked in the accommodating passage portion, and the insertion position in the nozzle casing is regulated by the stepped surface with respect to the one positioned on the insertion side head of the stacked body. As a result, since the remaining constituent elements are sequentially restricted by the inserted leading constituent elements, the assembly efficiency and positioning accuracy of the entire liquid processing function section in the nozzle casing can be improved. At this time, by configuring each component element so as to fit into the accommodation passage portion, even if the insertion sequence of the component elements is wrong, removal from the nozzle casing and remounting can be easily performed. Can do.

構成エレメントを上記のごとくノズルケーシングの流入側開口部又は流出側開口部をなす同一端側から収容通路部に対し順次内挿する構成においても、付加エレメントは、コアエレメントの上流側又は下流側にて液体の流れを調整する流れ調整エレメントとして構成することができる。たとえば、このような流れ調整エレメントは、コアエレメントの上流側又は下流側に配置されるとともに、該コアエレメントの液体入口又は液体出口に向けて流路断面積が漸次縮小する流れ絞りエレメントとして構成することができる。  Even in the configuration in which the constituent elements are sequentially inserted into the receiving passage portion from the same end side forming the inflow side opening portion or the outflow side opening portion of the nozzle casing as described above, the additional element is disposed upstream or downstream of the core element. Thus, it can be configured as a flow adjusting element for adjusting the flow of the liquid. For example, such a flow control element is configured as a flow restricting element that is arranged on the upstream side or the downstream side of the core element and whose flow cross-sectional area gradually decreases toward the liquid inlet or the liquid outlet of the core element. be able to.

また、処理機能部をなす集合体は、互いに直接又は貫通流路を有したスペーサ部材を介して積層される複数のコアエレメントを含むものとすることができる。複数のコアエレメントを流れ方向に積層配置することで、液体は処理機能部内にて複数のコアエレメントにより微細気泡発生処理を繰り返し受けることになり、気泡発生効率をより高めることができる。コアエレメントを通過した液体は流速が低下することで減圧レベルが下がり、キャビテーションによる気泡析出や成長は鈍る。たとえばコアエレメントの液体流路よりも流通断面積の大きいスペーサ部材を介挿すれば上流のコアエレメントで発生した気泡の成長をスペーサ部材の位置で鈍らせた状態で次段のコアエレメントに導くことができ、より径の小さい気泡の発生効率を高めることができる。一方、前述のガス混合エレメントとその下流側に配置されるコアエレメントの組を複数隣接配置すると、ガス混合とコアエレメントでの溶解ないし微細気泡化を、液体の流通配管上のワンパスにて一挙に複数段実施でき、ガス溶解効率ないし微細気泡化効率を飛躍的に高めることができる。  Moreover, the aggregate | assembly which makes a process function part shall contain the several core element laminated | stacked via the spacer member which has a direct flow path or a through-flow channel mutually. By laminating and arranging a plurality of core elements in the flow direction, the liquid is repeatedly subjected to fine bubble generation processing by the plurality of core elements in the processing function unit, and the bubble generation efficiency can be further increased. The liquid passing through the core element has a reduced pressure level due to a decrease in flow velocity, and bubble deposition and growth due to cavitation are slowed down. For example, if a spacer member having a larger flow cross-sectional area than the liquid flow path of the core element is inserted, the growth of bubbles generated in the upstream core element is guided to the next core element while being blunted at the position of the spacer member. And the generation efficiency of bubbles having a smaller diameter can be increased. On the other hand, when a plurality of gas mixing elements and core elements arranged downstream thereof are arranged adjacent to each other, gas mixing and dissolution or microbubble formation in the core elements can be performed at once with a single pass on the liquid distribution pipe. Multiple stages can be implemented, and the gas dissolution efficiency or the microbubble generation efficiency can be dramatically increased.

また、複数のコアエレメントは、液体流路の内周面における衝突部の突出位置が互いに異なるものとなるように収容通路部に装着することができる。このようにすると、流れ方向において異なる位置に配置されるコアエレメント間で、衝突部の突出位置の液体流路内周方向における位相が互いに異なるものとなり、液体流れが衝突部に対し同一位置にて連続的に当らなくなる。その結果、下流側に向けての圧損増大を抑制することができるので、多数の衝突部が処理機能部に実装される場合でも流速低下を抑制でき、衝突部に数に見合った微細気泡発生効率を達成することができる。具体的には、たとえば衝突部の突出位置の液体流路内周面上の角度位相を、複数のコアエレメントの上流側に位置するものから下流側に位置するものに向けて、所定の角度間隔で順次変化するように配置することができる。  Further, the plurality of core elements can be attached to the accommodating passage portion so that the protruding positions of the collision portions on the inner peripheral surface of the liquid flow path are different from each other. In this way, the phase of the protruding position of the collision part in the inner circumferential direction of the liquid flow path is different between the core elements arranged at different positions in the flow direction, and the liquid flow is at the same position with respect to the collision part. No longer hits continuously. As a result, it is possible to suppress an increase in pressure loss toward the downstream side, so even when a large number of collision parts are mounted on the processing function part, it is possible to suppress a decrease in the flow velocity, and the fine bubble generation efficiency corresponding to the number of collision parts Can be achieved. Specifically, for example, the angular phase on the inner peripheral surface of the liquid flow path at the protruding position of the collision portion is set at a predetermined angular interval from the upstream side to the downstream side of the plurality of core elements. It can arrange | position so that it may change sequentially.

上記の構成では、ノズルケーシングの収容通路部の内周面上にて一定の角度位置に形成された通路側係合部を形成する一方、複数のコアエレメントのコア本体の外周面上に通路側係合部と係合するコア側係合部を形成し、個々のコアエレメントの衝突部の突出位置の液体流路内周面上の角度位置を、コア側係合部を基準として変化させる構成を採用することが可能である。このようにすると、複数のコアエレメント間で衝突部の角度位相を、所望の位置関係に容易にそろえることができ、組み立てが容易になる。  In the above configuration, the passage side engaging portion formed at a certain angular position on the inner peripheral surface of the accommodating passage portion of the nozzle casing is formed, while the passage side is formed on the outer peripheral surface of the core body of the plurality of core elements. A configuration in which a core-side engaging portion that engages with the engaging portion is formed, and the angular position on the inner peripheral surface of the liquid flow path of the protruding position of the collision portion of each core element is changed with reference to the core-side engaging portion. Can be adopted. If it does in this way, the angle phase of a collision part can be easily aligned in a desired positional relationship between a plurality of core elements, and an assembly becomes easy.

ノズルケーシングの収容通路部の内周面は円筒面状とすることが、ドリリングや回転切削による形成が容易である。この場合、コアエレメントのノズル本体は該円筒面状の収容通路部に隙間嵌め可能な外周面を有する円柱状に形成しておくことが望ましい。この場合、コアエレメントのコア本体は、軸線と平行な向きに液体流路が貫通形成される円柱状に形成されるとともに、衝突部は該コア本体の外周面から液体流路に向けてねじ込まれ、先端部が液体流路の内周面から突出して衝突部を形成するねじ部材により形成することができる。他方、コア本体を樹脂成型により形成することもでき、この場合、衝突部は金属やセラミックで構成されたものをコア本体に対しインサート成形により一体化することも可能である。  It is easy to form the inner peripheral surface of the housing passage portion of the nozzle casing by drilling or rotary cutting. In this case, it is desirable that the nozzle body of the core element is formed in a columnar shape having an outer peripheral surface that can be fitted into the cylindrical surface-like accommodation passage portion. In this case, the core body of the core element is formed in a cylindrical shape in which the liquid flow path is formed in a direction parallel to the axis, and the collision portion is screwed from the outer peripheral surface of the core body toward the liquid flow path. The tip portion can be formed by a screw member that protrudes from the inner peripheral surface of the liquid flow path to form a collision portion. On the other hand, the core main body can also be formed by resin molding. In this case, the collision portion can be integrated with the core main body by insert molding of metal or ceramic.

次に、コア本体に対し液体流路は、円筒面状の内周面をなすものを一対、コア本体の軸線と直交する平面への投影上にて該コア本体の断面中心に関し互いに対称な位置関係をなすとともに、液体流路の断面内径をD、中心間距離をLとしたとき、|L−D|/D×100の値が10%以下となるように近接ないし重なるように形成することができる。このように対をなす液体流路を設ける場合、両者の断面中心間の距離が遠すぎると、流路間には液体流通を妨げるコア本体の隔壁部分が厚く形成され、これに近い位置に配設された衝突部を通過する液体の流速が隔壁部への衝突迂回により低下して、微細気泡発生効率が損なわれることにもつながる。したがって、2つの液体流路はできるだけ近接して配置することが望ましい。|L−D|/D×100の値を10%以下とする条件は、その「近接」の目安を与えるものである。なお、2つの液体流路の一部が重なりあい、流路が一体化することで上記の隔壁部分は形成されないから、その一体化位置に近接する衝突部を通過する液体の流れ損失は大幅に減少し、微差気泡発生効率はさらに高められる。このとき、液体流路の内周縁の重なり位置における延長を用いて概念拡張することにより、L−Dの値は負の値をとることになる。  Next, a pair of liquid flow paths that form a cylindrical inner peripheral surface with respect to the core main body are positioned symmetrically with respect to the cross-sectional center of the core main body on a projection onto a plane orthogonal to the axis of the core main body. In addition to forming the relationship, when the cross-sectional inner diameter of the liquid flow path is D and the center-to-center distance is L, | LD− / D × 100 is formed so as to be close to each other or overlap so that the value is 10% or less. Can do. When providing a pair of liquid flow paths in this way, if the distance between the cross-sectional centers of both is too far, the bulkhead portion of the core body that prevents liquid flow is formed between the flow paths, and it is arranged at a position close to this. The flow velocity of the liquid passing through the provided collision part is lowered by the collision detour to the partition wall part, which leads to the deterioration of the fine bubble generation efficiency. Therefore, it is desirable to arrange the two liquid flow paths as close as possible. The condition that the value of | LD− / D × 100 is 10% or less gives an indication of the “proximity”. In addition, since a part of two liquid flow paths overlap and the flow path is integrated, the partition wall portion is not formed. Therefore, the flow loss of the liquid passing through the collision part close to the integrated position is greatly reduced. As a result, the differential bubble generation efficiency is further increased. At this time, by extending the concept using the extension at the overlapping position of the inner peripheral edge of the liquid flow path, the value of L−D takes a negative value.

上記の構成では、液体流路に対しねじ部材は、上記投影において液体流路の断面中心点間を結ぶ基準線に関し、第一の側に45°傾斜した方向に液体流路の断面中心を挟んで互いに対向するねじ部材対と、第一の側と反対の第二の側に45°傾斜した方向に液体流路の断面中心を挟んで互いに対向するねじ部材対とからなる計4本を、十字形態をなすように配置することができる。このレイアウトにより、一方の液体流路に向けてコア本体にねじ込まれるねじ部材が、他方の液体流路を横切ってねじ込まれることを防止しつつ、各液体流路に対して4本ものねじ部材を配設でき、微細気泡の発生効率を大幅に高めることができる。  In the above configuration, the screw member with respect to the liquid flow channel sandwiches the cross-sectional center of the liquid flow channel in a direction inclined by 45 ° to the first side with respect to a reference line connecting the cross-sectional center points of the liquid flow channel in the projection. And a total of four screw member pairs that are opposed to each other across the center of the cross section of the liquid channel in a direction inclined 45 ° to the second side opposite to the first side, They can be arranged in a cross shape. With this layout, the screw member screwed into the core body toward one liquid flow channel is prevented from being screwed across the other liquid flow channel, and as many as four screw members are provided for each liquid flow channel. It can arrange | position and can raise the generation | occurrence | production efficiency of a fine bubble significantly.

液体流路中に突出して衝突部を作るのは、ねじ部材の脚部であるが、ねじの頭部は脚部よりも径大に形成されるので、1対の液体流路の互いに隣接する側(くびれ形態となる領域)に配置されるねじ部材の頭部は、脚長を小さくしすぎると一部が隣の液体流路の内周面に露出することになる。この頭部の露出量が大きくなりすぎると液体流通に対する圧損要素となり、微細気泡の発生効率低下につながる。そこで、各ねじ部材の対は、ねじ軸線方向における液体流路の断面中心からコア本体の外周縁までの距離が近い側に配置されるものを第一ねじ部材、遠い側に配置されるものを第二ねじ部材として、第一ねじ部材は頭部がコア本体の外形線よりも内側の領域に収まるようにねじ脚部の長さを設定する一方、第二ねじ部材は、コア本体の断面中心に関し液体流路の断面と同一径にて基準円を描いたとき、該基準円とコア本体の断面外形線との間に位置する領域に頭部が収まるようにする。このように構成することで、ねじ部材の頭部の液体流路内周面への露出を抑制でき、上記の問題を解消することができる。このとき、コア本体の外周面からの距離が大きい第二ねじ部材の突出脚部長は、頭部を上記領域内に収めるために、第一ねじ部材(の脚部突出長)よりも大きく設定することが幾何学的に必須である。当然、第二ねじ部材の頭部は、隣接する液体流路部に露出しないことがより望ましい。この場合、当該第二ねじ部材が属さない側の液体流路の断面内周縁よりも外側に位置するように脚部長を調整するようにする。  It is the leg portion of the screw member that protrudes into the liquid flow path to make the collision portion, but the screw head is formed larger in diameter than the leg portion, so that the pair of liquid flow paths are adjacent to each other. If the leg length is too small, a part of the head of the screw member arranged on the side (region where the constriction is formed) is exposed to the inner peripheral surface of the adjacent liquid channel. If the exposed amount of the head becomes too large, it becomes a pressure loss factor for the liquid flow, leading to a reduction in the generation efficiency of fine bubbles. Therefore, each screw member pair is a first screw member that is arranged on the far side from the center of the cross section of the liquid flow path in the screw axis direction to the outer peripheral edge of the core body, and a member that is arranged on the far side. As the second screw member, the length of the screw leg portion is set so that the head portion of the first screw member is inside the outline of the core body, while the second screw member is the center of the cross section of the core body. When a reference circle is drawn with the same diameter as the cross section of the liquid flow path, the head is placed in a region located between the reference circle and the cross-sectional outline of the core body. By comprising in this way, the exposure to the liquid flow path internal peripheral surface of the head of a screw member can be suppressed, and said problem can be eliminated. At this time, the protruding leg portion length of the second screw member having a large distance from the outer peripheral surface of the core body is set to be larger than the first screw member (the protruding portion length of the leg portion) in order to fit the head in the region. It is geometrically essential. Of course, it is more desirable that the head of the second screw member is not exposed to the adjacent liquid flow path portion. In this case, the leg length is adjusted so as to be positioned outside the inner peripheral edge of the cross section of the liquid flow path on the side to which the second screw member does not belong.

上記の構成では、コアエレメントのコア本体の外径寸法は第一ねじ部材の脚部長に規制されることとなる。その際、コア本体の外径を縮小するには、
(1)第一ねじ部材の頭部をコア本体の外周面にできる限り近づけること;
(2)第一ねじ部材のコア本体に対する脚部基端部の埋設長を、液体流路に対するねじ部材の突出支持強度が確保できる範囲内でできるだけ小さく設定すること;
がポイントとなる。
(1)については、前記の投影において第一ねじ部材が、コア本体の断面中心に関しコア本体の外径の90%(望ましくは95%)となる仮想円よりも外側に頭部外形線の最外縁が位置するように脚部長が調整されてなることが望ましい。また(2)については、第一ねじ部材の脚部基端側が脚部全長の20%以上60%以下(望ましくは30%以上50%以下)の範囲内でコア本体に埋設されるように脚部長が調整されてなることが望ましい(脚部の埋設部分の長さは、埋設されている部分の中心軸線の長さとして定義する)。このように構成されたコアエレメントは、コア本体の外形寸法を幾何学的限界に近いレベルにまで縮小できる結果、配管継ぎ手部材をノズルケーシングとする場合においても、その内径寸法の小さい流路(収容通路部)内に容易に収めることが可能となる。
In said structure, the outer diameter dimension of the core main body of a core element will be controlled by the leg part length of a 1st screw member. At that time, to reduce the outer diameter of the core body,
(1) bringing the head of the first screw member as close as possible to the outer peripheral surface of the core body;
(2) The embedment length of the leg base end portion with respect to the core body of the first screw member is set as small as possible within a range in which the protrusion support strength of the screw member with respect to the liquid channel can be ensured;
Is the point.
As for (1), in the above projection, the first screw member is located at the outermost portion of the head outline outside the virtual circle that is 90% (preferably 95%) of the outer diameter of the core body with respect to the cross-sectional center of the core body. It is desirable that the leg length is adjusted so that the outer edge is located. Regarding (2), the leg base end side of the first screw member is embedded in the core body within a range of 20% to 60% (preferably 30% to 50%) of the entire length of the leg. It is desirable that the length of the portion is adjusted (the length of the embedded portion of the leg portion is defined as the length of the central axis of the embedded portion). The core element configured in this manner can reduce the outer dimensions of the core body to a level close to the geometric limit. As a result, even when the pipe joint member is a nozzle casing, the flow path (accommodating the inner diameter) is small. It can be easily accommodated in the passage portion).

また、本発明の液体処理ノズル用コアエレメントは、一方の端面に液体入口を開口し他方の端面に液体出口を開口する貫通形態の液体流路が形成されたコア本体と、液体流路の内面から各々突出するとともに外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部とを備え、衝突部と接触した液体が谷部内にて増速するときの減圧作用により、該液体の溶存ガスを過飽和析出させて微細気泡発生処理を行う液体処理ノズル用コアエレメントであって、
コア本体は、軸線と平行な向きに液体流路が貫通形成される円柱状に形成され、衝突部は該コア本体の外周面から液体流路に向けてねじ込まれるとともに、先端部が液体流路の内周面から突出して衝突部を形成するねじ部材により形成されてなり、
コア本体に対し液体流路は、円筒面状の内周面をなすものが一対、コア本体の軸線と直交する平面への投影上にて該コア本体の断面中心に関し互いに対称な位置関係をなすとともに、液体流路の断面内径をD、中心間距離をLとしたとき、|L−D|/D×100の値が10%以下となるように近接ないし重なるように形成され、液体流路に対しねじ部材は、投影において液体流路の断面中心点間を結ぶ基準線に関し、第一の側に45°傾斜した方向に液体流路の断面中心を挟んで互いに対向するねじ部材対と、第一の側と反対の第二の側に45°傾斜した方向に液体流路の断面中心を挟んで互いに対向するねじ部材対とからなる計4本が十字形態をなすように配置されるとともに、各ねじ部材対は、ねじ軸線方向における液体流路の断面中心からコア本体の外周縁までの距離が近い側に配置されるものを第一ねじ部材、遠い側に配置されるものを第二ねじ部材として、第一ねじ部材は頭部がコア本体の外形線よりも内側の領域に収まるようにねじ脚部の長さが設定される一方、第二ねじ部材は、コア本体の断面中心に関し液体流路の断面と同一径にて基準円を描いたとき、該基準円とコア本体の断面外形線との間に位置する領域に頭部が収まるように、脚部長が第一ねじ部材よりも大きくなるように設定されてなることを特徴とする。
The core element for a liquid processing nozzle according to the present invention includes a core main body in which a liquid passage having a penetrating shape in which a liquid inlet is opened on one end face and a liquid outlet is opened on the other end face, and an inner surface of the liquid passage And a collision portion formed so that a plurality of crests in the circumferential direction and a trough portion serving as a high flow velocity portion are alternately connected to the outer peripheral surface, and the liquid in contact with the collision portion increases in the trough portion. A core element for a liquid processing nozzle that performs a process for generating fine bubbles by supersaturated precipitation of a dissolved gas of the liquid by a pressure reducing action when it is fast,
The core body is formed in a cylindrical shape in which a liquid flow path is formed in a direction parallel to the axis, the collision portion is screwed from the outer peripheral surface of the core body toward the liquid flow path, and the tip portion is a liquid flow path It is formed by a screw member that protrudes from the inner peripheral surface and forms a collision part,
A pair of liquid flow paths that form a cylindrical inner peripheral surface with respect to the core body are symmetrical with respect to the center of the cross section of the core body when projected onto a plane orthogonal to the axis of the core body. In addition, when the cross-sectional inner diameter of the liquid channel is D and the center-to-center distance is L, the liquid channel is formed so as to be close or overlapped so that the value of | LD− / D × 100 is 10% or less. On the other hand, the screw member is a reference line connecting between the cross-sectional center points of the liquid flow path in the projection, and a pair of screw members facing each other across the cross-sectional center of the liquid flow path in a direction inclined by 45 ° to the first side; A total of four screw members that are opposed to each other across the center of the cross section of the liquid channel in a direction inclined by 45 ° to the second side opposite to the first side are arranged in a cross shape. , Each screw member pair is the center of the cross section of the liquid channel in the screw axis direction The first screw member is arranged on the side closer to the outer peripheral edge of the core body, the second screw member is arranged on the far side, and the head of the first screw member is the outline of the core body. While the length of the screw leg is set so as to fit in the inner region, the second screw member draws a reference circle with the same diameter as the cross section of the liquid flow path with respect to the cross-sectional center of the core body, The leg portion length is set to be larger than that of the first screw member so that the head portion fits in a region located between the reference circle and the cross-sectional outline of the core body.

本発明の作用及び効果の詳細については、「課題を解決するための手段」の欄にすでに記載したので、ここでは繰り返さない。  Since the details of the operation and effect of the present invention have already been described in the section of “Means for Solving the Problems”, they will not be repeated here.

本発明の液体処理ノズルの水道配管への組み込み例を示す斜視図。  The perspective view which shows the example of the assembly to the water supply piping of the liquid processing nozzle of this invention. 本発明の液体処理ノズルの正面図およびその断面図。  The front view of the liquid processing nozzle of this invention, and its sectional drawing. 図2の液体処理ノズルに使用されるコアエレメントの詳細図。  FIG. 3 is a detailed view of a core element used in the liquid processing nozzle of FIG. 2. 衝突部を雄ねじ部材で構成した場合の液体流路内の状態を示す詳細図。  The detailed view which shows the state in a liquid flow path at the time of comprising a collision part with an external thread member. 図3のコアエレメントにおけるねじ部材の流れ方向の配置を説明する図。  The figure explaining arrangement | positioning of the flow direction of the screw member in the core element of FIG. 流れ絞りエレメントの詳細図。  Detailed view of the flow restriction element. 整流エレメントの詳細図。  Detailed view of the rectifying element. 図2の液体処理ノズルの組み立て工程を示す説明図。  Explanatory drawing which shows the assembly process of the liquid processing nozzle of FIG. 図8に続く説明図。  Explanatory drawing following FIG. 図1の配管系に対する液体処理ノズルの組み付け工程を説明する図。  The figure explaining the assembly | attachment process of the liquid processing nozzle with respect to the piping system of FIG. 図3のコアエレメントの変形例を示す詳細図。  FIG. 4 is a detailed view showing a modification of the core element in FIG. 3. 図2の液体処理ノズルにおいて液体流出側に流れ拡大エレメントを設けた変形例を示す断面図。  Sectional drawing which shows the modification which provided the flow expansion element in the liquid outflow side in the liquid processing nozzle of FIG. 図2の液体処理ノズルにおいてコアエレメントを流れ方向に追加した変形例を示す断面図。  Sectional drawing which shows the modification which added the core element to the flow direction in the liquid processing nozzle of FIG. ガス混合エレメントを組み込んだ液体処理ノズルの例を示す断面図。  Sectional drawing which shows the example of the liquid processing nozzle incorporating the gas mixing element. 図14の液体処理ノズルをガス溶解装置に適用する例を示す模式図。  The schematic diagram which shows the example which applies the liquid processing nozzle of FIG. 14 to a gas dissolving apparatus. 液体流路を1個のみ形成したコアエレメントの例を示す図。  The figure which shows the example of the core element which formed only one liquid flow path. 衝突部の突出位置が異なる複数のコアエレメントを積層配置する例を示す説明図。  Explanatory drawing which shows the example which laminates and arrange | positions the several core element from which the protrusion position of a collision part differs. 図17よりもさらに多数のコアエレメントを使用する例を示す説明図。  Explanatory drawing which shows the example which uses many core elements more than FIG. 図18のコアエレメントを積層した時のねじ部材のレイアウトを示す投影図。  The projection figure which shows the layout of the screw member when the core element of FIG. 18 is laminated | stacked. コアホルダ部材に複数のコアエレメントを組み込んだ処理機能部の一例を示す図。  The figure which shows an example of the process function part which integrated the several core element in the core holder member. 図20の処理機能部を組み込んだ液体処理ノズルの例を示す断面図。  Sectional drawing which shows the example of the liquid processing nozzle incorporating the processing function part of FIG. コア本体の端面外周縁部に係合鍔部を形成したコアエレメントをノズルケーシングに組み込んだ状態で示す断面図。  Sectional drawing which shows the core element which formed the engagement collar part in the outer peripheral edge part of the end surface of a core main body in the state integrated in the nozzle casing. 図22の実施形態において、係合鍔部を形成したコアエレメントをノズルケーシングの反対側にも装着した変形例を示す断面図。  FIG. 23 is a cross-sectional view showing a modification in which the core element in which the engagement flange portion is formed is also mounted on the opposite side of the nozzle casing in the embodiment of FIG. 図1のコアエレメントを単独でノズルケーシングに組み込んだ実施形態を示す断面図。  Sectional drawing which shows embodiment which incorporated the core element of FIG. 1 in the nozzle casing independently. エルボ形態のノズルケーシングを使用する実施形態を示す断面図。  Sectional drawing which shows embodiment which uses the nozzle casing of an elbow form. ソケット状のノズル本体に直接ねじ部材を組み込んだ参考例を示す断面図。  Sectional drawing which shows the reference example which incorporated the screw member directly in the socket-shaped nozzle main body.

以下、本発明を実施するための形態を添付の図面を用いて説明する。
図1は、本発明の液体処理ノズルの組み込んだ水道配管システムの一例を示す斜視図である。この水道配管システム200は、上水道に直結される冷水供給部203と、図示しない給湯器につながる温水供給部204とのそれぞれが、止水栓211と配管系205を介して湯水混合栓201に接続される。湯水混合栓201は、冷水供給部203からの冷水と温水供給部204からの温水とを、レバー202の操作状態に応じた混合比および流量にて混合し、流出口201から流出させる周知の構成のものである。配管系205及び206はいずれも同一の構成であり、止水栓211の流出側継手部(本実施形態では雄ねじ継ぎ手部211(図10))と給水フレキ配管213との間に本発明の一実施形態である液体処理ノズル100が組み込まれた構成となっている。なお、液体処理ノズル100は冷水供給部203と温水供給部204とのどちらか一方、例えば冷水供給部203側にのみ設けるようにしてもよい。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a perspective view showing an example of a water pipe system incorporating the liquid treatment nozzle of the present invention. In this water supply and piping system 200, a cold water supply unit 203 directly connected to a water supply and a hot water supply unit 204 connected to a water heater (not shown) are connected to a hot water mixing plug 201 via a stop cock 211 and a piping system 205, respectively. Is done. The hot water mixing tap 201 is a known configuration that mixes cold water from the cold water supply unit 203 and hot water from the hot water supply unit 204 at a mixing ratio and flow rate according to the operation state of the lever 202 and flows out from the outlet 201. belongs to. The piping systems 205 and 206 have the same configuration, and the one of the present invention is provided between the outflow side joint portion (the male screw joint portion 211 (FIG. 10) in this embodiment) of the water stop cock 211 and the water supply flexible piping 213. The liquid processing nozzle 100 according to the embodiment is incorporated. The liquid processing nozzle 100 may be provided only on either the cold water supply unit 203 or the hot water supply unit 204, for example, on the cold water supply unit 203 side.

図2はその液体処理ノズルを取り出し拡大して示すものである。
液体処理ノズル100は、一端に流入側開口部54が、他端に流出側開口部55が形成された貫通形態の収容通路部56を有するノズルケーシング50を備える。ノズルケーシング50の流入側開口部54の形成側端部には、図1の配管系205ないし206への接続継手部51,52が形成されている。ノズルケーシング50は金属配管部材であり、流入側の接続継手部52は外周面に工具係合部53が形成された雌ねじ継手部とされ、流出側の接続継手部51は雄ねじ継ぎ手とされている(いずれも本実施形態ではG1/2規格ないしRc1/2規格の配管用継ぎ手)。
FIG. 2 shows the liquid processing nozzle taken out and enlarged.
The liquid processing nozzle 100 includes a nozzle casing 50 having a penetrating accommodation passage portion 56 in which an inflow side opening 54 is formed at one end and an outflow side opening 55 is formed at the other end. Connection joint portions 51 and 52 to the piping systems 205 to 206 in FIG. 1 are formed at the formation side end of the inflow side opening 54 of the nozzle casing 50. The nozzle casing 50 is a metal piping member, the inflow side connection joint portion 52 is a female screw joint portion having a tool engagement portion 53 formed on the outer peripheral surface, and the outflow side connection joint portion 51 is a male screw joint. (Each embodiment is a G1 / 2 or Rc1 / 2 piping joint).

本実施形態においてノズルケーシング50は、円筒状に形成された流出側の本体部50bと、外周面に工具係合部53が形成された流入側の押さえ部材50aとの2部分からなる。本体部50bの流入側開口内周面には雌ねじ部50cが形成されている。一方、押さえ部材50aの流出側端部外周面には雄ねじ部50dが形成されており、その基端位置にはオーリング50eがはめ込まれている。オーリング50eがはめ込まれる雄ねじ部50dの基端部外周面と、本体部50bの雌ねじ部50cの開口端側内周面とは、それぞれねじ山が形成されておらず、オーリング50eが該位置でラジアル方向に圧縮されるように隙間量が調整されている。また、押さえ部材50aを本体部50bに一杯まで締めこむことにより、工具係合部53の端縁が本体部50bの端縁と重なるように、雌ねじ部50cの及び雄ねじ部50dのねじ長が設定されており、図2の上に示す如く、あたかも一体の配管部材のような外観を呈するように工夫されている。また、雌ねじ部50cと雄ねじ部50dは接着剤ないしロウ材により接合されている。  In the present embodiment, the nozzle casing 50 is composed of two parts: a main body part 50b on the outflow side formed in a cylindrical shape, and a pressing member 50a on the inflow side in which a tool engagement part 53 is formed on the outer peripheral surface. An internal thread portion 50c is formed on the inner peripheral surface of the inflow side opening of the main body portion 50b. On the other hand, a male screw portion 50d is formed on the outer peripheral surface of the outlet side end portion of the pressing member 50a, and an O-ring 50e is fitted at the base end position. The outer peripheral surface of the base end portion of the male screw portion 50d into which the O-ring 50e is fitted and the inner peripheral surface of the open end side of the female screw portion 50c of the main body portion 50b are not threaded, and the O-ring 50e is in the position. The gap amount is adjusted so that it is compressed in the radial direction. Further, the screw length of the female screw portion 50c and the male screw portion 50d is set so that the end edge of the tool engaging portion 53 overlaps the end edge of the main body portion 50b by tightening the holding member 50a to the main body portion 50b. Therefore, as shown in the upper part of FIG. 2, it is devised so that it looks like an integral piping member. The female screw portion 50c and the male screw portion 50d are joined by an adhesive or a brazing material.

本体部50bは、流入側開口部側から流出側開口部に向けて軸線方向に貫通する収容通路部56が形成されている。本実施形態では、収容通路部56は流入側から流出側に向けて2つの段付き面56aおよび56bを介して2段階に縮径する形で、内径の異なる3つの円筒内周面区間に分かれている。そして、該収容通路部56には、それぞれ個別の流路を有するとともに、収容通路部56内に内挿され、個別の流通路を有した複数の構成エレメント61,1,63の集合体として構成された処理機能部60が収容されている。処理機能部60を形成する構成エレメントは、流入側から具体的に、流れ絞りエレメント61、コアエレメント1及び整流エレメント63であり、収容通路部56内にて軸線方向にこの順に積層配置されている。そして、その微細気泡発生処理の要部を担うのがコアエレメント1である。  The main body 50b is formed with an accommodation passage 56 that penetrates in the axial direction from the inflow side opening toward the outflow side opening. In this embodiment, the accommodating passage portion 56 is divided into three cylindrical inner peripheral surface sections having different inner diameters in such a manner that the diameter is reduced in two steps from the inflow side to the outflow side via the two stepped surfaces 56a and 56b. ing. The accommodating passage portion 56 has an individual flow path, and is inserted into the accommodating passage portion 56, and is configured as an assembly of a plurality of constituent elements 61, 1, 63 having individual flow passages. The processed processing function unit 60 is accommodated. The constituent elements forming the processing function part 60 are specifically the flow restricting element 61, the core element 1 and the rectifying element 63 from the inflow side, and are stacked in this order in the axial direction in the accommodating passage part 56. . The core element 1 bears the main part of the fine bubble generation process.

図3は、コアエレメント1の詳細を示すものである。コアエレメント1は、コア本体2と衝突部10A,10Bとからなる(以下、衝突部10A,10Bを総称する場合、単に衝突部10ともいう)。コア本体2は円柱状に形成されており、一方の端面に液体入口4を開口し他方の端面に液体出口5を開口する貫通形態の液体流路9が形成されている。この実施形態ではコア本体2に対し、円筒内周面をなす液体流路9が中心軸線に関して軸対象となるように、同一内径にて一部が重なるよう2個隣接形成されている。図4は液体流路9の一方を側面視した場合の拡大図であり、衝突部10は外周面に周方向の山部11と高流速部となる谷部12とが複数交互に連なるように形成されている。  FIG. 3 shows details of the core element 1. The core element 1 includes a core body 2 and collision portions 10A and 10B (hereinafter, when the collision portions 10A and 10B are collectively referred to as a collision portion 10). The core body 2 is formed in a columnar shape, and a penetrating liquid flow path 9 is formed which opens a liquid inlet 4 on one end face and opens a liquid outlet 5 on the other end face. In this embodiment, two cores 2 are formed adjacent to each other so as to partially overlap each other with the same inner diameter so that the liquid flow path 9 forming the inner circumferential surface of the cylinder is an axis object with respect to the central axis. FIG. 4 is an enlarged view when one side of the liquid flow path 9 is viewed from the side, and the collision part 10 is arranged such that a plurality of crests 11 in the circumferential direction and troughs 12 serving as high flow velocity parts are alternately connected to the outer peripheral surface. Is formed.

衝突部10は、この実施形態では、脚部末端側が液体流路9内に突出するねじ部材(以下、「ねじ部材10」ともいう)であり、結果、衝突部10に形成される複数巻の山部11は、らせん状に一体形形成されている。コア本体2の材質は、たとえばABS(アクリロニトリルブタジエンスチレン)、ナイロン、ポリカーボネート、ポリアセタール、PTFE(ポリテトラフルオロエチレン)、ジュラコン(商標名)などの樹脂であるが、ステンレス鋼や真鍮などの金属、あるいはアルミナ等のセラミックスとしてもよい。また、ねじ部材10はステンレス鋼等の金属ないしアルミナや石英などのセラミックスで構成される。なお、衝突部10の山部は螺旋状のねじ山に限られるものではなく、分離隣接形成された複数の凸条部であってもよいが、詳細は特許文献7及び8に記載の通りであり説明は略する。  In this embodiment, the collision part 10 is a screw member (hereinafter also referred to as “screw member 10”) whose leg end side protrudes into the liquid flow path 9, and as a result, a plurality of turns formed in the collision part 10. The mountain portion 11 is integrally formed in a spiral shape. The material of the core body 2 is, for example, a resin such as ABS (acrylonitrile butadiene styrene), nylon, polycarbonate, polyacetal, PTFE (polytetrafluoroethylene), Duracon (trade name), or a metal such as stainless steel or brass, Ceramics such as alumina may be used. The screw member 10 is made of a metal such as stainless steel or a ceramic such as alumina or quartz. In addition, the crest part of the collision part 10 is not restricted to a helical thread, and may be a plurality of protruding ridge parts formed adjacent to each other, but the details are as described in Patent Documents 7 and 8. There will be no explanation.

液体流路9にそれぞれ形成される衝突部10の組は、コア本体2に形成されたねじ孔19にて、その壁部外周面側から先端が液体流路9内へ突出するようにねじ込まれる4本のねじ部材により形成されている。ねじ孔19とねじ部材10との間は接着剤等によりセッティング固定され、ねじ部材(衝突部)10と液体流路9の内周面との間には主流通領域21が形成されている。また、各液体流路9において、4つの衝突部10が形成する十字の中心位置には、液体流通ギャップ15が形成されている。液体流通ギャップ15を形成する4つの衝突部10の先端面は平坦に形成され、前述の投影において液体流通ギャップ15は正方形状に形成されている。  Each set of the collision portions 10 formed in the liquid flow path 9 is screwed so that the front end protrudes into the liquid flow path 9 from the outer peripheral surface side of the wall portion in the screw hole 19 formed in the core body 2. It is formed by four screw members. The screw hole 19 and the screw member 10 are set and fixed by an adhesive or the like, and a main flow region 21 is formed between the screw member (impact portion) 10 and the inner peripheral surface of the liquid flow path 9. In each liquid channel 9, a liquid circulation gap 15 is formed at the center position of the cross formed by the four collision portions 10. The front end surfaces of the four collision portions 10 forming the liquid flow gap 15 are formed flat, and the liquid flow gap 15 is formed in a square shape in the above-described projection.

次に、液体流路9の外周縁内側の全面積、ここでは、図3の2つの液体流路9の円形軸断面の投影面積(内径をdとしたとき、πd/4)の合計をS1、衝突部10(4本のねじ部材)の投影面積をS2として、処理コア部の全流通断面積Stを、
St=S1−S2 (単位:mm
として定義したとき、この全流通断面積Stが2.5mm以上(10mm以下)に確保されている。本実施形態では、図4に示す主流通領域21と液体流通ギャップ15との合計面積(の2つの液体流路9の間での和)が全流通断面積Stに相当する。また、ねじ部材(衝突部)10の谷部12の深さhは0.2mm以上確保されている。衝突部10と接触した液体は谷部11内にて増速するときの減圧作用により、該液体の溶存ガスを過飽和析出させて微細気泡発生処理を行う。ねじ部材10はJIS並目ピッチのM1.0以上M2.0以下のものが使用され、特許文献8に定義された液体流路9内の有効谷点密度が1.5個/mm以上確保されている。また、液体流路9の内径は2mm以上7mm以下で調整される。
Then, the total area of the peripheral edge inside the liquid flow channel 9, herein, (when the inner diameter was d, πd 2/4) 2 two of the projected area of the circular shaft cross-section of the liquid flow path 9 in FIG. 3 the sum of S1, The projected area of the collision part 10 (four screw members) is S2, and the total flow sectional area St of the processing core part is
St = S1-S2 (unit: mm 2 )
Is defined as 2.5 mm 2 or more (10 mm 2 or less). In the present embodiment, the total area of the main flow region 21 and the liquid flow gap 15 shown in FIG. 4 (the sum between the two liquid flow paths 9) corresponds to the total flow cross-sectional area St. Further, the depth h of the trough 12 of the screw member (impact portion) 10 is ensured to be 0.2 mm or more. The liquid that has come into contact with the collision part 10 is subjected to a pressure reduction action when it is accelerated in the valley part 11, so that the dissolved gas of the liquid is supersaturated to perform fine bubble generation processing. A screw member 10 having a JIS coarse pitch of M1.0 or more and M2.0 or less is used, and an effective valley point density in the liquid flow path 9 defined in Patent Document 8 is secured at least 1.5 pieces / mm 2. Has been. Further, the inner diameter of the liquid channel 9 is adjusted to 2 mm or more and 7 mm or less.

図3に戻り、液体流路9にそれぞれ形成される衝突部の組は、コア本体2の外周面側から先端が液体流路9内へ突出するようにねじ込まれる4本のねじ部材10により形成されている。図中破線で示すように、ねじ部材10は、コア本体2の壁部に貫通形成されたねじ孔19にねじ込まれ、各ねじ孔19のねじスラスト方向途中位置にはねじ頭下面を支持するための段付き面19rが形成されている(ねじ孔19は、段付き面19rよりも液体流路9側に位置する部分にのみねじ山が形成されている)。そして段付き面19rの形成位置は、ねじ部材10をねじ込んだ時に、液体流路9内に突出するねじ脚部(すなわち、衝突部となる部分)の長さが、液体流通ギャップ15を形成するのに適正となるように調整されている。  Returning to FIG. 3, the set of collision portions formed in each of the liquid flow paths 9 is formed by four screw members 10 that are screwed so that the tip protrudes into the liquid flow path 9 from the outer peripheral surface side of the core body 2. Has been. As shown by a broken line in the figure, the screw member 10 is screwed into a screw hole 19 formed through the wall portion of the core body 2, and the screw head 19 supports the lower surface of the screw head in the middle of the screw thrust direction. A stepped surface 19r is formed (the screw hole 19 has a thread formed only in a portion located on the liquid flow path 9 side with respect to the stepped surface 19r). The stepped surface 19r is formed at the position where the screw leg 10 protruding into the liquid flow path 9 when the screw member 10 is screwed (that is, the length of the collision part) forms the liquid flow gap 15. It has been adjusted to be appropriate.

また、複数の液体流路9の間でねじ部材10の干渉を回避するために、各液体流路9に組み込む4つのねじ部材10の組は、それら液体流路9の間で軸線方向にて互いにずれた位置に配置されている。同一の液体流路9内の複数のねじ部材10A及び10Bは、該液体流路9の軸線方向(流れ方向)にて互いにずれた位置に配置されている。具体的には、各液体流路9において、同一平面上で互いに直交する位置に配置されたねじ部材の対10A,10A及び10B,10Bが、それぞれ流れ方向において互いに異なる位置に配置されている。そして、コア本体2の図中A−A断面及びB−B断面の各位置の4つのねじ部材と、C−C断面及びD−D断面位置の4つのねじ部材は、中心軸線液体流路9の軸線と直交する平面への投影で、対応する各液体流路内でそれぞれ十字形態をなすように配置されることとなる。  Further, in order to avoid the interference of the screw member 10 between the plurality of liquid flow paths 9, the set of four screw members 10 incorporated in each liquid flow path 9 is arranged between the liquid flow paths 9 in the axial direction. They are arranged at positions shifted from each other. The plurality of screw members 10 </ b> A and 10 </ b> B in the same liquid flow path 9 are arranged at positions shifted from each other in the axial direction (flow direction) of the liquid flow path 9. Specifically, in each liquid flow path 9, screw member pairs 10 </ b> A, 10 </ b> A and 10 </ b> B, 10 </ b> B arranged at positions orthogonal to each other on the same plane are arranged at different positions in the flow direction. The four screw members at the positions of the AA cross section and the BB cross section of the core main body 2 in the drawing, and the four screw members at the CC cross section and the DD cross section positions are the center axis liquid channel 9. By projecting onto a plane perpendicular to the axis, the liquid channels are arranged so as to form a cross shape.

次に、液体流路9は、それら液体流路9の軸断面積の合計と等価な円の直径をde、液体流路9の長さをLとして、L/deにて定義される絞り孔アスペクト比が3.5以下に設定されている(なお、2つの液体流路9の内径が互いに異なる一般の場合(d1,d2)は、絞り孔アスペクト比は、L/(d1+d21/2となる)。また、コア本体2の軸線Oと直交する平面への投影において、コア本体2の投影領域の中心位置に定められた基準点(上記軸線の投影点)D1から複数の液体流路9の内周縁(2つの液体流路9、9の重なり領域への延長を含む)までの距離Tは、該液体流路9の内径Dよりも小さくなるように設定されている(図3においては負の値となっている)。絞り孔変位Tは液体流路9の内径Dの望ましくは1/2以下であるのがよい。さらに、同じ投影において、複数の液体流路9の内周縁に対する外接円の面積をSt、液体流路9の投影領域の合計面積をSrとしたとき、K≡Sr/Stにて定義される絞り孔集約率Kが0.2以上確保されている。Next, the liquid channel 9 is a throttle hole defined by L / de, where de is the diameter of a circle equivalent to the sum of the axial sectional areas of the liquid channels 9 and L is the length of the liquid channel 9. The aspect ratio is set to 3.5 or less (in the case where the inner diameters of the two liquid channels 9 are different from each other (d1, d2), the throttle hole aspect ratio is L / (d1 2 + d2 2 ). 1/2 ). In the projection onto the plane orthogonal to the axis O of the core body 2, the inner peripheral edges of the plurality of liquid flow paths 9 from the reference point (projection point of the axis) D <b> 1 defined at the center position of the projection area of the core body 2. The distance T (including the extension of the two liquid channels 9 and 9 to the overlapping region) is set to be smaller than the inner diameter D of the liquid channel 9 (a negative value in FIG. 3). ) The throttle hole displacement T is desirably ½ or less of the inner diameter D of the liquid flow path 9. Further, in the same projection, when the area of the circumscribed circle with respect to the inner peripheral edges of the plurality of liquid channels 9 is St and the total area of the projected regions of the liquid channels 9 is Sr, the aperture defined by K≡Sr / St The hole aggregation rate K is secured to 0.2 or more.

また、図5に示す如く、液体流路9の衝突部10よりも下流に位置する区間の長さ(以下、残区間という)をLp(Lp2〜Lp4の平均値)とし、液体流路9の軸断面積の合計と等価な前述の円の直径をdeとして、Lp/deにて定義される残区間アスペクト比は1.0以下に設定されている。図5では、最も下流側に位置するねじ部材10Aに関しては、残区間の長さがゼロであるが、ねじ部材10Aに関し残区間がゼロでない長さLp1を有する場合は、上記残区間長さLpはLp1〜Lp4の平均値とする(特許文献7を参照)。  Further, as shown in FIG. 5, the length of the section located downstream of the collision portion 10 of the liquid flow path 9 (hereinafter referred to as the remaining section) is Lp (average value of Lp2 to Lp4), and the liquid flow path 9 The remaining section aspect ratio defined by Lp / de is set to 1.0 or less, where de is the diameter of the circle equivalent to the sum of the axial sectional areas. In FIG. 5, the length of the remaining section is zero with respect to the screw member 10A located on the most downstream side. However, when the remaining section has a length Lp1 that is not zero with respect to the screw member 10A, the remaining section length Lp is described above. Is an average value of Lp1 to Lp4 (see Patent Document 7).

図2に戻り、コアエレメント1の上流側には付加エレメントとして、流れ絞りエレメント61が配置されている。図6は流れ絞りエレメント61の詳細を示すもので、コアエレメント1と同一外径の円筒状に形成され、図2に示すように、内周面はコアエレメント1と隣接する端面側にて径小となるテーパ面とされている(なお、該内周面は階段状に縮径させてもよい)。そして、コアエレメント1と流れ絞りエレメント61とは、互いに積層された状態にてノズルケーシング50の本体部50bに対し、その収容通路部56の段付き面56aよりも上流側に位置する円筒面状区間内に隙間嵌め形態となるように配置されており、その積層体の先頭に位置するコアエレメント1の前端面外周縁は段付き面56aに当て止めされる。  Returning to FIG. 2, a flow restricting element 61 is arranged on the upstream side of the core element 1 as an additional element. FIG. 6 shows the details of the flow restricting element 61, which is formed in a cylindrical shape having the same outer diameter as the core element 1. The inner peripheral surface has a diameter on the end face side adjacent to the core element 1 as shown in FIG. The taper surface is small (the inner peripheral surface may be reduced in a staircase shape). The core element 1 and the flow restricting element 61 are in a cylindrical surface shape positioned on the upstream side of the stepped surface 56a of the housing passage portion 56 with respect to the main body portion 50b of the nozzle casing 50 in a stacked state. It arrange | positions so that it may become a clearance fitting form in the area, and the front-end surface outer periphery of the core element 1 located in the head of the laminated body is stopped by the stepped surface 56a.

一方、コアエレメント1の下流側には付加エレメントとして整流エレメント63が積層配置されている。図7は整流エレメント63の詳細を示すものであり、鋼等の弾性帯状部材を短辺方向の折り目にて山部と谷部が交互に現れるようにつづら折れ形態に加工し、さらに短辺と平行な軸線周りに丸めて星形の平面形態となるように形成したものである。該整流エレメント63は、図2に示すように、上記短辺方向が収容通路部56の軸線と一致する向きに挿入され、前端面外周縁部が流出側開口部55に近い側の段付き面56bに当て止めされている。なお、本実施形態では、整流エレメント63が2個、オーリング63aを介して積層した状態でノズルケーシング50(本体部50b)内に実装されている。  On the other hand, a rectifying element 63 is laminated and disposed as an additional element on the downstream side of the core element 1. FIG. 7 shows the details of the rectifying element 63. An elastic belt-like member such as steel is processed into a folded shape so that peaks and troughs appear alternately at the fold in the short side direction, and the short side and It is formed so as to have a star-shaped plane shape by rounding around parallel axes. As shown in FIG. 2, the rectifying element 63 is inserted in a direction in which the short side direction coincides with the axis of the accommodation passage portion 56, and the stepped surface on the side near the outflow side opening 55 with the outer peripheral edge of the front end surface It is stopped by 56b. In the present embodiment, two rectifying elements 63 are mounted in the nozzle casing 50 (main body portion 50b) in a state of being stacked via an O-ring 63a.

さらに、本実施形態では、雌ねじ部50cが形成される本体部50bの内径拡大部の底部外周領域に現れる段付き面に、異物等の流入を遮断するための濾過部材として、パッキン付きストレーナ62がはめ込まれている。該パッキン付きストレーナ62は、押さえ部材50aの雄ねじ部50dを本体部50bの雌ねじ部50cに螺着させることにより、下流側の処理機能部60とともに本体部50bからの抜け止めが図られている。  Furthermore, in this embodiment, the strainer 62 with packing is used as a filtering member for blocking the inflow of foreign matter or the like on the stepped surface appearing in the outer peripheral region of the bottom of the inner diameter enlarged portion of the main body portion 50b where the female screw portion 50c is formed. It is inset. The strainer 62 with packing is prevented from coming off from the main body part 50b together with the processing function part 60 on the downstream side by screwing the male screw part 50d of the pressing member 50a to the female screw part 50c of the main body part 50b.

以下、液体処理ノズル100の使用方法について説明する。図1の水道配管システム200においてレバー202を操作することにより、冷水供給部203からの冷水と温水供給部204からの温水とは、それぞれ配管系205,206を経て、混合栓201の操作状態に応じた混合比および流量にて混合されつつ、流出口201aから流出する。その途上、温水と冷水はそれぞれ、本発明の液体処理ノズル100を通過する。液体処理ノズル100を通過するのは冷水も温水も水道水であり、大気由来の空気が溶存している。図2を参照すれば水道水はまずストレーナ62を通過したのち、流れ絞りエレメント61で絞られて流速を上げながらコアエレメント1の液体流路9に供給される。流れ絞りエレメント61のテーパ状の絞り機構により、水道水は圧損を抑制しつつ流速を上げてコアエレメントに導かれる。  Hereinafter, a method of using the liquid processing nozzle 100 will be described. By operating the lever 202 in the water supply piping system 200 of FIG. 1, the cold water from the cold water supply unit 203 and the hot water from the hot water supply unit 204 are brought into the operation state of the mixing plug 201 through the piping systems 205 and 206, respectively. It flows out from the outlet 201a while being mixed at a corresponding mixing ratio and flow rate. On the way, hot water and cold water each pass through the liquid processing nozzle 100 of the present invention. Both cold water and hot water pass through the liquid processing nozzle 100, and tap water is dissolved in air. Referring to FIG. 2, the tap water first passes through the strainer 62 and is then squeezed by the flow restricting element 61 and supplied to the liquid flow path 9 of the core element 1 while increasing the flow velocity. By the tapered throttle mechanism of the flow throttle element 61, tap water is guided to the core element while increasing the flow velocity while suppressing pressure loss.

水道水は、図4にてねじ部材10と液体流路9の内周面との間に形成される主流通領域21と液体流通ギャップ15とからなる液流通領域にてねじ部材10に衝突しながらこれを通過する。この際、流れは谷部12に高速領域を、山部11に低速領域をそれぞれ形成する。すると、谷部12の高速領域はベルヌーイの定理により負圧領域となり、キャビテーションすなわち溶存空気の減圧析出により気泡が発生する。谷部はねじ部材10の外周に複数巻形成され、かつねじ部材10が液体流路9内に複数(4本)配置されていることから、この減圧析出は液体流路9内の谷部にて同時多発的に起こることとなる。  The tap water collides with the screw member 10 in the liquid circulation region formed by the main circulation region 21 and the liquid circulation gap 15 formed between the screw member 10 and the inner peripheral surface of the liquid channel 9 in FIG. While passing this. At this time, the flow forms a high speed region in the valley portion 12 and a low speed region in the peak portion 11. Then, the high-speed region of the valley portion 12 becomes a negative pressure region by Bernoulli's theorem, and bubbles are generated by cavitation, that is, decompression deposition of dissolved air. Since a plurality of valleys are formed on the outer periphery of the screw member 10 and a plurality (four) of the screw members 10 are arranged in the liquid flow path 9, this reduced pressure deposition is generated in the valleys in the liquid flow path 9. Will occur at the same time.

その結果、液体流路9内では溶存空気の減圧析出が沸騰的に激しく起こり、さらに流れがねじ部材10の下流に迂回する際に生ずる渦流にこれを巻き込んで激しく撹拌する。これにより、衝突部10の周辺及び直下流域には、微小渦流を無数に含んだ顕著な強撹拌領域が形成される。気泡を析出する減圧域は衝突部10の周囲の谷底付近に限られており、高速の液体流はほとんど瞬時的に該領域を通過してしまうから、発生した気泡はそれほど成長せずに上記の撹拌領域に巻き込まれ、気泡径が1μm未満(特に500nm未満)の微細気泡が効率的に発生する。この微細気泡の発生により、水道水は洗浄性や浸透性が高められ、特許文献7ないし8に記載された種々の効果を享受できる。  As a result, the reduced pressure precipitation of the dissolved air occurs violently in the liquid flow path 9, and is further vortexed and swirled into the vortex generated when the flow detours downstream of the screw member 10. Thereby, the remarkable intense stirring area | region which contains innumerable micro eddy current is formed in the circumference | surroundings and the immediate downstream area of the collision part 10. FIG. The reduced pressure region where the bubbles are deposited is limited to the vicinity of the valley bottom around the collision part 10, and since the high-speed liquid flow passes through the region almost instantaneously, the generated bubbles do not grow so much and Fine bubbles with a bubble diameter of less than 1 μm (particularly less than 500 nm) are efficiently generated by being caught in the stirring region. Due to the generation of the fine bubbles, the tap water can be improved in cleanability and permeability, and can enjoy various effects described in Patent Documents 7 to 8.

整流エレメント63は、気泡発生後の水道水を流れ方向に整流しつつ流出させる。流路が整流エレメント63により断面内にて区画分断されていることでエレメント表面との接触部分は乱流の影響を受けにくくなり、衝突部10で成長停止した微細気泡の衝突による合一を抑制して、その発生濃度向上に貢献する。  The rectifying element 63 causes the tap water after the generation of bubbles to flow out while being rectified in the flow direction. Since the flow path is partitioned in the cross section by the rectifying element 63, the contact portion with the element surface is not easily affected by turbulence, and the coalescence due to the collision of the fine bubbles stopped at the collision portion 10 is suppressed. Thus, it contributes to the improvement of the generated concentration.

図8及び図9は、液体処理ノズル100の組み立て工程を示すものである。図8左に示すように、まず整流エレメント63(およびオーリング63a)を本体部50bの雌ねじ部50c側から収容通路部56内に挿入し、段付き面56bに当て止めする。整流エレメント63は収容通路部56の内周面(段付き面56bと56aとの間の区間)に対し隙間嵌めとしてもよいし、整流エレメント63の外径を自由状態で収容通路部56の内径よりも経大としておき、径方向にこれを弾性縮小変形させつつ装着することにより、収容通路部56の内周面に対して突っ張り固定するようにしてもよい。  8 and 9 show the assembly process of the liquid processing nozzle 100. FIG. As shown in the left of FIG. 8, first, the rectifying element 63 (and the O-ring 63a) is inserted into the accommodating passage portion 56 from the female screw portion 50c side of the main body portion 50b, and is held against the stepped surface 56b. The rectifying element 63 may be a gap fit with respect to the inner peripheral surface (the section between the stepped surfaces 56b and 56a) of the accommodating passage portion 56, and the inner diameter of the accommodating passage portion 56 with the outer diameter of the rectifying element 63 in a free state. Alternatively, it may be set larger than that, and may be stretched and fixed to the inner peripheral surface of the accommodating passage portion 56 by mounting it while being elastically reduced and deformed in the radial direction.

次に、図8右に示すように、コアエレメント1と流れ絞りエレメント61とを順次収容通路部56内に隙間嵌め挿入し、コアエレメント1の前端外周縁を段付き面56aに当て止めする。さらに、図9に示すように、パッキン付きストレーナ62を本体部50bの開口底にかぶせ、オーリング50eを装着した押さえ部材50aの雄ねじ部50dを、接着剤を介して本体部50b側の雌ねじ部50cにねじ込み接合することで、図2の液体処理ノズル100を得る。  Next, as shown in the right side of FIG. 8, the core element 1 and the flow restricting element 61 are sequentially inserted into the accommodation passage portion 56 with a gap, and the front edge of the core element 1 is held against the stepped surface 56a. Further, as shown in FIG. 9, the strainer 62 with packing is placed on the bottom of the opening of the main body 50b, and the male thread 50d of the pressing member 50a to which the O-ring 50e is attached is connected to the female thread on the main body 50b side through an adhesive. The liquid processing nozzle 100 of FIG. 2 is obtained by screwing and joining to 50c.

このように、液体処理ノズル100は、接続継手部51,52が形成されたノズルケーシング50の収容通路部56に対し、ノズルケーシング50とは別体の処理機能部60を内挿配置した点に特徴がある。図2に示す如く、その処理機能部60はコアエレメント1を最低1つ含む複数の構成エレメント63,61からなる。このコアエレメント1はキャビテーション方式による気泡発生処理を単独で担うことができる独立かつ必須のエレメントである。そしてコアエレメント1は、基本的に液体流路9内に配置された衝突部10だけで微細気泡発生を担うため寸法が小さくて済み、接続継手部51,52が形成されたノズルケーシング50内にも容易に挿入できる。  As described above, the liquid processing nozzle 100 is such that the processing function part 60 that is separate from the nozzle casing 50 is inserted into the accommodation passage part 56 of the nozzle casing 50 in which the connection joint parts 51 and 52 are formed. There are features. As shown in FIG. 2, the processing function unit 60 includes a plurality of constituent elements 63 and 61 including at least one core element 1. The core element 1 is an independent and indispensable element that can independently perform bubble generation processing by a cavitation method. The core element 1 is basically small in size because the microbubbles are generated only by the collision part 10 arranged in the liquid flow path 9, and the core element 1 is small in the nozzle casing 50 in which the connection joint parts 51 and 52 are formed. Can be easily inserted.

このコアエレメント1を軸として、処理機能部60の残余の要素を独立した構成エレメント61,63として形成することにより、設置先の送液流量や設置スペース等に応じて仕様の異なるノズルが要望される場合にあっても、ノズルケーシング50に対する構成エレメントの追加・削除ないし入れ替えにより設計対応することができ、パーツ共用化を容易に図ることができる。たとえば、ノズルケーシング50の寸法仕様を変更せずに、異なる送液流量の液体処理ノズルを得たい場合、コアエレメント1を所望される送液流量に対応できるものに変更すればよいのである。  By using the core element 1 as an axis and forming the remaining elements of the processing function unit 60 as independent constituent elements 61 and 63, nozzles having different specifications are required depending on the liquid feed flow rate and the installation space of the installation destination. Even in such a case, it is possible to cope with the design by adding / deleting / replacement of the constituent elements to / from the nozzle casing 50, so that parts can be easily shared. For example, when it is desired to obtain liquid processing nozzles having different liquid feeding flow rates without changing the dimensional specifications of the nozzle casing 50, the core element 1 may be changed to one that can cope with a desired liquid feeding flow rate.

処理機能部60をなすコアエレメント1ないし流れ絞りエレメント61は、収容通路部56内にて集合体を構築した際に、該集合体全体の外周面が収容通路部56の内周面と密着ないし隙間嵌めをなすよう形状が定められている。その結果、図8及び図9に示すごとく、処理機能部60のノズルケーシング50への組付けを極めて簡単に行うことができる。  When the core element 1 or the flow restricting element 61 constituting the processing function part 60 is constructed in the housing passage 56, the outer peripheral surface of the whole aggregate is not in close contact with the inner peripheral surface of the housing passage 56. The shape is determined so as to make a clearance fit. As a result, as shown in FIGS. 8 and 9, the processing function unit 60 can be assembled to the nozzle casing 50 very easily.

ここで、ノズルケーシング50の接続継手部51,52のサイズは例えばG1/2(あるいはRc1/2)であり、コアエレメント1のコア本体2の外径は、このような小さいねじ部の内側に位置する狭小な収容通路部56(たとえば内径10mm以上14mm以下)に収まるよう制限される。このような小さいコア本体2に多数のねじ部材を有効に配置するために、コアエレメント1には寸法設計上、さらに次のような工夫がなされている。  Here, the size of the connection joint portions 51 and 52 of the nozzle casing 50 is, for example, G1 / 2 (or Rc1 / 2), and the outer diameter of the core body 2 of the core element 1 is inside such a small screw portion. It is limited to be accommodated in a narrow accommodating passage portion 56 (for example, an inner diameter of 10 mm or more and 14 mm or less). In order to effectively arrange a large number of screw members on such a small core body 2, the following contrivances have been made in the core element 1 in terms of dimensional design.

まず、図2に示す如く、コア本体2に対し液体流路9は、円筒面状の内周面をなすものが一対、コア本体2の軸線と直交する平面への投影上にて該コア本体2の断面中心C0に関し互いに対称な位置関係にて形成されている。このように対をなす液体流路9を設ける場合、両者の断面中心C1,C1間の距離が遠すぎると、流路間には液体流通を妨げるコア本体2の隔壁部分が厚く形成され、圧損原因となりうる。  First, as shown in FIG. 2, a pair of liquid flow paths 9 having a cylindrical inner peripheral surface with respect to the core body 2 are projected on a plane perpendicular to the axis of the core body 2 on the core body 2. The two cross-sectional centers C0 are formed in a mutually symmetrical positional relationship. When the paired liquid flow paths 9 are provided in this way, if the distance between the cross-sectional centers C1 and C1 is too far, a partition wall portion of the core body 2 that prevents the liquid flow is formed between the flow paths, resulting in pressure loss. It can be a cause.

これを防止するために、2つの液体流路9は、液体流路9の断面内径をD、中心間距離をLとしたとき、|L−D|/D×100の値は10%以下となるよう近接して形成している。本実施形態では、図2のごとく、2つの液体流路9の一部が重なりあい、流路が一体化するように形成されている(L−D)の値は負である)。結果、上記の隔壁部分は形成されないから、その一体化位置に近接する衝突部10を通過する液体の流れ損失は大幅に減少し、微差気泡発生効率はさらに高められる。  In order to prevent this, the two liquid flow paths 9 have a value of | LD− / D × 100 of 10% or less, where D is the cross-sectional inner diameter of the liquid flow path 9 and L is the distance between the centers. They are formed close to each other. In the present embodiment, as shown in FIG. 2, a part of the two liquid flow paths 9 overlap each other, and the flow paths are formed so as to be integrated (the value of L−D is negative). As a result, since the partition wall portion is not formed, the flow loss of the liquid passing through the impingement portion 10 close to the integration position is greatly reduced, and the efficiency of generating the slight difference bubble is further enhanced.

次に、図2において、液体流路9に対しねじ部材10A,10Bは、4本のものが十字形態をなすように配置されている。具体的には、液体流路9の断面中心点C1,C1間を結ぶ基準線BLに関し、第一の側に45°傾斜した方向(AL)に液体流路9の断面中心を挟んで互いに対向するねじ部材対10A,10Bと、第一の側と反対の第二の側に45°傾斜した方向(AL’)に液体流路9の断面中心を挟んで互いに対向するねじ部材対10A,10Bとからなる。このレイアウトにより、一方の液体流路9に向けてコア本体2にねじ込まれるねじ部材が、他方の液体流路9を横切ってねじ込まれることを防止しつつ、各液体流路9に対して4本ものねじ部材を配設でき、微細気泡の発生効率を大幅に高めることに貢献している。  Next, in FIG. 2, four screw members 10 </ b> A and 10 </ b> B are arranged in a cross shape with respect to the liquid flow path 9. Specifically, with respect to the reference line BL connecting the cross-sectional center points C1 and C1 of the liquid flow path 9, they face each other across the cross-sectional center of the liquid flow path 9 in a direction (AL) inclined by 45 ° to the first side. Screw member pair 10A, 10B facing each other across the center of the cross section of the liquid channel 9 in a direction (AL ') inclined 45 ° to the second side opposite to the first side. It consists of. With this layout, four screw members are screwed into the core body 2 toward one liquid flow path 9 while preventing the screw members from being screwed across the other liquid flow path 9. A screw member can be provided, which contributes to a significant increase in the generation efficiency of fine bubbles.

液体流路9中に突出するのは、ねじ部材の脚部であるが、ねじ頭部10hは脚部よりも径大に形成されるので、液体流路9の互いに隣接する側(くびれ形態となる領域)に配置されるねじ部材の頭部10hは、脚長を小さくしすぎると一部が隣の液体流路9内周面から突出することになる。この頭部10hの突出量が大きくなりすぎると液体流通に対する圧損要素となり、微細気泡の発生効率低下につながる。そこで、各ねじ部材の対は、ねじ軸線方向ALにおける液体流路9の断面中心点C1からコア本体2の外周縁までの距離が近い側に配置されるものを第一ねじ部材10A、遠い側に配置されるものを第二ねじ部材10Bとして、第一ねじ部材10Aは頭部10hがコア本体2の外形線よりも内側の領域に収まるようにねじ脚部の長さが設定されているのである。  Projecting into the liquid flow path 9 is a leg portion of the screw member, but the screw head 10h is formed to have a diameter larger than that of the leg portion. If the leg length is too small, a part of the head portion 10h of the screw member disposed in the region) protrudes from the inner peripheral surface of the adjacent liquid channel 9. If the protruding amount of the head 10h becomes too large, it becomes a pressure loss factor for the liquid flow, leading to a reduction in generation efficiency of fine bubbles. Therefore, the pair of screw members is the first screw member 10 </ b> A, which is arranged on the far side from the center point C <b> 1 of the cross section of the liquid flow path 9 in the screw axial direction AL to the outer periphery of the core body 2. Since the first screw member 10A is the second screw member 10B, the length of the screw leg portion is set so that the head portion 10h of the first screw member 10A is within the region inside the outline of the core body 2. is there.

他方、第二ねじ部材10Bは、コア本体2の断面中心C0に関し液体流路9の断面と同一径にて基準円D1を描いたとき、該基準円D1とコア本体2の断面外形線との間に位置する領域に頭部10hが収まるようにする。このように構成することで、ねじ部材の頭部10hの液体流路9の内周面への過度の露出を抑制でき、上記の問題を解消することができる。このとき、図からも明らかなごとく、コア本体2の外周面からの距離が大きい第二ねじ部材10Bの突出脚部長は、頭部10hを上記領域内に収めるために、第一ねじ部材10A(の脚部突出長)よりも大きく設定することが幾何学的に必須であることがわかる。第二ねじ部材10Bの頭部10hは、隣の液体流路9内に全く露出しないのがよく、図2において頭部10hは、当該第二ねじ部材10Bが属さない側の液体流路9の断面内周縁よりも外側に位置するように脚部長が調整されている。  On the other hand, when the second screw member 10B draws the reference circle D1 with the same diameter as the cross-section of the liquid flow path 9 with respect to the cross-sectional center C0 of the core main body 2, the reference circle D1 and the cross-sectional outline of the core main body 2 The head 10h is made to fit in the area located between them. By comprising in this way, the excessive exposure to the internal peripheral surface of the liquid flow path 9 of the head 10h of a screw member can be suppressed, and said problem can be eliminated. At this time, as is apparent from the drawing, the length of the projecting leg portion of the second screw member 10B having a large distance from the outer peripheral surface of the core body 2 is such that the first screw member 10A ( It can be seen that it is geometrically essential to set a larger length than the leg protrusion length. The head portion 10h of the second screw member 10B should not be exposed at all in the adjacent liquid flow path 9. In FIG. 2, the head portion 10h is located on the side of the liquid flow path 9 to which the second screw member 10B does not belong. The leg length is adjusted so as to be located outside the inner peripheral edge of the cross section.

ここで、コア本体2の外径寸法は第一ねじ部材10Aの脚部長に規制されることとなる。その際、コア本体2の外径を縮小するには、
(1)第一ねじ部材10Aの頭部10hをコア本体2の外周面にできる限り近づけること;
(2)第一ねじ部材10Aのコア本体2に対する脚部基端部の埋設長を、液体流路9に突出するねじ脚部の基端支持強度が確保できる範囲内でできるだけ小さく設定すること;
がポイントとなる。
Here, the outer diameter of the core body 2 is regulated by the leg length of the first screw member 10A. At that time, to reduce the outer diameter of the core body 2,
(1) The head 10h of the first screw member 10A is brought as close as possible to the outer peripheral surface of the core body 2;
(2) The embedded length of the leg base end portion with respect to the core body 2 of the first screw member 10A is set as small as possible within a range in which the base end supporting strength of the screw leg portion protruding into the liquid flow path 9 can be ensured;
Is the point.

図2においては、上記(1)を解決するために、第一ねじ部材10Aが、コア本体2の断面中心C0に関しコア本体2の外径の90%(望ましくは95%)となる仮想円D2よりも外側に頭部10hの最外縁を位置させるよう、その脚部長が調整されている。また(2)を解決するために、第一ねじ部材10Aの脚部基端側が脚部全長の20%以上60%以下(望ましくは30%以上50%以下)の範囲内でコア本体2に埋設されるよう、脚部長が調整されている。これにより、コアエレメント1は、コア本体2の外形寸法が幾何学的限界に近いレベルにまで縮小され、内径寸法の特に小さい収容通路部56内にも容易に収容できるようになっている。  In FIG. 2, in order to solve the above (1), the first screw member 10A is 90% (preferably 95%) of the outer diameter of the core body 2 with respect to the cross-sectional center C0 of the core body 2. The leg length is adjusted so that the outermost edge of the head 10 h is positioned on the outer side. In order to solve (2), the leg base end side of the first screw member 10A is embedded in the core body 2 within a range of 20% to 60% (preferably 30% to 50%) of the entire length of the leg. Leg length has been adjusted. As a result, the core element 1 is reduced to a level in which the outer dimension of the core body 2 is close to the geometric limit, and can be easily accommodated in the accommodating passage portion 56 having a particularly small inner diameter.

なお、図11に示すように、コアエレメント1において第二ねじ部材10Bの脚部を、コア本体2の外周面に近接する位置まで延長し、第一ねじ部材10Aと同様に、その頭部10hの最外縁を仮想円D2よりも外側に位置させる構成とすることも可能である。このようにすると、第一ねじ部材10Aとともに第二ねじ部材10Bも頭部10hがコア本体2の外周面に近づき、ノズルケーシング50に隙間嵌めで収容した際に、収容通路部56の内周面が、ねじの緩みに伴う頭部10hの突出を規制するので、コア本体2に対するねじ部材10A,10Bの接着によるセッティングを省略できる。  As shown in FIG. 11, in the core element 1, the leg portion of the second screw member 10B is extended to a position close to the outer peripheral surface of the core body 2, and the head 10h is formed in the same manner as the first screw member 10A. It is also possible to adopt a configuration in which the outermost edge of is located outside the virtual circle D2. If it does in this way, when the head 10h will approach the outer peripheral surface of the core main body 2 with the 1st screw member 10A and the 2nd screw member 10B, and it accommodates in the nozzle casing 50 by clearance fitting, the inner peripheral surface of the accommodation channel part 56 However, since the protrusion of the head 10h accompanying the loosening of the screw is restricted, the setting by bonding the screw members 10A and 10B to the core body 2 can be omitted.

図1の水道配管系200に液体処理ノズル100を組み込むためには、次のようにする。すなわち、図10左に示すように、止水栓211に直結されている給水フレキ配管213のナット継手213aを緩め、フレキ配管213を変形させて止水栓211側の継ぎ手部211との間にノズル設置のためのスペースを作る。次いで、液体処理ノズル100の流入側の接続継手部(雌ねじ部51:図2)を止水栓211側の継手部(雄ねじ部)212に螺合締結する。次いで、フレキ配管213を再度変形させてナット継手213aを液体処理ノズル100の流出側の接続継手部(雌ねじ部:図2)53に位置合わせしつつ螺合締結すれば取り付けが完了する。  In order to incorporate the liquid processing nozzle 100 into the water supply pipe system 200 of FIG. That is, as shown on the left side of FIG. 10, the nut joint 213 a of the water supply flexible pipe 213 directly connected to the stop cock 211 is loosened, and the flexible pipe 213 is deformed so that it is between the joint 211 on the stop cock 211 side. Make space for nozzle installation. Next, the connecting joint portion (internal thread portion 51: FIG. 2) on the inflow side of the liquid processing nozzle 100 is screwed and fastened to the joint portion (external thread portion) 212 on the stop cock 211 side. Next, if the flexible pipe 213 is deformed again and the nut joint 213a is screwed and fastened while being aligned with the connecting joint part (female thread part: FIG. 2) 53 on the outflow side of the liquid processing nozzle 100, the attachment is completed.

以下、液体処理ノズルの変形例について列挙する。なお、図2及び図3と共通の構成要素には同一の符号を付与して詳細な説明は略する。
図12の液体処理ノズル101は、コアエレメント1の上流側に流れ絞りエレメント61Aを、下流側に流れ拡大エレメント61Bを設けた例である。流れ拡大エレメント61Bは流出側が流入側よりも経大のテーパ面を有し、コアエレメント1を通過した流れが不連続に拡大することに伴う圧損(特に、よどみ部発生による圧損)を抑制する役割を果たす。なお、図12の液体処理ノズル101においては整流エレメント63が省略され、これに対応して図2の段付き面56aも省かれている。
Hereinafter, modifications of the liquid processing nozzle will be listed. 2 and 3 are given the same reference numerals, and detailed description thereof is omitted.
12 is an example in which a flow restricting element 61A is provided on the upstream side of the core element 1 and a flow expanding element 61B is provided on the downstream side. The flow expanding element 61B has a tapered surface on the outflow side that is larger than the inflow side, and suppresses pressure loss (particularly pressure loss due to stagnation) that occurs when the flow that has passed through the core element 1 discontinuously expands. Fulfill. In the liquid processing nozzle 101 of FIG. 12, the rectifying element 63 is omitted, and the stepped surface 56a of FIG. 2 is also omitted correspondingly.

図13は、図12において、コアエレメント1の流出側の流れ拡大エレメント61Bに代え、円筒状のスペーサエレメント64(付加エレメント)を介して別のコアエレメント1を追加した液体処理ノズル102を示すものである。液体が複数個のコアエレメント1を順次通過することで微細気泡の発生効率がさらに高められる。なお、図13の液体処理ノズル102は、2つのコアエレメント1,1とスペーサエレメント64とを、図12の液体処理ノズル101と寸法仕様が同一の収容通路部56に収めるため、流入側の流れ絞りエレメント61の長さを図12よりも縮小している。  FIG. 13 shows a liquid processing nozzle 102 in which another core element 1 is added via a cylindrical spacer element 64 (additional element) instead of the flow expansion element 61B on the outflow side of the core element 1 in FIG. It is. As the liquid sequentially passes through the plurality of core elements 1, the generation efficiency of fine bubbles is further enhanced. 13 accommodates the two core elements 1 and 1 and the spacer element 64 in the accommodating passage portion 56 having the same dimensional specifications as the liquid processing nozzle 101 in FIG. The length of the aperture element 61 is smaller than that in FIG.

図14は、付加エレメントとして、コアエレメント1に流入する液体にノズルケーシング50外のガス源から供給されるガスを混合するガス混合エレメント65を設けた液体処理ノズルの例である。該液体処理ノズル103は、ガス混合エレメント65は、ベンチュリ管にて構成されたエレメント本体65aの絞り流路に対し、エレメント本体65aの外周面側からガス注入管65bが差し込まれるとともに、ノズルケーシング50の壁部を貫いてガス注入管65bにガスを供給するガス供給管接続継手65cを備える。この場合、ノズルケーシング50の収容通路部56にコアエレメント1と、ガス注入管65bを装着済みのエレメント本体65aとを順次挿入した後、ガス供給管接続継手65cをノズルケーシング50の外側からガス注入管65bに連通するように組み付ける。  FIG. 14 shows an example of a liquid processing nozzle provided with a gas mixing element 65 that mixes a gas supplied from a gas source outside the nozzle casing 50 with a liquid flowing into the core element 1 as an additional element. In the liquid processing nozzle 103, the gas mixing element 65 has a gas injection pipe 65b inserted from the outer peripheral surface side of the element main body 65a into the throttle channel of the element main body 65a constituted by a venturi pipe, and a nozzle casing 50. A gas supply pipe connection joint 65c for supplying gas to the gas injection pipe 65b is provided. In this case, after sequentially inserting the core element 1 and the element main body 65a with the gas injection pipe 65b attached into the accommodating passage portion 56 of the nozzle casing 50, the gas supply pipe connection joint 65c is injected from the outside of the nozzle casing 50. It is assembled so as to communicate with the pipe 65b.

図15は、図14の液体処理ノズル103を用いて液体にガスを1パスにて溶解させる装置500の例を示している。原料液体502はタンク501に貯留されるとともに、該タンク501から延出する供給配管507の途上に送液ポンプ505及び液体処理ノズル103がこの順序で設けられている。液体処理ノズル103のガス供給管接続継手65cには、減圧弁411及びガス供給チューブ412を介してガス供給源としてのボンベ420からガスが供給されるようになっている。  FIG. 15 shows an example of an apparatus 500 for dissolving a gas in a liquid in one pass using the liquid processing nozzle 103 of FIG. The raw material liquid 502 is stored in a tank 501, and a liquid feed pump 505 and a liquid processing nozzle 103 are provided in this order on a supply pipe 507 extending from the tank 501. Gas is supplied to a gas supply pipe connection joint 65 c of the liquid processing nozzle 103 from a cylinder 420 as a gas supply source via a pressure reducing valve 411 and a gas supply tube 412.

送液ポンプ505を動作させると、タンク501からの原料液体は、液体処理ノズル103のガス混合エレメント65(図14)にてボンベ420からのガスが供給され、液体/ガスの混相流となりつつコアエレメント1に送られる。コアエレメント1で発生するキャビテーション乱流にガス相を巻き込むことによりガスを効率的に溶解することができる。また、液体の溶存ガスだけでなく混合したガスも微細気泡の原料として利用でき、微細気泡の発生効率をより高めることが可能となる。ガス溶解済みの処理済み液体514は流出口511から回収容器512に回収される。  When the liquid feed pump 505 is operated, the raw material liquid from the tank 501 is supplied with the gas from the cylinder 420 by the gas mixing element 65 (FIG. 14) of the liquid processing nozzle 103, and becomes a liquid / gas mixed phase flow. Sent to element 1. The gas can be efficiently dissolved by entraining the gas phase in the cavitation turbulent flow generated in the core element 1. Further, not only liquid dissolved gas but also mixed gas can be used as a raw material for fine bubbles, and the generation efficiency of fine bubbles can be further increased. The gas-dissolved treated liquid 514 is recovered from the outlet 511 to the recovery container 512.

ガスを溶解させる液体の種別は特に限定されないが、すでに言及しているごとく水(水溶液や水を溶媒とするコロイド溶液も概念として含む)を用いることができる。また、水以外では、アルコール(及びその水による希釈体:酒類など)や化石燃料(ガソリン、軽油、重油等)、食用油などの有機液状物である。他方、溶解させるガスの種別も同様に限定されないが、たとえば炭酸ガス、酸素、水素、オゾン、塩素、窒素、アルゴン、ヘリウムなどであり、それらより選ばれる2種以上の混合ガスであってもよい。  The type of liquid in which the gas is dissolved is not particularly limited, but water (including an aqueous solution and a colloidal solution containing water as a solvent) can be used as already mentioned. In addition to water, it is an organic liquid such as alcohol (and its water-diluted product: alcohol), fossil fuel (gasoline, light oil, heavy oil, etc.), and edible oil. On the other hand, the type of gas to be dissolved is not limited, but is, for example, carbon dioxide, oxygen, hydrogen, ozone, chlorine, nitrogen, argon, helium, etc., and may be two or more mixed gases selected from them. .

図2のコアエレメント1は、図16に示すように、液体流路9を1個のみとしたものを採用することも可能である。  As shown in FIG. 16, the core element 1 shown in FIG. 2 may have only one liquid channel 9.

次に、図17に示すように、処理機能部をなす集合体は、互いに積層される複数のコアエレメント311A〜311Dを含むものとすることができる。図17においては、これらコアエレメント311A〜311Dは、図3のコアエレメント1を、A−A〜D−Dの各断面と同じねじ部材10Aないし10Bのレイアウトとなるように分割したものに相当する。これらコアエレメント311A〜311Dは、液体流路9の内周面における衝突部10(ねじ部材10A,10B)の突出位置が互いに異なるものとなるように収容通路部56に装着される。具体的には、図2のコアエレメント1に代え、図17に示す角度位相関係にてコアエレメント311A〜311Dを積層したものが装着されることとなる。  Next, as illustrated in FIG. 17, the assembly forming the processing function unit may include a plurality of core elements 311 </ b> A to 311 </ b> D stacked on each other. In FIG. 17, the core elements 311A to 311D correspond to the core element 1 of FIG. 3 divided so as to have the same layout of the screw members 10A to 10B as the cross sections AA to DD. . These core elements 311 </ b> A to 311 </ b> D are attached to the accommodating passage portion 56 so that the protruding positions of the collision portion 10 (screw members 10 </ b> A and 10 </ b> B) on the inner peripheral surface of the liquid flow path 9 are different from each other. Specifically, instead of the core element 1 in FIG. 2, a stack of core elements 311 </ b> A to 311 </ b> D having an angular phase relationship shown in FIG. 17 is attached.

なお、この実施形態では、ノズルケーシング50の収容通路部56の内周面上にて一定の角度位置に通路側係合部50e(たとえば内周面の母線方向に形成される凸条部)が形成され、複数の311A〜311Dのコア本体2の外周面上には通路側係合部50eと係合するコア側係合部2e(この実施形態では溝)を形成し、個々のコアエレメント311A〜311Dの衝突部10(ねじ部材10A,10B)の突出角度位置を、コア側係合部2eを基準として変化させるようにしている。このようにすると、複数のコアエレメント311A〜311D間でねじ部材10A,10Bの角度位相を容易に揃えることができ、組み立てが容易になる。  In this embodiment, a passage-side engagement portion 50e (for example, a protruding strip formed in the generatrix direction of the inner peripheral surface) is provided at a certain angular position on the inner peripheral surface of the accommodating passage portion 56 of the nozzle casing 50. A core-side engagement portion 2e (groove in this embodiment) that engages with the passage-side engagement portion 50e is formed on the outer peripheral surface of the core body 2 of the plurality of 311A to 311D. The protrusion angle position of the collision part 10 (screw members 10A and 10B) of ˜311D is changed with the core side engagement part 2e as a reference. If it does in this way, the angle phase of screw member 10A, 10B can be easily aligned between several core element 311A-311D, and an assembly becomes easy.

図18は、積層された複数のコアエレメント321A〜321Hの上流側に位置するものから下流側に位置するものに向けて、衝突部10の突出位置の液体流路9の内周面上の角度位相を、所定の角度間隔(ここでは45°)で順次変化するように配置した例である。各コアエレメント321A〜321Hは、コア本体2に液体流路9が1個のみ形成され、突出部10も1個だけ設けられている。そして、各々コア本体2の外周面に形成されたコア側係合部2を基準として、液体流路9の内周面に対する突出部10の突出位置の角度位相が、コアエレメント321A〜321Hの積層順に45°ずつ進角するように設定されている。図19は、通路側係合部50eとコア側係合部2eとを係合させつつコアエレメント321A〜321Hを積層した状態を平面視にて示すもので、互いに連通する液体流路9の内周面が作る円筒面内に突出部10がらせん状に位置を変えながら連なっている。このようなコアエレメント321A〜321H群に液体を流通させると、流路断面内のねじ谷数が大幅に増加してねじ谷と液体との接触効率ひいては微細気泡の発生効率が向上するだけでなく、らせん状の突出部配列により流れに旋回が生じ、気泡粉砕効果(あるいは、ガス溶解効果)をより向上することができる。  FIG. 18 shows the angle on the inner peripheral surface of the liquid flow path 9 at the protruding position of the collision portion 10 from the upstream side of the stacked core elements 321A to 321H toward the downstream side. In this example, the phases are arranged so as to change sequentially at a predetermined angular interval (here, 45 °). In each of the core elements 321A to 321H, only one liquid channel 9 is formed in the core body 2, and only one protrusion 10 is provided. Then, with the core-side engaging portion 2 formed on the outer peripheral surface of the core body 2 as a reference, the angular phase of the protruding position of the protruding portion 10 with respect to the inner peripheral surface of the liquid flow path 9 is a stack of the core elements 321A to 321H. It is set to advance in order of 45 °. FIG. 19 shows a state in which the core elements 321A to 321H are stacked while engaging the passage side engaging portion 50e and the core side engaging portion 2e in a plan view. The projecting portion 10 is connected to the cylindrical surface formed by the peripheral surface while changing its position in a spiral shape. When liquid is circulated through such core elements 321A to 321H, the number of screw valleys in the cross section of the flow path is greatly increased, and not only the contact efficiency between the screw valleys and the liquid and thus the generation efficiency of fine bubbles is improved. The spiral protrusion arrangement causes swirling in the flow, and the bubble crushing effect (or gas dissolution effect) can be further improved.

図20に示す処理機能部60は、ノズルケーシング50の収容通路部56に内挿されるとともに、液体の流通方向と直交する面内にて複数のコアエレメント装着孔70hが貫通形態に設けられるコアホルダ部材70を備える。そして、構成エレメントとして複数のコアエレメント301(この実施形態では図16に示すもの)が、コアホルダ部材70のコアエレメント装着孔70hに装着されている。これにより、複数のコアエレメント301が液体の流通方向と直交する面内にて複数並列に配列され、微細気泡発生処理する液体のシンク流量を増やすことができる。このようなコアホルダ部材70を用いることで、単一のノズルケーシング50内にて衝突部を有する液体流路9を複数組形成したい場合も、コアエレメント301を複数作ってコアエレメント1に装着するだけで、液体流路9を種々の個数に自由にレイアウトすることができ、また、種々の設計態様の間でコアエレメント1の共用化を図ることができる。  The processing function part 60 shown in FIG. 20 is inserted into the accommodation passage part 56 of the nozzle casing 50, and a core holder member in which a plurality of core element mounting holes 70h are provided in a penetrating manner in a plane orthogonal to the liquid flow direction. 70. A plurality of core elements 301 (shown in FIG. 16 in this embodiment) are mounted in the core element mounting holes 70 h of the core holder member 70 as constituent elements. As a result, a plurality of core elements 301 are arranged in parallel in a plane orthogonal to the liquid flow direction, and the sink flow rate of the liquid to be processed for generating fine bubbles can be increased. By using such a core holder member 70, when it is desired to form a plurality of sets of liquid flow paths 9 having a collision portion in a single nozzle casing 50, only a plurality of core elements 301 are formed and attached to the core element 1. Thus, the liquid flow passages 9 can be freely laid out in various numbers, and the core element 1 can be shared between various design modes.

図20においては、コアエレメント301はコア本体の一方の端面外周縁に沿って係合鍔部302fが形成され、コアホルダ部材70のコアエレメント装着孔70hの開口周縁に沿って形成された座ぐり部と係合させることで、コアエレメント301がコアエレメント装着孔70hの装着方向に脱落することが防止されている。該装着状態において係合鍔部302fはコアホルダ部材70の主面と面一となっており、ここに各コアエレメント301に対応するテーパ状の絞り孔71hが形成された流れ絞り部材71が重ねられている。図21は、コアエレメント301を装着したコアホルダ部材70と流れ絞り部材71との積層体(集合体)からなる処理機能部60をノズルケーシング151に装着した液体処理ノズル104を示すものである。ノズルケーシング151は接続継手部151,152が形成されたソケット状の形態を有し、雌ねじ継ぎ手部152の形成された開口側から、その底部に形成された段付き面に処理機能部60が当て止めされている。  In FIG. 20, the core element 301 has an engagement flange 302 f formed along the outer peripheral edge of one end surface of the core body, and a counterbore part formed along the opening peripheral edge of the core element mounting hole 70 h of the core holder member 70. To prevent the core element 301 from falling off in the mounting direction of the core element mounting hole 70h. In the mounted state, the engagement flange 302f is flush with the main surface of the core holder member 70, and a flow restricting member 71 in which a tapered restricting hole 71h corresponding to each core element 301 is formed is overlaid. ing. FIG. 21 shows a liquid processing nozzle 104 in which a processing function unit 60 composed of a laminate (aggregate) of a core holder member 70 and a flow restricting member 71 on which a core element 301 is mounted is mounted on a nozzle casing 151. The nozzle casing 151 has a socket-like shape in which connection joint portions 151 and 152 are formed, and the processing function unit 60 is applied to the stepped surface formed at the bottom from the opening side where the female screw joint portion 152 is formed. It has been stopped.

以下、コアエレメントの変形例を示す。
図22のコアエレメント251は、図3のコアエレメント1とほぼ同様に構成されているが、コア本体252の一方の端面外周縁に係合鍔部252fが形成されている。ノズルケーシング151は図21と同様のソケット状の形態を有し、コアエレメント251は係合鍔部252fを、雌ねじの接続継手部152が形成された開口側底部をなす段付き面に支持させる形で、ノズルケーシング151への装着方向への抜け止めがなされている。つまり、ノズルケーシング151の収容通路部156はコア本体252を当て止めする段付き面が形成されず、単純な円筒面になっている点に特徴がある。これに係合する配管系600,601を仮想線にて示している。
Hereinafter, modifications of the core element will be shown.
The core element 251 in FIG. 22 is configured in substantially the same manner as the core element 1 in FIG. 3, but an engagement flange 252 f is formed on one outer peripheral edge of the core body 252. The nozzle casing 151 has a socket-like configuration similar to that shown in FIG. 21, and the core element 251 supports the engagement flange 252f on a stepped surface that forms the bottom of the opening on which the connecting joint 152 of the female screw is formed. Thus, the nozzle casing 151 is prevented from coming off in the mounting direction. That is, the accommodation passage portion 156 of the nozzle casing 151 is characterized in that a stepped surface for holding the core body 252 is not formed and a simple cylindrical surface is formed. Piping systems 600 and 601 engaged therewith are indicated by phantom lines.

図23は、図22の構成において、同様の構成のコアエレメント251を流出側開口部側にも追加した例である。当該側のコアエレメント251は係合鍔部252fを流出側開口部の雄ねじ端面にて支持させている。  FIG. 23 shows an example in which the core element 251 having the same configuration is added to the outflow side opening in the configuration of FIG. The core element 251 on the side supports the engagement flange 252f on the male screw end surface of the outflow side opening.

また、図24は段付き面151eを有したソケット状のノズルケーシング151Bに、図3と同様のコアエレメント1のみを装着した液体処理ノズルの例を示すものである。図26に示す参考例は、雄ねじ部653と雌ねじ部652を有する樹脂製のソケット型ノズル本体の雌ねじ側底部の厚みを増加させ、ここにねじ部材10を直接ねじ込んで構成した液体処理ノズルの例を示すものである。この構成でも、ノズル全体の長さは相当縮小され、設置先スペースに制限がある場合等に有効活用することができるが、図24の構成によれば、コアエレメント1が雄ねじ部154側に入り込んで配置される分、雌ねじ部152側の底部厚さが縮小し、図26の場合よりも更なる寸法縮小が実現していることがわかる。  FIG. 24 shows an example of a liquid processing nozzle in which only a core element 1 similar to that in FIG. 3 is mounted on a socket-like nozzle casing 151B having a stepped surface 151e. The reference example shown in FIG. 26 is an example of a liquid processing nozzle in which the thickness of the bottom portion on the female screw side of the resin socket type nozzle body having the male screw portion 653 and the female screw portion 652 is increased and the screw member 10 is directly screwed therein. Is shown. Even in this configuration, the overall length of the nozzle is considerably reduced and can be effectively used when the installation space is limited. However, according to the configuration of FIG. 24, the core element 1 enters the male screw portion 154 side. As shown in FIG. 26, the thickness of the bottom portion on the female screw portion 152 side is reduced, and it can be seen that further dimensional reduction is realized compared to the case of FIG.

図25は、エルボ形態のノズルケーシング350の一方の端部内側に段付き面356eを有した収容通路部356を形成し、ここに図2と同様の形成体でコアエレメント1と流れ絞り部材61とを装着した液体処理ノズル105を示すものである。ノズルケーシング350の両端には雌ねじ継ぎ手部をなすナット部材353,353がノズルケーシング350に対し相対回転可能に結合されている。なお、エルボ形態のノズルケーシングの一方ないし両方の端部の継ぎ手部を雄ねじ部とすることも可能である。  25, an accommodation passage portion 356 having a stepped surface 356e is formed inside one end of an elbow-shaped nozzle casing 350, and the core element 1 and the flow restricting member 61 are formed in the same formation as in FIG. The liquid processing nozzle 105 to which is attached is shown. Nut members 353 and 353 forming female screw joints are coupled to both ends of the nozzle casing 350 so as to be rotatable relative to the nozzle casing 350. In addition, it is also possible to make the joint part of one or both ends of the elbow-shaped nozzle casing into a male screw part.

1 コアエレメント
2 コア本体
5 液体出口
4 液体入口
9 液体流路
10(10A,10B) 衝突部(ねじ部材)
11 谷部
12 山部
50 ノズルケーシング
51,52,151,152 接続継手部
54 流入側開口部
55 流出側開口部
56 収容通路部
60 処理機能部
100〜105 液体処理ノズル
61,61A 流れ絞りエレメント(流れ調整エレメント)
61B 流れ拡大エレメント(流れ調整エレメント)
62 整流エレメント(流れ調整エレメント)
65 ガス混合エレメント
DESCRIPTION OF SYMBOLS 1 Core element 2 Core main body 5 Liquid outlet 4 Liquid inlet 9 Liquid flow path 10 (10A, 10B) Colliding part (screw member)
DESCRIPTION OF SYMBOLS 11 Valley part 12 Mountain part 50 Nozzle casing 51,52,151,152 Connection joint part 54 Inflow side opening part 55 Outflow side opening part 56 Accommodating passage part 60 Processing function part 100-105 Liquid processing nozzle 61, 61A Flow throttle element ( Flow adjustment element)
61B Flow expansion element (flow adjustment element)
62 Rectifying element (flow adjustment element)
65 Gas mixing element

Claims (18)

処理対象液体を流通させる配管系に組み込んで使用される液体処理ノズルであって、
一端に流入側開口部を他端に流出側開口部を形成する貫通形態の収容通路部を備えるとともに、少なくも前記流入側開口部の形成側端部に前記配管系への接続継手部が形成されたノズルケーシングと、
前記ノズルケーシングの前記収容通路部に配置され、個別の流通路を有するとともに前記流入側開口部又は前記流出側開口部から前記収容通路部内の所定位置に内挿可能に形成される複数の構成エレメントの集合体として構成された処理機能部とを備え、前記集合体を構成する複数の前記構成エレメントは、
一方の端面に液体入口を開口し他方の端面に液体出口を開口する貫通形態の液体流路が形成され、前記ノズルケーシングの前記流入側開口部に向けて供給される前記液体が前記液体流路を経て前記流出側開口部より流出可能となる位置関係にて前記処理機能部に組み込まれるコア本体と、前記液体流路の内面から各々突出するとともに外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部とを備え、前記衝突部と接触した前記液体が前記谷部内にて増速するときの減圧作用により、該液体の溶存ガスを過飽和析出させて微細気泡発生処理を行う1又は複数のコアエレメントと、
前記コアエレメントに供給される前記液体の前処理又は後処理を行う1又は複数の付加エレメントと、
からなる群より選ばれる、少なくとも1つの前記コアエレメントを含む2以上の構成エレメントを含むものとして構成されたことを特徴とする液体処理ノズル。
A liquid processing nozzle that is used by being incorporated in a piping system for circulating a liquid to be processed,
It has a through-passage accommodation passage that forms an inflow opening at one end and an outflow opening at the other end, and at least a connection joint to the piping system is formed at the forming end of the inflow opening. A nozzle casing,
A plurality of constituent elements that are arranged in the accommodation passage portion of the nozzle casing and have individual flow passages and are insertable from the inflow side opening portion or the outflow side opening portion to predetermined positions in the accommodation passage portion. And a plurality of the constituent elements constituting the aggregate include: a processing function unit configured as an aggregate of:
A penetrating liquid flow path is formed in which one end face opens a liquid inlet and the other end face opens a liquid outlet, and the liquid supplied toward the inflow side opening of the nozzle casing is the liquid flow path. A core body incorporated in the processing function part in a positional relationship that allows outflow from the outflow side opening, and a circumferential ridge and a high flow rate part projecting from the inner surface of the liquid channel and on the outer peripheral surface A plurality of troughs that are alternately connected to each other, and the dissolved gas in the liquid is reduced by a pressure reducing action when the liquid in contact with the colliding part is accelerated in the troughs. One or a plurality of core elements for performing fine bubble generation treatment by supersaturated precipitation;
One or more additional elements that perform pre-treatment or post-treatment of the liquid supplied to the core element;
A liquid processing nozzle comprising two or more constituent elements including at least one core element selected from the group consisting of:
前記処理機能部は、前記収容通路部内にて前記構成エレメントが前記集合体を構築した際に、該集合体全体の外周面が前記収容通路部の内周面と密着ないし隙間嵌めをなすように、個々の前記構成エレメントの形状が定められてなる請求項1記載の液体処理ノズル。  The processing function unit is configured such that, when the constituent element constructs the assembly in the housing passage portion, the outer peripheral surface of the entire assembly is in close contact with the inner peripheral surface of the housing passage portion or has a clearance fit. The liquid processing nozzle according to claim 1, wherein the shape of each of the constituent elements is defined. 前記処理機能部をなす前記集合体が、互いに独立して前記微細気泡発生処理を行う複数の前記コアエレメントを含むものである請求項1又は請求項2に記載の液体処理ノズル。  The liquid processing nozzle according to claim 1, wherein the aggregate constituting the processing function unit includes a plurality of the core elements that perform the microbubble generation processing independently of each other. 前記処理機能部をなす前記集合体は、前記付加エレメントとして前記コアエレメントの上流側又は下流側にて前記液体の流れを調整する流れ調整エレメントを含むものである請求項1ないし請求項3のいずれか1項に記載の液体処理ノズル。  The said assembly which makes the said processing function part contains the flow adjustment element which adjusts the flow of the said liquid upstream or downstream of the said core element as said additional element. The liquid processing nozzle according to item. 前記流れ調整エレメントは、前記コアエレメントの上流側又は下流側に配置されるとともに、該コアエレメントの前記液体入口又は前記液体出口に向けて流路断面積が漸次縮小する流れ絞りエレメント又は流れ拡大エレメントとして構成されてなる請求項4記載の液体処理ノズル。  The flow regulating element is arranged on the upstream side or the downstream side of the core element, and the flow restricting element or the flow expanding element whose flow path cross-sectional area gradually decreases toward the liquid inlet or the liquid outlet of the core element. The liquid processing nozzle according to claim 4, which is configured as follows. 前記処理機能部をなす前記集合体は、前記付加エレメントとして、前記コアエレメントに流入する液体に前記ノズルケーシング外のガス源から供給されるガスを混合するガス混合エレメントを含むものである請求項1ないし請求項5のいずれか1項に記載の液体処理ノズル。  The assembly that constitutes the processing function unit includes, as the additional element, a gas mixing element that mixes a gas supplied from a gas source outside the nozzle casing with a liquid flowing into the core element. Item 6. The liquid treatment nozzle according to any one of Item 5. 前記処理機能部をなす前記集合体は、複数の前記構成エレメントが、前記収容通路部内の流れ方向において互いに隣接する形態に配置される請求項1ないし請求項6のいずれか1項に記載の液体処理ノズル。  The liquid according to any one of claims 1 to 6, wherein a plurality of the constituent elements are arranged in a form adjacent to each other in a flow direction in the accommodating passage portion in the assembly constituting the processing function portion. Processing nozzle. 前記ノズルケーシングは前記接続継手部としてのねじ継手部が両端に形成された金属配管部材として構成されてなる請求項7記載の液体処理ノズル。  The liquid processing nozzle according to claim 7, wherein the nozzle casing is configured as a metal piping member in which a threaded joint portion as the connection joint portion is formed at both ends. 前記処理機能部をなす前記集合体は、複数の前記構成エレメントが、前記ノズルケーシングの前記流入側開口部又は前記流出側開口部をなす同一端側から前記収容通路部に対し順次内挿可能な形状に形成されてなる請求項7又は請求項8に記載の液体処理ノズル。  In the assembly constituting the processing function part, a plurality of the constituent elements can be sequentially inserted into the accommodation passage part from the same end side forming the inflow side opening part or the outflow side opening part of the nozzle casing. The liquid processing nozzle according to claim 7 or 8, which is formed in a shape. 前記収容通路部の中間位置には、前記構成エレメントの挿入側において径大となるように段付き面が形成され、前記液体処理機能部は、該液体処理機能部を構築する前記構成エレメントのあらかじめ定められたものの端面外周縁部が当該段付き面に当て止め配置されるとともに、残余のものがこれに直接または他部材を介して間接的に積層配置されてなる請求項9記載の液体処理ノズル。  A stepped surface is formed at an intermediate position of the accommodating passage portion so as to have a large diameter on the insertion side of the component element, and the liquid processing function unit is provided in advance of the component element constituting the liquid processing function unit. The liquid processing nozzle according to claim 9, wherein an outer peripheral edge portion of a predetermined end is disposed so as to abut against the stepped surface, and a remaining portion is laminated and disposed directly or indirectly through another member. . 前記処理機能部をなす前記集合体は、互いに直接又は貫通流路を有したスペーサ部材を介して積層される複数の前記コアエレメントを含むものである請求項7ないし請求項10のいずれか1項に記載の液体処理ノズル。  11. The assembly according to claim 7, wherein the assembly that forms the processing function unit includes a plurality of the core elements that are stacked directly or via a spacer member having a through channel. Liquid processing nozzle. 複数の前記コアエレメントは、前記液体流路の内周面における前記衝突部材の突出位置が互いに異なるものとなるように前記収容通路部に装着される請求項11記載の液体処理ノズル。  The liquid processing nozzle according to claim 11, wherein the plurality of core elements are attached to the housing passage portion so that the protruding positions of the collision members on the inner peripheral surface of the liquid flow path are different from each other. 前記ノズルケーシングの前記収容通路部の内周面が円筒面をなすとともに、前記コアエレメントの前記ノズル本体は該円筒面状の前記収容通路部に隙間嵌め可能な外周面を有する円柱状に形成されてなる請求項7ないし請求項12のいずれか1項に記載の液体処理ノズル。  An inner peripheral surface of the accommodating passage portion of the nozzle casing forms a cylindrical surface, and the nozzle body of the core element is formed in a columnar shape having an outer peripheral surface capable of being fitted into the cylindrical surface of the accommodating passage portion. The liquid processing nozzle according to any one of claims 7 to 12. 前記コアエレメントの前記コア本体は、軸線と平行な向きに前記液体流路が貫通形成される円柱状に形成され、前記衝突部材は該コア本体の外周面から前記液体流路に向けてねじ込まれるとともに、先端部が前記液体流路の内周面から突出して前記衝突部を形成するねじ部材により形成されてなる請求項1ないし請求項13のいずれか1項に記載の液体処理ノズル。  The core body of the core element is formed in a columnar shape in which the liquid flow path penetrates in a direction parallel to the axis, and the collision member is screwed from the outer peripheral surface of the core body toward the liquid flow path. The liquid processing nozzle according to any one of claims 1 to 13, wherein a tip portion is formed by a screw member that protrudes from an inner peripheral surface of the liquid flow path to form the collision portion. 前記コア本体に対し前記液体流路は、円筒面状の内周面をなすものが一対、前記コア本体の前記軸線と直交する平面への投影上にて該コア本体の断面中心に関し互いに対称な位置関係をなすとともに、前記液体流路の断面内径をD、中心間距離をLとしたとき、|L−D|/D×100の値が10%以下となるように近接ないし重なるように形成され、前記液体流路に対し前記ねじ部材は、前記投影において前記液体流路の断面中心点間を結ぶ基準線に関し、第一の側に45°傾斜した方向に前記液体流路の断面中心を挟んで互いに対向するねじ部材対と、前記第一の側と反対の第二の側に45°傾斜した方向に前記液体流路の断面中心を挟んで互いに対向するねじ部材対とからなる計4本が十字形態をなすように配置されるとともに、各前記ねじ部材対は、ねじ軸線方向において前記液体流路の断面中心から前記コア本体の外周縁までの距離が近い側に配置されるものを第一ねじ部材、遠い側に配置されるものを第二ねじ部材として、前記第一ねじ部材は頭部が前記コア本体の外形線よりも内側の領域に収まるようにねじ脚部の長さが設定される一方、前記第二ねじ部材は、前記コア本体の断面中心に関し前記液体流路の断面と同一径にて基準円を描いたとき、該基準円と前記コア本体の断面外形線との間に位置する領域に頭部が収まるように、脚部長が前記第一ねじ部材よりも大きく設定されてなる請求項14記載の液体処理ノズル。  A pair of liquid flow paths having a cylindrical inner peripheral surface with respect to the core body are symmetrical with respect to the cross-sectional center of the core body on a projection onto a plane orthogonal to the axis of the core body. In addition to the positional relationship, when the cross-sectional inner diameter of the liquid flow path is D and the center-to-center distance is L, the values of | LD− / D × 100 are formed so as to be close to each other or overlap each other. The screw member with respect to the liquid flow path has a cross-sectional center of the liquid flow path in a direction inclined by 45 ° to the first side with respect to a reference line connecting the cross-sectional center points of the liquid flow path in the projection. A total of 4 screw member pairs that are opposed to each other with a pair of screw members opposed to each other across the center of the cross section of the liquid channel in a direction inclined by 45 ° to the second side opposite to the first side. The books are arranged in a cross shape and each In the screw member pair, the first screw member is disposed on the side closer to the outer peripheral edge of the core body from the center of the cross section of the liquid flow path in the screw axis direction, and the second member is disposed on the far side. As the screw member, the length of the screw leg portion is set so that the head portion of the first screw member is within the region inside the outline of the core body, while the second screw member is the core body. When the reference circle is drawn with the same diameter as the cross-section of the liquid flow path with respect to the center of the cross-section, the leg length is set so that the head fits in the region located between the reference circle and the cross-sectional outline of the core body. The liquid processing nozzle according to claim 14, wherein is set larger than the first screw member. 前記第二ねじ部材の頭部は、当該第二ねじ部材が属さない側の前記液体流路の断面内周縁よりも外側に位置するように前記脚部長が調整されてなる請求項15記載の液体処理ノズル。  The liquid according to claim 15, wherein the length of the leg portion is adjusted such that the head of the second screw member is positioned outside the inner peripheral edge of the cross section of the liquid channel on the side to which the second screw member does not belong. Processing nozzle. 前記処理機能部は、前記ノズルケーシングの前記収容通路部に内挿されるとともに、前記液体の流通方向と直交する面内にて複数のコアエレメント装着孔が貫通形態に設けられるコアホルダ部材を備え、前記構成エレメントとして複数の前記コアエレメントが前記コアホルダ部材の前記コア装着孔に装着されることを特徴とする請求項1ないし請求項6のいずれか1項に記載の液体処理ノズル。  The processing function unit includes a core holder member that is inserted into the housing passage portion of the nozzle casing and has a plurality of core element mounting holes provided in a penetrating manner in a plane orthogonal to the liquid flow direction. The liquid processing nozzle according to any one of claims 1 to 6, wherein a plurality of the core elements are mounted in the core mounting hole of the core holder member as constituent elements. 一方の端面に液体入口を開口し他方の端面に液体出口を開口する貫通形態の液体流路が形成されたコア本体と、前記液体流路の内面から各々突出するとともに外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部とを備え、前記衝突部と接触した前記液体が前記谷部内にて増速するときの減圧作用により、該液体の溶存ガスを過飽和析出させて微細気泡発生処理を行う液体処理ノズル用コアエレメントであって、
前記コア本体は、軸線と平行な向きに前記液体流路が貫通形成される円柱状に形成され、前記衝突部材は該コア本体の外周面から前記液体流路に向けてねじ込まれるとともに、先端部が前記液体流路の内周面から突出して前記衝突部を形成するねじ部材により形成されてなり、
前記コア本体に対し前記液体流路は、円筒面状の内周面をなすものが一対、前記コア本体の前記軸線と直交する平面への投影上にて該コア本体の断面中心に関し互いに対称な位置関係をなすとともに、前記液体流路の断面内径をD、中心間距離をLとしたとき、|L−D|/D×100の値が10%以下となるように近接ないし重なるように形成され、前記液体流路に対し前記ねじ部材は、前記投影において前記液体流路の断面中心点間を結ぶ基準線に関し、第一の側に45°傾斜した方向に前記液体流路の断面中心を挟んで互いに対向するねじ部材対と、前記第一の側と反対の第二の側に45°傾斜した方向に前記液体流路の断面中心を挟んで互いに対向するねじ部材対とからなる計4本が十字形態をなすように配置されるとともに、各前記ねじ部材対は、ねじ軸線方向における前記液体流路の断面中心から前記コア本体の外周縁までの距離が近い側に配置されるものを第一ねじ部材、遠い側に配置されるものを第二ねじ部材として、前記第一ねじ部材は頭部が前記コア本体の外形線よりも内側の領域に収まるようにねじ脚部の長さが設定される一方、前記第二ねじ部材は、前記コア本体の断面中心に関し前記液体流路の断面と同一径にて基準円を描いたとき、該基準円と前記コア本体の断面外形線との間に位置する領域に頭部が収まるように、脚部長が前記第一ねじ部材よりも大きくなるように設定されてなることを特徴とする液体処理ノズル用コアエレメント。
A core body formed with a through-flow-type liquid flow path having a liquid inlet opening at one end face and a liquid outlet opening at the other end face, and protruding in the circumferential direction from the inner surface of the liquid flow path And a collision portion formed such that a plurality of trough portions that are high flow velocity portions are alternately connected to each other, and due to a pressure reducing action when the liquid in contact with the collision portion is accelerated in the trough portion, A core element for a liquid processing nozzle that performs fine bubble generation processing by supersaturated precipitation of a dissolved gas in a liquid,
The core body is formed in a cylindrical shape in which the liquid flow path is formed so as to penetrate in a direction parallel to the axis, and the collision member is screwed from the outer peripheral surface of the core body toward the liquid flow path, and a distal end portion Is formed by a screw member that protrudes from the inner peripheral surface of the liquid flow path and forms the collision portion,
A pair of liquid flow paths having a cylindrical inner peripheral surface with respect to the core body are symmetrical with respect to the cross-sectional center of the core body on a projection onto a plane orthogonal to the axis of the core body. In addition to the positional relationship, when the cross-sectional inner diameter of the liquid flow path is D and the center-to-center distance is L, the values of | LD− / D × 100 are formed so as to be close to each other or overlap each other. The screw member with respect to the liquid flow path has a cross-sectional center of the liquid flow path in a direction inclined by 45 ° to the first side with respect to a reference line connecting the cross-sectional center points of the liquid flow path in the projection. A total of 4 screw member pairs that are opposed to each other with a pair of screw members opposed to each other across the center of the cross section of the liquid channel in a direction inclined by 45 ° to the second side opposite to the first side. The books are arranged in a cross shape and each The first pair of screw members are arranged on the side closer to the outer peripheral edge of the core body from the center of the cross section of the liquid flow path in the screw axis direction, and the second pair of screw members is arranged on the far side. As the screw member, the length of the screw leg portion is set so that the head portion of the first screw member is within the region inside the outline of the core body, while the second screw member is the core body. When the reference circle is drawn with the same diameter as the cross-section of the liquid flow path with respect to the center of the cross-section, the leg length is set so that the head fits in the region located between the reference circle and the cross-sectional outline of the core body. Is set so as to be larger than the first screw member.
JP2017058189A 2017-03-06 2017-03-06 Liquid processing nozzle and core element for liquid processing nozzle Active JP6762461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058189A JP6762461B2 (en) 2017-03-06 2017-03-06 Liquid processing nozzle and core element for liquid processing nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058189A JP6762461B2 (en) 2017-03-06 2017-03-06 Liquid processing nozzle and core element for liquid processing nozzle

Publications (2)

Publication Number Publication Date
JP2018144018A true JP2018144018A (en) 2018-09-20
JP6762461B2 JP6762461B2 (en) 2020-09-30

Family

ID=63590349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058189A Active JP6762461B2 (en) 2017-03-06 2017-03-06 Liquid processing nozzle and core element for liquid processing nozzle

Country Status (1)

Country Link
JP (1) JP6762461B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162605A (en) * 2018-03-19 2019-09-26 株式会社ナノテック Ultra fine bubble generator
KR102252411B1 (en) * 2020-10-28 2021-05-14 김의진 A fine bubble generator
JP2022063993A (en) * 2020-10-13 2022-04-25 株式会社富士計器 Union-type fine air bubble water generator for city water pipe
JP2022079413A (en) * 2020-11-16 2022-05-26 株式会社アクアフューチャー研究所 Liquid processing nozzle
KR20220104991A (en) * 2021-01-19 2022-07-26 김홍철 A fine bubble generator using perforated plate
WO2023188486A1 (en) * 2022-03-28 2023-10-05 リンナイ株式会社 Microscopic bubble generation device, water heater, and dishwasher

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018330A (en) * 2006-07-12 2008-01-31 Norifumi Yoshida Bubble generating device
JP2010240592A (en) * 2009-04-07 2010-10-28 Shibaura Mechatronics Corp Microbubble generator and method of generating microbubble
JP2014121689A (en) * 2012-12-21 2014-07-03 Shibata:Kk Carbon dioxide microbubble generating unit
JP2015150548A (en) * 2014-02-19 2015-08-24 独立行政法人国立高等専門学校機構 Microbubble generator
JP2015174056A (en) * 2014-03-17 2015-10-05 株式会社シバタ Carbon dioxide gas dissolution device
WO2016178436A2 (en) * 2015-05-07 2016-11-10 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018330A (en) * 2006-07-12 2008-01-31 Norifumi Yoshida Bubble generating device
JP2010240592A (en) * 2009-04-07 2010-10-28 Shibaura Mechatronics Corp Microbubble generator and method of generating microbubble
JP2014121689A (en) * 2012-12-21 2014-07-03 Shibata:Kk Carbon dioxide microbubble generating unit
JP2015150548A (en) * 2014-02-19 2015-08-24 独立行政法人国立高等専門学校機構 Microbubble generator
JP2015174056A (en) * 2014-03-17 2015-10-05 株式会社シバタ Carbon dioxide gas dissolution device
WO2016178436A2 (en) * 2015-05-07 2016-11-10 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162605A (en) * 2018-03-19 2019-09-26 株式会社ナノテック Ultra fine bubble generator
JP2022063993A (en) * 2020-10-13 2022-04-25 株式会社富士計器 Union-type fine air bubble water generator for city water pipe
JP7143382B2 (en) 2020-10-13 2022-09-28 株式会社富士計器 Union type micro-bubble water generator for water pipes
KR102252411B1 (en) * 2020-10-28 2021-05-14 김의진 A fine bubble generator
JP2022079413A (en) * 2020-11-16 2022-05-26 株式会社アクアフューチャー研究所 Liquid processing nozzle
WO2023027136A1 (en) * 2020-11-16 2023-03-02 株式会社タケシタ Liquid treatment nozzle
JP7260925B2 (en) 2020-11-16 2023-04-19 株式会社タケシタ liquid handling nozzle
KR20220104991A (en) * 2021-01-19 2022-07-26 김홍철 A fine bubble generator using perforated plate
WO2022158835A3 (en) * 2021-01-19 2023-01-19 김홍철 Microbubble water generating apparatus using perforated plate
KR102534708B1 (en) * 2021-01-19 2023-05-19 김홍철 A fine bubble generator using perforated plate
WO2023188486A1 (en) * 2022-03-28 2023-10-05 リンナイ株式会社 Microscopic bubble generation device, water heater, and dishwasher

Also Published As

Publication number Publication date
JP6762461B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP2018144018A (en) Liquid treatment nozzle and core element for liquid treatment nozzle
JP7125991B2 (en) microbubble generator
CN102770200B (en) In-line fluid mixing device
WO2019049650A1 (en) Microbubble liquid generator
JP6048841B2 (en) Fine bubble generator
JP7223496B2 (en) Mixer and Vaporizer
JP6268135B2 (en) Micro bubble shower device
TWM552842U (en) Micro-bubble generator
JP3836497B1 (en) Ion bubble generator
JP4426612B2 (en) Fine bubble generation nozzle
JP5106918B2 (en) Inline mixer structure
JP6075674B1 (en) Fluid mixing device
JP6681770B2 (en) Bubble generator and bubble generator
JP6074719B2 (en) shower head
TW201914686A (en) Bubble generating device and bubble generating method
JP2008289993A (en) Bubble generator
JP2017221919A (en) Fine bubble generator, shower head and mixed phase fluid processing device
JP5397047B2 (en) Foam discharge device
JP7143382B2 (en) Union type micro-bubble water generator for water pipes
CN220371322U (en) Microbubble generating part and water outlet device
TWM451389U (en) Water filter
JP7320855B2 (en) venturi nozzle device
TWI764263B (en) Micro-bubble generator
CN216293867U (en) Shower hose with micro-bubble water generator and shower hose mounting piece
KR20230107094A (en) Device for dissolving gas into liquid

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200212

R150 Certificate of patent or registration of utility model

Ref document number: 6762461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350