JP2018075334A - Washing water supply device for dental unit and liquid treatment nozzle used therefor - Google Patents

Washing water supply device for dental unit and liquid treatment nozzle used therefor Download PDF

Info

Publication number
JP2018075334A
JP2018075334A JP2016229507A JP2016229507A JP2018075334A JP 2018075334 A JP2018075334 A JP 2018075334A JP 2016229507 A JP2016229507 A JP 2016229507A JP 2016229507 A JP2016229507 A JP 2016229507A JP 2018075334 A JP2018075334 A JP 2018075334A
Authority
JP
Japan
Prior art keywords
liquid
water supply
cleaning water
nozzle
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016229507A
Other languages
Japanese (ja)
Other versions
JP6770276B2 (en
Inventor
寛幸 川合
Hiroyuki Kawai
寛幸 川合
啓雄 加藤
Haruo Kato
啓雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Environmental Tech Council
New Environmental Technology Council
Waseda Business Consulting Co Ltd
Original Assignee
New Environmental Tech Council
New Environmental Technology Council
Waseda Business Consulting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Environmental Tech Council, New Environmental Technology Council, Waseda Business Consulting Co Ltd filed Critical New Environmental Tech Council
Priority to JP2016229507A priority Critical patent/JP6770276B2/en
Publication of JP2018075334A publication Critical patent/JP2018075334A/en
Application granted granted Critical
Publication of JP6770276B2 publication Critical patent/JP6770276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a washing water supply device for a dental unit in which, an extremely simple and small sized liquid processing nozzle is a principal part in a mechanism, problems of an integration space in the surrounding of the dental unit and construction can be solved, and washing in a pipeline and removal effects of a biofilm and dental plaque in an oral cavity can be achieved at high level, even at a low flow rate level of oral cavity washing.SOLUTION: A washing water supply device for a dental unit comprises a liquid processing nozzle 1 which is detachably attached between a water feeding branch part where a washing water supply tube and a supply pipeline of washing water for mouth wash are branched, and a stop valve, the liquid processing nozzle 1 comprising: a nozzle body 2 on which a liquid channel 3 having a liquid inlet 4 on one end and a liquid outlet 5 on the other end is formed; and a processing core part CORE having a collision part 8 on which mountain parts in a peripheral direction and troughs where are high flow speed parts are alternately provided and respectively protrude from an inner surface of the liquid channel 3.SELECTED DRAWING: Figure 2

Description

この発明は歯科ユニット用洗浄水供給装置及びそれに用いる液体処理ノズルに関するものである。  The present invention relates to a cleaning water supply device for a dental unit and a liquid treatment nozzle used therefor.

歯科ユニットの洗浄水供給装置として、近年、マイクロバブルあるいはナノバブルなどの微細気泡を活用した装置が提案されている(特許文献1〜5)。具体的には、口腔内の洗浄やうがいに使用する洗浄水に微細気泡を導入することで、洗浄水の洗浄性能が向上し、供給配管内の清浄化を促進できる、というものである。また、口腔内のバイオフィルムやプラーク、あるいはそれらを媒介して繁殖する細菌類の洗い流しを促進する効果についても期待されている。  In recent years, apparatuses utilizing fine bubbles such as microbubbles or nanobubbles have been proposed as cleaning water supply apparatuses for dental units (Patent Documents 1 to 5). Specifically, by introducing fine bubbles into the cleaning water used for cleaning the mouth and gargle, the cleaning performance of the cleaning water is improved, and the cleaning of the supply pipe can be promoted. In addition, it is expected to have an effect of facilitating washing of biofilms and plaques in the oral cavity or bacteria that propagate through them.

WO2008/072371号公報  WO2008 / 072371 特開2006−142046号公報  JP 2006-142046 A 特開2008−295887号公報  JP 2008-295887 A 特開2011−088842号公報  JP 2011-088842 A 特開2014−140533号公報  JP 2014-140533 A

しかし、上記の文献に開示された装置で採用されている微細気泡の発生機構は、ベンチュリ管などの気液混合ノズルに外気を吸引し、混合してマイクロバブル化するものや、空気等の加圧溶解を利用するものであり、空気をミキシングするためポンプ等の圧送機構や加圧機構が必要であり、また、処理済みの洗浄水を貯留するタンクも追加する必要がある。結果、特許文献3の図1のごとく、大掛かりな微細気泡発生装置を歯科ユニット本体の外に設置せざるを得なくなり、装置コストが高騰し設置の手間がかかること、歯科医院のフロアでの設置スペース確保が難しいなどの理由により、ほとんど採用が進んでいないのが現状である。  However, the fine bubble generation mechanism employed in the apparatus disclosed in the above-mentioned document is a mechanism that sucks outside air into a gas-liquid mixing nozzle such as a venturi tube and mixes it into microbubbles, or adds air or the like. It uses pressure dissolution and requires a pumping mechanism such as a pump and a pressurizing mechanism for mixing air, and it is also necessary to add a tank for storing treated wash water. As a result, as shown in FIG. 1 of Patent Document 3, a large-scale microbubble generator must be installed outside the dental unit main body, the apparatus cost increases, and installation takes time. Installation on the dental clinic floor At present, the adoption is hardly progressing because it is difficult to secure space.

また、口腔洗浄用のノズルから噴射される洗浄水の流量が毎分数十ccから高々200cc程度までと非常に小さく、通常の方法では気泡発生効率が十分に確保できず、微細気泡特有の洗浄性向上効果が十分に得られないケースがほとんどである。  In addition, the flow rate of the cleaning water sprayed from the nozzle for cleaning the mouth is very small, from several tens of cc to about 200 cc per minute, and the normal method cannot ensure sufficient bubble generation efficiency. In most cases, the effect of improving the performance cannot be obtained sufficiently.

本発明の課題は、極めて単純かつ小型の液体処理ノズルを機構上の要部とし、歯科ユニット周辺の組み込みスペースや施工上の問題も容易に解決できるとともに、口腔内洗浄の低流量レベルでも配管内の清浄化や、口腔内のバイオフィルムないしプラークの除去効果が高レベルにて達成できる歯科ユニット用洗浄水供給装置と、それに用いる液体処理ノズルとを提供することにある。  The problem of the present invention is that a very simple and small liquid processing nozzle is the main part of the mechanism, and it is possible to easily solve the installation space around the dental unit and construction problems, and even in the low flow level of oral cleaning, It is an object of the present invention to provide a cleaning water supply device for a dental unit that can achieve a high level of cleaning effect and removal effect of biofilm or plaque in the oral cavity, and a liquid treatment nozzle used therefor.

上記の課題を解決するために、本発明の歯科ユニット用洗浄水供給装置は、
複数の口腔内洗浄ノズルにつながる洗浄水供給チューブと、うがい用洗浄水の供給配管とに洗浄水を分配供給する歯科ユニット用洗浄水供給装置であって、
うがい用洗浄水の吐出部を備えたユニット本体の筐体、又は該ユニット本体に隣接配置された歯科治療椅子に付随する配管ボックス筐体のいずれかを対象筐体として、該対象筐体に全部または一部が内蔵される主洗浄水配管と、
主洗浄水配管への洗浄水の供給を開閉する止水栓と、
主洗浄水配管の対象筐体の内蔵区間上にて、洗浄水供給チューブ及びうがい用洗浄水の供給配管が各々分岐する給水分岐部と止水栓との間に着脱可能に設けられる液体処理ノズルであって、一端に液体入口を、他端に液体出口を有する液体流路が形成されたノズル本体と、液体流路の内面から各々突出するとともに外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部を有する処理コア部とを備えた液体処理ノズルと、を備えたことを特徴とする。
In order to solve the above problems, the cleaning water supply device for a dental unit of the present invention is:
A cleaning water supply device for a dental unit that distributes cleaning water to a cleaning water supply tube connected to a plurality of intraoral cleaning nozzles and a supply pipe for gargle cleaning water,
Either the case of the unit main body provided with the washing water discharge unit for gargle or the piping box case attached to the dental treatment chair arranged adjacent to the unit main body is used as the target case, and all of the target case is provided. Or a main wash water pipe with some built-in,
A stop cock that opens and closes the supply of cleaning water to the main cleaning water pipe,
A liquid processing nozzle that is detachably provided between a water supply branching portion and a water stopcock on which a cleaning water supply tube and a cleaning water supply piping for gargle diverge, respectively, on a built-in section of a target casing of a main cleaning water pipe A nozzle body having a liquid flow path having a liquid inlet at one end and a liquid outlet at the other end, and a protrusion and a high flow velocity portion in the circumferential direction projecting from the inner surface of the liquid flow path And a liquid processing nozzle including a processing core portion having a collision portion formed so that a plurality of trough portions are alternately connected to each other.

また、本発明の液体処理ノズルは、本発明の歯科ユニット用洗浄水供給装置に組み込んで使用され、一端に液体入口を、他端に液体出口を有する液体流路が形成されるとともに、主洗浄水配管側の継手部に着脱可能に係合するノズル側係合部が液体入口側及び液体出口側に各々設けられたノズル本体と、液体流路の内面から各々突出するとともに外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部を有する処理コア部とを備えた液体処理ノズルと、を備えたことを特徴とする。  In addition, the liquid treatment nozzle of the present invention is used by being incorporated in the cleaning water supply apparatus for a dental unit of the present invention, and a liquid flow path having a liquid inlet at one end and a liquid outlet at the other end is formed. Nozzle side engagement parts that are detachably engaged with the joints on the water pipe side are respectively provided on the liquid inlet side and the liquid outlet side, respectively, and protrude from the inner surface of the liquid flow path and circumferentially on the outer peripheral surface And a liquid processing nozzle including a processing core portion having a collision portion formed so that a plurality of trough portions and trough portions serving as high flow velocity portions are alternately connected.

なお、主洗浄水配管に液体処理ノズルは1個ないし並列形態に複数個取り付けることができるが、並列形態に複数個取り付ける場合、全流通断面積はそれら複数の液体処理ノズルについて合計した値を意味する。複数の液体処理ノズルを直列に接続することも可能であるが、この場合の全流通断面積は、それら直列の液体処理ノズルのうち最小のものの値として定義する。  In addition, although one or a plurality of liquid treatment nozzles can be attached to the main washing water pipe in a parallel form, when a plurality of liquid treatment nozzles are attached in a parallel form, the total flow cross-sectional area means a total value of the plurality of liquid treatment nozzles. To do. It is possible to connect a plurality of liquid processing nozzles in series. In this case, the total flow cross-sectional area is defined as the value of the smallest of the series of liquid processing nozzles.

歯科ユニットの場合、上水道ライン等を水供給源として、毎分300cc以上2リットル以下程度の比較的大流量のうがい洗浄水と、毎分30cc程度から300cc以下程度の小流量の口腔内処置時洗浄水との、流量の大きく異なる2つの洗浄水供給系統の両立が求められる。このうち、うがい用洗浄水の供給配管については比較的流量もあり、塩素やオゾンで消毒がなされた水道水が十分流動することで、配管内での細菌類の繁殖やバイオフィルム形成による汚染は比較的起こりにくい。しかし、口腔内洗浄ノズルにつながる洗浄水供給チューブに関しては洗浄水の流量は極端に小さく、汚染が進みやすい問題を抱えている。  In the case of a dental unit, using a water supply line as a water supply source, gargle cleaning water with a relatively high flow rate of about 300 cc to 2 liters per minute and cleaning at the time of oral treatment with a small flow rate of about 30 cc to 300 cc per minute Two washing water supply systems with greatly different flow rates are required. Of these, the supply pipe for cleaning water for gargles has a relatively high flow rate, and the tap water sterilized with chlorine and ozone flows sufficiently to prevent contamination by bacterial growth and biofilm formation in the pipe. Relatively difficult to occur. However, the cleaning water supply tube connected to the intraoral cleaning nozzle has a problem that the flow rate of cleaning water is extremely small and contamination easily proceeds.

特に、週末や、年末年始、お盆、ゴールデンウィークといった、歯科医院が長期間休業となる期間は、チューブ内に滞留している少量の洗浄水の消毒成分が抜け飛びやすく、バイオフィルムの形成が進行しやすい。例えば、休み明けに業務が再開されても、チューブ内を流通する洗浄水の流量が小さいので、水の流通のみで一旦形成された粘度の大きいバイオフィルムを完全に除去することは難しいと言われている。もとよりバイオフィルムは、細菌類が自らの繁殖を保護・活発化するための活動生成物に他ならず、ここに潜む細菌類は、消毒成分を含む水が到来してもバイオフィルムが妨げとなって細菌類への作用が遅れ、除菌が思うように進まなくなる。結果、営業期間中の通水流をかいくぐって生き延びた細菌類は次に到来する休業期間に活動を活発化し、バイオフィルムを再構築しつつ繁殖を続けてしまうのである。  In particular, during the period when the dental clinic is closed for a long period of time, such as weekends, New Year's holidays, Bon Festival, and Golden Week, the disinfecting components of a small amount of washing water staying in the tube easily escape and biofilm formation proceeds. Cheap. For example, even if work is resumed at the end of the day, it is said that it is difficult to completely remove the high-viscosity biofilm once formed only by water flow because the flow rate of the wash water flowing through the tube is small. ing. Naturally, biofilm is nothing but an activity product for bacteria to protect and activate their own breeding. Bacteria lurking here are hindered by the arrival of water containing disinfecting components. As a result, the action on bacteria is delayed and sterilization does not proceed as expected. As a result, bacteria that survived through the water flow during the business period become active during the next holiday, and continue to breed while rebuilding the biofilm.

しかし、本発明が採用する液体処理ノズルは、口腔内洗浄ノズル使用時の小流量流通時においても、微細気泡の効率的に発生させることができ、水の浸透性が大幅に向上する結果、チューブ内面のバイオフィルム剥離効果及び形成抑制効果が顕著となり、口腔内洗浄水の清浄性維持に大きく貢献する。また、口腔内に発生する粘々も一種のバイオフィルムであるが、本発明の装置による洗浄水を歯科治療処置時に使用すれば、口腔内へのバイオフィルムないしプラーク等の除去を促進するとともに再付着の予防も図ることができ、治療効果を高めることができる。  However, the liquid treatment nozzle adopted by the present invention can efficiently generate fine bubbles even when a small flow rate is used when using an intraoral washing nozzle, and the water permeability is greatly improved. The biofilm peeling effect and the formation suppressing effect on the inner surface become prominent and greatly contribute to maintaining the cleanliness of the oral rinse water. Also, the stickiness that occurs in the oral cavity is a kind of biofilm, but if the washing water by the device of the present invention is used during dental treatment, it promotes the removal of biofilm or plaque etc. into the oral cavity and reattaches Can be prevented and the therapeutic effect can be enhanced.

すなわち、本発明においては、溶存空気を減圧析出(いわゆるキャビテーション)させ、洗浄性向上に寄与する改質を水自体に対して行う液体処理ノズルを採用する。具体的には、外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部を、ノズル本体の液体流路の内面から突出させて処理コア部となし、これに洗浄水を衝突させる構造を採用する。処理コア部は衝突部の占有により流路断面積が縮小し、洗浄水はここを増速されつつ通過する。この時、衝突部に形成された周方向の谷部の底で水流束がさらに絞られて高速化されるのでキャビテーションは極めて起こりやすく、谷部が断面内に複数存在することから気泡発生効率はベンチュリ管よりもはるかに高い。また、絞られた流束が微小な谷部を通過する時間は極めて短く、析出した気泡の成長が抑制されることから気泡微細化効果は著しくなり、洗浄性改善に大きく寄与する。  In other words, in the present invention, a liquid processing nozzle is used in which dissolved air is deposited under reduced pressure (so-called cavitation), and the water itself is subjected to reforming that contributes to improved cleaning properties. Specifically, a processing core is formed by projecting a collision portion formed so as to alternately connect a plurality of crests in the circumferential direction and valleys serving as high flow velocity portions on the outer peripheral surface from the inner surface of the liquid flow path of the nozzle body. A structure that makes cleaning water collide with this part is adopted. In the processing core part, the flow path cross-sectional area is reduced due to the occupation of the collision part, and the cleaning water passes through the processing core part while being accelerated. At this time, since the water flux is further reduced and speeded up at the bottom of the circumferential valley formed in the collision part, cavitation is extremely likely to occur, and since there are multiple valleys in the cross section, the bubble generation efficiency is Much higher than the Venturi tube. In addition, the time required for the squeezed flux to pass through the minute valley is extremely short, and the growth of the precipitated bubbles is suppressed, so that the bubble refining effect becomes remarkable and greatly contributes to the improvement of cleaning properties.

また、液体処理ノズルの主な構成要素は、流通路の一部をなすノズル本体及び衝突部のみを要部とする処理コア部のみであり、流通容量も歯科ユニットにおける洗浄水の通過を許容できる程度であればよいから、特に寸法等を規定するまでもなく全体の大きさが縮小できることは容易に理解される。その結果、微細気泡発生を利用した高性能の洗浄機構の歯科ユニットへの組み込みは従来ほとんど不可能と思われていたところ、上記液体処理ノズルであれば、ユニット本体の筐体や歯科治療椅子に付随する配管ボックス(いわゆるジャンクションボックス)の筐体など、空間的に極めて制約された主洗浄水配管の内蔵区間にも容易に組み込むことができる。そして、気液混合ポンプも不要であるから極めて安価に高性能な洗浄機能を享受することができる。  Moreover, the main components of the liquid processing nozzle are only the nozzle main body that forms part of the flow path and the processing core section that has only the collision section as its main part, and the flow capacity can also allow the cleaning water to pass through the dental unit. It is easy to understand that the overall size can be reduced without specially specifying dimensions and the like. As a result, it was thought that it was almost impossible to incorporate a high-performance cleaning mechanism using microbubble generation into a dental unit. It can be easily incorporated into a built-in section of the main washing water piping, which is extremely restricted in space, such as a case of an accompanying piping box (so-called junction box). In addition, since a gas-liquid mixing pump is not required, a high-performance cleaning function can be enjoyed at a very low cost.

他方、液体処理ノズルの主洗浄水配管上の設置位置については、本発明では止水栓から、洗浄水供給チューブ及びうがい用洗浄水の供給配管が各々分岐する給水分岐部に至る区間に設置することを必須の要件としている。この構成によると、例えば本発明の歯科ユニットの設置後において、何らかの理由により液体処理ノズルの交換や修理が必要となったとき、止水栓を閉鎖することにより主給水管からの給水が遮断されるので作業を容易に行うことができる利点がある。また、すでに設置済みの既存の歯科ユニットに液体処理ノズルを新たに組み込んで、本発明の歯科ユニット用洗浄水供給装置に転換する場合にも、この構成の有益性が発揮される。  On the other hand, with respect to the installation position of the liquid treatment nozzle on the main cleaning water pipe, in the present invention, it is installed in the section from the water stop cock to the water supply branching portion where the cleaning water supply tube and the gargle cleaning water supply pipe branch respectively. This is an essential requirement. According to this configuration, for example, after the installation of the dental unit of the present invention, when the liquid treatment nozzle needs to be replaced or repaired for some reason, the water supply from the main water supply pipe is shut off by closing the stop cock. Therefore, there is an advantage that the operation can be easily performed. The advantage of this configuration is also exhibited when a liquid treatment nozzle is newly incorporated in an existing dental unit that has already been installed and converted to the cleaning water supply device for a dental unit of the present invention.

例えば複数のユニットが設置された歯科医院の場合、転換対象となる既設歯科ユニットの止水栓を閉鎖することによりその歯科ユニットだけを切り離すことができ、他の歯科ユニットの利用に全く影響を与えることなく液体処理ノズルの組込み作業を実施することができる。また、各歯科ユニットへの液体処理ノズルの組み込みは断水を前提としない独立した個別作業の形で実施できるから、他の歯科ユニットの利用を継続しつつ、液体処理ノズルの組み込みないし更新工事を段階的に進めることができる。  For example, in the case of a dental clinic where multiple units are installed, it is possible to separate only the dental unit by closing the stopcock of the existing dental unit to be converted, which has a completely impact on the use of other dental units. The assembly process of the liquid treatment nozzle can be performed without any problems. In addition, the incorporation of the liquid treatment nozzle into each dental unit can be carried out in the form of an independent individual work that does not assume water interruption, so that the installation or renewal of the liquid treatment nozzle can be carried out while continuing to use other dental units. Can proceed.

本発明に使用する液体処理ノズルは、液体流路の中心軸線と直交する平面への投影において、処理コア部における液体流路の投影領域の外周縁内側の全面積をS1、衝突部の投影領域面積をS2として、処理コア部の全流通断面積Stを、
St=S1−S2 (単位:mm
として定義したとき、該全流通断面積の合計が2.2mm以上確保されてなり、液体入口及び液体出口の断面積が全流通断面積Stよりも大きく設定され、谷部の最底位置を表す谷点のうち、中心軸線の投影点を中心として液体流路の内周縁までの距離の70%に相当する半径にて描いた基準円の内側に位置するものの数をN70(個)、基準円の外側に位置するものの数をNc70(個)とし、谷深さ補正係数αを
h≧0.35mmのときα=1、
h<0.35mmのとき、α=−60h+41h−6 (式(1))
として定め、衝突部の投影外形線に現れる谷部の深さhが0.2mm以上に設定されるとともに、上記の投影にて全流通断面積の領域のうち基準円の内側に位置する部分の面積をS70(単位:mm)として、70%断面比率σ70を、
σ70=S70/St×100(%)
として定め、有効谷点数Neを
Ne=α・(0.38Nc70+(σ70/50)・N70) (式(2))
として定義したとき、Ne/Stで表される有効谷点密度が1.5個/mm以上確保されたものを使用することができる。
In the liquid processing nozzle used in the present invention, in the projection onto a plane orthogonal to the central axis of the liquid channel, the entire area inside the outer peripheral edge of the projection region of the liquid channel in the processing core is S1, and the projection region of the collision unit Assuming that the area is S2, the total flow sectional area St of the processing core part is
St = S1-S2 (unit: mm 2 )
When the total flow cross-sectional area is defined as 2.2 mm 2 or more, the cross-sectional area of the liquid inlet and the liquid outlet is set to be larger than the total flow cross-sectional area St, and the bottom position of the valley portion is defined. Of the valley points to be represented, N 70 (numbers) of those located inside the reference circle drawn at a radius corresponding to 70% of the distance from the center axis projection point to the inner peripheral edge of the liquid channel, When the number of objects located outside the reference circle is Nc 70 (pieces) and the valley depth correction coefficient α is h ≧ 0.35 mm, α = 1.
When h <0.35 mm, α = −60h 2 + 41h−6 (formula (1))
The depth h of the valley that appears in the projected outline of the collision part is set to 0.2 mm or more, and the portion of the total flow cross-sectional area in the above projection that is located inside the reference circle When the area is S 70 (unit: mm 2 ), the 70% cross-sectional ratio σ 70 is
σ 70 = S 70 / St × 100 (%)
As stated, the Ne = alpha · effective Tani number Ne (0.38Nc 70 + (σ 70 /50) · N 70) ( Formula (2))
When the effective valley point density represented by Ne / St is 1.5 or more / mm 2 or more can be used.

また、本発明は、複数の口腔内洗浄ノズルにつながる洗浄水供給チューブと、うがい用洗浄水の供給配管とに洗浄水を分配供給する歯科ユニット用洗浄水供給装置であって、
止水栓を有し、該止水栓よりも下流にて洗浄水供給チューブとうがい用洗浄水の供給配管に洗浄水を分配する主洗浄水配管と、
該主洗浄水配管上にて、洗浄水供給チューブ及びうがい用洗浄水の供給配管が各々分岐する給水分岐部と止水栓との間に着脱可能に設けられ、一端に液体入口を、他端に液体出口を有する液体流路が形成されたノズル本体と、液体流路の内面から各々突出するとともに外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部を有する処理コア部とを備え、液体流路の中心軸線と直交する平面への投影において、処理コア部における液体流路の投影領域の外周縁内側の全面積をS1、衝突部の投影領域面積をS2として、処理コア部の全流通断面積Stを、
St=S1−S2 (単位:mm
として定義したとき、液体入口及び液体出口の断面積が全流通断面積Stよりも大きく設定され、谷部の最底位置を表す谷点のうち、中心軸線の投影点を中心として液体流路の内周縁までの距離の70%に相当する半径にて描いた基準円の内側に位置するものの数をN70(個)、基準円の外側に位置するものの数をNc70(個)とし、谷深さ補正係数αを
h≧0.35mmのときα=1、
h<0.35mmのとき、α=−60h+41h−6
として定め、衝突部の投影外形線に現れる谷部の深さhが0.2mm以上に設定されるとともに、投影にて全流通断面積の領域のうち基準円の内側に位置する部分の面積をS70(単位:mm)として、70%断面比率σ70を、
σ70=S70/St×100(%)
として定め、有効谷点数Neを
Ne=α・(0.38Nc70+(σ70/50)・N70
として定義したとき、Ne/Stで表される有効谷点密度が1.5個/mm以上確保されてなる液体処理ノズルと、を備えた歯科ユニット用洗浄水供給装置も提供する。
Further, the present invention is a cleaning water supply device for a dental unit that distributes and supplies cleaning water to a cleaning water supply tube connected to a plurality of intraoral cleaning nozzles and a cleaning water supply pipe for gargle,
A main wash water pipe having a stop cock and distributing the wash water to the wash water supply tube and the washing water supply pipe for the gargle downstream from the stop cock;
On the main washing water pipe, a washing water supply tube and a washing water supply pipe for gargle are provided detachably between the water supply branching portion and the stop cock, each having a liquid inlet at one end and an other end. A nozzle body formed with a liquid channel having a liquid outlet at the same time, and a plurality of circumferential ridges and valleys that become high flow velocity portions are alternately connected to the outer circumferential surface of the nozzle body. A processing core portion having a formed collision portion, and in the projection onto a plane orthogonal to the central axis of the liquid flow path, the entire area inside the outer peripheral edge of the projection region of the liquid flow path in the processing core portion is S1, collision Assuming that the projected area of the part is S2, the total flow sectional area St of the processing core part is
St = S1-S2 (unit: mm 2 )
Is defined so that the cross-sectional area of the liquid inlet and the liquid outlet is set to be larger than the total flow cross-sectional area St, and among the trough points representing the bottom position of the trough, the liquid flow path is centered on the projection point of the central axis. The number of objects located inside the reference circle drawn with a radius corresponding to 70% of the distance to the inner periphery is N 70 (pieces), the number of those located outside the reference circle is Nc 70 (pieces), and the valley When the depth correction coefficient α is h ≧ 0.35 mm, α = 1.
When h <0.35 mm, α = −60h 2 + 41h−6
The depth h of the valley that appears in the projected outline of the collision part is set to 0.2 mm or more, and the area of the portion located inside the reference circle in the area of the total cross-sectional area in the projection is As S 70 (unit: mm 2 ), 70% cross-sectional ratio σ 70 is
σ 70 = S 70 / St × 100 (%)
As stated, the effective valley points Ne Ne = α · (0.38Nc 70 + (σ 70/50) · N 70)
A cleaning water supply device for a dental unit is also provided that includes a liquid processing nozzle in which an effective valley point density represented by Ne / St is 1.5 or more / mm 2 .

液体処理ノズルを洗浄水が通過する際に、気泡析出の効率が低下しないようにするためには、処理コア部における流路の単位断面積当たりの谷点の数密度(谷点密度)が極度に小さくならないよう、衝突部に形成する谷点を増加させることが必要である。本発明者はこの点に関しても検討した結果、処理コア部に配置する谷点は、流路内壁面との摩擦損失の影響やねじ谷の深さなどの影響を受ける結果、単純に数を増加させても気泡析出効率を向上できることにはつながらないことが判明した。ノズル本体において液体の流れは、衝突部に衝突してその下流に迂回する際に、谷部内にて絞られることにより増速してキャビテーションを起こし、その減圧沸騰作用により気泡を生じつつ液体を激しく撹拌する。これに、衝突部を高速流が迂回する際に生ずる渦流が加わり、衝突部の周辺及び直下流域には非常に顕著な撹拌領域が形成されることとなる。気泡を析出する減圧域は衝突部周囲の谷底付近に限られており、高速の液体流はほとんど瞬時的に該領域を通過してしまうから、発生した気泡はそれほど成長せずに上記の撹拌領域に巻き込まれ、微細気泡が発生する。キャビテーションが発生するのは上記のごとく主として衝突部の谷部であり、この谷部を流れに対して一つでも数多く接触させることが、微細気泡の発生効率を高める上では重要である。したがって、処理コア部の断面内に配置するねじ谷の数を増大させることが、キャビテーションひいては微細気泡の発生効率向上に有効と思われる。しかし、問題はそれほど簡単ではなく、谷部の数を機械的に増やしても微細気泡の発生効率改善には単純にはつながらない。本発明者らは、その要因を次のような項目に分けて検討した。  The number density of valley points (valley point density) per unit cross-sectional area of the flow path in the treatment core is extremely low so that the efficiency of bubble deposition does not decrease when washing water passes through the liquid treatment nozzle. Therefore, it is necessary to increase the valley points formed in the collision portion so as not to decrease. As a result of studying this point, the present inventor simply increased the number of valley points arranged in the processing core part as a result of the influence of friction loss with the inner wall surface of the flow path and the depth of the screw valley. However, it has been found that the bubble deposition efficiency cannot be improved even if it is applied. When the liquid flow in the nozzle body collides with the collision part and detours downstream, it is increased in speed by squeezing in the valley part to cause cavitation, and the liquid is vigorously generated while generating bubbles by the reduced pressure boiling action. Stir. In addition to this, a vortex generated when the high-speed flow bypasses the collision part is added, and a very remarkable stirring region is formed around the collision part and in the immediately downstream region. The decompression area where the bubbles are deposited is limited to the vicinity of the valley bottom around the collision part, and the high-speed liquid flow passes through the area almost instantaneously. Involved in the microbubbles are generated. As described above, cavitation occurs mainly in the valleys of the collision part, and it is important to increase the generation efficiency of microbubbles by bringing at least one of these valleys into contact with the flow. Therefore, increasing the number of screw valleys arranged in the cross section of the processing core portion seems to be effective for improving the generation efficiency of cavitation and, in turn, fine bubbles. However, the problem is not so simple, and even if the number of valleys is increased mechanically, it does not simply lead to improvement in the generation efficiency of fine bubbles. The present inventors examined the factors by dividing them into the following items.

(1)衝突部の谷部の形成間隔を一定にすれば、処理コア部における液体流路の断面を増加させ、衝突部の突出高さを増加させることで、断面内に存在する谷点数は増える。しかし、この場合は流路の断面積も増え、同じ液体供給圧力であれば流量も増えてしまうから、単位流量あたりに割り振られる谷点数は必ずしも増加するとは限らないし、場合によっては単位流量あたりの谷点数が却って減じてしまい、キャビテーション効率が低下することも実際にあり得る。従って、キャビテーション効率ひいては微細気泡発生効率の大小を支配するのは、処理コア部に形成する谷点の絶対数ではなく、これを流路断面積で規格化した谷点密度のほうである。これは、洗浄水が通過する際に単位体積の水が何個の谷点と接するか、ということとも密接に関係している。(1) If the formation interval of the valley portions of the collision portion is made constant, the number of valley points existing in the cross section is increased by increasing the cross section of the liquid flow path in the processing core portion and increasing the protruding height of the collision portion. Increase. However, in this case, since the cross-sectional area of the flow path also increases and the flow rate increases with the same liquid supply pressure, the number of valleys allocated per unit flow rate does not necessarily increase, and in some cases, the flow rate per unit flow rate It is also possible that the number of valleys will decrease and the cavitation efficiency will actually decrease. Therefore, it is not the absolute number of valley points formed in the processing core part, but the valley point density normalized by the channel cross-sectional area that dominates the cavitation efficiency and hence the fine bubble generation efficiency. This is also closely related to how many trough points the unit volume of water contacts when the washing water passes.

(2)管路内の流速は、管軸断面中心付近で最大となり管内壁面位置で最小となる形で、半径方向に放物線状の分布を示す。流路断面内の谷部はどの位置にあるものも等価に微細気泡発生に寄与するのではなく、断面中心に近い谷部ほどキャビテーションに必要な流速を確保しやすく、微細気泡発生にもより大きく貢献する。したがって、谷点数を評価する場合は、断面中心からの距離により異なる重みを考慮する必要がある。(2) The flow velocity in the pipe line has a parabolic distribution in the radial direction in a form that becomes maximum near the center of the cross section of the pipe axis and becomes minimum at the position of the inner wall surface of the pipe. Whatever the position of the valley in the cross section of the flow path does not contribute to the generation of fine bubbles equivalently, but the valley close to the center of the cross section is easier to secure the flow velocity necessary for cavitation and is larger for the generation of fine bubbles. To contribute. Therefore, when evaluating the number of valley points, it is necessary to consider different weights depending on the distance from the center of the cross section.

(3)断面中心付近に位置する谷点が実際にキャビテーション効果に有効に寄与するためには、当該断面中心付近で期待通りの流速が得られている場合に限る。一見、これは自明な事項のようにも思えるが、断面中心付近に谷部を配置するということは、その谷部を形成する衝突部の少なからぬ部分が断面中心領域を占有するということであり、断面中心付近の谷点数を増やせば増やすほど流れが妨げられて流速が確保できなくなるジレンマが生ずる。断面中心領域で障害物に妨げられた流れは、断面外縁領域に回り込み、もともと流量が不足しがちな該領域での流速向上に貢献する可能性はもちろんあるが、断面中心領域を妨げられることなく通過できた場合と比較して、大幅な流れ損失は避けがたくなる。従って、断面中心付近に配置された谷点数は、断面中心付近の流通面積により重み付けを付与して評価する必要がある。(3) The valley point located near the cross-sectional center actually contributes effectively to the cavitation effect only when the expected flow velocity is obtained near the cross-sectional center. At first glance, this seems to be a trivial matter, but placing the valley near the center of the cross section means that a considerable part of the collision part that forms the valley occupies the central area of the cross section. As the number of valleys near the center of the cross section increases, the dilemma that the flow is hindered and the flow velocity cannot be secured increases. The flow obstructed by the obstacle in the central area of the cross section goes around the outer edge area of the cross section, and there is a possibility of contributing to the improvement of the flow velocity in the area where the flow rate tends to be insufficient, but the central area of the cross section is not obstructed. Compared to being able to pass through, significant flow loss is unavoidable. Therefore, the number of valleys arranged near the center of the cross section needs to be evaluated by giving a weight to the distribution area near the center of the cross section.

(4)衝突部に形成する谷部の形成間隔を狭くすれば、同じ流路断面積であっても谷点数を増やすことができる。しかし、谷部の形成間隔とともに谷部の深さが減少すると、谷底での流れ絞り効果が減じ、キャビテーション効率の低下につながる懸念がある。したがって、谷点数をより多く確保するために谷部深さの小さい衝突部を採用する場合は、谷深さに応じた重みづけにより谷点数を評価する必要がある。(4) If the formation interval of the valleys formed in the collision part is narrowed, the number of valleys can be increased even with the same flow path cross-sectional area. However, when the depth of the valley portion decreases with the formation interval of the valley portion, there is a concern that the flow restricting effect at the valley bottom is reduced, leading to a reduction in cavitation efficiency. Therefore, when adopting a collision portion having a small valley depth in order to secure a larger number of valley points, it is necessary to evaluate the number of valley points by weighting according to the valley depth.

本発明者らは、衝突部の寸法と谷部の形成深さ、衝突部の個数と配置形態、さらに衝突部を配置する処理コア部での流路断面寸法を種々に設定した多数の液体処理ノズルを製作し、微細気泡の平均径や濃度、洗浄能力などを詳細に検討した。その結果、上記(1)で述べた処理コア部における衝突部の谷点密度を、(2)〜(4)の3つの要因を反映した形で的確に重みづけする手法に到達し、そのように重みづけした谷点密度(有効谷点密度)において、洗浄能力向上がより顕著化する数値範囲が存在することを見出した。  The present inventors have made a number of liquid treatments in which the size of the collision part and the formation depth of the valley part, the number and arrangement of the collision parts, and the flow path cross-sectional dimensions in the processing core part where the collision parts are arranged are variously set. A nozzle was manufactured, and the average diameter and concentration of fine bubbles, and cleaning ability were examined in detail. As a result, a method for accurately weighting the valley density of the collision portion in the processing core portion described in (1) above in a form that reflects the three factors (2) to (4) is reached. It has been found that there is a numerical range in which the improvement of the cleaning ability becomes more remarkable in the valley density weighted to (effective valley density).

以下、順に説明する。まず前提として、液体入口及び液体出口の断面積を処理コア部の全流通断面積Stよりも大きく設定する。これは、液体入口及び液体出口の断面積がStよりも小さくなると、液体入口及び液体出口での流量損失が大きくなりすぎて、処理コア部にて十分なキャビテーションを発生させるための流速が確保できなくなるからである。液体入口及び液体出口の断面積は、処理コア部における液体流路の投影領域の外周縁内側の全面積S1よりも大きく設定しておくことが、より望ましい。また、液体処理ノズルに洗浄水を流通させる場合の動水圧としては、0.05MPaから0.2MPa程度までを想定している。  Hereinafter, it demonstrates in order. First, as a premise, the cross-sectional areas of the liquid inlet and the liquid outlet are set larger than the total flow cross-sectional area St of the processing core part. This is because if the cross-sectional areas of the liquid inlet and the liquid outlet are smaller than St, the flow rate loss at the liquid inlet and the liquid outlet becomes too large, and a flow velocity for generating sufficient cavitation at the processing core can be secured. Because it disappears. More preferably, the cross-sectional areas of the liquid inlet and the liquid outlet are set to be larger than the entire area S1 inside the outer peripheral edge of the projection region of the liquid channel in the processing core. Further, the dynamic water pressure in the case where the cleaning water is circulated through the liquid processing nozzle is assumed to be about 0.05 MPa to about 0.2 MPa.

要因(2)については、中心軸線の投影点を中心として液体流路の内周縁までの距離の70%に相当する半径にて基準円を設定する。障害物のない管路にて上記の水圧範囲では、基準円外側の平均流速と基準円内側の流速比はおおむね0.38:1となることから、本発明者が検討した結果、基準円外側の谷点数Nc70の寄与を、基準円の内側の谷点数N70の寄与の0.38倍程度に小さくなるよう重みづけするのが適当であると判断した。As for the factor (2), a reference circle is set with a radius corresponding to 70% of the distance from the center axis projection point to the inner peripheral edge of the liquid channel. In the above-described water pressure range in a pipeline without an obstacle, the ratio of the average flow velocity outside the reference circle to the flow velocity inside the reference circle is approximately 0.38: 1. It has been determined that it is appropriate to weight the contribution of the number of valley points Nc 70 of the base circle so that the contribution is about 0.38 times the contribution of the number of valley points N 70 inside the reference circle.

要因(3)については、70%断面比率σ70=S70/St×100(%)の値は、もし衝突部が存在しなければ50%となるから、衝突部を配置した場合も、この70%断面比率の値が50%に近づくほど基準円内側の谷点はより高流速の流れを受けることとなる。そこで、基準円内側の谷点数N70に対しては、σ70/50の値により重みづけするのが適当であると考えた。For factor (3), the value of 70% cross-sectional ratio σ 70 = S 70 / St × 100 (%) is 50% if there is no collision part. As the value of the 70% cross-section ratio approaches 50%, the valley point inside the reference circle receives a higher flow velocity. Therefore, for the reference circle inside the valley points N 70, considered that it is appropriate to weighted by the value of sigma 70/50.

要因(4)については、谷部の深さの影響を種々に検討した結果、衝突部の投影外形線に現れる谷部の深さhが0.2mm未満となる場合には、微細気泡の発生効率が低下することがわかった。そして、谷部の深さhの値が0.2mm以上に増大すると、hの増大とともに洗浄力改善への貢献が次第に顕著となることから、谷深さhの微細気泡発生への影響を、h=0.25mm、0.3mm、0.35mmの各場合について0.5:0.9:1.0の比率にて谷点数に対し重み付けしたときに、ノズル通過後の水の浸透性や洗浄性改善(ひいては、微細気泡発生効率)にかかる結果を良く説明できることが判明した。また、谷深さhが0.35mm以上では、該hの影響は頭打ちとなることもわかった。そこで、上記のごとく、重み付けされた基準円内側の谷点数N70と基準円外側の谷点数Nc70の合計に対する重み付けとして、谷深さ補正係数αを前記(1)式により定める。(1)の2番目の式にかかるhの二次式は、hを0.25mm、0.3mmないし0.35mmとした場合のαの値として、上記のごとく、それぞれ0.5、0.9ないし1.0が適当であることの経験則を二次式により近似したものであり、0.2〜0.35mmという比較的狭い数値範囲内にて、hが上記以外の値をとった場合のαの適切な値を合理的に算出することができる。As for the factor (4), when the depth h of the valley appearing in the projected outline of the collision portion is less than 0.2 mm as a result of various investigations on the influence of the depth of the valley, fine bubbles are generated. It turns out that efficiency falls. And if the value of the depth h of the valley portion is increased to 0.2 mm or more, the contribution to the improvement of the cleaning power gradually increases with the increase of h. For each case of h = 0.25 mm, 0.3 mm, and 0.35 mm, when the number of valleys is weighted at a ratio of 0.5: 0.9: 1.0, the water permeability after passing through the nozzle It has been found that the results of improvement in detergency (and hence fine bubble generation efficiency) can be well explained. It was also found that when the valley depth h is 0.35 mm or more, the effect of h reaches a peak. Therefore, as described above, the valley depth correction coefficient α is determined by the above equation (1) as a weight for the sum of the weighted valley number N 70 inside the reference circle and the valley number Nc 70 outside the reference circle. As described above, the quadratic expression of h according to the second expression of (1) is 0.5, 0.00 as the values of α when h is 0.25 mm, 0.3 mm to 0.35 mm, respectively. An empirical rule that 9 to 1.0 is appropriate is approximated by a quadratic equation, and h takes a value other than the above within a relatively narrow numerical range of 0.2 to 0.35 mm. In this case, an appropriate value of α can be reasonably calculated.

こうして、上記3つの要因ごとにそれぞれ適正化された係数により重み付けされた谷点数Neは、前述の(2)式のごとくとなる。そして、この有効谷点数Neを前述の処理コア部の全流通断面積Stで規格化した有効谷点密度Ne/Stは、液体処理ノズルの微細気泡発生能力を客観的に数値化する指標となる。そして、該値が1.5個/mm以上確保されている場合に、歯科ユニットの洗浄水処理に適用した場合に、洗浄水供給チューブへのバイオフィルム等の剥離や付着抑制に関する効果が、さらに顕著となることを見出した。有効谷点密度は、望ましくは2.0個/mm以上、さらに望ましくは2.5個/mm以上確保されているのがよい。液体流路の軸断面形状はたとえば円形にすることが望ましいが、過度の損失を生じない限り、楕円や正多角形状(正方形、正六角形、正八角形等)の軸断面を有するものとして形成することも可能である。Thus, the number of valleys Ne weighted by the coefficients optimized for each of the three factors is as shown in the above-described equation (2). The effective valley point density Ne / St obtained by standardizing the effective valley point number Ne with the total flow cross-sectional area St of the processing core portion is an index for objectively quantifying the fine bubble generation capability of the liquid processing nozzle. . And, when the value is secured 1.5 pieces / mm 2 or more, when applied to the cleaning water treatment of the dental unit, the effect on the peeling and adhesion suppression of the biofilm etc. to the cleaning water supply tube, It was found to be even more prominent. The effective valley point density is desirably 2.0 pieces / mm 2 or more, more desirably 2.5 pieces / mm 2 or more. The axial cross-sectional shape of the liquid channel is preferably circular, for example, but it should be formed as having an elliptical or regular polygonal (square, regular hexagon, regular octagon, etc.) axial cross section unless excessive loss occurs. Is also possible.

衝突部に形成する複数巻の山部は、らせん状に一体形成することができる。このようにすると、山部の形成が容易になるほか、流れに対し山部が傾斜することで、山部の稜線部を横切る流れ成分が増加し、流れ剥離に伴う乱流発生効果が著しくなるので、気泡のさらなる微細化を図ることができる。この場合、衝突部は、脚部末端側が流路内に突出するねじ部材にて形成しておくと、ねじ山を山部として利用でき、製造が容易である。  A plurality of ridges formed in the collision portion can be integrally formed in a spiral shape. In this way, the formation of the peak is facilitated, and the peak is inclined with respect to the flow, so that the flow component crossing the ridge line of the peak increases, and the turbulent flow generation effect accompanying flow separation becomes significant. Therefore, the bubbles can be further miniaturized. In this case, if the collision portion is formed by a screw member whose leg end side protrudes into the flow path, the screw thread can be used as a mountain portion, and manufacturing is easy.

処理コア部における有効谷点密度の上限に制限はないが、前述のごとくキャビテーション効率確保の観点から谷部深さを0.20mm以上確保する必要があることから、無制限に大きくすることは現実的には難しい(例えば、3.0個/mm程度が限界であると思われる)。また、谷部の深さに関しては、前述のごとく0.35mm以上で流れの絞り効果は飽和し、谷深さ補正係数αは一律に1.0に設定されるから、谷点密度を大きくする観点においては、谷部の深さの上限は0.50mm程度にとどめるのが好適である。すなわち、衝突部の谷部の深さは0.20mm以上0.50mm以下に設定するのがよく、より望ましくは0.25mm以上0.35mm以下に設定するのがよい。Although there is no limit to the upper limit of the effective valley point density in the processing core part, as described above, it is necessary to secure a valley depth of 0.20 mm or more from the viewpoint of ensuring cavitation efficiency, so it is realistic to increase it indefinitely. Is difficult (for example, the limit of about 3.0 pieces / mm 2 seems to be the limit). As for the depth of the valley portion, the flow throttling effect is saturated at 0.35 mm or more as described above, and the valley depth correction coefficient α is uniformly set to 1.0, so that the valley point density is increased. From the viewpoint, it is preferable that the upper limit of the depth of the valley is limited to about 0.50 mm. That is, the depth of the valley portion of the collision portion is preferably set to 0.20 mm or more and 0.50 mm or less, more preferably 0.25 mm or more and 0.35 mm or less.

液体処理ノズルの処理コア部における全流通断面積の合計を2.2mm以上確保することで、歯科用ユニットに適用した場合に必要な水量を通常の水圧で確保することができる。この断面積設定は、例えば処理コア部に付加される動水圧レベルが0.07MPa程度のとき、目安として1L(リットル)/分以上の流量が確保できる程度のものである。この場合、処理コア部における液体流路の断面形状を円形とし、全流通断面積の合計を2.2mm以上確保する前提にて、有効谷点密度Neを1.5個/mm以上確保するためには、その内径Dを2.0mm以上4.5mm以下(望ましくは2.5mm以上3.5mm以下)とするのがよく、全流通断面積Stはこのとき、2.5mm以上10mm以下(望ましくは3.0mm以上8mm以下)の範囲で確保できる。By securing the total of the total flow cross-sectional areas in the processing core portion of the liquid processing nozzle of 2.2 mm 2 or more, the amount of water required when applied to a dental unit can be ensured at normal water pressure. For example, when the dynamic water pressure level applied to the processing core portion is about 0.07 MPa, the cross-sectional area setting is such that a flow rate of 1 L (liter) / minute or more can be secured as a guide. In this case, assuming that the cross-sectional shape of the liquid flow path in the processing core portion is circular, and the total total cross-sectional area is 2.2 mm 2 or more, the effective valley point density Ne is 1.5 or more / mm 2. In order to achieve this, the inner diameter D should be 2.0 mm or more and 4.5 mm or less (preferably 2.5 mm or more and 3.5 mm or less), and the total flow sectional area St is 2.5 mm 2 or more and 10 mm at this time. 2 or less (preferably 3.0 mm 2 or more and 8 mm 2 or less) can be secured.

衝突部をたとえばJIS並目ピッチのねじ部材で構成する場合、衝突部は外径Mを1.0mm(谷部の深さは0.25mm)以上2.0mm(谷部の深さは0.40mm)以下とするのがよく、より望ましくは1.0mm(谷部の深さは0.30mm)以上1.6mm(谷部の深さは0.35mm)以下とするのがよい。  For example, when the collision part is formed of a screw member having a JIS coarse pitch, the collision part has an outer diameter M of 1.0 mm (the depth of the valley is 0.25 mm) or more and 2.0 mm (the depth of the valley is 0. 0). 40 mm) or less, and more desirably 1.0 mm (the depth of the trough is 0.30 mm) or more and 1.6 mm (the depth of the trough is 0.35 mm) or less.

液体流路内への衝突部の配置形態としては、たとえばもっとも単純なものとして、流路断面を二分する形で直径方向に配置する形態を例示できる。この構成は、たとえば断面中心付近にギャップを形成しないか、形成してもギャップ間隔を小さく設定することで、基準円内側の谷点数を増やすことができる一方、流路の内径が大きくなると有効谷点密度が急速に減少するという幾何学的な特性を有する。  As an arrangement form of the collision part in the liquid flow path, for example, as the simplest form, a form in which the cross section of the flow path is bisected and arranged in the diameter direction can be exemplified. This configuration can increase the number of valleys inside the reference circle by, for example, not forming a gap in the vicinity of the center of the cross section or setting the gap interval to a small value even if it is formed. It has the geometric property that the point density decreases rapidly.

一方、衝突部は投影において中心軸線を取り囲む形態で3以上配置すること、たとえば十字形態に4つ配置することも可能である。この構成では、衝突部の先端部が3つ以上の方向から集合する関係上、基準円内側の流路断面の中心付近には谷点の配置が幾何学的に不能となる領域が存在するが、前段落の構成よりも衝突部の数が増えることで、有効谷点密度を大きくできる利点がある。絞り孔にそれぞれ形成される十字形態の衝突部の組は、たとえばノズル本体の壁部外周面側から先端が絞り孔内へ突出するようにねじ込まれる複数本のねじ部材により容易に形成できる。4本以外では、3本、5本、6本、7本、8本の中から選択することができる。  On the other hand, it is possible to arrange three or more collision parts in a form surrounding the central axis in projection, for example, four in a cross shape. In this configuration, there is an area where the arrangement of valley points is geometrically impossible near the center of the flow path cross section inside the reference circle due to the fact that the tip of the collision part gathers from three or more directions. There is an advantage that the effective valley point density can be increased by increasing the number of collision parts compared to the configuration of the previous paragraph. A set of cross-shaped collision portions respectively formed in the throttle holes can be easily formed by, for example, a plurality of screw members that are screwed so that the front ends protrude into the throttle holes from the wall outer peripheral surface side of the nozzle body. Other than 4, it is possible to select from 3, 5, 6, 7, and 8.

この場合、複数の衝突部の先端が集合する断面中心位置に液体流通ギャップを形成することができる。たとえば十字の中心位置に液体流通ギャップを形成すると、最も高流速となる断面中央の流れ(中心流)が液体流通ギャップの形成により妨げられにくくなり、前述の70%断面比率σ70が拡大される結果、同じ谷点数でも有効谷点数を増加することができる。また、この液体流通ギャップの形成により、70%断面比率σ70を40%以上確保することも容易となる。いずれも、バイオフィルム等に対する洗浄性改善(微細気泡の発生効率向上)への貢献が顕著である。液体流通ギャップの形成による上記の効果は、4つの衝突部の液体流通ギャップを形成する先端面を平坦に形成し、前述の投影において液体流通ギャップが正方形状に形成されている場合に特に顕著である。また、処理コア部にて液体流路に複数の衝突部を配置する場合、該液体流路の軸線方向(流れ方向)にて複数の衝突部を互いにずれた位置に配置することも可能である。このようにすると、衝突部を流れ方向に複数設けることができ、キャビテーションポイントとなる谷部に流れを繰り返し接触させることが可能となるので、微細気泡の発生効率向上に寄与する。In this case, the liquid flow gap can be formed at the center position of the cross section where the tips of the plurality of collision portions gather. For example, when the liquid circulation gap is formed at the center position of the cross, the flow at the center of the cross section (center flow) at which the flow velocity is the highest is not easily obstructed by the formation of the liquid circulation gap, and the 70% cross-sectional ratio σ 70 is increased. As a result, the number of effective valley points can be increased even with the same number of valley points. In addition, the formation of the liquid flow gap makes it easy to secure a 70% cross-sectional ratio σ 70 of 40% or more. In any case, the contribution to the improvement of detergency for biofilms and the like (increased generation efficiency of fine bubbles) is remarkable. The above-mentioned effect due to the formation of the liquid flow gap is particularly remarkable when the front end surface forming the liquid flow gaps of the four collision parts is formed flat and the liquid flow gap is formed in a square shape in the above-described projection. is there. Further, when a plurality of collision parts are arranged in the liquid flow path in the processing core part, it is also possible to arrange the plurality of collision parts at positions shifted from each other in the axial direction (flow direction) of the liquid flow path. . In this way, a plurality of collision portions can be provided in the flow direction, and the flow can be repeatedly brought into contact with the valley portions serving as cavitation points, which contributes to improvement in the generation efficiency of fine bubbles.

本発明の液体処理ノズルにおいては、ノズル本体に形成する絞り孔を単一とすることができる。しかし、1つしかない絞り孔に、異物等により詰まりが生ずると、洗浄水の供給に直ちに支障が生ずるリスクもある。この場合、分岐継手等によりノズルを複数並列に接続して用いることができるが、ノズルの前後に分岐継手を接続する構成が必須となるから、並列ノズルユニット全体の長さや幅が大きくなり、歯科ユニットに組み込む際の寸法的なメリットは犠牲となる。また、継手から分岐する個々のノズルの分岐流路長が長くなれば、それら複数の並列ノズルのいずれかに水流が偏る偏流現象が起きる可能性もあり、水流の減じた側のノズルでは微細気泡の発生効率が下がり、洗浄効果の向上代が低下する懸念もある。  In the liquid processing nozzle of the present invention, a single throttle hole can be formed in the nozzle body. However, if only one throttle hole is clogged with foreign matter or the like, there is also a risk that the supply of cleaning water will be immediately disturbed. In this case, a plurality of nozzles can be connected in parallel using a branch joint or the like. However, since a configuration in which branch joints are connected before and after the nozzle is essential, the length and width of the entire parallel nozzle unit increase, The dimensional merit at the time of incorporation in the unit is sacrificed. In addition, if the branch flow path length of each nozzle branched from the joint is increased, there is a possibility that a drift phenomenon occurs in which the water flow is biased in any of the plurality of parallel nozzles. There is also a concern that the generation efficiency of water is reduced and the cost for improving the cleaning effect is reduced.

上記のような問題は、次のようなノズル構成を採用することで解決することができる。すなわち、液体流路を液体入口側の流入室と液体出口側の流出室とに区画する隔壁部と、隔壁部に貫通形成され流入室と流出室とを互いに別経路にて連通させる複数の絞り孔とを設け、処理コア部において各絞り孔の内面から突出する形で衝突部を形成するようにする。すなわち、複数のノズルを並列接続する場合は、衝突部が配置される処理コア部の前後の流路が各ノズルに独立して配置される構造になるが、上記の構成では、隔壁部に複数の絞り部を形成し、その前後の流路区間を、該隔壁部が区画する流入室ないし流出室に集約して、それら複数の絞り部により共有化させる形とするのである。これにより、絞り孔の一部につまりを生じても、残余の絞り孔により洗浄水の流通を確保することができる。また、複数のノズルを並列接続した場合と同等の機能を単一のノズルで実現することができ、ノズル前後の分岐継手なども不要になる結果、全体をきわめてコンパクトに構成することが可能となる。また、流路が複数系統に分岐する区間を、隔壁部に形成された絞り孔のみに短縮することができ、分岐流路が長くなることに由来した偏流発生の防止にも貢献する。  The above problems can be solved by adopting the following nozzle configuration. That is, a partition that partitions the liquid channel into an inflow chamber on the liquid inlet side and an outflow chamber on the liquid outlet side, and a plurality of throttles that are formed through the partition and communicate with the inflow chamber and the outflow chamber through different paths. And a collision portion is formed so as to protrude from the inner surface of each throttle hole in the processing core portion. In other words, when a plurality of nozzles are connected in parallel, the flow path before and after the processing core part where the collision part is arranged is arranged independently for each nozzle. The throttle section is formed, and the flow path sections before and after the throttle section are aggregated into an inflow chamber or an outflow chamber defined by the partition wall section and shared by the plurality of throttle sections. Thereby, even if clogging occurs in a part of the throttle hole, the flow of the cleaning water can be ensured by the remaining throttle hole. In addition, a function equivalent to a case where a plurality of nozzles are connected in parallel can be realized with a single nozzle, and branch joints before and after the nozzles are not required. As a result, the whole can be configured extremely compactly. . In addition, the section where the flow path branches into a plurality of systems can be shortened only to the throttle hole formed in the partition wall, which contributes to the prevention of the occurrence of drift due to the length of the branch flow path.

上記の液体処理ノズルの構成においては、絞り孔は、それら絞り孔の軸断面積の合計と等価な円の直径をde、絞り孔の長さをLとして、L/deにて定義される絞り孔アスペクト比が3.5以下に設定され、かつ、ノズル本体の軸線と直交する平面への投影において、隔壁部の投影領域の中心位置に定められた基準点から複数の絞り孔の内周縁までの距離Tが該絞り孔の内径Dよりも小さくなる程度に近接配置するのがよい。隔壁部の厚みが大きくなれば断面積の小さい絞り孔自体の長さが大きくなり、その前後の区間が流入室ないし流出室に集約されていたとしても、偏流が発生しやすくなる場合がある。また、隔壁部に形成する複数の絞り孔が、管内壁との流体摩擦により低流速化する隔壁部外周領域に形成されていると、その流速低下の影響により偏流が発生しやすくなる場合がある。そこで、絞り孔アスペクト比を3.5以下に設定することにより、偏流の原因となる分岐区間の長さ、すなわち、衝突部を配置する絞り孔の長さを十分短くすることができる。また、絞り孔を基準点周りに近接配置することにより、絞り孔は高流速となる隔壁部の中央に集約される。換言すれば、すべての絞り孔が隔壁部の中心に近い位置に集めて配置される。その結果、絞り孔内での流速の低下ないし不均一化が抑制され、偏流を確実に防止することができる。絞り孔アスペクト比L/deの値は、望ましくは3以下であること、より望ましくは2.5以下であるのがよい。また、絞り孔変位Tは、望ましくは絞り孔の内径Dの1/2以下であるのがよい。  In the configuration of the liquid processing nozzle described above, the aperture is defined as L / de, where de is the diameter of a circle equivalent to the sum of the axial cross-sectional areas of the apertures, and L is the length of the aperture. From the reference point set at the center position of the projection area of the partition wall to the inner peripheral edges of the plurality of aperture holes in the projection onto the plane perpendicular to the axis of the nozzle body when the hole aspect ratio is set to 3.5 or less The distance T is preferably close enough to be smaller than the inner diameter D of the throttle hole. If the thickness of the partition wall portion increases, the length of the throttle hole itself having a small cross-sectional area increases, and even if the sections before and after it are concentrated in the inflow chamber or the outflow chamber, drift may easily occur. In addition, when the plurality of throttle holes formed in the partition wall are formed in the outer peripheral region of the partition wall where the flow velocity is reduced by fluid friction with the inner wall of the tube, drift may easily occur due to the effect of the decrease in the flow velocity. . Therefore, by setting the throttle hole aspect ratio to 3.5 or less, the length of the branch section that causes the drift, that is, the length of the throttle hole in which the collision portion is arranged can be sufficiently shortened. Further, by arranging the throttle holes close to the reference point, the throttle holes are collected at the center of the partition wall portion where the flow velocity is high. In other words, all the throttle holes are gathered and arranged at a position close to the center of the partition wall. As a result, the reduction or non-uniformization of the flow velocity in the throttle hole is suppressed, and drift can be reliably prevented. The value of the aperture hole aspect ratio L / de is desirably 3 or less, and more desirably 2.5 or less. Further, the throttle hole displacement T is preferably less than or equal to ½ of the inner diameter D of the throttle hole.

なお、絞り孔内の流量損失を抑え、かつ、偏流を防止する観点にあっては、衝突部配置に必要なスペースを絞り孔内面に確保できる範囲内で、L/deにて定義される絞り孔アスペクト比の値をなるべく小さく設定することが望ましいといえる(流入室と流出室の内面を、各々隔壁部に向けて縮径するテーパ面とする場合は、両側のテーパ面同士を直結し、その結合位置に衝突部を形成する構成もあり得るが、この場合の絞り孔の長さは、衝突部の突出基端位置での外径と等しい値として定義する)。また、絞り孔変位Tの値も、絞り孔内の流速を高める観点から、なるべく小さく設定することが望ましく、たとえば隔壁部中心位置で2つの絞り孔が互いに接する(あるいは、一部重なる)ように形成される場合など、ゼロとなることを妨げない。  From the viewpoint of suppressing flow loss in the throttle hole and preventing drift, the throttle defined by L / de is within a range where a space necessary for the collision portion arrangement can be secured on the inner surface of the throttle hole. It can be said that it is desirable to set the value of the hole aspect ratio as small as possible (when the inner surfaces of the inflow chamber and the outflow chamber are tapered surfaces that are reduced in diameter toward the partition wall, the tapered surfaces on both sides are directly connected, There may be a configuration in which the collision portion is formed at the coupling position, but the length of the throttle hole in this case is defined as a value equal to the outer diameter at the protruding proximal end position of the collision portion). In addition, it is desirable to set the value of the throttle hole displacement T as small as possible from the viewpoint of increasing the flow velocity in the throttle hole. For example, the two throttle holes are in contact with each other (or partially overlap each other) at the partition wall center position. It does not prevent it from becoming zero, such as when it is formed.

なお、絞り孔は流れ軸線方向に均一な断面を有する孔としてもよいし、中間部で縮径する不均一断面を有する孔としてもよい。本明細書において、「絞り孔の軸断面積」とは、流れ軸線方向にて最もその値が小さくなる位置での軸断面積を意味するものとする。複数の絞り孔は、軸断面積を異ならせることも可能であるが、この場合、絞り孔の内径Dは、それら複数の絞り孔についての平均値を意味するものとする。絞り孔の長さについても同様である。さらに、隔壁部の投影領域の中心位置とは、投影領域が円形の場合はその中心を意味する。しかし、隔壁部の投影領域が正多角形状や楕円状となることも発明概念上は許容され、この場合は当該投影領域の幾何学的重心位置を中心位置として定める。  The throttle hole may be a hole having a uniform cross section in the flow axis direction or a hole having a non-uniform cross section that is reduced in diameter at the intermediate portion. In this specification, “the axial cross-sectional area of the throttle hole” means an axial cross-sectional area at a position where the value is the smallest in the flow axis direction. The plurality of throttle holes may have different axial cross-sectional areas, but in this case, the inner diameter D of the throttle hole means an average value for the plurality of throttle holes. The same applies to the length of the throttle hole. Furthermore, the center position of the projection area of the partition wall means the center when the projection area is circular. However, the projected area of the partition wall is allowed to be a regular polygonal shape or an elliptical shape from the concept of the invention. In this case, the geometric gravity center position of the projected area is determined as the center position.

また、絞り孔の衝突部よりも下流に位置する区間の長さ(以下、残区間という)をLpとし、絞り孔の軸断面積の合計と等価な円の直径をdeとしたとき、Lp/deにて定義される残区間アスペクト比は1.0以下に設定されていることが望ましい。これにより、複数の絞り孔にてそれぞれ衝突部を通過した液体が流出室にて合流するまでに、析出気泡を含んだ流れの、流体抵抗の大きい絞り孔の残区間の通過距離が短くなり、ひいては個々の絞り孔の衝突部下流に生ずる強撹拌領域も流出室内で一体化し、気泡の微細化効果が一層高められ、ひいては歯科ユニットのさらなる洗浄改善に貢献する。  Further, when the length of the section located downstream from the collision portion of the throttle hole (hereinafter referred to as the remaining section) is Lp, and the diameter of a circle equivalent to the sum of the axial sectional areas of the throttle holes is de, Lp / The remaining section aspect ratio defined by de is preferably set to 1.0 or less. Thereby, the passage distance of the remaining section of the throttle hole having a large fluid resistance of the flow including the precipitated bubbles is shortened until the liquid that has passed through the collision portion in the plurality of throttle holes merges in the outflow chamber, As a result, the strong stirring region generated downstream of the collision portion of each throttle hole is also integrated in the outflow chamber, so that the effect of refining the bubbles is further enhanced, thereby contributing to further cleaning improvement of the dental unit.

さらに、絞り孔に関しては、隔壁部の中央付近(基準点周り)に近接配置する要件を以下のように具体化することができる。すなわち、ノズル本体の軸線と直交する平面への投影において、複数の絞り孔の内周縁に対する外接円の面積をSt、絞り孔の投影領域の合計面積をSrとしたとき、K≡Sr/Stにて定義される絞り孔集約率Kを0.2以上とする。例えば、寸法と形成個数とが一致する複数の絞り孔の組同士の場合、絞り孔変位Tが大きくなるほど外接円面積も大きくなる。したがって、上記絞り孔集約率Kは隔壁部中央領域への絞り孔の集中度を表すパラメータとなりえ、該絞り孔集約率Kを0.2以上とすることにより、偏流抑制効果は一層顕著となり、微細気泡の発生効率の更なる向上に貢献する。  Furthermore, with respect to the throttle hole, the requirement to be placed close to the center of the partition wall (around the reference point) can be embodied as follows. That is, in the projection onto the plane orthogonal to the axis of the nozzle body, when St is the area of the circumscribed circle with respect to the inner periphery of the plurality of throttle holes and Sr is the total area of the projection areas of the throttle holes, K≡Sr / St The aperture hole aggregation rate K defined as follows is 0.2 or more. For example, in the case of a set of a plurality of throttle holes having the same dimensions and the number of formations, the circumscribed circle area increases as the throttle hole displacement T increases. Therefore, the throttle hole concentration rate K can be a parameter that represents the degree of concentration of the throttle holes in the central region of the partition wall, and by making the throttle hole concentration rate K 0.2 or more, the drift suppression effect becomes even more pronounced. Contributes to further improvement in the generation efficiency of fine bubbles.

なお、「外接円」は、前記投影における複数の絞り孔(最小径部)の内周縁に対し、そのすべてと外接する円として定義する。また、すべての絞り孔の内周縁に外接する円が幾何学的に描けない場合は、「1以上の絞り孔の内周縁と外接し、残余の絞り孔の内周縁とは交わらない最大の円」として定義する。  The “circumscribed circle” is defined as a circle circumscribing all of the inner peripheral edges of the plurality of aperture holes (minimum diameter portions) in the projection. If the circle circumscribing the inner periphery of all the apertures cannot be drawn geometrically, “the largest circle that circumscribes the inner periphery of one or more apertures and does not intersect the inner periphery of the remaining apertures. ".

上記の外接円の面積Stは、隔壁部の投影面積の90%以上であることが望ましい。これにより、隔壁部にて絞り孔の外側に形成される流れ遮断領域の面積を小さくでき、こうした領域に特有に発生する流れのよどみや渦流に基づく損失を軽減することができる。絞り孔に対する外接円径が、液体入口の開口径よりも絞られている場合は、隔壁部の投影面積を90%以上とする上で、液体入口に続く流入室の内周面を、隔壁部に向けて縮径するテーパ面とすることが有効である。外接円の面積Stは、隔壁部の投影面積と等しくすることもできる。  The area St of the circumscribed circle is desirably 90% or more of the projected area of the partition wall. Thereby, the area of the flow blocking region formed outside the throttle hole in the partition wall can be reduced, and the flow stagnation and the loss due to the vortex generated in these regions can be reduced. When the circumscribed circle diameter with respect to the throttle hole is narrower than the opening diameter of the liquid inlet, the projected area of the partition wall is set to 90% or more, and the inner peripheral surface of the inflow chamber following the liquid inlet is defined as the partition wall. It is effective to use a tapered surface that decreases in diameter toward the surface. The area St of the circumscribed circle can be made equal to the projected area of the partition wall.

この場合も、処理コア部において複数の絞り孔のそれぞれに、ノズル本体の軸線と直交する平面への投影において衝突部が孔中心軸線を取り囲む十字形態に4つ配置し、それら4つの衝突部が形成する十字の中心位置に液体流通キャップが形成された構成とすることができる。絞り孔にそれぞれ形成される十字形態の衝突部の組は、ノズル本体の壁部外周面側から先端が絞り孔内へ突出するようにねじ込まれる4本のねじ部材により容易に形成できる。しかし、複数の絞り孔のそれぞれに、ノズル本体の外側からそれぞれ4本ものねじ部材をねじ込もうとしたとき、幾何学的なレイアウトを誤ると、ねじ同士の干渉や、ある絞り孔に向けてねじ込まれたねじ部材が別の絞り孔内を貫通したりするなど、不具合を生じる。本発明者らが検討した結果、ノズル本体の壁部外周面側から絞り孔に向けてねじ込まれるねじ部により衝突部を形成する場合、こうした不具合を生じることなく最も多くの絞り孔を隔壁部の中心領域に近接して形成する構成としては、処理コア部には絞り孔を、液体流路の中心軸線を挟んで互いに対称な位置関係で2〜4個のいずれかで形成するのが最適であることがわかった。そして、前述のねじ部材の干渉を回避するには、各絞り孔に組み込む4つのねじ部材の組は、それら絞り孔の間で軸線方向にて互いにずれた位置に配置することが適当である。偏流と流量損失を抑制する観点から、この場合の絞り孔の配置個数は2個ないし3個が好適であり、ノズル作製の容易性を考慮すれば2個とするのが最適である。  Also in this case, in the processing core portion, each of the plurality of aperture holes is arranged in a cross shape in which the collision portion surrounds the hole central axis in the projection onto the plane orthogonal to the axis of the nozzle body, and these four collision portions are It can be set as the structure by which the liquid distribution | circulation cap was formed in the center position of the cross to form. A set of cross-shaped collision portions formed in the respective restriction holes can be easily formed by four screw members that are screwed so that the tip protrudes into the restriction hole from the wall outer peripheral surface side of the nozzle body. However, if you try to screw as many as four screw members from the outside of the nozzle body into each of a plurality of throttle holes, mistaken geometrical layout may cause interference between the screws, or to a certain throttle hole. There is a problem that the screwed screw member penetrates through another throttle hole. As a result of the study by the present inventors, when the collision portion is formed by the screw portion screwed into the throttle hole from the wall portion outer peripheral surface side of the nozzle body, the most restrictive holes are formed in the partition wall portion without causing such a problem. As a configuration to be formed close to the central region, it is optimal to form a throttle hole in the processing core portion with any one of two to four in a symmetrical relationship with respect to the central axis of the liquid channel. I found out. In order to avoid the interference of the above-described screw members, it is appropriate that the set of four screw members incorporated in each throttle hole is disposed at a position shifted from each other in the axial direction between the throttle holes. From the viewpoint of suppressing drift and flow loss, the number of throttle holes arranged in this case is preferably 2 to 3, and is optimally 2 in consideration of the ease of nozzle fabrication.

本発明に採用する液体処理ノズルは、洗浄水に対する微小気泡発生処理にかかる要部が、つまるところ溶存空気の減圧析出を担う処理コア部に集約されている。従って、該処理コア部は、たとえ上記の好ましい要件をもれなく網羅するように構成したとしても、これが寸法的に肥大化する技術的要因は皆無に等しいといえる。液体処理ノズルにおける処理コア部の流通方向長さは、具体的には15mm以下(断面縮小による圧損を軽減する観点から、望ましくは10mm以下)に形成することができる。すなわち、処理コア部の寸法が流通方向に15mm程度まで確保されていれば、洗浄水に顕著な洗浄能力を付与可能な衝突部の構成を、設計的に余裕を持って組み込むことができる。その結果、ノズル本体の処理コア部を除く構成要素は、液体入口から処理コア部に洗浄水を導く入口流路部分と、処理コア部を通過した洗浄水を液体出口に流出させる出口流路部分くらいであるから、主洗浄水配管に対する接続部の形成を考慮しても、全長にして120mm以下(望ましくは100mm以下、さらに望ましくは80mm以下)の寸法に十分納めることができる。その結果、液体処理ノズルは、歯科ユニットのスペース的に限られた前述の対象筐体内にも簡単に取り付けることができるのである。  In the liquid processing nozzle employed in the present invention, the main part related to the microbubble generation process for the washing water is concentrated in the processing core part responsible for the decompression precipitation of the dissolved air. Therefore, even if the processing core portion is configured to cover all the above-mentioned preferable requirements, it can be said that there are no technical factors that increase the size of the processing core portion. The flow direction length of the processing core part in the liquid processing nozzle can be specifically formed to be 15 mm or less (desirably, 10 mm or less from the viewpoint of reducing pressure loss due to cross-sectional reduction). That is, if the dimension of the processing core part is ensured up to about 15 mm in the flow direction, the structure of the collision part capable of imparting a remarkable cleaning ability to the cleaning water can be incorporated with a margin in design. As a result, the components other than the processing core portion of the nozzle main body are an inlet flow channel portion that guides cleaning water from the liquid inlet to the processing core portion, and an outlet flow channel portion that causes the cleaning water that has passed through the processing core portion to flow out to the liquid outlet. Therefore, even if the formation of the connection portion with respect to the main washing water pipe is taken into consideration, the total length can be sufficiently accommodated in a dimension of 120 mm or less (desirably 100 mm or less, more desirably 80 mm or less). As a result, the liquid processing nozzle can be easily mounted in the above-described target housing limited in space of the dental unit.

例えば、歯科ユニットの主洗浄水配管は、両端に形成された第一継手部及び第二継手部が各々対象筐体の流入側継手部と液体処理ノズルの液体入口側継手とに接続される第一配管部材と、両端に形成された第三継手部及び第四継手部が各々液体処理ノズルの液体出口側継手と対象筐体の流出側継手部とに接続される第二配管部材とを備えるものとして構成できる。主洗浄水配管を上記のように2つの配管部材に分割し、液体処理ノズルの両端に形成されたノズル側の継手部に対し、かつ配管部材の対応する継手部を接続することにより液体処理ノズルの設置を簡単に行うことができる。  For example, in the main washing water pipe of the dental unit, the first joint portion and the second joint portion formed at both ends are respectively connected to the inflow side joint portion of the target housing and the liquid inlet side joint of the liquid processing nozzle. One piping member, and a third piping part and a fourth piping part formed at both ends each include a second piping member connected to the liquid outlet side joint of the liquid processing nozzle and the outflow side joint part of the target housing. Can be configured. The main washing water pipe is divided into two pipe members as described above, and the liquid treatment nozzle is connected to the joint portions on the nozzle side formed at both ends of the liquid treatment nozzle and the corresponding joint portions of the pipe member. Can be easily installed.

例えば、既存の歯科ユニットに液体処理ノズルを新たに組み込みたい場合は、次のようにする。すなわち、歯科ユニットの既設配管部材は、対象筐体の流入側継手部と流出側継手部とを直結する形で設けられている。この場合、止水栓を占めて洗浄水の供給を一時的に遮断するとともに、既設配管部材の継手部のうち、対象筐体側の流入側継手部と流出側継手部とのどちらかにつながる側を取り外して、液体処理ノズルの対応する継手部を接続する。そして、液体処理ノズルの残余の継手部と、対象筐体側の流入側継手部及び流出側継手部のうち、既設配管部材が取り外された側のものとを結合する新たな配管部材を追加することで、液体処理ノズルの設置を簡単に完了できる。この場合、上記構成の第一配管部材および第二配管部材の一方は、対象筐体の流入側継手部と流出側継手部とを直結していた既設配管部材が流用されたものとなる。  For example, when it is desired to newly install a liquid processing nozzle in an existing dental unit, the following is performed. That is, the existing piping member of the dental unit is provided in such a form that directly connects the inflow side joint portion and the outflow side joint portion of the target housing. In this case, occupy the stop cock and temporarily shut off the supply of cleaning water, and among the joint parts of the existing piping member, the side connected to either the inflow side joint part or the outflow side joint part on the target housing side And the corresponding joint of the liquid processing nozzle is connected. And adding a new piping member that couples the remaining joint portion of the liquid processing nozzle and the inflow side joint portion and the outflow side joint portion on the target housing side on the side where the existing piping member is removed. Thus, the installation of the liquid processing nozzle can be completed easily. In this case, one of the first piping member and the second piping member having the above-described configuration is obtained by diverting an existing piping member that has directly connected the inflow side joint portion and the outflow side joint portion of the target housing.

本発明の作用及び効果の詳細については、「課題を解決するための手段」の欄にすでに記載したので、ここでは繰り返さない。  Since the details of the operation and effect of the present invention have already been described in the section of “Means for Solving the Problems”, they will not be repeated here.

本発明の歯科ユニット用洗浄水供給装置の第一例を示す斜視図。The perspective view which shows the 1st example of the cleaning water supply apparatus for dental units of this invention. 本発明に使用する液体処理ノズルの第一実施形態を示す横断面図。The cross-sectional view which shows 1st embodiment of the liquid processing nozzle used for this invention. 図2の側面を拡大して示す詳細図。FIG. 3 is a detailed view showing an enlarged side view of FIG. 2. 図2の液体処理ノズルの拡大側面図。FIG. 3 is an enlarged side view of the liquid processing nozzle of FIG. 2. 図4の谷点配置を示す説明図。Explanatory drawing which shows trough arrangement | positioning of FIG. 図2の液体処理ノズルの処理コア部の詳細を示す横断面図。The cross-sectional view which shows the detail of the processing core part of the liquid processing nozzle of FIG. 図2の処理コア部におけるねじ部材の流れ軸線方向の配置を拡大して示す図。The figure which expands and shows arrangement | positioning of the flow member direction of the screw member in the process core part of FIG. 図7の変形配置例を示す図。The figure which shows the example of a deformation | transformation arrangement | positioning of FIG. 図2の液体処理ノズルが接続される主洗浄水配管の具体的な構成例を示す図。The figure which shows the specific structural example of the main washing water piping to which the liquid processing nozzle of FIG. 2 is connected. 衝突部における山部と谷部の作用説明図。Action | operation explanatory drawing of the peak part and trough part in a collision part. 衝突部の作用を示す平面図。The top view which shows the effect | action of a collision part. 絞り孔の直径方向に2本のねじ部材を対向配置する処理コア部の例を示す図。The figure which shows the example of the process core part which arranges two screw members facing in the diameter direction of an aperture hole. 図8の谷点配置を示す説明図。Explanatory drawing which shows the trough point arrangement | positioning of FIG. 複数の絞り孔の一部を重ねて一体化した処理コア部の例を示す図。The figure which shows the example of the process core part which overlapped and integrated some of several aperture holes. 液体処理ノズルの各絞り孔の4つのねじ部材を同一平面上に配置する変形例を示す図。The figure which shows the modification which arrange | positions four screw members of each aperture hole of a liquid processing nozzle on the same plane. 処理コア部において、3つの絞り孔を形成する例を示す模式図。The schematic diagram which shows the example which forms three aperture holes in a process core part. 衝突部とノズル本体を射出成型により一体形成する場合の変形例を示す図。The figure which shows the modification in the case of integrally forming a collision part and a nozzle main body by injection molding. 絞り孔を4つとし、各絞り孔にねじ部材を1本のみ配置する変形例を示す図。The figure which shows the modification which sets four aperture holes and arranges only one screw member in each aperture hole. 処理コア部におけるねじ部材の配置の変形例を示す図。The figure which shows the modification of arrangement | positioning of the screw member in a process core part. 衝突部の全周に山部を形成しない例を示す図。The figure which shows the example which does not form a peak part in the perimeter of a collision part. 絞り孔を1個のみ形成する液体処理ノズルの例を示す図。The figure which shows the example of the liquid processing nozzle which forms only one aperture hole. 本発明の歯科ユニット用洗浄水供給装置の第二例を示す。The 2nd example of the washing | cleaning water supply apparatus for dental units of this invention is shown.

以下、本発明を実施するための形態を添付の図面を用いて説明する。
図1は、本発明の歯科ユニット用洗浄水供給装置の第一例を示すものである。歯科ユニット300は、歯科医院の診察室の床面に載置・固定される周知の歯科治療椅子400と、これに着座する被治療者がうがい可能な位置関係で該歯科治療椅子400に隣接配置され、うがいスピットン411が上部に設けられたユニット本体410と、歯科治療椅子400の傍らに立つ歯科医により被治療者への処置操作が可能となる位置関係で該歯科治療椅子400に隣接配置され、エアないし電動にて駆動されるタービン等の処置用ツール421が複数配置された治療用テーブル420を備えている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a first example of a cleaning water supply device for a dental unit according to the present invention. The dental unit 300 is disposed adjacent to the dental treatment chair 400 in a positional relationship in which the well-known dental treatment chair 400 placed and fixed on the floor surface of the examination room of the dental clinic and the subject to be seated on the dental treatment chair can gargle. The gargle spit 411 is disposed adjacent to the dental treatment chair 400 in such a positional relationship that the dentist standing beside the dental treatment chair 400 can perform a treatment operation on the subject. A treatment table 420 in which a plurality of treatment tools 421 such as a turbine driven by air or electric motor are arranged is provided.

処置用ツール421は腔内洗浄ノズル501及び洗浄水の供給を開閉する図示しないバルブを内蔵しており、手で握るツール本体や図示しないフットペダルにてツールを駆動すると、洗浄水供給チューブ502を介して洗浄水が供給される。洗浄水供給チューブ502は内径が3mm以上8mm以下程度のゴムないし樹脂製のチューブであり、処置用ツール421を駆動する際の洗浄水の通過流量は30cc/分以上300cc/分以下程度と小さい。他方、うがいスピットン411はうがい用洗浄水の吐出部511を備え、スイッチないしセンサにより駆動される図示しない給水バルブを有する供給配管510により洗浄水が、毎分300cc以上2リットル以下程度と、腔内洗浄ノズル501よりは大流量にて供給される。うがい用洗浄水の供給配管510と洗浄水供給チューブ502には、本発明の歯科ユニット用洗浄水供給装置500により洗浄水が分配供給される。歯科ユニット用洗浄水供給装置500は、歯科治療椅子530に付随する配管ボックス(いわゆるジャンクションボックス)531と、上水道等の洗浄水供給源431につながる主洗浄水配管540とを備え、その主洗浄水配管540の一部が配管ボックス531の筐体(対象筐体)に内蔵されている。  The treatment tool 421 incorporates an intracavity cleaning nozzle 501 and a valve (not shown) for opening and closing the supply of cleaning water. When the tool is driven by a tool body held by a hand or a foot pedal (not shown), the cleaning water supply tube 502 is opened. Washing water is supplied through. The cleaning water supply tube 502 is a rubber or resin tube having an inner diameter of about 3 mm to 8 mm, and the flow rate of the cleaning water when driving the treatment tool 421 is as small as about 30 cc / min to 300 cc / min. On the other hand, the gargle spit 411 includes a discharge portion 511 for gargle washing water, and the washing water is supplied by a supply pipe 510 having a water supply valve (not shown) driven by a switch or sensor. It is supplied at a larger flow rate than the cleaning nozzle 501. The cleaning water is distributed and supplied to the cleaning water supply pipe 510 and the cleaning water supply tube 502 for the gargle by the dental unit cleaning water supply device 500 of the present invention. The dental unit cleaning water supply device 500 includes a piping box (so-called junction box) 531 attached to the dental treatment chair 530 and a main cleaning water piping 540 connected to a cleaning water supply source 431 such as a water supply. A part of the piping 540 is built in the casing (target casing) of the piping box 531.

本実施形態では、配管ボックス531は歯科治療椅子400の下方にて床面上に固定され、配管ボックス531の外に延出する主洗浄水配管540に対し、うがい用洗浄水の供給配管510がこれに直結される一方、洗浄水供給チューブ502はノズル分配用集約配管503を介して主洗浄水配管540につながっている。また、主洗浄水配管540上には洗浄水の供給を開閉する手動式の止水栓541が設けられる一方、洗浄水供給チューブ502(につながるノズル分配用集約配管503)及びうがい用洗浄水の供給配管510が各々分岐する給水分岐部542と止水栓541との間にて、主洗浄水配管540の配管ボックス531(の筐体)への内蔵区間上には液体処理ノズル1が着脱可能に設けられている。なお、図1においては、図面の読み取りを明瞭化する都合上、配管ボックス531は、歯科治療椅子400の外に引き出した形で大きさを誇張して描いている。  In the present embodiment, the piping box 531 is fixed on the floor below the dental treatment chair 400, and the main cleaning water piping 540 extending out of the piping box 531 has a gargle cleaning water supply piping 510. On the other hand, the cleaning water supply tube 502 is connected to the main cleaning water pipe 540 via the nozzle distribution aggregate pipe 503. In addition, a manual stop cock 541 for opening and closing the supply of cleaning water is provided on the main cleaning water pipe 540, while the cleaning water supply tube 502 (the nozzle distribution aggregate pipe 503 connected to the main cleaning water pipe 540 and the cleaning water for gargle). The liquid treatment nozzle 1 is detachable on the section of the main wash water pipe 540 in the pipe box 531 (the housing) between the water supply branching portion 542 and the stop cock 541 from which the supply pipe 510 branches. Is provided. In FIG. 1, the piping box 531 is drawn with exaggerated size in the form of being pulled out of the dental treatment chair 400 for the sake of clarity of reading the drawing.

主洗浄水配管540は、両端に形成された第一継手部551及び第二継手部552が各々配管ボックス531の流入側継手部532と液体処理ノズル1の液体入口側継手26とに接続される第一配管部材550と、両端に形成された第三継手部563及び第四継手部564が各々液体処理ノズル1の液体出口側継手27と対象筐体531の流出側継手部533とに接続される第二配管部材560とを備える。  In the main washing water pipe 540, the first joint part 551 and the second joint part 552 formed at both ends are connected to the inflow side joint part 532 of the pipe box 531 and the liquid inlet side joint 26 of the liquid processing nozzle 1, respectively. The first piping member 550 and the third joint portion 563 and the fourth joint portion 564 formed at both ends are connected to the liquid outlet side joint 27 of the liquid processing nozzle 1 and the outflow side joint portion 533 of the target housing 531, respectively. Second piping member 560.

配管ボックス531の内部にはこのほかにも、電磁バルブやライト、椅子の電動駆動部などへ給電する電気配線444(コネクタ430aを経て電源部430に接続される)、排水管445(排水管継手部432aにて排水部432に接続される)、口腔内吸引用の配管446(継手部433aにて吸引源433に接続される)などの一部が収容されている。配管ボックス531の寸法は種々であるが、例えば歯科治療椅子400の下部ないし後方の限られたスペースに配置可能なものであり、例えば高さ30cm以内、幅及び奥行きが40cm以内である。主洗浄水配管540の内蔵部分(第一配管部材550+第二配管部材560)周囲に確保できる液体処理ノズル1の設置スペースは相当狭小である。  In addition to this, inside the piping box 531, electric wiring 444 (connected to the power supply unit 430 via the connector 430a) for supplying power to an electromagnetic valve, a light, an electric drive unit of a chair, etc., a drain pipe 445 (drain pipe joint) And a part of a pipe 446 for intraoral suction (connected to the suction source 433 by the joint part 433a) and the like are accommodated. The piping box 531 has various dimensions. For example, the piping box 531 can be disposed in a limited space below or behind the dental treatment chair 400. For example, the height is within 30 cm, and the width and depth are within 40 cm. The installation space of the liquid processing nozzle 1 that can be secured around the built-in portion of the main wash water pipe 540 (first pipe member 550 + second pipe member 560) is considerably narrow.

以下、液体処理ノズル1の詳細について説明する。図2は、液体処理ノズル1の横断面を示し、図3は液体入口側の側面を拡大して示すものである。この液体処理ノズル1は、液体流路3が形成されたノズル本体2を備える。ノズル本体2は円筒状に形成され、その中心軸線Oの向きに円形断面の液体流路が貫通形成されている。液体流路3は一方の端(図面右側)に液体入口4を、他方の端に液体出口5を開口しており、その流れ方向中間位置には液体入口4及び液体出口5よりも径小の絞り孔9が形成されている。液体流路3は絞り孔9よりも液体入口4側が流入室6とされ、液体出口5側が流出室7とされるとともに、絞り孔9の内面からは衝突部10が突出形態で設けられ、処理コア部COREを形成している。  Hereinafter, the details of the liquid processing nozzle 1 will be described. FIG. 2 shows a cross section of the liquid processing nozzle 1, and FIG. 3 shows an enlarged side surface on the liquid inlet side. The liquid processing nozzle 1 includes a nozzle body 2 in which a liquid channel 3 is formed. The nozzle body 2 is formed in a cylindrical shape, and a liquid passage having a circular cross section is formed in the direction of the central axis O thereof. The liquid channel 3 has a liquid inlet 4 at one end (right side in the drawing) and a liquid outlet 5 at the other end, and has a diameter smaller than that of the liquid inlet 4 and the liquid outlet 5 at an intermediate position in the flow direction. A throttle hole 9 is formed. The liquid flow path 3 has an inflow chamber 6 on the liquid inlet 4 side than the throttle hole 9 and an outflow chamber 7 on the liquid outlet 5 side, and a collision portion 10 is provided in a protruding form from the inner surface of the throttle hole 9. The core part CORE is formed.

ノズル本体2の両端部はねじ継手で構成された流入側継手部26及び流出側継手部27とされている。ノズル本体の全長は例えば50mm以上120mm以下、外径は13mm以上35mm以下である。図9に示すように、第一配管部材550及び第二配管部材560はいずれも金属フレキ管で構成され、流入側継手部26及び流出側継手部27につながる第二継手部552及び第三継手部553(及び図1の第一継手部551及び第四継手部554)はいずれもナット継手として構成されている。  Both end portions of the nozzle body 2 are an inflow side joint portion 26 and an outflow side joint portion 27 which are constituted by screw joints. The overall length of the nozzle body is, for example, 50 mm to 120 mm, and the outer diameter is 13 mm to 35 mm. As shown in FIG. 9, the first piping member 550 and the second piping member 560 are both made of a metal flexible pipe, and the second joint portion 552 and the third joint connected to the inflow side joint portion 26 and the outflow side joint portion 27. The part 553 (and the first joint part 551 and the fourth joint part 554 in FIG. 1) are both configured as nut joints.

ノズル本体2には、液体流路3は隔壁部8により液体入口4側の流入室6と液体出口5側の流出室7とに区画されており、隔壁部8には、流入室6と流出室7とを互いに別経路にて連通させる複数の絞り孔9が貫通形成されている。処理コア部COREにおいて衝突部10は、それら絞り孔9の内面から各々突出する形で設けられている。図3に示すごとく、この実施形態では、隔壁部8に絞り孔9が中心軸線Oに関して軸対象となるように、同一内径にて2個形成されている。  In the nozzle body 2, the liquid flow path 3 is partitioned by a partition wall 8 into an inflow chamber 6 on the liquid inlet 4 side and an outflow chamber 7 on the liquid outlet 5 side. A plurality of throttle holes 9 that communicate with the chamber 7 through different paths are formed through. In the processing core portion CORE, the collision portions 10 are provided so as to protrude from the inner surfaces of the throttle holes 9. As shown in FIG. 3, in this embodiment, two throttle holes 9 having the same inner diameter are formed in the partition wall portion 8 so as to be axial objects with respect to the central axis O.

図4は絞り孔9の一方を側面視した場合の拡大図であり、衝突部10は外周面に周方向の山部11と高流速部となる谷部12とが複数交互に連なるように形成されている。衝突部10は、この実施形態では、脚部末端側が流路内に突出するねじ部材(以下、「ねじ部材10」ともいう)であり、結果、衝突部に形成される複数巻の山部11は、らせん状に一体形形成されている。ノズル本体2の材質は、たとえばABS(アクリロニトリルブタジエンスチレン)、ナイロン、ポリカーボネート、ポリアセタール、PTFE(ポリテトラフルオロエチレン)、ジュラコン(商標名)などの樹脂であるが、ステンレス鋼や真鍮などの金属、あるいはアルミナ等のセラミックスとしてもよい。  FIG. 4 is an enlarged view when one side of the throttle hole 9 is viewed from the side, and the collision portion 10 is formed so that a plurality of circumferential ridges 11 and valleys 12 serving as high flow velocity portions are alternately connected to the outer peripheral surface. Has been. In this embodiment, the collision part 10 is a screw member (hereinafter, also referred to as “screw member 10”) whose leg end side protrudes into the flow path, and as a result, a plurality of ridges 11 formed in the collision part. Are integrally formed in a spiral shape. The material of the nozzle body 2 is, for example, a resin such as ABS (acrylonitrile butadiene styrene), nylon, polycarbonate, polyacetal, PTFE (polytetrafluoroethylene), Duracon (trade name), or a metal such as stainless steel or brass, Ceramics such as alumina may be used.

図3に戻り、絞り孔9にそれぞれ形成される衝突部の組は、ノズル本体2に形成されたねじ孔19にて、その壁部外周面側から先端が絞り孔9内へ突出するようにねじ込まれる4本のねじ部材により形成されている。ねじ孔19とねじ部材10との間は接着剤等によりセッティング固定され、ねじ部材(衝突部)10と絞り孔9内周面との間には主流通領域21が形成されている。また、各絞り孔9において、4つの衝突部10が形成する十字の中心位置には、液体流通ギャップ15が形成されている。液体流通ギャップ15を形成する4つの衝突部10の先端面は平坦に形成され、前述の投影において液体流通ギャップ15は正方形状に形成されている。  Returning to FIG. 3, the set of collision portions formed in the throttle hole 9 is such that the tip projects from the outer peripheral surface side of the wall portion into the throttle hole 9 at the screw hole 19 formed in the nozzle body 2. It is formed by four screw members to be screwed. The screw hole 19 and the screw member 10 are set and fixed with an adhesive or the like, and a main flow region 21 is formed between the screw member (impact portion) 10 and the inner peripheral surface of the throttle hole 9. In each throttle hole 9, a liquid flow gap 15 is formed at the center position of the cross formed by the four collision portions 10. The front end surfaces of the four collision portions 10 forming the liquid flow gap 15 are formed flat, and the liquid flow gap 15 is formed in a square shape in the above-described projection.

次に、処理コア部における液体流路の外周縁内側の全面積、ここでは、図3の2つの絞り孔9の円形軸断面の投影面積(内径をdとしたとき、πd/4)の合計をS1、衝突部10(4本のねじ部材)の投影面積をS2として、処理コア部の全流通断面積Stを、
St=S1−S2 (単位:mm
として定義したとき、この全流通断面積Stが2.5mm以上(10mm以下)に確保されている。本実施形態では、図4に示す主流通領域21と液体流通ギャップ15との合計面積(の2つの絞り孔9の間での和)が全流通断面積Stに相当する。図2に示すごとく、液体入口4及び液体出口5の開口径は、絞り孔9の内径よりも大きい。すなわち、液体入口4及び液体出口5の断面積は全流通断面積Stよりも大きく設定されている。また、流入室6及び流出室7の絞り孔9に連なる内周面はそれぞれテーパ部13,14とされている。各絞り孔9の内径は、例えば2.0mm以上4.5mm以下である
Then, the total area of the peripheral edge inside the liquid flow channel in the processing core unit, where, (when the inner diameter was d, [pi] d 2/4) projected area of the circular shaft cross-section of the two throttle bore 9 in Figure 3 Assuming that the total is S1, the projected area of the collision part 10 (four screw members) is S2, and the total flow cross-sectional area St of the processing core part is
St = S1-S2 (unit: mm 2 )
Is defined as 2.5 mm 2 or more (10 mm 2 or less). In the present embodiment, the total area (the sum between the two throttle holes 9) of the main flow region 21 and the liquid flow gap 15 shown in FIG. 4 corresponds to the total flow cross section St. As shown in FIG. 2, the opening diameters of the liquid inlet 4 and the liquid outlet 5 are larger than the inner diameter of the throttle hole 9. That is, the cross-sectional areas of the liquid inlet 4 and the liquid outlet 5 are set larger than the total flow cross-sectional area St. Further, the inner peripheral surfaces of the inflow chamber 6 and the outflow chamber 7 connected to the throttle hole 9 are tapered portions 13 and 14, respectively. The inner diameter of each throttle hole 9 is, for example, not less than 2.0 mm and not more than 4.5 mm.

図5は図4と全く同一の投影図であり、符号を省略したものである(従って、各部の符号は図4のものを援用する)。ねじ部材(衝突部)10の投影外形線に現れる谷部12の深さhは0.2mm以上確保されている。また、中心軸線Oの投影点を中心として液体流路の内周縁までの距離の70%に相当する半径にて描いた円を基準円C70として定めるとともに、谷部12の最底位置を表す谷点のうち、基準円C70の内側に位置するもの(70%谷点:○で表示)の数をN70(個)、基準円C70の外側に位置するもの(70%補谷点:黒で表示)の数をNc70(個)とする。FIG. 5 is the same projection view as FIG. 4, and the reference numerals are omitted (therefore, the reference numerals of the respective parts are the same as those in FIG. 4). The depth h of the valley portion 12 appearing in the projected outline of the screw member (collision portion) 10 is ensured to be 0.2 mm or more. Further, the defining a circle drawn by a radius which corresponds to 70% of the distance to the inner peripheral edge of the liquid flow path around the projection point of the center axis line O as the reference circle C 70, represents the lowermost position of the valley 12 Of the valley points, the number of those located inside the reference circle C 70 (70% valley point: indicated by ○) is N 70 (pieces), and the number located outside the reference circle C 70 (70% complementary valley point) : Displayed in black) is Nc 70 (pieces).

そして、谷深さ補正係数αを、採用するねじ谷深さhに応じて前述の(1)式のごとく定める。さらに、図3に示す投影にて、全流通断面積Stの領域のうち基準円C70の内側に位置する部分の面積をS70(単位:mm)として、70%断面比率σ70を、
σ70=S70/St×100(%)
として定める。以上を前提として、図2の液体処理ノズル1は、前述の(2)式にて定義される有効谷点数Neを全流通断面積Stで規格化した有効谷点密度(Ne/St)が1.5個/mm以上に確保されている。
Then, the valley depth correction coefficient α is determined according to the above-described equation (1) according to the thread valley depth h to be employed. Furthermore, in the projection shown in FIG. 3, portions of the area S 70 located inside the reference circle C 70 in the region of the total cross-sectional flow area St (units: mm 2) as a 70% cross section ratio sigma 70,
σ 70 = S 70 / St × 100 (%)
Determine as On the premise of the above, the liquid processing nozzle 1 of FIG. 2 has an effective valley point density (Ne / St) obtained by normalizing the effective valley point number Ne defined by the above-described equation (2) by the total flow cross-sectional area St. .5 pieces / mm 2 or more are secured.

図3に戻り、絞り孔9にそれぞれ形成される衝突部の組は、ノズル本体2の壁部外周面側から先端が絞り孔9内へ突出するようにねじ込まれる4本のねじ部材により形成されている。図中破線で示すように、ねじ部材10は、ノズル本体2の壁部に貫通形成されたねじ孔19にねじ込まれ、各ねじ孔19のねじスラスト方向途中位置にはねじ頭下面を支持するための段付き面19rが形成されている。該段付き面19rの形成位置は、ねじ部材10をねじ込んだ時に、絞り孔9内に突出するねじ脚部(すなわち、衝突部となる部分)の長さが、液体流通ギャップ15を形成するのに適正となるように調整されている。ねじ孔19とねじ部材10との間は接着剤等によりセッティング固定されている。  Returning to FIG. 3, the set of collision portions formed in the throttle hole 9 is formed by four screw members that are screwed so that the tip protrudes into the throttle hole 9 from the outer peripheral surface side of the wall portion of the nozzle body 2. ing. As shown by a broken line in the figure, the screw member 10 is screwed into a screw hole 19 formed through the wall portion of the nozzle body 2, and the screw head 19 supports the lower surface of the screw head in the middle of the screw thrust direction. The stepped surface 19r is formed. The formation position of the stepped surface 19r is such that when the screw member 10 is screwed in, the length of the screw leg portion protruding into the throttle hole 9 (that is, the portion serving as the collision portion) forms the liquid flow gap 15. It has been adjusted to be appropriate. The setting between the screw hole 19 and the screw member 10 is fixed by an adhesive or the like.

また、図6に示すように、複数の絞り孔9の間でねじ部材10の干渉を回避するために、各絞り孔9に組み込む4つのねじ部材10の組は、それら絞り孔9の間で軸線方向にて互いにずれた位置に配置されている。同一の絞り孔9内の複数のねじ部材10A,10Bと10C,10Dとは、該絞り孔9の軸線方向(流れ方向)にて互いにずれた位置に配置されている。具体的には、各絞り孔9において、同一平面上で互いに直交する位置に配置されたねじ部材の対10A,10B及び10C,10Dが、それぞれ流れ方向において互いに異なる位置(図中、上側の絞り孔9については下流側のA及びBの位置に、下側の絞り孔については上流側のC及びD位置)に配置されている。A及びBの位置の4つのねじ部材10A,10B、及びC及びD位置の4つのねじ部材10C,10Dは、中心軸線Oと直交する平面への投影では図3に示すごとく、それぞれ十字形態をなすように配置されることとなる。  Further, as shown in FIG. 6, in order to avoid interference of the screw members 10 between the plurality of throttle holes 9, a set of four screw members 10 incorporated in each throttle hole 9 is arranged between the throttle holes 9. They are arranged at positions shifted from each other in the axial direction. The plurality of screw members 10A, 10B and 10C, 10D in the same throttle hole 9 are arranged at positions shifted from each other in the axial direction (flow direction) of the throttle hole 9. Specifically, in each throttle hole 9, screw member pairs 10A, 10B and 10C, 10D arranged at positions orthogonal to each other on the same plane are different from each other in the flow direction (in FIG. The holes 9 are arranged at positions A and B on the downstream side, and the positions of the lower throttle holes are arranged at positions C and D on the upstream side. The four screw members 10A and 10B at the positions A and B, and the four screw members 10C and 10D at the positions C and D have a cross shape when projected onto a plane orthogonal to the central axis O, as shown in FIG. Will be arranged.

次に、絞り孔9は、それら絞り孔9の軸断面積の合計と等価な円の直径をde、絞り孔9の長さをLとして、L/deにて定義される絞り孔アスペクト比が3.5以下に設定されている(なお、2つの絞り孔9の内径が互いに異なる一般の場合(d1,d2)は、絞り孔アスペクト比は、L/(d1+d21/2となる)。図3では、2個の絞り孔9は内径と長さが互いに等しい円筒面をなすように形成されており、2つの絞り孔9の内径をdとして、絞り孔アスペクト比は0.71L/dである。絞り孔アスペクト比L/deの値は、望ましくは3以下であること、より望ましくは2.5以下であるのがよい。Next, the throttle hole 9 has a throttle hole aspect ratio defined by L / de, where de is the diameter of a circle equivalent to the sum of the axial cross-sectional areas of the throttle holes 9 and L is the length of the throttle hole 9. It is set to 3.5 or less (in the general case (d1, d2) where the inner diameters of the two throttle holes 9 are different from each other), the throttle hole aspect ratio is L / (d1 2 + d2 2 ) 1/2 Become). In FIG. 3, the two throttle holes 9 are formed so as to form a cylindrical surface having the same inner diameter and the same length. The inner diameter of the two throttle holes 9 is d, and the throttle hole aspect ratio is 0.71 L / d. It is. The value of the aperture hole aspect ratio L / de is desirably 3 or less, and more desirably 2.5 or less.

また、ノズル本体2の軸線Oと直交する平面への投影において、隔壁部8の投影領域の中心位置に定められた基準点(上記軸線の投影点)Oから複数の絞り孔9の内周縁までの距離(絞り孔変位)Tは、該絞り孔9の内径Dよりも小さくなるように設定されている。絞り孔変位Tは絞り孔9の内径Dの望ましくは1/2以下であるのがよい。さらに、本実施形態では、同じ投影において、複数の絞り孔9の内周縁に対する外接円20の面積をSt、絞り孔9の投影領域の合計面積をSrとしたとき、K≡Sr/Stにて定義される絞り孔集約率Kが0.2以上確保されている。  Further, in the projection onto the plane orthogonal to the axis O of the nozzle body 2, from the reference point (projection point of the axis) defined at the center position of the projection area of the partition wall 8 to the inner peripheral edges of the plurality of aperture holes 9. The distance (throttle hole displacement) T is set to be smaller than the inner diameter D of the throttle hole 9. The throttle hole displacement T is desirably ½ or less of the inner diameter D of the throttle hole 9. Furthermore, in the present embodiment, when the area of the circumscribed circle 20 with respect to the inner periphery of the plurality of apertures 9 is St and the total area of the projection area of the apertures 9 is Sr in the same projection, K≡Sr / St The defined aperture hole aggregation rate K is secured to 0.2 or more.

すなわち、液体処理ノズル1は、以下の条件を充足するものとなっている。
・L/deにて定義される絞り孔アスペクト比が3.5以下;
・絞り孔変位Tが絞り孔9の内径Dよりも小;
・絞り孔集約率Kが0.2以上。
また、上記の外接円20の面積Stは、隔壁部8の投影面積の90%以上(図3では100%)とされている。隔壁部8にて絞り孔9の外側に形成される流れ遮断領域の面積が小さいので、こうした領域にて特有に発生する流れのよどみや渦流に基づく損失が軽減されている。図2からも明らかなごとく、絞り孔9に対する外接円20の径は、液体入口4の開口径よりも絞られており、液体入口4に続く流入室6の内周面が隔壁部8に向けて縮径するテーパ面13とされている。また、流出室7の内周面は、液体出口5に向けて拡径するテーパ面14とされている。
That is, the liquid processing nozzle 1 satisfies the following conditions.
A throttle hole aspect ratio defined by L / de is 3.5 or less;
The throttle hole displacement T is smaller than the inner diameter D of the throttle hole 9;
-The throttle hole aggregation rate K is 0.2 or more.
The area St of the circumscribed circle 20 is 90% or more (100% in FIG. 3) of the projected area of the partition wall portion 8. Since the area of the flow blocking region formed outside the throttle hole 9 in the partition wall 8 is small, the flow stagnation and the loss due to the vortex that are generated in such a region are reduced. As is clear from FIG. 2, the diameter of the circumscribed circle 20 with respect to the throttle hole 9 is narrower than the opening diameter of the liquid inlet 4, and the inner peripheral surface of the inflow chamber 6 following the liquid inlet 4 faces the partition wall portion 8. The tapered surface 13 is reduced in diameter. Further, the inner peripheral surface of the outflow chamber 7 is a tapered surface 14 that increases in diameter toward the liquid outlet 5.

また、図7に示す如く、絞り孔9の衝突部10よりも下流に位置する区間の長さ(以下、残区間という)をLp(Lp2〜Lp4の平均値)とし、絞り孔9の軸断面積の合計と等価な前述の円の直径をdeとして、Lp/deにて定義される残区間アスペクト比は1.0以下に設定されている。図7では、最も下流側に位置するねじ部材10Aに関しては、残区間の長さがゼロであるが、図8に示す如く、ねじ部材10Aに関し残区間がゼロでない長さLp1を有する場合は、上記残区間長さLpはLp1〜Lp4の平均値となる。  Further, as shown in FIG. 7, the length of the section located downstream of the collision portion 10 of the throttle hole 9 (hereinafter referred to as the remaining section) is Lp (average value of Lp2 to Lp4), and the axial break of the throttle hole 9 is performed. The remaining section aspect ratio defined by Lp / de is set to 1.0 or less, where de is the diameter of the circle equivalent to the total area. In FIG. 7, the length of the remaining section is zero for the screw member 10A located on the most downstream side, but as shown in FIG. 8, when the remaining section has a non-zero length Lp1 for the screw member 10A, The remaining section length Lp is an average value of Lp1 to Lp4.

以下、図1の、歯科ユニット用洗浄水供給装置500の作用・効果について説明する。歯科治療椅子400に着座した被処置者に対し、歯科医は処置用ツール421を操作して口腔内の処置を行なう。また、被処置者は歯科医の指示に従い、うがい用洗浄水を吐出部511から口に含み、スピットン411に吐き出す。処置用ツール421の使用時には主洗浄配管540、ノズル分配用集約配管503及び洗浄水供給チューブ502を経て操作中の処置用ツール421の腔内洗浄ノズル501から洗浄水が口腔内に噴射される。他方、うがい時には主洗浄配管540から供給配管510を経て吐出部511から洗浄水が流出する。いずれの場合も洗浄水は主洗浄配管540上の液体処理ノズル1を通過した後、流出することとなる。  Hereinafter, the operation and effect of the dental unit cleaning water supply device 500 of FIG. 1 will be described. The dentist operates the treatment tool 421 to perform the treatment in the oral cavity on the person to be treated who is seated on the dental treatment chair 400. Further, according to the instruction of the dentist, the person to be treated includes gargle cleaning water in the mouth from the discharge part 511 and discharges it to the spit 411. When the treatment tool 421 is used, washing water is injected into the oral cavity from the intracavity washing nozzle 501 of the treatment tool 421 being operated through the main washing pipe 540, the nozzle distribution aggregate pipe 503, and the washing water supply tube 502. On the other hand, at the time of gargle, the washing water flows out from the discharge part 511 from the main washing pipe 540 through the supply pipe 510. In any case, the washing water flows out after passing through the liquid treatment nozzle 1 on the main washing pipe 540.

図2及び図3の液体処理ノズル1に洗浄水を通水したときの作用について説明する。この水はたとえば水道水であり、大気と平衡する濃度に空気が溶存しているものとする(たとえば、20℃(常温)での酸素濃度は約8ppm)。水流はまずテーパ部13及び絞り孔9で絞られ、ねじ部材10と絞り孔9内周面との間に形成される図4の主流通領域21と液体流通ギャップ15とからなる液流通領域にてねじ部材10に衝突しながらこれを通過する。  The operation when washing water is passed through the liquid treatment nozzle 1 of FIGS. 2 and 3 will be described. This water is, for example, tap water, and it is assumed that air is dissolved at a concentration that is in equilibrium with the atmosphere (for example, the oxygen concentration at 20 ° C. (normal temperature) is about 8 ppm). The water flow is first squeezed by the taper portion 13 and the throttle hole 9, and then into a liquid circulation region composed of the main circulation region 21 and the liquid circulation gap 15 of FIG. 4 formed between the screw member 10 and the inner peripheral surface of the throttle hole 9. And passes through the screw member 10 while colliding with it.

ねじ部材10の外周面を通過するときに、図10に示すように流れは谷部12に高速領域を、山部11に低速領域をそれぞれ形成する。すると、谷部12の高速領域はベルヌーイの定理により負圧領域となり、キャビテーションすなわち溶存空気の減圧析出により、気泡FBが発生する。谷部はねじ部材10の外周に複数巻形成され、かつねじ部材10が絞り孔9内に4本配置されていることから、この減圧析出は絞り孔9内の谷部にて同時多発的に起こることとなる。  When passing through the outer peripheral surface of the screw member 10, as shown in FIG. 10, the flow forms a high speed region in the valley portion 12 and a low speed region in the peak portion 11. Then, the high-speed region of the valley portion 12 becomes a negative pressure region by Bernoulli's theorem, and bubbles FB are generated by cavitation, that is, decompression precipitation of dissolved air. A plurality of valleys are formed on the outer periphery of the screw member 10, and four screw members 10 are arranged in the throttle hole 9, so this reduced pressure deposition occurs simultaneously and frequently in the valleys in the throttle hole 9. Will happen.

すると、図11に示すように、水流がねじ部材10に衝突する際に谷部での減圧析出が沸騰的に激しく起こり、さらにねじ部材10の下流に迂回する際に生ずる渦流にこれを巻き込んで激しく撹拌する。これにより、衝突部10の周辺及び直下流域には、微小渦流FEを無数に含んだ顕著な強撹拌領域SMが形成されることとなる。気泡を析出する減圧域は衝突部10周囲の谷底付近に限られており、高速の液体流はほとんど瞬時的に該領域を通過してしまうから、発生した気泡FBはそれほど成長せずに上記の撹拌領域に巻き込まれ、気泡径が1μm未満(特に500nm未満)の微細気泡が効率的に発生する。  Then, as shown in FIG. 11, when the water flow collides with the screw member 10, the reduced pressure precipitation in the valley portion occurs violently and is further entangled in the vortex generated when detouring downstream of the screw member 10. Stir vigorously. Thereby, the remarkable strong stirring area | region SM containing the countless micro eddy current FE is formed in the circumference | surroundings and the immediate downstream area of the collision part 10. FIG. The reduced pressure region where the bubbles are deposited is limited to the vicinity of the valley bottom around the collision part 10, and the high-speed liquid flow passes through the region almost instantaneously. Fine bubbles with a bubble diameter of less than 1 μm (particularly less than 500 nm) are efficiently generated by being caught in the stirring region.

キャビテーション効率ひいては微細気泡発生効率の大小を支配するのは、谷点の絶対数を流路断面積で規格化した谷点密度であるが、管路内の流速は、管軸断面中心付近で最大となり管内壁面位置で最小となる形で、半径方向に放物線状の分布を示す。そこで、全断面内の流速分布を有限要素法によるコンピュータ・シミュレーション等により算出し、谷点の位置ごとに流速に応じた重み係数を定めるのが理想的であるが、シミュレーションには非常な長時間を要する。そこで、この発明では簡易な方式として、衝突部のない断面内で流速が断面中心での最大値のおおむね50%となる位置に上記基準円C70を定め、その基準円の内側の谷点数(70%谷点数)N70に対し、外側の谷点数(70%補谷点数Nc70)を0.38倍に重み付けして加算する。The cavitation efficiency, and therefore the fine bubble generation efficiency, dominates the valley density obtained by normalizing the absolute number of valleys with the channel cross-sectional area, but the flow velocity in the pipe is maximum near the center of the pipe axis cross section. The parabolic distribution is shown in the radial direction in a shape that becomes the minimum at the inner wall surface position. Therefore, it is ideal to calculate the flow velocity distribution in the entire cross-section by computer simulation using the finite element method, etc., and to determine the weighting factor corresponding to the flow velocity for each valley point position, but the simulation takes a very long time. Cost. Therefore, in the present invention, as a simple method, the reference circle C 70 is defined at a position where the flow velocity is approximately 50% of the maximum value at the center of the cross section in the cross section without the collision portion, and the number of valleys inside the reference circle ( The number of valleys on the outside (the number of complementary valley points Nc 70 ) is weighted by 0.38 times and added to the number N of 70% valley points) N 70 .

また、断面中心付近に位置する谷点が実際にキャビテーション効果に有効に寄与するためには、該断面中心付近で期待通りの流速が得られている必要があり、断面中心付近に配置された谷点数は、断面中心付近の流通面積により重み付けを付与して評価する必要がある。70%断面比率σ70の値は、もし衝突部が存在しなければ50%となるから、衝突部を配置した場合も、この70%断面比率の値が50%に近づくほど基準円内側の谷点はより高流速の流れを受けると考え、70%谷点数N70は、σ70/50の値により重みづけされる。そして、谷部の深さhの影響については、基準円の内側・外側に関係なく、前述の(1)式の谷深さ補正係数αにより重み付けされ、有効谷点数Neとして前述の(3)式として算出できる。この有効谷点数Neを前述の処理コア部の全流通断面積Stで規格化した有効谷点密度Ne/Stは、液体処理ノズルの微細気泡発生能力を客観的に数値化する指標となり、該値が1.5個/mm以上確保されているとき、キャビテーション効率ひいては微細気泡の発生効率が、歯科ユニットに洗浄に必要なレベルに確保される。In addition, in order for valley points located near the center of the cross section to effectively contribute to the cavitation effect, it is necessary to obtain the expected flow velocity near the center of the cross section. The score needs to be evaluated by giving a weight to the distribution area near the center of the cross section. The value of the 70% cross-sectional ratio σ 70 is 50% if there is no collision part. Therefore, even when the collision part is arranged, the valley inside the reference circle becomes closer to 50% when the value of the 70% cross-section ratio approaches 50%. point considered receive a flow of higher velocity, 70% valley points N 70, are weighted by the value of sigma 70/50. Then, the influence of the valley depth h is weighted by the valley depth correction coefficient α in the above-described equation (1) regardless of the inside / outside of the reference circle, and the above-mentioned (3) as the effective valley point number Ne. It can be calculated as an equation. The effective valley point density Ne / St obtained by normalizing the effective valley point number Ne with the total flow cross-sectional area St of the processing core portion is an index for objectively quantifying the fine bubble generation capability of the liquid processing nozzle. Of 1.5 / mm 2 or more, the cavitation efficiency, and thus the generation efficiency of fine bubbles, is ensured to a level necessary for cleaning in the dental unit.

また、図2の液体処理ノズル1においては、隔壁部8に複数の絞り部を形成し、その前後の流路区間を、該隔壁部8が区画する流入室6ないし流出室7に集約して、それら複数の絞り部により共有化させる構造を採用することにより、流路が複数系統に分岐する区間は隔壁部8に形成された絞り孔9のみとなる。  Further, in the liquid processing nozzle 1 of FIG. 2, a plurality of throttle portions are formed in the partition wall portion 8, and the flow path sections before and after the constriction portion are concentrated in the inflow chamber 6 or the outflow chamber 7 defined by the partition wall portion 8. By adopting a structure in which the plurality of throttle portions are shared, the section where the flow path branches into a plurality of systems is only the throttle hole 9 formed in the partition wall portion 8.

この構成によれば、絞り孔9の一部につまりを生じても、残余の絞り孔により洗浄水の流通を確保することができる。また、L/deにて定義される絞り孔アスペクト比(図7参照)が3.5以下に設定され、偏流の原因となる分岐区間の長さ、すなわち、衝突部10を配置する絞り孔9の長さを十分短くできる。また、絞り孔変位T(図3参照)が該絞り孔9の内径Dよりも小さくなる程度に、それら絞り孔9が基準点Oの周りに近接配置されており、絞り孔9は、高流速となる隔壁部8の中央に集約されている。その結果、絞り孔9内での流速の低下ないし不均一化が抑制され、偏流を確実に防止することができる。すなわち、衝突部10を有する絞り孔9を複数形成することで十分なキャビテーション効果と十分な流量とを両立することができ、かつ、複数の絞り孔9間での偏流が効果的に抑制され、キャビテーション効果に基づいた微細気泡発生を安定に継続することができる。  According to this configuration, even if clogging occurs in a part of the throttle hole 9, the remaining throttle hole can ensure the flow of cleaning water. Further, the throttle hole aspect ratio (see FIG. 7) defined by L / de is set to 3.5 or less, and the length of the branch section causing the drift, that is, the throttle hole 9 in which the collision portion 10 is arranged. Can be made sufficiently short. Further, the throttle holes 9 are arranged close to the reference point O to such an extent that the throttle hole displacement T (see FIG. 3) is smaller than the inner diameter D of the throttle hole 9. It is gathered in the center of the partition part 8 which becomes. As a result, a decrease in flow velocity or non-uniformity in the throttle hole 9 is suppressed, and drift can be reliably prevented. That is, it is possible to achieve both a sufficient cavitation effect and a sufficient flow rate by forming a plurality of throttle holes 9 having the collision portion 10, and the drift between the plurality of throttle holes 9 is effectively suppressed, The generation of fine bubbles based on the cavitation effect can be continued stably.

さらに、液体処理ノズル1では、Lp/deにて定義される残区間アスペクト比(図7参照)が1.0以下に設定されている。絞り孔9にてそれぞれ衝突部10を通過した液体が流出室7にて合流するまでに、析出気泡を含んだ流れの、流体抵抗の大きい絞り孔9の残区間の通過距離が短くなり、ひいては個々の絞り孔9の衝突部10の下流に生ずる強撹拌領域が流出室7内で一体化するので、気泡の微細化効果がさらに高められる。  Further, in the liquid processing nozzle 1, the remaining section aspect ratio (see FIG. 7) defined by Lp / de is set to 1.0 or less. By the time the liquid that has passed through the impingement part 10 in the throttle hole 9 merges in the outflow chamber 7, the passage distance of the remaining section of the throttle hole 9 with a large fluid resistance of the flow including the precipitated bubbles is shortened. Since the strong stirring region generated downstream of the collision part 10 of each throttle hole 9 is integrated in the outflow chamber 7, the effect of refining the bubbles is further enhanced.

液体処理ノズル1の処理コア部COREにおける全流通断面積の合計が2.2mm以上確保されていることで、うがい時の比較的流量の大きい使用時にも必要な洗浄水量を確保できる。この断面積設定は、例えば処理コア部COREに付加される動水圧レベルが0.07MPa程度のとき、目安として1L(リットル)/分以上の流量が確保できる程度のものである。一方、口腔内洗浄ノズル501(図1)の使用時には、この流量は300cc/分以下と大幅に小さくなる。By ensuring that the total flow cross-sectional area of the processing core part CORE of the liquid processing nozzle 1 is 2.2 mm 2 or more, it is possible to secure a necessary amount of cleaning water even when using a relatively large flow rate during gargle. For example, when the dynamic water pressure level applied to the processing core portion CORE is about 0.07 MPa, the cross-sectional area setting is such that a flow rate of 1 L (liter) / min or more can be secured as a guide. On the other hand, when the intraoral cleaning nozzle 501 (FIG. 1) is used, this flow rate is greatly reduced to 300 cc / min or less.

液体処理ノズル1は前述の有効谷点密度Ne/Stが1.5個/mm以上(望ましくは2.0個/mm以上)確保されていることにより、上記のごとき低流量での通水時にも洗浄性向上効果が十分確保できるので、通水時の配管内部(特に、洗浄水供給チューブ502の内部)へのバイオフィルム等の剥離除去が顕著に進み、またその新たな付着を効果的に抑制できる。また、口腔内に洗浄水が供給されることで、口腔内のバイオフィルムやプラークの除去促進を図ることもできる。The liquid processing nozzle 1 has the above-described effective valley point density Ne / St of 1.5 / mm 2 or more (preferably 2.0 / mm 2 or more). Since sufficient cleaning effect can be ensured even when water is used, the removal and removal of biofilm and the like inside the piping during water flow (especially the inside of the cleaning water supply tube 502) has advanced remarkably, and the new adhesion is also effective. Can be suppressed. Further, by supplying cleaning water into the oral cavity, removal of the biofilm and plaque in the oral cavity can be promoted.

歯科ユニットは、処置のため洗浄水が直接口腔内に適用されるから、特に図1において、口腔内洗浄ノズル501やこれにつながる洗浄水供給チューブ502に対しては高い清浄性が求められる。前述のごとく処置時における口腔内洗浄ノズル501への通水流量は非常に小さく、チューブ内に滞留している少量の洗浄水の消毒成分も、週末や、年末年始、お盆、ゴールデンウィークといった、長期間医院が休業状態となる期間には抜け飛びやすい。このとき、細菌の繁殖ひいてはバイオフィルムの形成が進行しやすく、休み明けに業務が再開されても、チューブ内を流通する洗浄水の流量が小さいので、短時間の水の流通のみでは、一旦形成された粘度の大きいバイオフィルムを完全に除去することは難しい。バイオフィルムは、細菌類が自らの繁殖を保護・活発化するための活動生成物に他ならず、ここに潜む細菌類は、消毒成分を含む水が到来してもバイオフィルムが妨げとなって細菌類への作用が遅れ、除菌効果は十分に発揮されにくい。その結果、営業期間中の水流通をかいくぐって生き延びた細菌類は次の休業期間に活動を活発化し、バイオフィルムを再構築しつつ繁殖を続けてしまうことになる。チューブを含めた配管内は消毒液にて定期的に除菌することが推奨されているが、除菌の実施は休業時に限られやすく、多くの歯科医院では積極的に実施されていないのが現状である。  In the dental unit, since cleaning water is directly applied to the oral cavity for treatment, particularly in FIG. 1, the intraoral cleaning nozzle 501 and the cleaning water supply tube 502 connected thereto are required to have high cleanliness. As described above, the flow rate of water to the intraoral cleaning nozzle 501 at the time of treatment is very small, and the disinfecting component of a small amount of cleaning water staying in the tube can be used for a long period of time such as weekends, year-end and New Year holidays, Obon, and Golden Week. It is easy to skip during periods when the clinic is closed. At this time, the growth of bacteria and thus the formation of a biofilm is likely to proceed, and even if the work is resumed at the end of the day, the flow rate of the washing water flowing through the tube is small. It is difficult to completely remove the produced high viscosity biofilm. Biofilm is nothing but an activity product for bacteria to protect and activate their own breeding. Bacteria lurking here are hindered by the arrival of water containing disinfecting components. The action on bacteria is delayed, and the disinfection effect is not sufficiently exerted. As a result, the bacteria that survived through the water distribution during the business period will become active during the next holiday period and continue to breed while reconstructing the biofilm. It is recommended to disinfect the pipes including tubes regularly with a disinfectant, but disinfection is likely to be limited only during holidays and is not actively implemented in many dental clinics. Currently.

しかし、主洗浄水配管540上に液体処理ノズル1を組み込んでおけば、長期にわたる使用により洗浄水供給チューブ502等にバイオフィルムその他の汚れが相当量堆積した状態になっていても、本発明によると通水流量が小さいにも関わらず、短時間の通水のみでこれを効果的に剥離除去することができる。例えば本発明者らは、これを裏付ける次のような実験を行っている。  However, if the liquid treatment nozzle 1 is incorporated on the main cleaning water pipe 540, even if a considerable amount of biofilm or other dirt is accumulated on the cleaning water supply tube 502 or the like due to long-term use, the present invention Even though the water flow rate is small, it can be effectively peeled and removed by only passing water for a short time. For example, the present inventors have conducted the following experiments to support this.

すなわち、数年以上にわたって使用継続され、洗浄水供給チューブ502の取り外し洗浄も行っていない、図1のタイプの設置済み歯科ユニットの配管ボックス531内に液体処理ノズル1を組み込んだ。液体処理ノズル1は、図2及び図3に示すものであり、絞り孔9の内径:φ2.5mm、衝突部:M1.0並目ピッチ0番1種なべ小ねじ(ステンレス鋼製)、全流通断面積:2つの絞り孔9の合計にて4.0mm、コア部COREの長さ5mm、隔壁部8の外径:φ5mm、ノズル全長70mmである。まず、液体処理ノズル1を取り付けない状態で口腔内洗浄ノズル501の1つを作動させつつ通常の水道水を50cc/分程度の流量で1L程度通じ、口腔内洗浄ノズル501から排出される水を回収した。この水の一般細菌、大腸菌、従属栄養細菌及び総菌数の分析を周知の方法にて実施した。回収水は透明のままであり、一般細菌数は30(CFU/ml)以下、大腸菌は検出されず、であったが、従属栄養細菌数は1.5×10(CFU/ml)、総菌数は10〜10(CFU/ml)に達した。液体処理ノズル1を設置する前の洗浄水の清浄度はこのレベルであったと推定され、歯科治療使用中の通水では細菌類を完全に除去できていないことが伺われる。That is, the liquid processing nozzle 1 was incorporated in the piping box 531 of the installed dental unit of the type shown in FIG. 1, which has been used for several years or more and the cleaning water supply tube 502 has not been removed and cleaned. The liquid treatment nozzle 1 is as shown in FIGS. 2 and 3, the inside diameter of the throttle hole 9: φ2.5 mm, the collision part: M1.0 coarse pitch 0 type 1 pan head screw (stainless steel), all Distribution cross-sectional area: 4.0 mm 2 in total of the two throttle holes 9, core part CORE length 5 mm, partition wall part 8 outer diameter: φ5 mm, nozzle total length 70 mm. First, while operating one of the intraoral cleaning nozzles 501 without attaching the liquid processing nozzle 1, about 1 L of normal tap water is passed at a flow rate of about 50 cc / min, and water discharged from the intraoral cleaning nozzle 501 is discharged. It was collected. Analysis of general bacteria, Escherichia coli, heterotrophic bacteria and the total number of bacteria in this water was performed by a well-known method. The recovered water remained transparent, the number of general bacteria was 30 (CFU / ml) or less, E. coli was not detected, but the number of heterotrophic bacteria was 1.5 × 10 2 (CFU / ml), The number of bacteria reached 10 4 to 10 5 (CFU / ml). It is estimated that the cleanliness of the cleaning water before installing the liquid treatment nozzle 1 was at this level, and it is assumed that the bacteria could not be completely removed by passing water during dental treatment use.

次に、液体処理ノズル1を組み込んで毎日10Lの比率で通水を再開・継続し、所定期間ごとに採水と細菌分析を繰り返した。まず、液体処理ノズル1組み込み後、通水再開直後の水を1L採水したところ、回収水は黄色に濁っていた。液体処理ノズル1を経由した短時間の通水により、チューブ内に堆積したバイオフィルムや汚れが速やかに除去されたことが容易に理解できた。この水の細菌数は、一般細菌数と大腸菌数には変化がなかったが、従属栄養細菌数は9.8×10(CFU/ml)に増加していた。従属栄養細菌数は液体処理ノズル1を経由した通水開始1日後にはさらに増加し、6.5×10(CFU/ml)に達したが、9日後には2.7×10(CFU/ml)に減じ、1カ月後には30以下と、ノズル組み込み前の1/5まで低減できた。また、総菌数も10(CFU/ml)未満となった。ノズル設置後の通水初期にバイオフィルムが一気に剥離し、その剥離したチューブ内面等の潜在菌が放出されて一旦細菌数が高まった後、バイオフィルムの保護を失った後は減少に転じ、液体処理ノズル1による処理水を継続的に通水することで、ほぼ完全に除去できることを意味している。Next, the liquid treatment nozzle 1 was incorporated and water flow was resumed and continued at a rate of 10 L every day, and water collection and bacterial analysis were repeated every predetermined period. First, after the liquid treatment nozzle 1 was assembled, 1 L of water immediately after resuming the water flow was collected, and the recovered water was cloudy yellow. It was easily understood that the biofilm and dirt accumulated in the tube were quickly removed by passing water through the liquid treatment nozzle 1 for a short time. The number of bacteria in this water did not change in the number of general bacteria and the number of E. coli, but the number of heterotrophic bacteria increased to 9.8 × 10 2 (CFU / ml). The number of heterotrophic bacteria further increased 1 day after the start of water passing through the liquid treatment nozzle 1 and reached 6.5 × 10 4 (CFU / ml), but after 9 days, it reached 2.7 × 10 3 ( CFU / ml) was reduced to 30 or less after 1 month, to 1/5 before the nozzle was incorporated. In addition, the total number of bacteria was less than 10 2 (CFU / ml). After the nozzle is installed, the biofilm peels off at once, and after the latent bacteria such as the inner surface of the peeled tube are released and the number of bacteria rises once, it loses the protection of the biofilm. It means that it can be removed almost completely by continuously passing the treated water from the treatment nozzle 1.

次に、図1の歯科ユニット用洗浄水供給装置500においては、主洗浄水配管540から洗浄水が各部に分配供給されるので、その設置施工上の便宜を図るため、主洗浄水配管540の給水分岐部542と止水栓541との間にて、配管ボックス531内に液体処理ノズル1が組み込まれた構造になっている。止水栓541から給水分岐部102に至る区間は短く、配管ボックス531内の空間も電気配線や他の配管等により、歯科ユニットの洗浄改善を図る機構を組み込む上での空間的な制約は多い。  Next, in the dental unit cleaning water supply apparatus 500 of FIG. 1, since cleaning water is distributed and supplied from the main cleaning water pipe 540 to each part, the main cleaning water pipe 540 is provided for the convenience of installation. The liquid processing nozzle 1 is built in the piping box 531 between the water supply branching portion 542 and the stop cock 541. The section from the stop cock 541 to the water supply branching section 102 is short, and the space in the piping box 531 has many spatial restrictions for incorporating a mechanism for improving the cleaning of the dental unit by electric wiring or other piping. .

ところが、歯科ユニット用洗浄水供給装置500における前述の顕著な洗浄能力は、つまるところ、主洗浄水配管540に組み込まれた液体処理ノズル1のみのよってもたらされている。該液体処理ノズル1は、その機能的な要部が、図2に示す溶存空気の減圧析出を担う処理コア部COREに集約されている。該処理コア部COREの流通方向寸法は大きくても10mm程度までであり、洗浄水に顕著な洗浄能力を付与可能するために必要な数の衝突部10(ねじ部材:本実施形態では8本)を、設計的に十分な余裕を持って組み込むことができる。その結果、ノズル本体2の全長も120mm以下程度の寸法に納めることができ、図1に示すごとく、周囲にほとんど空間的な余裕のない1にも、問題なく組み込むことができる。  However, the remarkable cleaning ability of the dental unit cleaning water supply device 500 is brought about by only the liquid treatment nozzle 1 incorporated in the main cleaning water pipe 540. The liquid processing nozzle 1 has a functional main part concentrated in a processing core part CORE responsible for decompression deposition of dissolved air shown in FIG. The flow direction dimension of the processing core part CORE is at most about 10 mm, and the required number of collision parts 10 (screw members: 8 in this embodiment) necessary to give a remarkable cleaning ability to the cleaning water. Can be incorporated with a sufficient margin in design. As a result, the total length of the nozzle main body 2 can also be accommodated within a dimension of about 120 mm or less, and as shown in FIG.

既存の歯科ユニットに液体処理ノズル1を新たに組み込みたい場合は、次のようにする。すなわち、図1の配管ボックス(対象筐体)531の流入側継手部532と流出側継手533とは既設配管部材、施工前の状態では例えば金属製のフレキ管等で直結されている。この状態で止水栓541を閉めて洗浄水の供給を一時的に遮断するとともに、配管ボックス531側の流入側継手部532と流出側継手533とのどちらかにつながる側、例えば流入側継手部532につながる側を取り外して、液体処理ノズル1の対応する継手部(ここでは流入側継手部26)を接続する。こうして既設配管部材は図9の第一配管部材550となる。そして、液体処理ノズル1の残余の継手部27と、配管ボックス531側の残余の継手、ここでは流出側継手533とを、図9の第二配管部材560となる新たな配管部材(例えばフレキ管)で接続することにより、液体処理ノズル1の設置を完了できる。  When it is desired to newly incorporate the liquid processing nozzle 1 into an existing dental unit, the following is performed. That is, the inflow side joint portion 532 and the outflow side joint 533 of the piping box (target housing) 531 of FIG. 1 are directly connected by an existing piping member, for example, a metal flexible pipe or the like in a state before construction. In this state, the stop cock 541 is closed to temporarily shut off the supply of the cleaning water, and the side connected to either the inflow side joint portion 532 or the outflow side joint 533 on the piping box 531 side, for example, the inflow side joint portion The side connected to 532 is removed, and the corresponding joint portion (here, the inflow side joint portion 26) of the liquid processing nozzle 1 is connected. Thus, the existing piping member becomes the first piping member 550 of FIG. Then, the remaining joint portion 27 of the liquid processing nozzle 1 and the remaining joint on the piping box 531 side, here, the outflow side joint 533 are replaced with a new piping member (for example, a flexible pipe) that becomes the second piping member 560 of FIG. ) To complete the installation of the liquid processing nozzle 1.

以下、液体処理ノズルの変形例について列挙する。図2及び図3の液体処理ノズルとの共通点も多いので、共通の構成要素には同一の符号を付与しつつ、おもにその相違点について説明する。まず、図12に示すように、衝突部は、直径方向にねじ込まれる2本のねじ部材10で形成してもよい。この構成では、2本のねじ部材10,10の先端面の間に液体流通ギャップ15を形成している。この構成では、ねじ部材10の先端が絞り孔9の断面中心に近づく分だけ、図13に示すように、基準円C70の内側にて、より中心に近い位置に谷点を配置できていることがわかる。また、衝突部を直径方向の1本のねじ部材130で構成することもできるし、らせん状に一体化されない周方向に閉じた山部及び谷部を複数密接配列したものとして形成してもよい。Hereinafter, modifications of the liquid processing nozzle will be listed. Since there are many common points with the liquid processing nozzle of FIG. 2 and FIG. 3, the same reference numerals are given to common components, and the differences will be mainly described. First, as shown in FIG. 12, the collision part may be formed by two screw members 10 screwed in the diameter direction. In this configuration, the liquid flow gap 15 is formed between the tip surfaces of the two screw members 10 and 10. In this configuration, as shown in FIG. 13, the valley point can be arranged at a position closer to the center inside the reference circle C 70 as much as the tip of the screw member 10 approaches the center of the section of the throttle hole 9. I understand that. In addition, the collision portion can be formed by a single screw member 130 in the diametrical direction, or may be formed as a close arrangement of a plurality of crests and troughs that are not integrated in a spiral shape but are closed in the circumferential direction. .

図14に示すごとく、複数の絞り孔9は、前述の投影において、隔壁部8の中心を含む領域において一部重なるように一体形成してもよい。その重なり領域の投影面積は、各々の絞り孔9の面積の30%以内に収まっていることが望ましい。  As shown in FIG. 14, the plurality of aperture holes 9 may be integrally formed so as to partially overlap in a region including the center of the partition wall portion 8 in the above-described projection. It is desirable that the projected area of the overlap region be within 30% of the area of each aperture 9.

図15に示す液体処理ノズル151では、各絞り孔9に配置する4本のねじ部材10の組を、A−A及びB−B断面に示すごとく、各々同一平面上に配置している。なお、ノズル本体2の両端は雄ねじ継手部16,17としており、外周面はカバー18で覆っているが、ねじ部材10の配置を除いて図5と全く同様に構成することももちろん可能である。  In the liquid processing nozzle 151 shown in FIG. 15, a set of four screw members 10 arranged in each throttle hole 9 is arranged on the same plane as shown in the sections AA and BB. Note that both ends of the nozzle body 2 are male threaded joint portions 16 and 17 and the outer peripheral surface is covered with a cover 18, but it is of course possible to configure exactly the same as in FIG. 5 except for the arrangement of the screw member 10. .

図16は、隔壁部8に対して絞り孔9を3つ形成する例である。3つの絞り孔9の間でねじ部材10の流れ方向の位置は互いにずれて定められている。また、3つの絞り孔9は、前述の投影において、ねじ孔9の内径よりも大きい距離をもって正三角形の各頂点をなす位置に配置されており、十字状の配置をなす4つのねじ部材10の組が、1つの絞り孔9にて残余の絞り孔9の対の側に延びるねじ孔19がそれら絞り孔9の対の間を貫くように、ねじ部材10の組の配置角度が定められている。これにより、すべてのねじ孔19が、絞り孔9と干渉することなく、かつノズル本体2の外周面に開口するように形成できる。  FIG. 16 is an example in which three throttle holes 9 are formed in the partition wall portion 8. The positions of the screw members 10 in the flow direction between the three throttle holes 9 are determined so as to be shifted from each other. Further, in the above-mentioned projection, the three aperture holes 9 are arranged at positions that form the vertices of the equilateral triangle with a distance larger than the inner diameter of the screw hole 9, and the four screw members 10 having a cross-like arrangement are arranged. The arrangement angle of the set of the screw members 10 is determined so that the screw holes 19 extending toward the pair of the remaining throttle holes 9 pass through the pair of the throttle holes 9 in one throttle hole 9. Yes. Accordingly, all the screw holes 19 can be formed so as to open to the outer peripheral surface of the nozzle body 2 without interfering with the throttle hole 9.

図17は、衝突部10Fを、ノズル本体2の隔壁部8と一体に射出成型により形成した例を示す。複数の絞り孔9の衝突部10Fを一体に射出成型するには、すべての衝突部10Fの中心軸線が同一平面上に位置するようにして、流入室を形成するための第一の金型コアと、流出室を形成するための第二の金型コアとの各先端面に衝突部10F及び隔壁部8の成型キャビティを設け、上記平面を分割面としてこれら金型コアを突き合わせた状態で成型を行えばよいのである。なお、衝突部10Fを金属製のねじ部材とし、インサート成型によりノズル本体2と一体化するようにしてもよい。  FIG. 17 shows an example in which the collision portion 10 </ b> F is formed by injection molding integrally with the partition wall portion 8 of the nozzle body 2. In order to integrally mold the collision portions 10F of the plurality of throttle holes 9, the first mold core for forming the inflow chamber so that the central axes of all the collision portions 10F are located on the same plane And a mold cavity of the collision portion 10F and the partition wall portion 8 is provided on each tip surface of the second mold core for forming the outflow chamber, and the mold core is molded in a state where the mold cores are abutted with each other using the plane as a dividing surface. You can do that. The collision portion 10F may be a metal screw member and may be integrated with the nozzle body 2 by insert molding.

図18は、隔壁部8に対して絞り孔9を4つ形成した例である。4つの絞り孔9は、それぞれ直径方向に1本のねじ部材10がねじ込まれて衝突部が形成されている。具体的には4つの絞り孔9は、前述の投影において正方形の各頂点をなす位置に配置されており、ノズル本体2の外周面側から各絞り孔9に対し、ノズル本体2の中心軸線Oに向けて絞り孔9の直径方向にねじ部材10がねじ込まれている。なお、ねじ部材10はインサート成型によりノズル本体2に組み込んでもよく、図17と同様に、ノズル本体2とともに衝突部を射出成型により一体化してもよい。  FIG. 18 shows an example in which four throttle holes 9 are formed in the partition wall portion 8. Each of the four throttle holes 9 has a collision portion formed by screwing one screw member 10 in the diameter direction. Specifically, the four throttle holes 9 are arranged at positions that form the vertices of squares in the above-described projection, and the central axis O of the nozzle body 2 from the outer peripheral surface side of the nozzle body 2 to each throttle hole 9. A screw member 10 is screwed in the diameter direction of the throttle hole 9 toward. The screw member 10 may be incorporated into the nozzle body 2 by insert molding, and the collision portion may be integrated with the nozzle body 2 by injection molding, as in FIG.

図19は、各ねじ部材の対の配置にかかる変形例を示すものである。ここでは、ねじ部材の2つの対10A,10Bのそれぞれにおいて、一方のねじ部材の脚部末端10bを絞り孔9の中央に位置させる一方、その脚部末端10bの周側面に他方のねじ部材の先端面10eを接触(又はギャップを介して対向)させ、絞り孔9の中央に位置する側の脚部末端10b同士を、両対の間でノズル本体2(図2)の軸線方向に互いにずらせて配置している。このようにすると、流速の大きい絞り孔9の中心付近にも、脚部末端10bの谷部を配置することができ、キャビテーション効果、ひいては気泡微細化効果をより高められる。さらに、山部及び谷部は、衝突部の周方向に全周形成されている必要は必ずしもなく、図20に示すように、キャビテーションポイントとしての機能を発揮しにくい流れ方向(白矢印)の下流側において、衝突部10の外周面に軸線方向の溝部10a等を形成することにより、山部11及び谷部12を周方向の一部区間で切り欠いた構成としてもよい。  FIG. 19 shows a modification according to the arrangement of each screw member pair. Here, in each of the two pairs of screw members 10A and 10B, the leg end 10b of one screw member is positioned at the center of the throttle hole 9, while the other screw member is disposed on the peripheral side surface of the leg end 10b. The front end face 10e is brought into contact (or opposed through a gap), and the leg ends 10b on the side located at the center of the throttle hole 9 are shifted from each other in the axial direction of the nozzle body 2 (FIG. 2). Arranged. In this way, the valley portion of the leg end 10b can be arranged near the center of the throttle hole 9 having a high flow velocity, and the cavitation effect and, consequently, the bubble refining effect can be further enhanced. Furthermore, it is not always necessary that the crests and troughs are formed in the entire circumferential direction of the collision part, and as shown in FIG. 20, the downstream of the flow direction (white arrow) that does not easily function as a cavitation point. On the side, by forming an axial groove portion 10a or the like on the outer peripheral surface of the collision portion 10, the peak portion 11 and the valley portion 12 may be cut out in a partial section in the circumferential direction.

また、図21は、絞り孔9が1個のみ形成された液体処理ノズル251を示すものである。ここでも、ノズル本体2の両端は雄ねじ継手部16,17としている。  FIG. 21 shows a liquid processing nozzle 251 in which only one throttle hole 9 is formed. Again, both ends of the nozzle body 2 are male threaded joints 16 and 17.

なお、ねじ部材(衝突部)の先端部は図3等に示すものに限らず、他の種々の形態を採用可能である。たとえば、ねじ部材10の先端部は円錐状に形成してもよく、この場合、液体流通ギャップは十字状に形成される。  In addition, the front-end | tip part of a screw member (impact part) is not restricted to what is shown in FIG. 3 etc., Various other forms are employable. For example, the tip of the screw member 10 may be formed in a conical shape, and in this case, the liquid flow gap is formed in a cross shape.

次に、図22の歯科ユニット用洗浄水供給装置700のごとく、液体処理ノズル1はユニット本体410の筐体に内蔵するようにしてもよい。なお、図22においては、ブロー用のエア供給源434から処置ツール421へエアを供給するためのエア供給部435が、洗浄水供給チューブ502につながる分配配管上に設けられている(図1の歯科ユニット用洗浄水供給装置500においても、図示しない同様のエア供給機構が組み込まれている)。残余の構成については図1と同様であり、共通の部分には同じ符号を付与して詳細な説明は略する。  Next, as in the dental unit cleaning water supply apparatus 700 of FIG. 22, the liquid treatment nozzle 1 may be incorporated in the housing of the unit main body 410. In FIG. 22, an air supply unit 435 for supplying air from the blow air supply source 434 to the treatment tool 421 is provided on the distribution pipe connected to the cleaning water supply tube 502 (FIG. 1). The dental unit cleaning water supply apparatus 500 also incorporates a similar air supply mechanism (not shown). The rest of the configuration is the same as in FIG. 1, and common portions are given the same reference numerals and detailed description thereof is omitted.

51,151,251 液体処理ノズル
2 ノズル本体
O 中心軸線
3 液体流路
4 液体入口
5 液体出口
6 流入室
7 流出室
8 隔壁部
9 絞り孔
10 衝突部(ねじ部材)
CORE 処理コア部
11 山部
12 谷部
15 液体流通ギャップ
20 外接円
26 液体入口側継手
27 液体出口側継手
300 歯科ユニット
410 ユニット本体
400 歯科治療椅子
500,700 歯科ユニット用洗浄水供給装置
501 口腔内洗浄ノズル
502 洗浄水供給チューブ
510 うがい用洗浄水の供給配管
511 うがい用洗浄水の吐出部
531 配管ボックス(対象筐体)
541 止水栓
542 給水分岐部
550 第一配管部材
551 第一継手部
552 第二継手部
560 第二配管部材
563 第三継手部
564 第四継手部
51, 151, 251 Liquid treatment nozzle 2 Nozzle body O Center axis 3 Liquid flow path 4 Liquid inlet 5 Liquid outlet 6 Inflow chamber 7 Outflow chamber 8 Partition portion 9 Restriction hole 10 Collision portion (screw member)
CORE processing core 11 ridge 12 valley 15 liquid flow gap 20 circumscribed circle 26 liquid inlet side joint 27 liquid outlet side joint 300 dental unit 410 unit main body 400 dental treatment chair 500,700 cleaning water supply device 501 for dental unit Cleaning nozzle 502 Cleaning water supply tube 510 Supply pipe 511 for gargle cleaning water Discharge part 531 for gargle cleaning water Piping box (target housing)
541 Water stop cock 542 Water supply branch 550 First piping member 551 First joint portion 552 Second joint portion 560 Second piping member 563 Third joint portion 564 Fourth joint portion

Claims (14)

複数の口腔内洗浄ノズルにつながる洗浄水供給チューブと、うがい用洗浄水の供給配管とに洗浄水を分配供給する歯科ユニット用洗浄水供給装置であって、
前記うがい用洗浄水の吐出部を備えたユニット本体の筐体、又は該ユニット本体に隣接配置された歯科治療椅子に付随する配管ボックス筐体のいずれかを対象筐体として、該対象筐体に全部または一部が内蔵される主洗浄水配管と、
前記主洗浄水配管への洗浄水の供給を開閉する止水栓と、
前記主洗浄水配管の前記対象筐体の内蔵区間上にて、前記洗浄水供給チューブ及び前記うがい用洗浄水の供給配管が各々分岐する給水分岐部と前記止水栓との間に着脱可能に設けられる液体処理ノズルであって、一端に液体入口を、他端に液体出口を有する液体流路が形成されたノズル本体と、前記液体流路の内面から各々突出するとともに外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部を有する処理コア部とを備えた液体処理ノズルと、
を備えたことを特徴とする歯科ユニット用洗浄水供給装置。
A cleaning water supply device for a dental unit that distributes cleaning water to a cleaning water supply tube connected to a plurality of intraoral cleaning nozzles and a supply pipe for gargle cleaning water,
Either the case of the unit main body provided with the discharge part for washing water for gargle or the piping box case attached to the dental treatment chair arranged adjacent to the unit main body is used as the target case. A main wash water pipe, all or part of which is built in;
A stop cock that opens and closes the supply of cleaning water to the main cleaning water pipe;
On the built-in section of the target casing of the main cleaning water pipe, the cleaning water supply tube and the gargle cleaning water supply pipe can be detachably attached between the water supply branch portion and the stop cock. A liquid processing nozzle provided with a liquid main body having a liquid inlet at one end and a liquid outlet at the other end; a nozzle body protruding from the inner surface of the liquid flow path; A liquid processing nozzle including a processing core portion having a collision portion formed so that a plurality of valley portions and valley portions serving as high flow velocity portions are alternately connected, and
A cleaning water supply device for a dental unit, comprising:
前記液体処理ノズルは、前記液体流路の中心軸線と直交する平面への投影において、前記処理コア部における前記液体流路の投影領域の外周縁内側の全面積をS1、前記衝突部の投影領域面積をS2として、前記処理コア部の全流通断面積Stを、
St=S1−S2 (単位:mm
として定義したとき、前記液体入口及び前記液体出口の断面積が前記全流通断面積Stよりも大きく設定され、前記谷部の最底位置を表す谷点のうち、前記中心軸線の投影点を中心として前記液体流路の内周縁までの距離の70%に相当する半径にて描いた基準円の内側に位置するものの数をN70(個)、前記基準円の外側に位置するものの数をNc70(個)とし、谷深さ補正係数αを
h≧0.35mmのときα=1、
h<0.35mmのとき、α=−60h+41h−6
として定め、前記衝突部の投影外形線に現れる前記谷部の深さhが0.2mm以上に設定されるとともに、前記投影にて前記全流通断面積の領域のうち前記基準円の内側に位置する部分の面積をS70(単位:mm)として、70%断面比率σ70を、
σ70=S70/St×100(%)
として定め、有効谷点数Neを
Ne=α・(0.38Nc70+(σ70/50)・N70
として定義したとき、Ne/Stで表される有効谷点密度が1.5個/mm以上確保されている請求項1記載の歯科ユニット用洗浄水供給装置。
In the projection onto the plane orthogonal to the central axis of the liquid flow path, the liquid processing nozzle has S1 as the total area inside the outer periphery of the projection area of the liquid flow path in the processing core portion, and the projection area of the collision portion Assuming that the area is S2, the total flow sectional area St of the processing core part is
St = S1-S2 (unit: mm 2 )
When the cross-sectional area of the liquid inlet and the liquid outlet is set to be larger than the total flow cross-sectional area St, and the projection point of the central axis is centered among the trough points representing the bottom position of the trough portion. As for N 70 (pieces), the number of those located inside the reference circle drawn with a radius corresponding to 70% of the distance to the inner peripheral edge of the liquid flow path, and Nc as the number of those located outside the reference circle 70 (pieces), and when the valley depth correction coefficient α is h ≧ 0.35 mm, α = 1.
When h <0.35 mm, α = −60h 2 + 41h−6
And the depth h of the valley that appears in the projected outline of the collision portion is set to 0.2 mm or more, and the projection is located inside the reference circle in the region of the total flow cross-sectional area. The area of the portion to be processed is S 70 (unit: mm 2 ), and the 70% cross-sectional ratio σ 70 is
σ 70 = S 70 / St × 100 (%)
As stated, the effective valley points Ne Ne = α · (0.38Nc 70 + (σ 70/50) · N 70)
The cleaning water supply device for a dental unit according to claim 1, wherein an effective valley point density represented by Ne / St is 1.5 or more per mm 2 when defined as.
前記液体処理ノズルは、前記処理コア部における前記液体流路の断面形状は内径Dが2.0mm以上4.5mm以下の円形であり、前記全流通断面積の合計が2.2mm以上10mm以下に設定されている請求項2記載の歯科ユニット用洗浄水供給装置。In the liquid processing nozzle, the cross-sectional shape of the liquid flow path in the processing core portion is a circle having an inner diameter D of 2.0 mm to 4.5 mm, and the total cross-sectional area of the total flow is 2.2 mm 2 to 10 mm 2. The washing | cleaning water supply apparatus for dental units of Claim 2 set as follows. 前記液体処理ノズルは、前記衝突部は外径Mが1.0mm以上2.0mm以下のJIS並目ピッチによるねじ部材である請求項3記載の歯科ユニット用洗浄水供給装置。  4. The cleaning water supply device for a dental unit according to claim 3, wherein the liquid processing nozzle is a screw member having a JIS coarse pitch with an outer diameter M of 1.0 mm to 2.0 mm. 前記液体処理ノズルは、前記衝突部が前記流路断面内にて直径方向に横切るように配置されている請求項1ないし請求項3のいずれか1項に記載の歯科ユニット用洗浄水供給装置。  The cleaning liquid supply device for a dental unit according to any one of claims 1 to 3, wherein the liquid processing nozzle is arranged so that the collision portion crosses the diameter direction in the cross section of the flow path. 前記液体処理ノズルにおいて前記衝突部は前記投影において前記中心軸線を取り囲む十字形態に4つ配置されている請求項1ないし請求項3のいずれか1項に記載の歯科ユニット用洗浄水供給装置。  4. The cleaning water supply device for a dental unit according to claim 1, wherein four collision portions are arranged in a cross shape surrounding the central axis in the projection in the liquid processing nozzle. 5. 前記液体処理ノズルは、4つの前記衝突部が形成する十字の中心位置に液体流通ギャップが形成され、前記70%断面比率σ70が40%以上確保されている請求項6記載の歯科ユニット用洗浄水供給装置。The dental unit cleaning according to claim 6, wherein the liquid processing nozzle has a liquid flow gap formed at a central position of a cross formed by the four collision portions, and the 70% cross-sectional ratio σ 70 is secured by 40% or more. Water supply device. 前記液体処理ノズルは、記液体流路を液体入口側の流入室と液体出口側の流出室とに区画する隔壁部と、前記隔壁部に貫通形成され前記流入室と前記流出室とを互いに別経路にて連通させる複数の絞り孔とを備え、前記処理コア部は、複数の前記絞り孔の内面から各々突出する形で前記衝突部が形成されている請求項1ないし請求項7のいずれか1項に記載の歯科ユニット用洗浄水供給装置。  The liquid processing nozzle includes a partition wall that divides the liquid flow path into an inflow chamber on the liquid inlet side and an outflow chamber on the liquid outlet side, and is formed through the partition wall to separate the inflow chamber and the outflow chamber from each other. 8. The apparatus according to claim 1, further comprising a plurality of throttle holes communicating with each other through the path, wherein the collision portion is formed so that the processing core portion protrudes from an inner surface of the plurality of throttle holes. The cleaning water supply device for a dental unit according to Item 1. 前記液体処理ノズルにおいて前記絞り孔は、それら絞り孔の軸断面積の合計と等価な円の直径をde、前記絞り孔の長さをLとして、L/deにて定義される絞り孔アスペクト比が3.5以下に設定されてなり、かつ、前記ノズル本体の前記軸線と直交する平面への投影において、前記隔壁部の投影領域の中心位置に定められた基準点から複数の前記絞り孔の内周縁までの距離Tが該絞り孔の内径dよりも小さくなる程度に近接配置されてなる請求項8記載の歯科ユニット用洗浄水供給装置。  In the liquid processing nozzle, the throttle hole has a throttle hole aspect ratio defined by L / de, where de is the diameter of a circle equivalent to the sum of the axial sectional areas of the throttle holes, and L is the length of the throttle hole. Is set to 3.5 or less, and in the projection onto the plane orthogonal to the axis of the nozzle body, a plurality of the restriction holes are formed from a reference point defined at the center position of the projection area of the partition wall. The cleaning water supply device for a dental unit according to claim 8, wherein the cleaning water supply device for the dental unit is disposed so close that the distance T to the inner peripheral edge is smaller than the inner diameter d of the throttle hole. 前記液体処理ノズルは、前記処理コア部の流通方向長さが10mm以下、前記ノズル本体の全長が120mm以下に構成されている請求項1ないし請求項9のいずれか1項に記載の歯科ユニット用洗浄水供給装置。  The dental treatment unit according to any one of claims 1 to 9, wherein the liquid treatment nozzle is configured such that a flow direction length of the treatment core portion is 10 mm or less and a total length of the nozzle body is 120 mm or less. Wash water supply device. 前記主洗浄水配管は、両端に形成された第一継手部及び第二継手部が各々前記対象筐体の流入側継手部と前記液体処理ノズルの液体入口側継手とに接続される第一配管部材と、両端に形成された第三継手部及び第四継手部が各々前記液体処理ノズルの液体出口側継手と前記対象筐体の流出側継手部とに接続される第二配管部材とを備える請求項1ないし請求項10のいずれか1項に記載の歯科ユニット用洗浄水供給装置。  The main cleaning water pipe is a first pipe in which a first joint portion and a second joint portion formed at both ends are respectively connected to an inflow side joint portion of the target casing and a liquid inlet side joint of the liquid processing nozzle. A second pipe member connected to the liquid outlet side joint of the liquid processing nozzle and the outflow side joint part of the target casing, respectively, and a third joint part and a fourth joint part formed at both ends of the member The washing | cleaning water supply apparatus for dental units of any one of Claim 1 thru | or 10. 前記第一配管部材および前記第二配管部材の一方は、前記対象筐体の前記流入側継手部と前記流出側継手部とを直結していた既設配管部材が流用されたものである請求項11記載の歯科ユニット用洗浄水供給装置。  12. One of the first piping member and the second piping member is obtained by diverting an existing piping member that directly connects the inflow side joint portion and the outflow side joint portion of the target housing. The cleaning water supply device for a dental unit as described. 複数の口腔内洗浄ノズルにつながる洗浄水供給チューブと、うがい用洗浄水の供給配管とに洗浄水を分配供給する歯科ユニット用洗浄水供給装置であって、
止水栓を有し、該止水栓よりも下流にて前記洗浄水供給チューブと前記うがい用洗浄水の供給配管に前記洗浄水を分配する主洗浄水配管と、
該主洗浄水配管上にて、前記洗浄水供給チューブ及び前記うがい用洗浄水の供給配管が各々分岐する給水分岐部と前記止水栓との間に着脱可能に設けられ、一端に液体入口を、他端に液体出口を有する液体流路が形成されたノズル本体と、前記液体流路の内面から各々突出するとともに外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部を有する処理コア部とを備え、前記液体流路の中心軸線と直交する平面への投影において、前記処理コア部における前記液体流路の投影領域の外周縁内側の全面積をS1、前記衝突部の投影領域面積をS2として、前記処理コア部の全流通断面積Stを、
St=S1−S2 (単位:mm
として定義したとき、前記液体入口及び前記液体出口の断面積が前記全流通断面積Stよりも大きく設定され、前記谷部の最底位置を表す谷点のうち、前記中心軸線の投影点を中心として前記液体流路の内周縁までの距離の70%に相当する半径にて描いた基準円の内側に位置するものの数をN70(個)、前記基準円の外側に位置するものの数をNc70(個)とし、谷深さ補正係数αを
h≧0.35mmのときα=1、
h<0.35mmのとき、α=−60h+41h−6
として定め、前記衝突部の投影外形線に現れる前記谷部の深さhが0.2mm以上に設定されるとともに、前記投影にて前記全流通断面積の領域のうち前記基準円の内側に位置する部分の面積をS70(単位:mm)として、70%断面比率σ70を、
σ70=S70/St×100(%)
として定め、有効谷点数Neを
Ne=α・(0.38Nc70+(σ70/50)・N70
として定義したとき、Ne/Stで表される有効谷点密度が1.5個/mm以上確保されてなる液体処理ノズルと、
を備えたことを特徴とする歯科ユニット用洗浄水供給装置。
A cleaning water supply device for a dental unit that distributes cleaning water to a cleaning water supply tube connected to a plurality of intraoral cleaning nozzles and a supply pipe for gargle cleaning water,
A main wash water pipe having a stop cock and distributing the wash water to the wash water supply tube and the gargle wash water supply pipe downstream of the stop cock;
On the main washing water pipe, the washing water supply tube and the gargle washing water supply pipe are detachably provided between the water supply branching portion and the stop cock, respectively, and a liquid inlet is provided at one end. , A nozzle body having a liquid channel having a liquid outlet at the other end, and a plurality of crests protruding from the inner surface of the liquid channel and having circumferential crests and high-flow velocity troughs on the outer circumferential surface. And a processing core portion having a collision portion formed so as to be connected to the inner periphery of the projection area of the liquid flow path in the processing core portion in the projection onto a plane orthogonal to the central axis of the liquid flow path. , S1 is the projected area of the collision portion, and S2 is the total flow cross-sectional area St of the processing core portion,
St = S1-S2 (unit: mm 2 )
When the cross-sectional area of the liquid inlet and the liquid outlet is set to be larger than the total flow cross-sectional area St, and the projection point of the central axis is centered among the trough points representing the bottom position of the trough portion. As for N 70 (pieces), the number of those located inside the reference circle drawn with a radius corresponding to 70% of the distance to the inner peripheral edge of the liquid flow path, and Nc as the number of those located outside the reference circle 70 (pieces), and when the valley depth correction coefficient α is h ≧ 0.35 mm, α = 1.
When h <0.35 mm, α = −60h 2 + 41h−6
And the depth h of the valley that appears in the projected outline of the collision portion is set to 0.2 mm or more, and the projection is located inside the reference circle in the region of the total flow cross-sectional area. The area of the portion to be processed is S 70 (unit: mm 2 ), and the 70% cross-sectional ratio σ 70 is
σ 70 = S 70 / St × 100 (%)
As stated, the effective valley points Ne Ne = α · (0.38Nc 70 + (σ 70/50) · N 70)
A liquid treatment nozzle in which an effective valley point density represented by Ne / St is secured to 1.5 pieces / mm 2 or more when defined as
A cleaning water supply device for a dental unit, comprising:
請求項1ないし請求項13のいずれか1項に記載の歯科ユニット用洗浄水供給装置に組み込んで使用される液体処理ノズルであって、
一端に液体入口を、他端に液体出口を有する液体流路が形成されるとともに、前記主洗浄水配管側の継手部に着脱可能に係合するノズル側係合部が前記液体入口側及び前記液体出口側に各々設けられたノズル本体と、前記液体流路の内面から各々突出するとともに外周面に周方向の山部と高流速部となる谷部とが複数交互に連なるように形成された衝突部を有する処理コア部とを備えた液体処理ノズルと、
を備えたことを特徴とする歯科ユニット用液体処理ノズル。
A liquid processing nozzle used by being incorporated in the cleaning water supply device for a dental unit according to any one of claims 1 to 13,
A liquid flow path having a liquid inlet at one end and a liquid outlet at the other end is formed, and a nozzle side engaging portion that removably engages a joint portion on the main washing water piping side includes the liquid inlet side and the Each nozzle body provided on the liquid outlet side, each protruding from the inner surface of the liquid flow path, and formed on the outer peripheral surface so that a plurality of circumferential ridges and valleys serving as high flow velocity portions are alternately connected. A liquid processing nozzle including a processing core portion having a collision portion;
A liquid processing nozzle for a dental unit, comprising:
JP2016229507A 2016-11-09 2016-11-09 Washing water supply device for dental unit and liquid treatment nozzle used for it Active JP6770276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016229507A JP6770276B2 (en) 2016-11-09 2016-11-09 Washing water supply device for dental unit and liquid treatment nozzle used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229507A JP6770276B2 (en) 2016-11-09 2016-11-09 Washing water supply device for dental unit and liquid treatment nozzle used for it

Publications (2)

Publication Number Publication Date
JP2018075334A true JP2018075334A (en) 2018-05-17
JP6770276B2 JP6770276B2 (en) 2020-10-14

Family

ID=62148763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229507A Active JP6770276B2 (en) 2016-11-09 2016-11-09 Washing water supply device for dental unit and liquid treatment nozzle used for it

Country Status (1)

Country Link
JP (1) JP6770276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075260A1 (en) 2019-10-18 2021-04-22 早稲田ビジネスコンサルティング株式会社 Liquid treatment nozzle for purifying liquid pipe of dental device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253534A (en) * 1998-03-12 1999-09-21 Morita Mfg Co Ltd Method and device for liquid sterilization used for medical treatment device
JP2008295887A (en) * 2007-06-01 2008-12-11 Shinwa:Kk Washing water supply apparatus for dental unit
KR20110089216A (en) * 2010-01-30 2011-08-05 박성종 Cleaning system for water pipe of dental unit chair
US20130034829A1 (en) * 2010-04-23 2013-02-07 Jeng Soo Choi Nano bubble generating nozzle and oral cleaning device including the same
JP2013215421A (en) * 2012-04-10 2013-10-24 Shibata:Kk Showerhead
JP2015174055A (en) * 2014-03-17 2015-10-05 株式会社シバタ Gas dissolution device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253534A (en) * 1998-03-12 1999-09-21 Morita Mfg Co Ltd Method and device for liquid sterilization used for medical treatment device
JP2008295887A (en) * 2007-06-01 2008-12-11 Shinwa:Kk Washing water supply apparatus for dental unit
KR20110089216A (en) * 2010-01-30 2011-08-05 박성종 Cleaning system for water pipe of dental unit chair
US20130034829A1 (en) * 2010-04-23 2013-02-07 Jeng Soo Choi Nano bubble generating nozzle and oral cleaning device including the same
JP2013215421A (en) * 2012-04-10 2013-10-24 Shibata:Kk Showerhead
JP2015174055A (en) * 2014-03-17 2015-10-05 株式会社シバタ Gas dissolution device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075260A1 (en) 2019-10-18 2021-04-22 早稲田ビジネスコンサルティング株式会社 Liquid treatment nozzle for purifying liquid pipe of dental device
EP4046593A4 (en) * 2019-10-18 2023-10-25 Waseda Business Consulting Co., Ltd. Liquid treatment nozzle for purifying liquid pipe of dental device

Also Published As

Publication number Publication date
JP6770276B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6182715B2 (en) Liquid processing nozzle, liquid processing method, gas dissolving method and gas dissolving apparatus using the same
US9308504B2 (en) Micro-bubble generating device
CN104394970B (en) A kind of equipment for generation of nano bubble
JP7040697B2 (en) Bubble generator
WO2019212028A1 (en) Microbubble generation device
CN204502827U (en) A kind of device for generation of nano bubble
JP2018075334A (en) Washing water supply device for dental unit and liquid treatment nozzle used therefor
KR20150026013A (en) bubble shower device
JP6108209B2 (en) Fine bubble generation nozzle
JP4710517B2 (en) Shower equipment
AU2013353103B2 (en) Aeration nozzle, and blockage removal method for said aeration nozzle
JP2008114099A (en) Microbubble generation device and bubble fining implement
JP2008114098A (en) Microbubble generation nozzle and microbubble generation device
KR100887293B1 (en) Micro bubble nozzle
JP2008289993A (en) Bubble generator
WO2008140139A1 (en) Micro bubble occurrence nozzle
JP2015139768A (en) bubble generator
JP7399408B2 (en) Liquid handling nozzle to purify liquid piping of dental equipment
JP2008264613A (en) Water purification device
JP2000166869A (en) Endoscope cleaning device
JP7338926B1 (en) microbubble generator
JP3246452U (en) Oral irrigator nozzle and oral irrigator
JP2023164011A (en) Ultrafine bubble generator, shower head having the same built therein and cartridge for water faucet
JP2006025602A (en) Irrigation water activating device
JP2023079377A (en) Shower head and washing method using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190628

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6770276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250