JP2015174055A - Gas dissolution device - Google Patents

Gas dissolution device Download PDF

Info

Publication number
JP2015174055A
JP2015174055A JP2014053529A JP2014053529A JP2015174055A JP 2015174055 A JP2015174055 A JP 2015174055A JP 2014053529 A JP2014053529 A JP 2014053529A JP 2014053529 A JP2014053529 A JP 2014053529A JP 2015174055 A JP2015174055 A JP 2015174055A
Authority
JP
Japan
Prior art keywords
gas
liquid
flow
collision
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014053529A
Other languages
Japanese (ja)
Inventor
啓雄 白井
Hiroo Shirai
啓雄 白井
芳樹 柴田
Yoshiki Shibata
芳樹 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibata & Co Ltd
Shibata Corp
Original Assignee
Shibata & Co Ltd
Shibata Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibata & Co Ltd, Shibata Corp filed Critical Shibata & Co Ltd
Priority to JP2014053529A priority Critical patent/JP2015174055A/en
Publication of JP2015174055A publication Critical patent/JP2015174055A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas dissolution device capable of extremely efficiently dissolving various gases, without using a complicated gas-liquid mixing mechanism.SOLUTION: A gas dissolution device comprises a liquid hydraulic member 1 having a member body 6 for forming a liquid flow passage in a penetration form and forming an orifice part 2c smaller in the flow cross-sectional area than an inflow port in a midway position of the flow passage and a collision part of projecting from an inner peripheral surface of the flow passage in the form of partitioning an axial cross section of the flow passage into two or more of segment areas 2e by the orifice part 2c, having a plurality of turns of orifice ribs in the circumferential direction on an outer peripheral surface and further reducing the flow passage cross-sectional area of the orifice part 2c and a dissolution object gas supply part 12 for making dissolution object gas flow in from a gas supply source positioned in an external part of the member body in the liquid flow passage of the member body 6. A flow of liquid supplied to the inflow end of the member body 6 of the liquid hydraulic member 1, is passed by increasing a speed while distributing to the respective segment areas 2e after colliding with a collision part 3, and the dissolution object gas is dissolved by mixedly crushing by roling in a turbulent flow area formed just downstream of the collision part.

Description

本発明は、ガス溶解装置に関するものである。   The present invention relates to a gas dissolving apparatus.

魚を飼育するための水槽が酸素不足にならないように、空気や酸素を溶解する手段としては、多孔質の散気体を通じで空気や酸素を気泡の形で水槽内に供給するエアレーション装置が知られている。また、オゾンはきわめて強い殺菌力を有し、これを水に溶解させたオゾン水の形で、除菌、消毒あるいは消臭を目的とした種々の用途に使用されている。特許文献1、2には、ベンチュリ管にオゾンガスの吸引導入部を形成したエジェクタと貯水槽との間で被処理水を循環させ、エジェクタから導入された粗大なオゾン気泡を撹拌しつつ溶解縮小させる方式が開示されている。   An aeration apparatus that supplies air and oxygen in the form of bubbles through a porous diffused gas is known as a means of dissolving air and oxygen so that the tank for raising fish does not run out of oxygen. ing. In addition, ozone has a very strong sterilizing power and is used in various applications for the purpose of sterilization, disinfection or deodorization in the form of ozone water in which it is dissolved in water. In Patent Documents 1 and 2, the water to be treated is circulated between an ejector in which an ozone gas suction introduction portion is formed in a venturi tube and a water storage tank, and coarse ozone bubbles introduced from the ejector are dissolved and reduced while stirring. A scheme is disclosed.

特開2004−330050号公報JP 2004-330050 A 特開2007−275893号公報JP 2007-275893 A

しかし、多孔質散気体を用いたエアレーション装置では気泡径が大きすぎ、十分な溶解効果が得られない難点がある。また、特許文献1、2の方式では、オゾンをベンチュリ管やオリフィスなどの周知のエジェクション機構で混合撹拌するのであるが、絞り孔通過時の流体抵抗が上昇して期待されるほど流速が増加せず、また絞り孔内では孔内壁面からのラジアル方向の背圧も受けやすいので、十分な溶解撹拌効果が得られない難点がある。また、気泡をさらに微粉砕するための流れ要素として、絞り孔を通過した水流自体の開放・乱流化に伴なう渦発生のみしか期待できない問題がある。結局のところ、該文献の技術を用いたオゾン気泡微細化においては、一旦粗大な気泡を形成しておいて水流循環中の溶解により縮小する機構が主体的とならざるを得ず、長時間の水流循環ないし撹拌が必要となり、オゾン水の製造効率が非常に悪い欠点がある。   However, the aeration apparatus using a porous air diffuser has a drawback that the bubble diameter is too large and a sufficient dissolution effect cannot be obtained. In the methods of Patent Documents 1 and 2, ozone is mixed and agitated by a known ejection mechanism such as a venturi tube or an orifice, but the flow velocity increases as the fluid resistance when passing through the throttle hole is expected to increase. In addition, there is a drawback that a sufficient effect of dissolution and stirring cannot be obtained because the radial back pressure from the inner wall surface of the hole is easily received in the throttle hole. Further, as a flow element for further finely pulverizing the bubbles, there is a problem that only the vortex generation associated with the opening / turbulence of the water flow itself that has passed through the throttle hole can be expected. After all, in ozone bubble miniaturization using the technique of this document, a mechanism that forms coarse bubbles once and then shrinks by dissolution during water circulation must be dominant, and it takes a long time. Water circulation or agitation is required, and the production efficiency of ozone water is very poor.

本発明の課題は、複雑な気液混合機構を用いずとも種々のガスを極めて効率よく溶解できるガス溶解装置を提供することにある   An object of the present invention is to provide a gas dissolving apparatus capable of dissolving various gases extremely efficiently without using a complicated gas-liquid mixing mechanism.

上記の課題を解決するために、本発明のガス溶解装置は、
液体流入側となる流入端と液体流出側となる流出端とが定められ、流入端に開口する流入口と流出端に開口する流出口とをつなぐ液体流路が貫通形態に形成されるとともに、流路の途中位置に流入口よりも流通断面積が小さい絞り部が形成された部材本体と、絞り部にて流路の軸断面を2以上のセグメント領域に区画する形態で流路の内周面から突出するとともに外周面に周方向の絞りリブを複数巻備え絞り部の流路断面積をさらに減少させる衝突部とを有した液体処理部材と、
部材本体の液体流路内に当該部材本体の外部に位置するガス供給源から被溶解ガスを流入させる被溶解ガス供給部とを備え、
液体理部材の部材本体の流入端に供給された液体の流れを衝突部に衝突させた後、各セグメント領域に分配しつつ増速して通過させ、当該衝突部の直下流に形成される乱流域に被溶解ガスを巻き込んで混合粉砕し溶解させるようにしたことを特徴とする。
In order to solve the above problems, the gas dissolving apparatus of the present invention is:
An inflow end that is a liquid inflow side and an outflow end that is a liquid outflow side are defined, and a liquid flow path that connects an inflow port that opens to the inflow end and an outflow port that opens to the outflow end is formed in a through shape, A member body in which a throttle part having a smaller flow cross-sectional area than the inlet is formed at an intermediate position of the flow path, and an inner periphery of the flow path in such a manner that the axial cross section of the flow path is divided into two or more segment regions at the throttle part A liquid processing member having a collision portion that protrudes from the surface and has a plurality of circumferential restriction ribs on the outer peripheral surface and further reduces the flow passage cross-sectional area of the restriction portion;
A dissolved gas supply unit for flowing the dissolved gas from a gas supply source located outside the member main body into the liquid flow path of the member main body,
After the liquid flow supplied to the inflow end of the member body of the liquid physical member collides with the collision part, the liquid flow is accelerated and passed while being distributed to each segment area, and the disturbance formed immediately downstream of the collision part. It is characterized in that the gas to be dissolved is involved in the basin and mixed and pulverized to be dissolved.

部材本体において液体の流れは、衝突部に衝突してセグメント領域に迂回する際に激しい乱流を発生する。また、衝突部の外周面には絞りリブが複数巻形成されており、衝突部を迂回しようと液体はその外周面接線方向に流れ込むので、絞りリブ間の溝部(あるいは谷状部)内にて絞られることによりさらに増速し、乱流発生効果は高められる。この乱流により、液体とともに流れ込む被溶解ガスの剪断・粉砕効果が向上し、顕著なガス溶解効果が達成される。   In the member main body, the liquid flow generates a violent turbulent flow when it collides with the collision portion and detours to the segment region. In addition, a plurality of throttle ribs are formed on the outer peripheral surface of the collision part, and the liquid flows in the tangential direction of the outer peripheral surface so as to bypass the collision part. Therefore, in the groove (or valley) between the throttle ribs By being throttled, the speed is further increased, and the effect of generating turbulence is enhanced. By this turbulent flow, the shearing / pulverization effect of the dissolved gas flowing together with the liquid is improved, and a remarkable gas dissolution effect is achieved.

また、こうして一旦溶解した被溶解ガス(あるいは、液体に元から溶解していたガス成分:意図している被溶解ガスとは異なるガス成分の場合もありえる)は、セグメント領域に瞬時的に増速して分配される。特に、絞りリブ間の溝部(あるいは谷状部)では局所的・瞬時的な増速効果が一層高められる。このように流れが増速された領域では、ベルヌーイの原理に従い負圧域が形成され、液体中の溶存ガスが析出して微細な気泡が発生する。このガスの析出は沸騰現象的に激しく進行し、液体の撹拌効果及び乱流発生効果をさらに高めることとなる。   In addition, the dissolved gas once dissolved (or the gas component originally dissolved in the liquid: the gas component may be different from the intended dissolved gas) is instantaneously increased in the segment area. Distributed. In particular, the local and instantaneous speed-up effect is further enhanced in the groove (or valley) between the diaphragm ribs. In the region where the flow is increased in this way, a negative pressure region is formed according to Bernoulli's principle, and dissolved gas in the liquid is deposited to generate fine bubbles. This deposition of gas proceeds vigorously in a boiling phenomenon, further enhancing the liquid stirring effect and the turbulent flow generation effect.

一旦溶解したガスが減圧により沸騰析出するということは、液体中の溶存ガス量を減少させるのであるが、減圧領域を液体が通過する時間は極めて瞬時的であり、外部から導入される被溶解ガスに対する撹拌並びに強制溶解効果はそれをさらに上回る形で進行する。結果、一見矛盾するようではあるが、この溶存ガスの沸騰による撹拌効果により、被溶解ガスの粉砕・溶解促進効果はさらに高められることとなるのである。   The fact that once dissolved gas boils and precipitates due to reduced pressure reduces the amount of dissolved gas in the liquid, but the time for the liquid to pass through the reduced pressure region is very instantaneous, and the dissolved gas introduced from the outside The agitation and forced dissolution effect on the water proceeds in a way that exceeds that. As a result, although seemingly contradictory, the effect of pulverizing / dissolving the dissolved gas is further enhanced by the stirring effect of the boiling of the dissolved gas.

また、沸騰析出により生成する気泡は、極めて微小な気泡生成核から周囲の溶存ガス成分の流入に伴い、液体が減圧領域に留まる間は徐々に気泡径を増大させつつ成長する。しかし、上記の通り液体が減圧領域に留まる期間は極めて瞬時的であり、減圧領域を脱すればその成長は速やかに停止する。したがって、発生する気泡は極めて微小であり、いわゆるファインバブル(1μm以上500μm以下)あるいはウルトラファインバブル(30nm〜1μm未満)(以下、両者を総称して微小気泡と称する)として生成する。その結果、被溶解ガスの溶解量を増すことができるのみならず、溶存せずに残存するガスも浮上速度の非常に小さい微小気泡として液中に留まり、これが微小気泡特有の種々知られている効果(たとえば、洗浄効果、液体の浸透性促進効果など)がガスの種別に応じて発揮される利点も生ずるのである。   Bubbles generated by boiling precipitation grow while gradually increasing the bubble diameter while the liquid stays in the reduced pressure region with the inflow of surrounding dissolved gas components from extremely fine bubble generation nuclei. However, as described above, the period during which the liquid stays in the reduced pressure region is extremely instantaneous, and its growth stops quickly when the reduced pressure region is removed. Accordingly, the generated bubbles are extremely small and are generated as so-called fine bubbles (1 μm or more and 500 μm or less) or ultrafine bubbles (30 nm to less than 1 μm) (hereinafter collectively referred to as microbubbles). As a result, not only the amount of dissolved gas can be increased, but also the gas remaining without being dissolved remains in the liquid as microbubbles with a very low ascent rate, and this is known in various ways unique to microbubbles. There is also an advantage that effects (for example, cleaning effect, liquid permeability promoting effect, etc.) are exhibited depending on the type of gas.

そして、この発明では、絞り部にて流路の軸断面を複数のセグメント領域に区画する形態で、当該絞り部の流路断面積をさらに減少させる衝突部が配置されている。つまり、流路の断面積を高流速となる断面中心に向けて径方向に相似的に縮小するのではなく、衝突部を障害物として用いることで、液体が流通可能な領域を周方向にいわば間引く形で流路の断面縮小を図るのである。その結果、絞り部での流体抵抗が過度に増加せず、流速の増加効果ひいては負圧発生効果を大幅に増すことができる。これにより、各セグメント領域(及びその下流)での減圧効果が大幅に高められ、例えば、溶存ガス濃度が同じであってもより微細で多量の気泡を析出させることができる。また、流量が過度に減じないことで、撹拌・剪断によるガス溶解効果も良好に維持される。こうした効果は、衝突部が、絞り部にて流路の軸断面を3以上のセグメント領域に区画する形態で形成される場合に一層顕著である。   And in this invention, the collision part which further reduces the flow-path cross-sectional area of the said aperture | diaphragm | squeeze part is arrange | positioned in the form which partitions the axial cross section of a flow path into a some segment area | region in an aperture | diaphragm | squeeze part. In other words, instead of reducing the cross-sectional area of the flow path toward the center of the cross section at a high flow velocity in the radial direction, the area where the liquid can flow is said to be in the circumferential direction by using the collision part as an obstacle. This is because the cross section of the flow path is reduced by thinning out. As a result, the fluid resistance at the throttle portion does not increase excessively, and the effect of increasing the flow velocity and thus the effect of generating negative pressure can be greatly increased. Thereby, the decompression effect in each segment region (and downstream thereof) is greatly enhanced, and for example, even if the dissolved gas concentration is the same, finer and more bubbles can be deposited. In addition, since the flow rate is not excessively reduced, the gas dissolution effect due to stirring and shearing can be maintained well. Such an effect is more remarkable when the collision part is formed in a form in which the axial cross section of the flow path is divided into three or more segment regions at the throttle part.

次に、セグメント領域に流れ込む流体は衝突部の先端部を迂回して流れ込むものが主体的となり、流速が最も大きくなる断面中心付近の流れは、その迂回により減速する傾向にある。そこで、複数の衝突部の2つ以上のものの先端部同士の間に、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップを形成しておくことが有効である。これにより、断面中心付近の流れを大きく減速させずに高速流ギャップを経て通過させることができる。その結果、高速流ギャップでは液体の流速が非常に高められ、撹拌・剪断による被溶解ガスの溶解効果を促進することができる。また、衝突部の迂回流は、衝突部周囲の絞りリブ部の存在により、高速流ギャップ直下流域に前述のごとく激しい乱流域を生ずるから、乱流域を通過する際に気泡成長が抑制され、気泡が残存する場合も、さらなる微細化を図ることができるようになる。   Next, the fluid that flows into the segment region mainly flows around the tip of the collision portion, and the flow near the center of the cross section where the flow velocity becomes the highest tends to be decelerated due to the detour. Therefore, it is effective to form a high-speed flow gap for passing the central flow of the cross section, which is relatively high speed with respect to the flow around the cross section, between the tip portions of two or more of the plurality of collision portions. is there. Thereby, the flow near the center of the cross section can be passed through the high-speed flow gap without greatly decelerating. As a result, the flow velocity of the liquid is greatly increased in the high-speed flow gap, and the dissolution effect of the gas to be dissolved by stirring and shearing can be promoted. In addition, since the detour flow around the collision portion causes a strong turbulent flow region immediately downstream of the high-speed flow gap due to the presence of the narrowed rib portion around the collision portion, bubble growth is suppressed when passing through the turbulent flow region. Even if this remains, further miniaturization can be achieved.

高速流ギャップは種々の形態に形成できる。例えば、複数の衝突部の少なくとも1対のものを、絞り部の断面中心を挟んで内径方向に対向する形で配置し、それら衝突部の先端間に、高速流ギャップを構成する中心ギャップを形成することもできる。この構成によると、最も高流速となる断面中心の流れを、中心ギャップを経て大きな損失を生じることなく通過させることが可能となる。その断面中心の流れは中心ギャップの通過によりさらに絞られて高速化しようとするが、セグメント領域側への流れ迂回が許容されているため流体抵抗の増加が効果的に抑制される。その結果、減圧効果が大幅に高められ、断面中心における流速を大幅に増加できるので、撹拌・剪断による被溶解ガスの溶解効果を促進することができる。また、気泡が残存する場合も、そのさらなる微細化を図ることができるようになる。   The high velocity flow gap can be formed in various forms. For example, at least one pair of a plurality of collision portions is arranged in a shape facing the inner diameter direction across the center of the section of the throttle portion, and a central gap constituting a high-speed flow gap is formed between the tips of the collision portions You can also According to this configuration, the flow at the center of the cross section having the highest flow velocity can be passed through the center gap without causing a large loss. The flow at the center of the cross section is further narrowed by the passage of the central gap to increase the speed, but since the flow detour to the segment region side is permitted, an increase in fluid resistance is effectively suppressed. As a result, the depressurization effect is greatly enhanced, and the flow velocity at the center of the cross section can be greatly increased. Therefore, the dissolution effect of the dissolved gas by stirring and shearing can be promoted. Further, even when bubbles remain, it is possible to further reduce the size.

セグメント領域を3以上に形成する場合は、衝突部の先端部に先端に向かうほど軸断面を縮小させる錐状部を形成し、セグメント領域を挟んで互いに隣接する2つの衝突部において錐状部の外周面間に、高速流ギャップを構成するスリット部を形成することができる。スリット部は錐状部の外周面母線方向に形成されるので、該スリット部に向かう流れは錐状部の該母線に沿う膨らみをいわば乗り越える形で絞られ、導入した被溶解ガスとともに圧縮される。その結果、被溶解ガスの溶解効果が高められ、たとえば大気圧下での飽和濃度を超えて被溶解ガスの溶解促進を図るようなことも可能となる。   When the segment region is formed in three or more, a cone-shaped portion that reduces the axial cross section toward the tip is formed at the tip of the collision portion, and the cone-shaped portion of the two collision portions adjacent to each other across the segment region is formed. A slit portion constituting a high-speed flow gap can be formed between the outer peripheral surfaces. Since the slit portion is formed in the direction of the outer peripheral surface of the cone portion, the flow toward the slit portion is constricted so as to overcome the bulge along the cone portion of the cone portion, and is compressed together with the introduced dissolved gas. . As a result, the dissolution effect of the gas to be dissolved is enhanced, and for example, the dissolution of the gas to be dissolved can be promoted exceeding the saturation concentration under atmospheric pressure.

また、スリット部の長手方向に圧縮された液体の流動代が与えられるので流速が低下しにくく、これも減圧効果がさらに高められる要因となる。そして、減圧領域が、従来のベンチュリ管やオリフィスでは絞り中心の近傍でポイント状に形成されていたのが、上記構成ではスリット部に沿って線状に形成されるため減圧領域が大幅に拡張し、被溶解ガスの溶解促進効果がさらに高められる。また気泡が残存する場合も、そのさらなる微細化を図ることができる。   Moreover, since the flow allowance of the liquid compressed in the longitudinal direction of the slit portion is given, the flow velocity is hardly lowered, and this also becomes a factor for further enhancing the pressure reduction effect. In the conventional venturi tube or orifice, the decompression area was formed in the shape of a point in the vicinity of the center of the throttle, but in the above configuration, the decompression area is formed linearly along the slit portion, so that the decompression area is greatly expanded. Further, the dissolution promoting effect of the gas to be dissolved is further enhanced. Further, even when bubbles remain, further miniaturization can be achieved.

衝突部は、各々その突出方向が絞り部の軸断面にて互いに直交する十字形態に設けることができ、それら衝突部により絞り部を4つの絞りセグメント領域に分割することができる。衝突部を互いに直交する向きに配置して4つの絞りセグメント領域に分割することで、断面中心に関する衝突部ひいては絞りセグメント領域の配置の対象性も良好となり、被溶解ガスの溶解促進効果も高められる。また、気泡が残存する場合も、より均質に微細気泡を析出することができるようになる。   The collision parts can be provided in a cross shape in which the protruding directions are orthogonal to each other in the axial section of the diaphragm part, and the diaphragm part can be divided into four diaphragm segment regions by these collision parts. By disposing the collision part in directions orthogonal to each other and dividing into four throttle segment regions, the object of arrangement of the collision part and the throttle segment region with respect to the center of the cross section is improved, and the dissolution promoting effect of the gas to be dissolved is enhanced. . Further, even when bubbles remain, fine bubbles can be deposited more uniformly.

この場合も、絞り部の断面中心部に向けて突出する複数の衝突部の2つ以上のものの先端部同士の間に、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップを形成できる。4つの衝突部は流路の内周面から該流路の中心部に向けて突出する形で設けることができる。また、各衝突部の先端部には先端に向かうほど軸断面を縮小させる錐状部を形成することで、セグメント領域を挟んで互いに隣接する衝突部において錐状部の外周面間に、高速流ギャップを構成するスリット部を形成できる。その結果、絞り部の断面中心を挟んで内径方向に対向して配置される衝突部の先端間に、高速流ギャップの一部を構成する中心ギャップが形成され、高速流ギャップは、4つのスリット部が中心ギャップを介して一体化された十字形態に形成される。   Also in this case, in order to pass the cross-sectional center flow that is relatively high speed with respect to the cross-sectional peripheral flow, between the tip portions of two or more of the plurality of collision portions that protrude toward the central portion of the cross-section of the throttle portion. The high-speed flow gap can be formed. The four collision portions can be provided so as to protrude from the inner peripheral surface of the flow channel toward the central portion of the flow channel. In addition, by forming a cone-shaped portion that reduces the axial cross section toward the tip of each collision portion, a high-speed flow is generated between the outer peripheral surfaces of the cone-shaped portions in the collision portions adjacent to each other across the segment region. The slit part which comprises a gap can be formed. As a result, a central gap that constitutes a part of the high-speed flow gap is formed between the tips of the collision portions that are arranged opposite to each other in the inner diameter direction across the center of the cross section of the throttle portion. The part is formed in a cross shape integrated through a central gap.

上記の構成によると、最も高流速となる断面中心の流れは、断面中心を取り囲むように配置される4つの錐状部により効果的に絞られて中心ギャップに増速しつつ流れ込む。そして、中心ギャップには周囲の4つのスリット部が連通し、中心ギャップ内で絞られて圧縮される流れは、スリット部へ迂回することで流体抵抗の増加が極めて効果的に抑制され、かつ、スリットにより絞られているので迂回先での流速低下も低く抑えられる。その結果、中心ギャップだけでなくスリット部でも減圧効果は極めて活発となり、撹拌・剪断による被溶解ガスの溶解効果を促進することができる。また、気泡が残存する場合も、そのさらなる微細化を図ることができるようになり、特にウルトラファインバブルの生成に関しては有効となる。   According to said structure, the flow of the cross-sectional center used as the highest flow velocity is effectively restrict | squeezed by the four cone-shaped parts arrange | positioned so that a cross-sectional center may be surrounded, and it will flow in while increasing at a center gap. And the surrounding four slit portions communicate with the center gap, and the flow that is squeezed and compressed in the center gap is extremely effectively suppressed from increasing the fluid resistance by detouring to the slit portion, and Since it is squeezed by a slit, a decrease in flow velocity at the detour destination can be suppressed to a low level. As a result, not only the central gap but also the slit portion has an extremely reduced pressure effect, and the dissolution effect of the gas to be dissolved by stirring and shearing can be promoted. Further, even when bubbles remain, it becomes possible to further reduce the size, and this is particularly effective for the generation of ultrafine bubbles.

この場合、中心ギャップに臨む衝突部の先端を先鋭に形成しておくことにより、その近傍を通過する流れを特に局所的に高速化でき、中心ギャップ直下領域にてガス溶解に好都合な乱流発生をさらに促進することができる。   In this case, by sharply forming the tip of the collision part facing the center gap, the flow passing through the vicinity can be accelerated particularly locally, generating turbulent flow that is convenient for gas dissolution in the region immediately below the center gap. Can be further promoted.

次に、衝突部の外周面に形成する絞りリブの谷状部は、谷低に向かうほど幅が縮小する形状とすることが、谷状部内での流れ絞り効果ひいては液体撹拌効果を高める上で望ましい。この場合、谷状部内の複数の絞りリブは頂部を鋭角としつつ互いに隣接して形成するのが好適である。また、絞りリブの頂角は、上記効果を適正化する観点において60°以下20°以上に設定するのがよい。   Next, in order to enhance the flow throttling effect and thus the liquid stirring effect in the valley-shaped portion, the trough-shaped portion of the throttling rib formed on the outer peripheral surface of the collision portion should have a shape that decreases in width toward the bottom of the trough. desirable. In this case, it is preferable that the plurality of throttle ribs in the valley portion are formed adjacent to each other with the apex portion having an acute angle. Further, the apex angle of the aperture rib is preferably set to 60 ° or less and 20 ° or more from the viewpoint of optimizing the above effect.

また、複数巻の絞りリブは、らせん状に一体形成することができる。このようにすると、絞りリブの形成が容易になるほか、流れに対し絞りリブが傾斜することで、絞りリブの稜線部を横切る流れ成分が増加し、流れ剥離に伴う乱流発生効果が著しくなるので、気泡のさらなる微細化を図ることができる。この場合、衝突部は、脚部末端側が流路内に突出するねじ部材にて形成しておくと、該ねじ部材の脚部の外周面に形成されるねじ山を絞りリブとして利用でき、製造が容易である。   Further, the plurality of winding ribs can be integrally formed in a spiral shape. In this way, formation of the throttle rib is facilitated, and the throttle rib is inclined with respect to the flow, so that the flow component crossing the ridge line portion of the throttle rib increases, and the turbulent flow generation effect accompanying flow separation becomes remarkable. Therefore, the bubbles can be further miniaturized. In this case, if the collision part is formed with a screw member whose leg end side protrudes into the flow path, the thread formed on the outer peripheral surface of the leg part of the screw member can be used as a throttle rib, and manufactured. Is easy.

次に、被溶解ガス供給部は、衝突部よりも上流側にて部材本体の壁部に形成され液体通路の内周面に一端がガス流出口として開口するとともに、他端が部材本体の外面に被溶解ガス供給口として開口するガス供給通路を備えるものとして構成できる。部材本体にガス供給通路を設けることで、液体処理部材が被溶解ガス供給部を兼ねる構成となり、部品点数の削減を図ることができる。この場合、ガス供給通路のガス流出口を絞り部に開口させることで、絞り部における減圧効果により被溶解ガスを吸引注入することができ、ガス混合効率を向上させることができる。ガス流出口は衝突部の先端に開口させてもよいが、被溶解ガスの要求される到達溶解濃度が大きい場合は、絞り部において衝突部よりも上流側にて、衝突部とは別位置にガス流出口を開口させることが、衝突部の寸法成約を受けることなく、液体通路ならびにガス流出口の断面寸法を設定できるので好都合である。   Next, the dissolved gas supply part is formed in the wall part of the member main body on the upstream side of the collision part, and one end is opened as a gas outlet on the inner peripheral surface of the liquid passage, and the other end is the outer surface of the member main body. It can comprise as a thing provided with the gas supply path opened as a to-be-dissolved gas supply port. By providing the gas supply passage in the member main body, the liquid processing member serves as the dissolved gas supply unit, and the number of parts can be reduced. In this case, by opening the gas outlet of the gas supply passage to the throttle portion, the dissolved gas can be sucked and injected due to the pressure reducing effect in the throttle portion, and the gas mixing efficiency can be improved. The gas outlet may be opened at the tip of the collision part.However, if the required dissolved concentration of the gas to be dissolved is large, the gas outlet is located upstream from the collision part at a position different from the collision part. Opening the gas outlet is advantageous because the cross-sectional dimension of the liquid passage and the gas outlet can be set without receiving a contraction of the size of the collision portion.

一方、被溶解ガス供給部は、部材本体の流入口に接続される液体流入配管上に設けられたガス注入ノズルとして構成することも可能である。これにより、液体処理部材の寸法や形状の成約を受けることなく被溶解ガスの注入量をより自由に設定できるようになる。また、後述のごとく、液体処理部材を複数並列に分配配置する場合、その分配分岐点よりも上流側にガス注入ノズルを設ければ、各液体処理部材への被溶解ガスの分配を均一に行うことができる。   On the other hand, the dissolved gas supply unit can be configured as a gas injection nozzle provided on a liquid inflow pipe connected to the inlet of the member body. Thereby, the injection amount of the gas to be dissolved can be set more freely without receiving the contract of the size and shape of the liquid processing member. As will be described later, when a plurality of liquid processing members are distributed and arranged in parallel, if a gas injection nozzle is provided upstream from the distribution branch point, the dissolved gas is uniformly distributed to each liquid processing member. be able to.

次に、液体処理部材は液体の流れ方向に直列に配置される上流側の第一の液体処理部材と下流側の及び第二の液体処理部材とを含むものとして構成できる。この場合、被溶解ガス供給部は第一の液体処理部材に被溶解ガスを供給するものであり、第二の液体処理部材は第一の液体処理部材にて未溶解の被溶解ガスをさらに粉砕・溶解するものとすることができる。このように直列接続された複数の液体処理部材により、被溶解ガスを段階的に粉砕・溶解することにより、ガスの溶解効率を大幅に高めることができる。これは、ガス溶解量を増やしたい場合、あるいは未溶解ガスの比率を減じたい場合に特に有効な手法である。直列配置する液体処理部材の数は、もちろん3段以上とすることも可能である。このとき、これら複数の液体処理部材の2以上のもののそれぞれに、被溶解ガスを別経路にて分配供給することも可能である。   Next, the liquid processing member can be configured to include an upstream first liquid processing member and a downstream and second liquid processing member arranged in series in the liquid flow direction. In this case, the dissolved gas supply unit supplies the dissolved gas to the first liquid processing member, and the second liquid processing member further pulverizes the undissolved dissolved gas by the first liquid processing member. -It can be dissolved. The dissolution efficiency of the gas can be greatly increased by pulverizing and dissolving the gas to be dissolved in stages by the plurality of liquid processing members connected in series. This is a particularly effective method when it is desired to increase the amount of dissolved gas or to decrease the ratio of undissolved gas. Of course, the number of liquid processing members arranged in series can be three or more. At this time, the dissolved gas can be distributed and supplied to each of two or more of the plurality of liquid processing members through separate paths.

また、液体の流通管路を途中で複数に分岐させ、複数の液体処理部材をそれら分岐した流通管路上に並列に設けることができる。被溶解ガス供給部はそれら並列接続された液体処理部材の少なくともいずれかに被溶解ガスを供給するものとして構成できる。複数の液体処理部材を並列に用いることで、処理対象の液体の流量が大きい場合でも、必要な量の被溶解ガスを効率よく溶解することができる。   Further, the liquid circulation pipes can be branched into a plurality of parts in the middle, and a plurality of liquid processing members can be provided in parallel on the branched flow pipes. The dissolved gas supply unit can be configured to supply the dissolved gas to at least one of the liquid processing members connected in parallel. By using a plurality of liquid processing members in parallel, a required amount of the gas to be dissolved can be efficiently dissolved even when the flow rate of the liquid to be processed is large.

本発明において、ガスを溶解させる液体の種別は特に限定されないが、たとえば水を用いることができる。また、水以外では、アルコール(およびその水による希釈体)並びにその他の有機溶媒である。被溶解ガスの種別も同様に限定されないが、たとえば酸素、窒素、空気、オゾン、塩素などである。   In the present invention, the type of the liquid that dissolves the gas is not particularly limited, but water can be used, for example. In addition to water, it is alcohol (and its dilution with water) and other organic solvents. The type of the gas to be dissolved is not limited in the same manner, but is, for example, oxygen, nitrogen, air, ozone, chlorine or the like.

本発明のガス溶解装置の一構成例を示す模式図。The schematic diagram which shows one structural example of the gas dissolving apparatus of this invention. 図1の液体処理部材の詳細を示す断面図。Sectional drawing which shows the detail of the liquid processing member of FIG. 図2の液体処理部材の要部を拡大して示す図。The figure which expands and shows the principal part of the liquid processing member of FIG. A 衝突部の作用説明図。 B 絞りリブの作用説明図。A Action explanatory drawing of a collision part. B is an operation explanatory view of the diaphragm rib. 衝突部の第一変形例を示す図。The figure which shows the 1st modification of a collision part. 衝突部の第二変形例を示す図。The figure which shows the 2nd modification of a collision part. 衝突部の第三変形例を示す図。The figure which shows the 3rd modification of a collision part. 衝突部の第四変形例を示す図。The figure which shows the 4th modification of a collision part. 衝突部の第五変形例を示す図。The figure which shows the 5th modification of a collision part. 衝突部の第六変形例を示す図。The figure which shows the 6th modification of a collision part. 衝突部の第七変形例を示す図。The figure which shows the 7th modification of a collision part. 衝突部の第八変形例を示す図。The figure which shows the 8th modification of a collision part. 衝突部の第九変形例を示す図。The figure which shows the 9th modification of a collision part. 衝突部の第十変形例を示す図。The figure which shows the 10th modification of a collision part. 衝突部の第十一変形例を示す図。The figure which shows the 11th modification of a collision part. 衝突部の第十二変形例を示す図。The figure which shows the 12th modification of a collision part. 衝突部の第十三変形例を示す図。The figure which shows the 13th modification of a collision part. 衝突部の第十四変形例を示す図。The figure which shows the 14th modification of a collision part. 衝突部の第十五変形例を示す図。The figure which shows the 15th modification of a collision part. 衝突部の第十六変形例を示す図。The figure which shows the 16th modification of a collision part. 液体処理装置を直列に複数段接続する例を示す断面図。Sectional drawing which shows the example which connects the liquid processing apparatus in multiple stages in series. 被溶解ガス供給部を液体処理装置と別体のガス注入ノズルとして構成する例を示す断面図。Sectional drawing which shows the example which comprises a to-be-dissolved gas supply part as a gas injection nozzle separate from a liquid processing apparatus. 衝突部にガス供給通路を形成する例を示す断面図。Sectional drawing which shows the example which forms a gas supply path in a collision part. 同じく別の例を示す断面図。Sectional drawing which similarly shows another example. 複数の液体処理装置を並列接続する第一の例を示す模式図。The schematic diagram which shows the 1st example which connects a some liquid processing apparatus in parallel. 同じく第二の例を示す模式図。The schematic diagram which similarly shows a 2nd example. 同じく第三の例を示す模式図。The schematic diagram which similarly shows a 3rd example. 同じく第四の例を示す模式図。The schematic diagram which similarly shows a 4th example. 循環管路上に液体処理部材を設ける例を示す模式図。The schematic diagram which shows the example which provides a liquid processing member on a circulation line. 複数の液体処理装置を並列接続する第五の例を示す模式図。The schematic diagram which shows the 5th example which connects a some liquid processing apparatus in parallel. 外気を被溶解ガス供給源として用いる例を示す模式図。The schematic diagram which shows the example which uses external air as a to-be-dissolved gas supply source.

以下、本発明を実施するための形態を添付の図面を用いて説明する。
図1は、本発明のガス溶解装置の一構成例を示す模式図である。ガス溶解装置100は、本体ケース100Cの内部には、配管部材にて構成された液体流路18が設けられ、その両端が本体ケース100Cに対し液体流入口19及び液体流出口20を開口している。液体流入口19には液体供給配管51(本実施形態では水配管)が接続され、処理対象となる液体W、たとえば水(水道水等)が液体流路18に供給されるようになっている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing a configuration example of the gas dissolving apparatus of the present invention. The gas dissolving device 100 is provided with a liquid flow path 18 formed of a piping member inside the main body case 100C, and both ends thereof open the liquid inlet 19 and the liquid outlet 20 with respect to the main body case 100C. Yes. A liquid supply pipe 51 (a water pipe in this embodiment) is connected to the liquid inlet 19 so that a liquid W to be processed, for example, water (tap water or the like) is supplied to the liquid flow path 18. .

供給液体流路18の途上には液体処理装置1が設けられており、該液体処理装置1にはガス供給管路12が接続され、これを介して被溶解ガスが液体処理装置1に供給される。本実施形態では、ガス供給管路12は本体ケース100C上にガス供給口14を開口し、ここにガス配管31が接続される。本実施形態では、被溶解ガス(たとえば、酸素、窒素、空気、塩素等)のボンベ41にガス配管31が接続され、該ボンベ41からの被溶解ガスが減圧弁42及び流量調整弁32にて圧力及び流量が調整されつつガス供給管路12に導かれるようになっている。該被溶解ガスは液体処理装置1にて液体流路18内の液体に溶解されることによりガス溶解済液体GWとなり、液体流出口20から流出・供給される。   A liquid processing apparatus 1 is provided in the middle of the supply liquid flow path 18, and a gas supply pipe 12 is connected to the liquid processing apparatus 1, and a gas to be dissolved is supplied to the liquid processing apparatus 1 through this. The In the present embodiment, the gas supply line 12 opens the gas supply port 14 on the main body case 100C, and the gas pipe 31 is connected thereto. In this embodiment, a gas pipe 31 is connected to a cylinder 41 of a gas to be dissolved (for example, oxygen, nitrogen, air, chlorine, etc.), and the gas to be dissolved from the cylinder 41 is reduced by a pressure reducing valve 42 and a flow rate adjustment valve 32. The pressure and flow rate are adjusted and guided to the gas supply line 12. The dissolved gas is dissolved in the liquid in the liquid flow path 18 by the liquid processing apparatus 1 to become a gas-dissolved liquid GW, and flows out and supplied from the liquid outlet 20.

ガス溶解装置100には、供給液体流路18の途上に流れ検知センサ22が設けられ、ガス供給管路12の途上には電磁弁13が設けられている。また、本体ケース100C内には電源回路16が設けられており、電源プラグ22及び電源コード21を介して入力される商用交流入力ACを、電磁弁13の駆動電圧及び信号電圧に変換し、出力するようになっている。さらに、ケース100C内には制御回路17が設けられ、切り替えスイッチ15及び流れ検知センサ22が接続されている。制御回路17は、流れ検知センサ22が供給液体流路18内の流れを検知していないか、または切り替えスイッチ15がオフ状態になっているかのいずれかを検知した時、電磁バルブ13を閉状態として、液体処理装置1への被溶解ガスの供給を自動遮断するようになっている。   In the gas dissolving apparatus 100, a flow detection sensor 22 is provided in the middle of the supply liquid flow path 18, and an electromagnetic valve 13 is provided in the middle of the gas supply pipe 12. Further, a power circuit 16 is provided in the main body case 100C, and the commercial AC input AC input through the power plug 22 and the power cord 21 is converted into a drive voltage and a signal voltage for the electromagnetic valve 13, and output. It is supposed to be. Further, a control circuit 17 is provided in the case 100C, and the changeover switch 15 and the flow detection sensor 22 are connected to the case 100C. The control circuit 17 closes the electromagnetic valve 13 when the flow detection sensor 22 detects that the flow in the supply liquid flow path 18 is not detected or the changeover switch 15 is turned off. As described above, the supply of the dissolved gas to the liquid processing apparatus 1 is automatically shut off.

図2は、液体処理装置1を取り出して示す拡大図である。部材本体6には、流入端に開口する流入口2nと流出端に開口する流出口2xとをつなぐ流路2が貫通形態に形成され、その流路2の途中位置に流入口2nよりも流通断面積が小さい絞り部2cが形成されている。絞り部2cには、図3に示すように、流路2の軸断面を3以上、この実施形態では4つのセグメント領域2eに区画する形態で、当該絞り部2cの流路断面積をさらに減少させる衝突部3が配置されている。各衝突部3はねじ部材として構成され、図2に示すように、絞り部2cに向けて部材本体6の外周面側から半径方向に孔設されたねじ孔3hにねじ込まれる形で4本取り付けられている。各セグメント領域2eは、流路断面積が互いに等しくなるように形成されている。   FIG. 2 is an enlarged view showing the liquid processing apparatus 1 taken out. The member body 6 is formed with a passage 2 connecting the inlet 2n opening at the inflow end and the outlet 2x opening at the outflow end in a penetrating form, and flows in the middle of the channel 2 from the inlet 2n. A narrowed portion 2c having a small cross-sectional area is formed. As shown in FIG. 3, the throttle section 2c further reduces the channel cross-sectional area of the throttle section 2c by dividing the axial section of the flow path 3 into three or more, in this embodiment, four segment regions 2e. The collision part 3 to be made is arranged. Each collision portion 3 is configured as a screw member, and as shown in FIG. 2, four are attached so as to be screwed into a screw hole 3h formed in a radial direction from the outer peripheral surface side of the member body 6 toward the throttle portion 2c. It has been. Each segment region 2e is formed such that the flow path cross-sectional areas are equal to each other.

衝突部2cよりも上流側にて部材本体6の壁部には、一端がその内周面に他端が外周面に開口するガス供給通路10hが半径方向に貫通形成され、ここにガス噴射管10がはめ込まれている。ガス噴射管10の先端はガス流出口として開口し、他端側は部材本体6の外面に被溶解ガス供給口として開口している。この実施形態では、ガス供給通路10hの被溶解ガス供給口を、ここに嵌着されたコネクタ11により形成しており、ここにガス供給管路12が接続されている。   A gas supply passage 10h having one end opened on the inner peripheral surface and the other end opened on the outer peripheral surface is formed in the wall portion of the member main body 6 upstream of the collision portion 2c in the radial direction. 10 is inserted. The tip of the gas injection pipe 10 is opened as a gas outlet, and the other end is opened as a dissolved gas supply port on the outer surface of the member body 6. In this embodiment, the dissolved gas supply port of the gas supply passage 10h is formed by the connector 11 fitted therein, and the gas supply line 12 is connected thereto.

図2において、部材本体6の流入端に供給された液体の流れは、ガス供給通路10hから供給される被溶解ガスGの気泡を巻き込みつつ衝突部3に衝突した後、各セグメント領域2eに分配されつつ増速して通過するとともに、そのセグメント領域2eに迂回する際に激しい乱流を発生する。また、衝突部3の外周面には後述のごとく、ねじ山、すなわち絞りリブ5r(図4A参照)が複数巻形成されており、衝突部3を迂回しようと液体はその外周面接線方向に流れ込むので、絞りリブ間の溝部(あるいは谷状部)21(図4A及び図4B参照)内にて絞られることによりさらに増速し、乱流発生効果が飛躍的に高められる。この乱流により、液体とともに流れ込む被溶解ガスGの剪断・粉砕効果が向上し、溶解効果が高められる。また、こうして一旦溶解した被溶解ガスは、セグメント領域2eに瞬時的に増速して分配される。特に、絞りリブ5r間の溝部21(あるいは谷状部)では局所的・瞬時的な増速効果が一層高められる。このような増速された領域では、ベルヌーイの原理に従い負圧域LPA(図4B)が形成され、液体中の溶存ガスが析出して微細な気泡が発生する。このガスの析出は沸騰現象的に激しく進行し、液体の撹拌効果及び乱流発生効果をさらに高めることとなる。   In FIG. 2, the liquid flow supplied to the inflow end of the member body 6 is distributed to each segment region 2e after colliding with the collision portion 3 while entraining bubbles of the dissolved gas G supplied from the gas supply passage 10h. In addition, the vehicle passes at an increased speed and generates a turbulent flow when detouring to the segment area 2e. Further, as will be described later, a plurality of threads, that is, a throttle rib 5r (see FIG. 4A) is formed on the outer peripheral surface of the collision part 3, and the liquid flows in a direction tangential to the outer peripheral surface to bypass the collision part 3. Therefore, the speed is further increased and the effect of generating turbulence is drastically enhanced by narrowing in the groove (or valley) 21 (see FIGS. 4A and 4B) between the narrowing ribs. By this turbulent flow, the shearing / pulverization effect of the dissolved gas G flowing together with the liquid is improved, and the dissolution effect is enhanced. Further, the gas to be dissolved once dissolved in this manner is instantaneously accelerated and distributed to the segment region 2e. In particular, the local / instantaneous speed increasing effect is further enhanced in the groove 21 (or valley) between the narrowed ribs 5r. In such an accelerated region, a negative pressure region LPA (FIG. 4B) is formed in accordance with Bernoulli's principle, and dissolved gas in the liquid is deposited to generate fine bubbles. This deposition of gas proceeds vigorously in a boiling phenomenon, further enhancing the liquid stirring effect and the turbulent flow generation effect.

図3に示すように、絞り部2cの断面中心部に向けて突出する複数の衝突部3の2つ以上のものの先端部同士の間には、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップ2g,2kが形成されている。衝突部3の先端部には、先端に向かうほど軸断面を縮小させる錐状部5tが形成され(この実施形態では円錐状であるが、四角錐や六角錐などの他の錐体形状であってもよい)、セグメント領域2eを挟んで互いに隣接する2つの衝突部3において、それら錐状部5tの外周面間に、高速流ギャップを構成するスリット部2gが形成されている。一方、4つの衝突部3の、絞り部2cの断面中心を挟んで内径方向に対向するもの同士の先端間には、高速流ギャップを構成する中心ギャップ2kが形成されている。   As shown in FIG. 3, a cross-section that is relatively high-speed relative to the cross-section peripheral flow between two or more tip portions of the plurality of collision portions 3 that protrude toward the central portion of the cross-section of the throttle portion 2 c. High-speed flow gaps 2g and 2k for passing the central flow are formed. A conical portion 5t that reduces the axial cross section toward the distal end is formed at the distal end portion of the collision portion 3 (in this embodiment, it is conical, but other conical shapes such as a quadrangular pyramid and a hexagonal pyramid are formed. However, in the two collision portions 3 adjacent to each other across the segment region 2e, a slit portion 2g constituting a high-speed flow gap is formed between the outer peripheral surfaces of the conical portions 5t. On the other hand, a center gap 2k constituting a high-speed flow gap is formed between the tips of the four collision portions 3 facing each other in the inner diameter direction across the center of the section of the throttle portion 2c.

図3に示すごとく、衝突部3は、各々その突出方向が絞り部2cの軸断面にて互いに直交する十字形態に設けられており、それら衝突部3により絞り部は4つの絞りセグメント領域2eに分割されている。4つの衝突部3は流路2の内周面から該流路2の中心部に向けて突出している。そして、セグメント領域2eを挟んで互いに隣接する衝突部3には、錐状部5tの外周面間にスリット部2gが4つ形成されるとともに、内径方向に対向して配置される衝突部3の先端間に中心ギャップ2kが形成される。その結果、高速流ギャップは、4つのスリット部2gが中心ギャップ2kを介して一体化された十字形態に形成されることとなる。   As shown in FIG. 3, the collision portions 3 are provided in a cross shape in which the projecting directions are orthogonal to each other in the axial section of the restriction portion 2c. The collision portions 3 cause the restriction portions to be divided into four restriction segment regions 2e. It is divided. The four collision portions 3 protrude from the inner peripheral surface of the flow channel 2 toward the central portion of the flow channel 2. Further, in the collision part 3 adjacent to each other across the segment region 2e, four slit parts 2g are formed between the outer peripheral surfaces of the cone-shaped part 5t, and the collision part 3 arranged opposite to the inner diameter direction is formed. A central gap 2k is formed between the tips. As a result, the high-speed flow gap is formed in a cross shape in which the four slit portions 2g are integrated via the center gap 2k.

また、図3に示すように、各衝突部3の外周面には、周方向の絞りリブ5rが衝突部3の突出方向に沿って複数巻形成されている。谷状部は谷低に向かうほど幅が縮小する形状となっている。また、複数の絞りリブ5rは頂部を鋭角としつつ互いに隣接して形成されている。該絞りリブ5rの頂角は、例えば60°以下20°以上に設定されている。前述のごとく衝突部3はねじ部材であり、複数巻の絞りリブ5rはらせん状に一体形成されている。   Further, as shown in FIG. 3, a plurality of circumferential restriction ribs 5 r are formed on the outer peripheral surface of each collision portion 3 along the protruding direction of the collision portion 3. The valley portion has a shape in which the width is reduced toward the valley low. The plurality of diaphragm ribs 5r are formed adjacent to each other with the apex being an acute angle. The apex angle of the aperture rib 5r is set to 60 ° or less and 20 ° or more, for example. As described above, the collision portion 3 is a screw member, and the plurality of winding ribs 5r are integrally formed in a spiral shape.

図2に示すごとく、液体処理装置1は、絞り部2cにおいて流路2の断面積が、高流速となる断面中心Oに向けて径方向に相似的に縮小するのではなく、衝突部3を障害物として用いることにより、液体が流通可能な領域が断面中心に関する周方向にいわば間引く形で縮小される。絞り部2cでの流体抵抗が過度に増加せず、流速の増加効果ひいては負圧発生効果を大幅に増すことができる。これにより、各セグメント領域2e(及びその下流)での減圧効果が大幅に高められ、例えば、溶存ガス濃度が同じであってもより微細で多量の気泡を析出させることができる。また、流量が過度に減じないことで、撹拌・剪断によるガス溶解効果も良好に維持される。流入側テーパ部2aと流出側テーパ部2bとの間には絞り部2cが断面一定部として形成され、衝突部3が該断面一定部(2c)に配置されているので、流入側テーパ部2aにより増速された流れを断面一定部(2c)にて安定化させつつ、衝突部3に導くことができる。   As shown in FIG. 2, the liquid processing apparatus 1 does not reduce the cross-sectional area of the flow path 2 in the throttle portion 2 c in a similar manner in the radial direction toward the cross-sectional center O where the flow velocity is high, By using it as an obstacle, the region through which the liquid can flow is reduced in the form of thinning out in the circumferential direction with respect to the center of the cross section. The fluid resistance at the throttle portion 2c does not increase excessively, and the effect of increasing the flow velocity, and hence the negative pressure generating effect, can be greatly increased. Thereby, the decompression effect in each segment area | region 2e (and its downstream) is improved significantly, for example, even if the dissolved gas concentration is the same, it can deposit finer and a lot of bubbles. In addition, since the flow rate is not excessively reduced, the gas dissolution effect due to stirring and shearing can be maintained well. Between the inflow side taper portion 2a and the outflow side taper portion 2b, the throttle portion 2c is formed as a constant cross-section portion, and the collision portion 3 is disposed in the constant cross-section portion (2c). Thus, the flow increased in speed can be guided to the collision part 3 while being stabilized at the constant section (2c).

そして、絞り部2cにおいては、流速が最も大きくなる断面中心付近の流れが衝突部3の先端部を迂回して各セグメント領域2eに分配される。図3に示すように、衝突部3の先端部間に高速流ギャップ2g,2kが形成されているので、断面中心付近の高流速は該高速流ギャップ2g,2kにて大きく減速することなく通過できる。その結果、高速流ギャップ2g,2kでは液体の流速が非常に高められ、撹拌・剪断による被溶解ガスの溶解効果を促進することができる。また、衝突部3の迂回流は、衝突部周囲の絞りリブ部絞りリブ5rの存在により、高速流ギャップ直下流域2g,2kに前述のごとく激しい乱流域を生ずるから、乱流域を通過する際に気泡成長が抑制され、気泡が残存する場合も、さらなる微細化を図ることができるようになる。   In the throttle portion 2c, the flow in the vicinity of the center of the cross section where the flow velocity is maximized is distributed to each segment region 2e, bypassing the tip portion of the collision portion 3. As shown in FIG. 3, since the high-speed flow gaps 2g and 2k are formed between the front end portions of the collision portion 3, the high flow velocity near the center of the cross section passes through the high-speed flow gaps 2g and 2k without significantly decelerating. it can. As a result, in the high-speed flow gaps 2g and 2k, the flow rate of the liquid is greatly increased, and the dissolution effect of the dissolved gas by stirring and shearing can be promoted. In addition, the detour flow of the collision portion 3 causes a strong turbulent flow region in the immediately downstream regions 2g and 2k of the high-speed flow gap due to the presence of the restriction rib portion restriction rib 5r around the collision portion. Even when bubble growth is suppressed and bubbles remain, further miniaturization can be achieved.

高速流ギャップ2g,2kのうち、セグメント領域2eを挟んで隣接する衝突部3の先端部(錐状部)5t,5t間に形成されるスリット部2gは、該錐状部5tの外周面母線方向に形成される。従って、該スリット部2gに向かう流れは錐状部5tの該母線に沿う膨らみをいわば乗り越える形で絞られ圧縮される。その結果、被溶解ガスの溶解効果が高められ、たとえば大気圧下での飽和濃度を超えて被溶解ガスの溶解促進を図るようなことも可能となる。このとき、スリット部2gの長手方向には、圧縮された液体の流動代が与えられるので流速が低下しにくく、キャビテーション(減圧)効果がさらに高められる。また、キャビテーション発生領域はスリット部2gに沿って線状に形成されるため、気泡が減圧析出する領域が大幅に拡張し、被溶解ガスの溶解促進効果がさらに高められる。また気泡が残存する場合も、そのさらなる微細化を図ることができる。   Of the high-speed flow gaps 2g and 2k, the slit portion 2g formed between the tip portions (cone portions) 5t and 5t of the collision portion 3 adjacent to each other across the segment region 2e is an outer peripheral surface bus of the conical portion 5t. Formed in the direction. Accordingly, the flow toward the slit portion 2g is squeezed and compressed so as to overcome the bulge along the generatrix of the cone-shaped portion 5t. As a result, the dissolution effect of the gas to be dissolved is enhanced, and for example, the dissolution of the gas to be dissolved can be promoted exceeding the saturation concentration under atmospheric pressure. At this time, since the flow allowance of the compressed liquid is given in the longitudinal direction of the slit portion 2g, the flow velocity is hardly lowered, and the cavitation (decompression) effect is further enhanced. Further, since the cavitation generation region is formed linearly along the slit portion 2g, the region where the bubbles are deposited under reduced pressure is greatly expanded, and the dissolution promoting effect of the dissolved gas is further enhanced. Further, even when bubbles remain, further miniaturization can be achieved.

一方、中心ギャップ2kは断面中心を包含する形で形成され、流速最大となる中心流れは、この中心ギャップ2kにより迂回の影響を受けずに通過できる。また、中心流れは中心ギャップ2kの通過によりさらに絞られて高速化しようとするが、セグメント領域2e側への流れ迂回が許容されているため流体抵抗の増加が効果的に抑制される。これにより、断面中心部でのキャビテーション(減圧)効果はさらに高められ、撹拌・剪断による被溶解ガスの溶解効果を促進することができる。また、気泡が残存する場合も、そのさらなる微細化を図ることができるようになり、特にウルトラファインバブルの生成に関しては有効となる。セグメント領域2eに分配される各流れは、個々の衝突部3の下流で渦流ないし乱流を発生させるので、溶解効果ないし気泡の粉砕・微細化効果が高められる。   On the other hand, the center gap 2k is formed so as to include the center of the cross section, and the center flow having the maximum flow velocity can pass through the center gap 2k without being influenced by detours. In addition, the center flow is further narrowed by the passage of the center gap 2k to increase the speed, but since the flow detour to the segment region 2e side is permitted, an increase in fluid resistance is effectively suppressed. As a result, the cavitation (decompression) effect at the center of the cross section can be further enhanced, and the dissolution effect of the dissolved gas by stirring and shearing can be promoted. Further, even when bubbles remain, it becomes possible to further reduce the size, and this is particularly effective for the generation of ultrafine bubbles. Each flow distributed to the segment region 2e generates a vortex or a turbulent flow downstream of the individual impingement portions 3, so that the dissolution effect or the bubble crushing / miniaturization effect is enhanced.

そして、断面中心付近の高速流は、図4Aに示すように、断面中心を取り囲むように配置される4つの錐状部5tにより効果的に絞られて中心ギャップ2kに増速しつつ流れ込む。図3に示すように、中心ギャップ2kには周囲の4つのスリット部2gが連通し、中心ギャップ2k内で絞られて圧縮される流れはスリット部2gへ迂回することで流体抵抗の増加が極めて効果的に抑制される。また、スリット部2gへ迂回する流れ自体もスリット長手方向に自由度を有するため、流速低下は低く抑えられる。その結果、中心ギャップ2kおよびスリット部2gでもキャビテーション(減圧)効果は極めて活発となり、撹拌・剪断による被溶解ガスの溶解効果を促進することができる。また、気泡が残存する場合も、そのさらなる微細化を図ることができるようになり、特にウルトラファインバブルの生成に関しては有効となる。また、中心ギャップ2kに臨む衝突部3(錐状部5t)の先端は先鋭に形成されており、その近傍を通過する流れを特に高速化できるので、中心ギャップ2kの直下領域にてガス溶解に好都合な乱流発生をさらに促進することができる。   Then, as shown in FIG. 4A, the high-speed flow near the center of the cross-section is effectively constricted by the four conical portions 5t arranged so as to surround the cross-sectional center and flows into the center gap 2k while being accelerated. As shown in FIG. 3, four slit portions 2g around the center gap 2k communicate with each other, and the flow compressed and compressed in the center gap 2k bypasses the slit portion 2g, so that the fluid resistance is extremely increased. Effectively suppressed. Moreover, since the flow detouring to the slit portion 2g itself also has a degree of freedom in the slit longitudinal direction, a decrease in the flow velocity can be suppressed low. As a result, the cavitation (decompression) effect is extremely active even in the center gap 2k and the slit portion 2g, and the dissolution effect of the dissolved gas by stirring and shearing can be promoted. Further, even when bubbles remain, it becomes possible to further reduce the size, and this is particularly effective for the generation of ultrafine bubbles. Further, the tip of the collision part 3 (conical part 5t) facing the center gap 2k is sharply formed, and the flow passing through the vicinity thereof can be made particularly fast, so that gas can be dissolved in the region immediately below the center gap 2k. Convenient turbulence generation can be further promoted.

また、衝突部3の外周面には周方向の絞りリブ5rが衝突部3の突出方向に沿って複数巻形成されている。衝突部3の外周面接線方向に流れ込む気体溶解液体は、絞りリブ5r間の溝部(あるいは谷状部)21内にて絞られることによりさらに増速し、減圧効果が高められる。図4Bに示すように、谷開口側の流れは相対的に低速となり、特に谷底側の高速流に対して圧力は高くなる。つまり、谷開口側に低速の高圧域HPAが、谷低側に高速の低圧域LPAが形成され、谷開口側の液体の気体飽和溶解量が増加し、谷底側の飽和溶解量が減少する。その結果、水流中の溶存空気(溶解液体)SGFは、図6に示すように、谷開口側の低速流域LF(高圧域HPA:図4A)から谷低側の高速流域FF(低圧域LPA:図4B)に流れ、気泡MBが極めて活発に析出する。   Further, a plurality of circumferential narrowing ribs 5 r are formed on the outer peripheral surface of the collision part 3 along the protruding direction of the collision part 3. The gas-dissolved liquid that flows in the tangential direction of the outer peripheral surface of the collision portion 3 is further increased in speed by being squeezed in the groove portion (or valley-like portion) 21 between the squeezing ribs 5r, and the pressure reduction effect is enhanced. As shown in FIG. 4B, the flow on the valley opening side is relatively slow, and the pressure is particularly high with respect to the high-speed flow on the valley bottom side. That is, a low-speed high-pressure area HPA is formed on the valley opening side, and a high-speed low-pressure area LPA is formed on the valley low side, so that the gas saturation dissolution amount of the liquid on the valley opening side increases and the saturation dissolution amount on the valley bottom side decreases. As a result, as shown in FIG. 6, the dissolved air (dissolved liquid) SGF in the water flow changes from the low-speed flow region LF (high pressure region HPA: FIG. 4A) on the valley opening side to the high-speed flow region FF (low pressure region LPA: on the valley low side). In FIG. 4B), the bubbles MB are deposited very actively.

また、図3に示すごとく、衝突部3をねじ部材5にて形成しており、複数巻の絞りリブ5rを、らせん状に一体形成している。ねじ山を絞りリブ5rとして簡易に利用できるほか、流れに対し絞りリブ5rが傾斜することで、絞りリブ5rの稜線部を横切る流れ成分が増加し、流れ剥離に伴う乱流発生効果が著しくなるので、ガス溶解効果及び気泡のさらなる微細化が図れる利点も生じている。   Further, as shown in FIG. 3, the collision portion 3 is formed by a screw member 5, and a plurality of winding ribs 5r are integrally formed in a spiral shape. In addition to being able to easily use the thread as the throttle rib 5r, when the throttle rib 5r is inclined with respect to the flow, the flow component crossing the ridge portion of the throttle rib 5r increases, and the effect of generating turbulent flow accompanying flow separation becomes significant. Therefore, there is an advantage that the gas dissolution effect and further miniaturization of bubbles can be achieved.

以下、本発明の種々の変形例について説明する。図5及び図6は、液体処理装置における突出部3の形成形態にかかる変形例であり、いずれも絞り部2cの断面を2つのセグメント領域2e,2eに分割する形態で衝突部を形成している。図5の構成では、ねじ部材からなる1対の衝突部30’,30’を絞り部2cの直径方向に対向させ、その先端面5u,5u間に高速流ギャップ2kを形成している。他方、図6の構成では高速流ギャップを形成せず、絞り部2cの断面を直径方向に横切る衝突部30をねじ部材により形成している。また、図7の液体処理装置70では、部材本体6に対し絞り部2cを複数孔設し、図5と同様の衝突部30(もちろん、図7のごとく高速流ギャップ2kを有するものであってもよい)を各絞り部2cに形成した例を示すものである。   Hereinafter, various modifications of the present invention will be described. FIG. 5 and FIG. 6 are modifications according to the form of formation of the protruding portion 3 in the liquid processing apparatus, both of which form the collision portion in the form of dividing the cross section of the throttle portion 2c into two segment regions 2e and 2e. Yes. In the configuration of FIG. 5, a pair of collision parts 30 ′ and 30 ′ made of screw members are opposed to each other in the diameter direction of the throttle part 2 c, and a high-speed flow gap 2 k is formed between the tip surfaces 5 u and 5 u. On the other hand, in the configuration of FIG. 6, the high-speed flow gap is not formed, and the collision portion 30 that crosses the cross section of the throttle portion 2c in the diameter direction is formed by a screw member. Further, in the liquid processing apparatus 70 of FIG. 7, a plurality of throttle portions 2c are provided in the member main body 6, and the collision portion 30 similar to that of FIG. 5 (of course, has a high-speed flow gap 2k as shown in FIG. This is an example in which each of the narrowed portions 2c is formed.

次に、図3のごとく、全ての衝突部3の外周面に絞りリブ5rを連続的に形成する構成では、絞り部2cに流れ込む流れの流速が大きいときに気泡析出が過剰となることも懸念される。そこで、図8、図9及び図10に示すごとく、衝突部の外周面の一部にのみ絞りリブ5rを形成して、谷状部での気泡析出頻度を抑制することも可能である。   Next, as shown in FIG. 3, in the configuration in which the throttle ribs 5r are continuously formed on the outer peripheral surfaces of all the collision parts 3, there is a concern that the bubble deposition becomes excessive when the flow velocity of the flow flowing into the throttle part 2c is large. Is done. Therefore, as shown in FIGS. 8, 9, and 10, it is also possible to form the squeezing rib 5r only on a part of the outer peripheral surface of the collision portion to suppress the bubble deposition frequency in the valley portion.

図8は、複数ある衝突部3の一部を絞りリブ5r付きとし、残余を絞りリブ5rなしとして構成した例である。この実施形態では、絞りリブ5r付きのものと絞りリブ5rなしのものとを周方向に交互に配置してある。また、特に高流速となる断面中心部に位置する衝突部3の先端部には絞りリブ5rを形成せず、残余の領域に絞りリブ5rを形成することが、気泡の過剰発生を抑制したい場合は有効である。図3においても、衝突部3の先端部をなす錐状部5tの外周面には絞りリブ5rを形成していなかったが、気泡発生が過剰である場合には、図9に示すように、錐状部5tに続く円筒状の周側面部の先端側領域において絞りリブ5rの形成を省略する構成も可能である。さらに、図10は、円筒状の周側面部に対し、絞りリブ5rを軸線方向にて断続的に形成した例を示している。また、図7のごとく、衝突部の外周面に絞りリブを形成しない構成とすることも可能である。   FIG. 8 shows an example in which a part of the plurality of collision portions 3 is provided with the throttle rib 5r and the remainder is not provided with the throttle rib 5r. In this embodiment, the ones with the diaphragm ribs 5r and the ones without the diaphragm ribs 5r are alternately arranged in the circumferential direction. Further, when it is desired to suppress the excessive generation of bubbles by forming the throttle rib 5r in the remaining region without forming the throttle rib 5r at the tip of the collision part 3 located at the center of the cross section where the flow velocity is particularly high. Is valid. Also in FIG. 3, the diaphragm rib 5r was not formed on the outer peripheral surface of the conical portion 5t that forms the tip of the collision portion 3, but when the bubble generation is excessive, as shown in FIG. A configuration in which the formation of the diaphragm rib 5r is omitted in the tip side region of the cylindrical peripheral side surface portion following the conical portion 5t is also possible. Further, FIG. 10 shows an example in which the diaphragm rib 5r is intermittently formed in the axial direction on the cylindrical peripheral side surface portion. Further, as shown in FIG. 7, it is also possible to adopt a configuration in which no diaphragm rib is formed on the outer peripheral surface of the collision portion.

次に、絞りリブは、図11に示すように、衝突部3の軸線周りにて周方向に閉じる形で独立した絞りリブ5sを、軸線方向に複数密接させて形成することも可能である。図11においては、独立した個々の絞りリブ5sを衝突部3の軸線と直交する向きに形成しているが、これを該軸線と直交する面に対し傾斜させて形成することも可能である。このようにすれば、図3と同様に、絞りリブが傾斜することで、流れ剥離に伴う乱流発生効果が著しくなり、ガス溶解に有効な撹拌効果が高められ、また、気泡のさらなる微細化を図ることができる。   Next, as shown in FIG. 11, it is possible to form a plurality of independent diaphragm ribs 5s in close contact with each other in the axial direction so as to be closed in the circumferential direction around the axis of the collision portion 3. In FIG. 11, independent individual restricting ribs 5 s are formed in a direction orthogonal to the axis of the collision portion 3, but it is also possible to form them by inclining with respect to a plane orthogonal to the axis. In this way, as in FIG. 3, the squeezing rib is inclined, so that the effect of generating turbulent flow accompanying flow separation becomes significant, the stirring effect effective for gas dissolution is enhanced, and the bubbles are further refined. Can be achieved.

図3において、衝突部3の先端部をなす錐状部5tの先端角は、衝突部3の軸線を含む平面で切断した断面に表われる角度にて90°(つまり、全周角360°を衝突部3の数(4)で割った値)に設定されている。従って、図12に示すように、衝突部3の先端を絞り部2cの断面中心に合わせる形で、隣接する錐状部5tの側面同士が密接するように各衝突部3を位置決めすれば、高速流ギャップを非形成とすることも可能である。これにより、液体の流れは各セグメント領域2eにもれなく分配され、絞りリブ5rを主体としたキャビテーション効果により気泡発生が可能となる。また、図13に示すように、内径方向に対向する1対の衝突部3,3について錐状部5tの先端を接触させ、残余の1対の衝突部3,3を軸線方向に後退させる配置とすることで、スリット部5tを形成することができる。   In FIG. 3, the tip angle of the cone-shaped portion 5t that forms the tip of the collision portion 3 is 90 ° (that is, the entire circumferential angle is 360 °) expressed by a cross section cut by a plane including the axis of the collision portion 3. (Value divided by the number (4) of the collision parts 3). Therefore, as shown in FIG. 12, if each collision part 3 is positioned so that the side surfaces of the adjacent cone-shaped parts 5t are in close contact with each other so that the tip of the collision part 3 is aligned with the center of the cross section of the throttle part 2c, It is also possible to have no flow gap. As a result, the flow of the liquid is distributed to each segment region 2e, and bubbles can be generated by the cavitation effect mainly composed of the throttle rib 5r. Further, as shown in FIG. 13, the tip of the cone-shaped part 5t is brought into contact with the pair of collision parts 3 and 3 opposed in the inner diameter direction, and the remaining pair of collision parts 3 and 3 are retracted in the axial direction. By doing so, the slit portion 5t can be formed.

衝突部3の先端は平坦に形成することも可能である。図14及び図15に示す例では、図3と同様の錐状部5tの先端部を切り欠く形で平坦な先端面5uを形成している。これにより、中心ギャップ2kの拡張と流れ均一化とを図ることができる。図14では、隣接する錐状部5tの側面同士を密接させているが、平坦な先端面5uを形成することで、中心ギャップ2kを周囲が閉じた形で形成している。また、図15では、隣接する錐状部5tの側面間にスリット部2gを形成した例を示す。   The tip of the collision portion 3 can be formed flat. In the example shown in FIGS. 14 and 15, the flat tip surface 5u is formed by cutting out the tip portion of the conical portion 5t similar to FIG. Thereby, expansion of the center gap 2k and flow uniformity can be achieved. In FIG. 14, the side surfaces of the adjacent conical portions 5t are brought into close contact with each other, but the center gap 2k is formed in a closed shape by forming a flat front end surface 5u. FIG. 15 shows an example in which the slit portion 2g is formed between the side surfaces of the adjacent conical portions 5t.

図16の構成においては、絞り部2cの断面を内径に沿って横切るように主衝突部130を配置し、さらに、該主衝突部130と直交する形で、絞り部2cの断面中心を挟んで内径方向に対向する1対の対向衝突部30とを設けた例である。対向衝突部30の各先端面と主衝突部130の外周面との間には、高速流ギャップを構成する外周ギャップ2jが形成されている。絞り部2cの内径寸法を縮小せざるを得ない場合、上記構成は中心ギャップ2kを形成する構成よりも簡略化できる。断面中心付近の流れは主衝突部130に衝突して迂回する形となるが、主衝突部130を迂回する遠心力の影響により増速しつつ対向衝突部30が形成する外周ギャップ2jを通過する形となるので、主衝突部130との衝突による流れ減速の影響がそれほど大きくない利点がある。   In the configuration of FIG. 16, the main collision portion 130 is disposed so as to cross the cross section of the throttle portion 2c along the inner diameter, and further, the cross section center of the throttle portion 2c is sandwiched between the main collision portion 130 and the main collision portion 130. This is an example in which a pair of opposed collision portions 30 opposed in the inner diameter direction are provided. An outer peripheral gap 2j constituting a high-speed flow gap is formed between each front end surface of the opposing collision unit 30 and the outer peripheral surface of the main collision unit 130. In the case where the inner diameter of the narrowed portion 2c must be reduced, the above configuration can be simplified as compared with the configuration in which the center gap 2k is formed. The flow in the vicinity of the center of the cross-section collides with the main collision portion 130 and detours, but passes through the outer peripheral gap 2j formed by the opposing collision portion 30 while being accelerated by the influence of centrifugal force detouring the main collision portion 130. Therefore, there is an advantage that the influence of the flow deceleration due to the collision with the main collision portion 130 is not so great.

図16の構成では、対向衝突部30の先端は平坦に形成され、外周ギャップ2jがスリット状に形成されている。スリット長手方向にキャビテーション領域を拡張できるので、微細気泡をより高濃度で発生することができる。主衝突部130は両端部が部材本体6に埋設される内径方向に一体の部材であり、絞り部2c内に露出する部分にてその外周面の全面に絞りリブ5rが形成されている。外周ギャップ2jにおいては、対向衝突部30の先端面と対向する主衝突部130の外周面が絞りリブ5rにより凹凸化しており、絞りリブ5r(山)位置ではギャップ間隔が狭小化して高速流領域が生じ、谷状部21ではギャップ間隔が拡大して低流速領域が生じる。その結果、隣接するこれら2領域間の圧力差に伴い低流速領域から高流速領域に向けて溶存気体の流れが生じ、さらに、図4Aないし図4Bにて示した谷状部21内で生ずる溶存気体の流れが加わることで、気泡析出が極めて活発化し、液体の撹拌効果ひいては溶解効果が向上する。また、主衝突部130の外周面は、液体流入側から対向衝突部30の先端面との対向位置に向けて間隔を縮小し,その絞り効果により流速が上昇することも、液体の撹拌効果ひいては溶解効果を高める上で有利となっている。なお、図16中に破線で示すごとく、対向衝突部30の先端面を主衝突部130の外周面の絞りリブ5に当接させても、谷状部21の空間が外周ギャップ2jを形成する形とすることができる。   In the configuration of FIG. 16, the tip of the opposing collision part 30 is formed flat, and the outer peripheral gap 2j is formed in a slit shape. Since the cavitation region can be expanded in the slit longitudinal direction, fine bubbles can be generated at a higher concentration. The main collision part 130 is an integral member in the inner diameter direction in which both end parts are embedded in the member main body 6, and a throttle rib 5 r is formed on the entire outer peripheral surface of the part exposed in the throttle part 2 c. In the outer peripheral gap 2j, the outer peripheral surface of the main collision portion 130 facing the tip surface of the opposing collision portion 30 is uneven by the restriction rib 5r, and the gap interval is narrowed at the position of the restriction rib 5r (mountain) so that the high-speed flow region In the valley portion 21, the gap interval is increased and a low flow velocity region is generated. As a result, a flow of dissolved gas is generated from the low flow rate region to the high flow rate region due to the pressure difference between these two adjacent regions, and the dissolved gas is generated in the valley portion 21 shown in FIGS. 4A to 4B. By adding a gas flow, bubble deposition is extremely activated, and the liquid stirring effect and the dissolution effect are improved. Further, the outer peripheral surface of the main collision part 130 is reduced in distance from the liquid inflow side to the position facing the front end surface of the opposing collision part 30, and the flow velocity increases due to the throttling effect. It is advantageous for enhancing the dissolution effect. Note that, as indicated by broken lines in FIG. 16, the space of the valley-shaped portion 21 forms the outer peripheral gap 2j even if the front end surface of the opposing collision portion 30 is brought into contact with the diaphragm rib 5 on the outer peripheral surface of the main collision portion 130. It can be shaped.

また、図17は、対向衝突部3,3の先端を先鋭に形成した例である。外周ギャップ2jにおいて対向衝突部3の先端付近の絞り効果が高められ、高流速化によるガス溶解効果向上を図ることができる。主衝突部は、各々平坦な先端面5uを有するとともに該先端面5uの外周に沿って面取り部3tが形成された1対の衝突部30,30を、該先端面5u,5uにて互いに接するように絞り部2cの内径方向に対向して配置形成している。対向衝突部3,3の先端は、主衝突部をなす2つの衝突部30,30の面取り部3tが作るV字状断面の溝部と対向する形で外周ギャップ2jを形成している。これにより、上記の対向衝突部3先端付近の高流速化効果が一層高められている。   FIG. 17 shows an example in which the front ends of the opposing collision portions 3 and 3 are sharply formed. In the outer circumferential gap 2j, the squeezing effect near the tip of the opposing collision portion 3 is enhanced, and the gas dissolution effect can be improved by increasing the flow velocity. Each of the main collision parts has a flat front end surface 5u and a pair of collision parts 30 and 30 each having a chamfered portion 3t formed along the outer periphery of the front end surface 5u are in contact with each other at the front end surfaces 5u and 5u. In this manner, it is arranged so as to face the inner diameter direction of the throttle portion 2c. The front ends of the opposing collision portions 3 and 3 form an outer peripheral gap 2j so as to face a groove portion having a V-shaped cross section formed by the chamfered portion 3t of the two collision portions 30 and 30 forming the main collision portion. As a result, the effect of increasing the flow velocity in the vicinity of the tip of the opposed collision portion 3 is further enhanced.

また、図18、図19に示すように、主衝突部は、各々平坦な先端面5u,5uを有する1対の衝突部30’,30’(以下、主衝突部30’,30’と表示する)を、それら先端面5u,5u間に絞り部2cの断面中心を包含する中心ギャップ2kを形成する形で、絞り部2cの内径方向に対向して配置する形とすることも可能である。図18は、主衝突部30’,30’の先端部外周面(ひいては絞りリブ5r)に対し、対向衝突部30,30の各先端面を当接させた構成を示す。このように2つの衝突部30’,30’に分割し、その先端面間に中心ギャップ2kを形成することで、流速が最も大きくなる断面中心付近の流れは中心ギャップ2kにより絞られてさらに高速化する。また、図19は、対向衝突部30,30の各先端面5u,5uを主衝突部30’,30’の先端部外周面(ひいては絞りリブ5r)から離間させて、スリット状の外周ギャップ2jをさらに形成した例を示す。中心ギャップ2k内で絞られて圧縮される流れは、スリット状の外周ギャップ2jへ迂回することで流体抵抗の増加が極めて効果的に抑制される。また、外周ギャップ2jもスリット状に絞られているので迂回先での流速低下も低く抑えられる。   Further, as shown in FIGS. 18 and 19, the main collision portion is indicated by a pair of collision portions 30 ′, 30 ′ (hereinafter referred to as main collision portions 30 ′, 30 ′) each having flat tip surfaces 5u, 5u. It is also possible to form a central gap 2k that includes the center of the cross section of the throttle portion 2c between the tip surfaces 5u and 5u, and to be disposed opposite to the inner diameter direction of the throttle portion 2c. . FIG. 18 shows a configuration in which the distal end surfaces of the opposing collision portions 30 and 30 are brought into contact with the outer peripheral surfaces of the leading end portions of the main collision portions 30 ′ and 30 ′ (as a result, the diaphragm rib 5 r). By dividing into two collision portions 30 ′ and 30 ′ and forming the center gap 2k between the front end surfaces in this way, the flow in the vicinity of the center of the cross section where the flow velocity is maximized is restricted by the center gap 2k and further increased in speed. Turn into. FIG. 19 shows a slit-like outer peripheral gap 2j in which the front end surfaces 5u and 5u of the opposing collision portions 30 and 30 are separated from the outer peripheral surface of the front end portion of the main collision portions 30 ′ and 30 ′ (and consequently the diaphragm rib 5r). An example in which is further formed will be shown. The flow that is squeezed and compressed in the center gap 2k is diverted to the slit-shaped outer peripheral gap 2j, so that an increase in fluid resistance is extremely effectively suppressed. Further, since the outer peripheral gap 2j is also narrowed in a slit shape, a decrease in flow velocity at the detour destination can be suppressed to a low level.

図20は、3つの衝突部3によりセグメント領域2eを3つ形成した例である。また、セグメント領域の形成個数を5以上とすることも可能である。   FIG. 20 is an example in which three segment regions 2 e are formed by three collision portions 3. Further, the number of segment regions formed can be 5 or more.

図21は、液体処理部材を、液体の流れ方向に直列に配置される上流側の第一の液体処理部材1と下流側の及び第二の液体処理部材1’とを含むものとして構成した例である。上流側の第一の液体処理部材1は、図2と全く同様の構成による被溶解ガス供給部を有しており、第二の液体処理部材1’はその被溶解ガス供給部を省略した構造となっている。被溶解ガスは第一の液体処理部材1に供給され、そこで第1段階目のガスの粉砕・溶解が行われ、第二の液体処理部材1’はその第一の液体処理部材1にて未溶解の被溶解ガスをさらに粉砕・溶解する。直列接続された複数の液体処理部材1,1’により、被溶解ガスは段階的に粉砕・溶解し、ガスの溶解効率を大幅に高めることができる。直列配置する液体処理部材の数は、もちろん3段以上とすることも可能である。なお、複数の液体処理部材の2以上のもののそれぞれに被溶解ガスを別経路にて分配供給する構成、たとえば、図21において、第二の液体処理部材1’を、被溶解ガス供給部を有した第一の液体処理部材1と同一のものに置き換えた構成とすることも可能である。   FIG. 21 shows an example in which the liquid processing member includes the upstream first liquid processing member 1 and the downstream and second liquid processing members 1 ′ arranged in series in the liquid flow direction. It is. The first liquid processing member 1 on the upstream side has a dissolved gas supply unit having the same configuration as that of FIG. 2, and the second liquid processing member 1 ′ has a structure in which the dissolved gas supply unit is omitted. It has become. The gas to be dissolved is supplied to the first liquid processing member 1, where the first stage gas is pulverized and dissolved, and the second liquid processing member 1 ′ is unreacted by the first liquid processing member 1. The dissolved gas to be dissolved is further pulverized and dissolved. By the plurality of liquid processing members 1 and 1 ′ connected in series, the gas to be dissolved is pulverized and dissolved in stages, and the gas dissolution efficiency can be greatly increased. Of course, the number of liquid processing members arranged in series can be three or more. A configuration in which the gas to be dissolved is distributed and supplied to each of two or more of the plurality of liquid processing members through different paths, for example, in FIG. 21, the second liquid processing member 1 ′ is provided with a gas to be dissolved supply section. It is also possible to replace the first liquid processing member 1 with the same one.

また、図22は、被溶解ガス供給部を、部材本体6の流入口に接続される液体流入配管18上に設けられたガス注入ノズル60として構成されている。ガス注入ノズル60は周知のベンチュリ管として形成され、その絞り部に連通するガス吸引孔60hにガス供給管路12が接続され、被溶解ガスGが供給されるとともに、下流側の液体処理部材1’にて粉砕・溶解されることとなる。   In FIG. 22, the dissolved gas supply unit is configured as a gas injection nozzle 60 provided on the liquid inflow pipe 18 connected to the inlet of the member body 6. The gas injection nozzle 60 is formed as a well-known venturi tube, and the gas supply line 12 is connected to the gas suction hole 60h communicating with the throttle portion to supply the gas G to be dissolved and the liquid processing member 1 on the downstream side. It will be crushed and dissolved by '.

一方、図23の液体処理部材1”においては、衝突部3(ねじ部材)の軸線方向にガス供給通路3hを形成し、ここにコネクタ11を介してガス供給管路12を接続することにより、被溶解ガス供給部を構成している。この場合、ガス供給通路3hの内径は衝突部3の外形寸法による成約を受けるが、もしそれでガス供給流量が不足するようであれば、図24に示すように、複数の衝突部3の少なくとも2以上のものに同様のガス供給通路3hを形成し、被溶解ガスを分配供給することにより、ガス供給量を増加させることが可能である。   On the other hand, in the liquid processing member 1 ″ of FIG. 23, a gas supply passage 3h is formed in the axial direction of the collision portion 3 (screw member), and a gas supply conduit 12 is connected to the gas supply passage 12 via a connector 11 here. In this case, the inner diameter of the gas supply passage 3h is contracted by the outer dimensions of the collision portion 3, but if the gas supply flow rate is insufficient, it is shown in FIG. As described above, it is possible to increase the gas supply amount by forming the same gas supply passage 3h in at least two of the plurality of collision portions 3 and distributing and supplying the gas to be dissolved.

また、図25〜図27に示すように、液体の流通管路18を途中で複数に分岐させ、複数の液体処理部材1をそれら分岐した流通管路上に並列に設けることも可能である。被溶解ガス供給部はそれら並列接続された液体処理部材の少なくともいずれかに被溶解ガスを供給するものとして構成される。複数の液体処理部材を並列に用いることで、処理対象の液体の流量が大きい場合でも、必要な量の被溶解ガスを効率よく溶解することができる。   Further, as shown in FIGS. 25 to 27, the liquid circulation pipe 18 can be branched into a plurality of parts in the middle, and the plurality of liquid processing members 1 can be provided in parallel on the branched flow pipes. The dissolved gas supply unit is configured to supply the dissolved gas to at least one of the liquid processing members connected in parallel. By using a plurality of liquid processing members in parallel, a required amount of the gas to be dissolved can be efficiently dissolved even when the flow rate of the liquid to be processed is large.

図25においては、被溶解ガス供給部を形成した図2と同じ構成の液体処理部材1を、分岐した流通管路のそれぞれに設けている。なお、各液体処理部材1に対しては、同一の被溶解ガス源(たとえば、ガスボンベ)につながるガス供給管12を分岐させ、各液体処理部材1に分配供給するようにしている。分岐したガス供給管12のそれぞれに、供給する被溶解ガスの流量を個別に調整する流量調整バルブ29を設けておくと、各液体処理部材1に対する液体の供給状況に応じて被溶解ガスの供給量を適正化することができるようになる(ただし、省略も可能)。また、図30に示すように、各液体処理部材1に対し、種別の異なる被溶解ガス源(たとえば、ガスボンベ)につながるガス供給管12に個別に接続し、それぞれ異なる被溶解ガスG1,G2を溶解させ、混合するように構成することもできる。このとき、各ガス供給管12の流量調整バルブ29を設け、その流量調整を行うことで、複数の被溶解ガスG1,G2の溶解混合比を変更することができる。   In FIG. 25, the liquid processing member 1 having the same configuration as that of FIG. 2 in which the dissolved gas supply unit is formed is provided in each of the branched flow pipes. For each liquid processing member 1, a gas supply pipe 12 connected to the same dissolved gas source (for example, gas cylinder) is branched and supplied to each liquid processing member 1. If each of the branched gas supply pipes 12 is provided with a flow rate adjusting valve 29 that individually adjusts the flow rate of the dissolved gas to be supplied, the supply of the dissolved gas according to the supply status of the liquid to each liquid processing member 1. It becomes possible to optimize the amount (however, it can be omitted). Further, as shown in FIG. 30, each liquid processing member 1 is individually connected to gas supply pipes 12 connected to different types of dissolved gas sources (for example, gas cylinders), and different dissolved gases G1 and G2 are connected to the liquid processing members 1, respectively. It can also be configured to dissolve and mix. At this time, by providing the flow rate adjustment valve 29 of each gas supply pipe 12 and adjusting the flow rate, the dissolution mixture ratio of the plurality of dissolved gases G1 and G2 can be changed.

また、図26に示すように、図22と同様の、被溶解ガス供給部を形成しない液体処理部材1’を複数並列に分配配置し、その分配分岐点よりも上流側にガス注入ノズル60(図22も参照)を設けることもできる。各液体処理部材1’への被溶解ガスの分配を均一に行うことができる。   Further, as shown in FIG. 26, a plurality of liquid processing members 1 ′ that do not form a dissolved gas supply unit are distributed and arranged in parallel, and the gas injection nozzle 60 ( (See also FIG. 22). Dissolved gas can be uniformly distributed to each liquid processing member 1 '.

一方、図27に示すように、複数並列に分配配置された液体処理部材1,1’のうち、一部のもの(ここでは図面下側の液体処理部材1’)にのみ被溶解ガス供給部(ガス供給管12+ガス注入管10、図2と同様)を設け、被溶解ガスを溶解して液体と溶解しない液体とを混合して流出させる構成も可能である。また、図28に示すように、図21に開示したような、直列接続される複数の液体処理部材1,1’の組を、複数並列に分岐接続することも可能である。   On the other hand, as shown in FIG. 27, the dissolved gas supply unit only for a part (here, the liquid processing member 1 ′ on the lower side of the drawing) of the plurality of liquid processing members 1, 1 ′ distributed and arranged in parallel. (A gas supply pipe 12 + a gas injection pipe 10, similar to FIG. 2) may be provided to dissolve the gas to be dissolved and mix and discharge a liquid and an undissolved liquid. Further, as shown in FIG. 28, a plurality of sets of liquid processing members 1 and 1 'connected in series as disclosed in FIG. 21 can be branched and connected in parallel.

図29は、液体を循環させつつ被溶解液体を継続的に供給溶解させる構成の一例を示すものである。この構成では、水槽(あるいはタンク)93内に水を満たし、その水の中で魚Fを飼育するとともに、水はフィルタ92により汚れ等をフィルタリングされつつ、ポンプ91により循環管路(液体流路)18を介して循環流動する。循環管路18上には被溶解ガス供給部を持たない液体処理部材1’が配置される一方、水槽93内には、多数の連通気孔を有したセラミックないし樹脂(あるいはセラミックと樹脂の複合材)からなる散気体95が配置され、ガスボンベ96からガス供給管12を介して被溶解ガスとしての酸素(あるいは)が供給されるようになっている。散気体95からの酸素(空気)気泡は、水槽93の循環流出口93Rから循環管路18内に吸い込まれ、液体処理部材1’に導かれて粉砕・溶解される。なお、水槽93に、この散気体95を循環流出口93Rとともに覆う気泡捕集部を設けておくと、散気体95からの酸素(空気)気泡を余さず循環管路18内に導くことができ、酸素の溶解効率を向上することができる。この構成により、散気体の用いた従来のエアレーションシステムよりも酸素の溶解効率を大幅に高めることができ、使用する酸素量の削減や、水槽内における魚の飼育密度の増加を図ることができる。   FIG. 29 shows an example of a configuration in which the liquid to be dissolved is continuously supplied and dissolved while circulating the liquid. In this configuration, the water tank (or tank) 93 is filled with water, the fish F is bred in the water, and the water is filtered for dirt and the like by the filter 92, and the circulation line (liquid channel) is pumped by the pump 91. ) It circulates through 18. A liquid processing member 1 ′ having no dissolved gas supply unit is disposed on the circulation pipe 18, while a ceramic or resin (or a composite material of ceramic and resin) having a large number of continuous air holes in the water tank 93. ) Is provided, and oxygen (or) as a gas to be dissolved is supplied from a gas cylinder 96 through the gas supply pipe 12. Oxygen (air) bubbles from the diffused gas 95 are sucked into the circulation pipe 18 from the circulation outlet 93R of the water tank 93, guided to the liquid processing member 1 ', and crushed and dissolved. In addition, if the bubble collection part which covers this diffused gas 95 with the circulation outlet 93R is provided in the water tank 93, oxygen (air) bubbles from the diffused gas 95 can be led into the circulation pipe line 18 without any excess. And oxygen dissolution efficiency can be improved. With this configuration, the oxygen dissolution efficiency can be significantly increased as compared to the conventional aeration system using a diffused gas, and the amount of oxygen to be used can be reduced and the breeding density of fish in the aquarium can be increased.

なお、被溶解ガス源は、上記種々の実施例のようなボンベに限られるものではなく、例えば図31に示すに、液体処理部材1の絞り部における減圧効果により、大気Aを被溶解ガス源として自吸供給するように構成することもできる。この場合、そのガス供給管12の途上にオゾナイザ28を設けておけば、吸引する大気中の酸素の一部をオゾン化して被供給ガスとして供給することも可能となる。   The dissolved gas source is not limited to the cylinder as in the above-described various embodiments. For example, as shown in FIG. 31, the atmosphere A is dissolved in the dissolved gas source by the pressure reducing effect in the throttle portion of the liquid processing member 1. It can also be configured to supply self-priming as In this case, if the ozonizer 28 is provided in the middle of the gas supply pipe 12, it is possible to ozonize part of the oxygen in the air to be sucked and supply it as the supply gas.

1,1 液体処理部材
2c 絞り部
2e セグメント領域
2n 流入口
2x 流出口
3,30,30’,130 衝突部
5t 錐状部
5r 絞りリブ
6 部材本体
12 ガス供給管路(被溶解ガス供給部)
DESCRIPTION OF SYMBOLS 1,1 Liquid processing member 2c Restriction part 2e Segment area | region 2n Inlet 2x Outlet 3,30,30 ', 130 Colliding part 5t Conical part 5r Restriction rib 6 Member main body 12 Gas supply line (dissolved gas supply part)

Claims (10)

液体流入側となる流入端と液体流出側となる流出端とが定められ、前記流入端に開口する流入口と前記流出端に開口する流出口とをつなぐ液体流路が貫通形態に形成されるとともに、前記流路の途中位置に前記流入口よりも流通断面積が小さい絞り部が形成された部材本体と、前記絞り部にて前記流路の軸断面を2以上のセグメント領域に区画する形態で前記流路の内周面から突出するとともに外周面に周方向の絞りリブを複数巻備え前記絞り部の流路断面積をさらに減少させる衝突部とを有した液体水理部材と、
前記部材本体の前記液体流路内に当該部材本体の外部に位置するガス供給源から被溶解ガスを流入させる被溶解ガス供給部とを備え、
前記液体理部材の前記部材本体の前記流入端に供給された液体の流れを、前記衝突部に衝突させた後、各前記セグメント領域に分配しつつ増速して通過させ、当該衝突部の直下流に形成される乱流域に前記被溶解ガスを巻き込んで混合粉砕し溶解させるようにしたことを特徴とするガス溶解装置。
An inflow end that is a liquid inflow side and an outflow end that is a liquid outflow side are defined, and a liquid flow path that connects an inflow opening that opens to the inflow end and an outflow opening that opens to the outflow end is formed in a penetrating configuration. And a member main body in which a throttle part having a smaller flow cross-sectional area than the inflow port is formed at an intermediate position of the flow path, and a mode in which the axial cross section of the flow path is divided into two or more segment regions by the throttle part A liquid hydraulic member that has a collision portion that protrudes from the inner peripheral surface of the flow path and has a plurality of circumferentially drawn throttle ribs on the outer peripheral surface and further reduces the flow path cross-sectional area of the throttle portion;
A to-be-dissolved gas supply section for allowing a to-be-dissolved gas to flow from a gas supply source located outside the member body into the liquid flow path of the member body,
After the liquid flow supplied to the inflow end of the member main body of the liquid physical member collides with the collision part, the liquid flow is accelerated and passed while being distributed to each segment region, and the liquid flow member is directly connected to the collision part. A gas dissolving apparatus characterized in that the gas to be dissolved is entrained in a turbulent flow region formed downstream, mixed, pulverized and dissolved.
前記絞り部の前記内周面から突出する複数の前記衝突部の2つ以上のものの先端部同士の間に前記絞り部内の液体流をさらに高速化する高速流ギャップが形成されている請求項1記載のガス溶解装置。 2. A high-speed flow gap that further speeds up the liquid flow in the constricted portion is formed between the tip portions of two or more of the plurality of colliding portions protruding from the inner peripheral surface of the constricted portion. The gas dissolving apparatus as described. 前記衝突部は前記絞り部にて前記液体流路の軸断面を3以上のセグメント領域に区画する形態で形成されている請求項1記載のガス溶解装置。 The gas dissolving apparatus according to claim 1, wherein the collision portion is formed by the throttle portion so as to divide an axial cross section of the liquid flow path into three or more segment regions. 前記絞り部の前記内周面から突出する複数の前記衝突部の2つ以上のものの先端部同士の間に前記絞り部内の液体流をさらに高速化する高速流ギャップが形成されている請求項3記載のガス溶解装置。 The high-speed flow gap which further speeds up the liquid flow in the said throttle part is formed between the front-end | tip parts of two or more things of the said some collision part which protrudes from the said internal peripheral surface of the said throttle part. The gas dissolving apparatus as described. 前記衝突部の先端部には先端に向かうほど軸断面を縮小させる錐状部が形成されてなり、前記セグメント領域を挟んで互いに隣接する2つの前記衝突部において前記錐状部の外周面間に、前記高速流ギャップを構成するスリット部が形成されている請求項2記載のガス溶解装置。 A conical portion that reduces the axial cross section toward the distal end is formed at the distal end portion of the collision portion, and the two collision portions adjacent to each other with the segment region interposed between the outer peripheral surfaces of the conical portions. The gas dissolving apparatus according to claim 2, wherein a slit portion constituting the high-speed flow gap is formed. 前記被溶解ガス供給部は、前記衝突部よりも上流側にて前記部材本体の壁部に形成され前記液体通路の内周面に一端がガス流出口として開口するとともに、他端が前記部材本体の外面に被溶解ガス供給口として開口するガス供給通路を備える請求項1ないし請求項5のいずれか1項に記載のガス溶解装置。 The dissolved gas supply part is formed in the wall part of the member main body on the upstream side of the collision part, and one end opens as a gas outlet on the inner peripheral surface of the liquid passage, and the other end is the member main body. The gas dissolving apparatus of any one of Claim 1 thru | or 5 provided with the gas supply path opened as a to-be-dissolved gas supply port in the outer surface of this. 前記ガス供給通路の前記ガス流出口が前記絞り部に開口してなる請求項6記載のガス溶解装置。 The gas dissolving device according to claim 6, wherein the gas outlet of the gas supply passage is opened to the throttle portion. 前記被溶解ガス供給部は、前記部材本体の前記流入口に接続される液体流入配管上に設けられたガス注入ノズルである請求項1ないし請求項5のいずれか1項に記載のガス溶解装置。 The gas dissolving apparatus according to any one of claims 1 to 5, wherein the dissolved gas supply unit is a gas injection nozzle provided on a liquid inflow pipe connected to the inlet of the member main body. . 前記液体処理部材は前記液体の流れ方向に直列に配置される上流側の第一の液体処理部材と下流側の及び第二の液体処理部材とを含むものであり、前記被溶解ガス供給部は前記第一の液体処理部材に前記被溶解ガスを供給するものであり、前記第二の液体処理部材は前記第一の液体処理部材にて未溶解の前記被溶解ガスをさらに粉砕・溶解するものである請求項1ないし請求項8のいずれか1項に記載のガス溶解装置。 The liquid processing member includes an upstream first liquid processing member and a downstream and second liquid processing member arranged in series in the liquid flow direction, and the dissolved gas supply unit includes: The dissolved gas is supplied to the first liquid processing member, and the second liquid processing member further pulverizes and dissolves the undissolved dissolved gas in the first liquid processing member. The gas dissolving device according to any one of claims 1 to 8, wherein 前記液体の流通管路が途中で複数に分岐するとともに、複数の前記液体処理部材がそれら分岐した流通管路上に並列に設けられ、前記被溶解ガス供給部はそれら並列接続された前記液体処理部材の少なくともいずれかに前記被溶解ガスを供給するものである請求項1ないし請求項9のいずれか1項に記載のガス溶解装置。
The liquid flow pipe is branched into a plurality of parts in the middle, and a plurality of the liquid processing members are provided in parallel on the branched flow pipes, and the dissolved gas supply unit is connected in parallel to the liquid processing member. The gas dissolving apparatus according to any one of claims 1 to 9, wherein the gas to be dissolved is supplied to at least one of the above.
JP2014053529A 2014-03-17 2014-03-17 Gas dissolution device Pending JP2015174055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053529A JP2015174055A (en) 2014-03-17 2014-03-17 Gas dissolution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053529A JP2015174055A (en) 2014-03-17 2014-03-17 Gas dissolution device

Publications (1)

Publication Number Publication Date
JP2015174055A true JP2015174055A (en) 2015-10-05

Family

ID=54253771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053529A Pending JP2015174055A (en) 2014-03-17 2014-03-17 Gas dissolution device

Country Status (1)

Country Link
JP (1) JP2015174055A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023936A (en) * 2016-08-10 2018-02-15 東芝ライフスタイル株式会社 Fine bubble generator
JP2018065979A (en) * 2016-10-19 2018-04-26 株式会社ウォーターデザイン Manufacturing method and manufacturing device for edible oil
JP2018075334A (en) * 2016-11-09 2018-05-17 早稲田ビジネスコンサルティング株式会社 Washing water supply device for dental unit and liquid treatment nozzle used therefor
WO2019212028A1 (en) * 2018-05-01 2019-11-07 株式会社幸陽農舎 Microbubble generation device
JP2020015013A (en) * 2018-07-26 2020-01-30 東芝ライフスタイル株式会社 Fine bubble generator and household appliance
WO2021075260A1 (en) * 2019-10-18 2021-04-22 早稲田ビジネスコンサルティング株式会社 Liquid treatment nozzle for purifying liquid pipe of dental device
WO2021171502A1 (en) * 2020-02-27 2021-09-02 ヤマハ発動機株式会社 Marine trash collection device
JP2022057513A (en) * 2020-09-30 2022-04-11 連洪 李 Hydrogen gas-containing liquid generator

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023936A (en) * 2016-08-10 2018-02-15 東芝ライフスタイル株式会社 Fine bubble generator
WO2018030215A1 (en) * 2016-08-10 2018-02-15 東芝ライフスタイル株式会社 Fine bubble generator
JP2018065979A (en) * 2016-10-19 2018-04-26 株式会社ウォーターデザイン Manufacturing method and manufacturing device for edible oil
JP2018075334A (en) * 2016-11-09 2018-05-17 早稲田ビジネスコンサルティング株式会社 Washing water supply device for dental unit and liquid treatment nozzle used therefor
JPWO2019212028A1 (en) * 2018-05-01 2021-04-22 株式会社幸陽農舎 Fine bubble generator
WO2019212028A1 (en) * 2018-05-01 2019-11-07 株式会社幸陽農舎 Microbubble generation device
US11772057B2 (en) 2018-05-01 2023-10-03 Koyo Agriculture Inc. Fine bubble generating device
JP2020015013A (en) * 2018-07-26 2020-01-30 東芝ライフスタイル株式会社 Fine bubble generator and household appliance
JP7169801B2 (en) 2018-07-26 2022-11-11 東芝ライフスタイル株式会社 Fine bubble generator and home appliance
WO2021075260A1 (en) * 2019-10-18 2021-04-22 早稲田ビジネスコンサルティング株式会社 Liquid treatment nozzle for purifying liquid pipe of dental device
JP7399408B2 (en) 2019-10-18 2023-12-18 早稲田ビジネスコンサルティング株式会社 Liquid handling nozzle to purify liquid piping of dental equipment
WO2021171502A1 (en) * 2020-02-27 2021-09-02 ヤマハ発動機株式会社 Marine trash collection device
JP2022057513A (en) * 2020-09-30 2022-04-11 連洪 李 Hydrogen gas-containing liquid generator
JP7093819B2 (en) 2020-09-30 2022-06-30 連洪 李 Hydrogen gas-containing liquid generator

Similar Documents

Publication Publication Date Title
JP2015174055A (en) Gas dissolution device
JP5712292B2 (en) Bubble generation mechanism and shower head with bubble generation mechanism
JP4749961B2 (en) Bubble generator
JP7125991B2 (en) microbubble generator
JP2015174056A (en) Carbon dioxide gas dissolution device
FI122973B (en) Injector for flotation cell, nozzle part in injector for flotation cell, flotation cell and method for mixing fiber suspension strip and air with each other in injector for flotation cell
JP2007069071A (en) Minute bubble generator and minute bubble circulation system incorporated with it
CN206986982U (en) Hygienic insertion unit
EP3492162B1 (en) Microbubble generation device
JP2009136864A (en) Microbubble generator
JP5573879B2 (en) Microbubble generator
JP2008086868A (en) Microbubble generator
JP2021510116A (en) Cavitation member of micro bubble generator, micro bubble generator and washing equipment
KR20150116511A (en) Water treating apparatus using dissolved air floatation including flocculation basin or not
US20210260539A1 (en) Micro-bubble acquisition apparatus
JP6113833B2 (en) Seawater desalination system and energy recovery device
US8967597B2 (en) Device for mixing gas into a flowing liquid
JP6580048B2 (en) Seawater desalination system and energy recovery device
CN109642420A (en) Hygienic insertion unit
WO2018151171A1 (en) Bubble generating device for sewage purification
JP2014121689A (en) Carbon dioxide microbubble generating unit
JP2011240268A (en) Mechanism for generating microbubbles
KR101286480B1 (en) Apparatus for dissolving a gases into liquids for generating micro bubble
JP2018130653A5 (en)
TW201908005A (en) Microbubble generator and microbubble water generator having the microbubble generator to generate a large number of microbubbles with a small diameter and simple structure