JP7370534B2 - liquid processing equipment - Google Patents

liquid processing equipment Download PDF

Info

Publication number
JP7370534B2
JP7370534B2 JP2019096414A JP2019096414A JP7370534B2 JP 7370534 B2 JP7370534 B2 JP 7370534B2 JP 2019096414 A JP2019096414 A JP 2019096414A JP 2019096414 A JP2019096414 A JP 2019096414A JP 7370534 B2 JP7370534 B2 JP 7370534B2
Authority
JP
Japan
Prior art keywords
liquid
screw
flow path
gas
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019096414A
Other languages
Japanese (ja)
Other versions
JP2020189274A (en
Inventor
廣雄 武居
啓雄 加藤
Original Assignee
株式会社リスニ
株式会社アクアフューチャー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リスニ, 株式会社アクアフューチャー研究所 filed Critical 株式会社リスニ
Priority to JP2019096414A priority Critical patent/JP7370534B2/en
Publication of JP2020189274A publication Critical patent/JP2020189274A/en
Application granted granted Critical
Publication of JP7370534B2 publication Critical patent/JP7370534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Description

この発明は、気体を溶存させた液体をキャビテーション処理するための液体処理装置に関する。 The present invention relates to a liquid treatment device for performing cavitation treatment on liquid in which gas is dissolved.

水の流路にベンチュリやオリフィスにより絞り部を設け、水が高流速化して通過する際の減圧効果により溶存空気を微細気泡として析出させるノズルが種々提案されている(特許文献1~6)。特に、特許文献1、2に開示された方式は、流路の途中にねじ部材を配置し、そのねじ谷、あるいは対向するねじ部材間に形成されたギャップにて水流のさらなる高速化を図るものであり、キャビテーション効率を向上させてより高密度に微罪気泡を発生できる旨が謳われている。 Various nozzles have been proposed in which a constriction section is provided in the water flow path using a venturi or orifice, and dissolved air is precipitated as fine bubbles by the depressurizing effect when water passes through at a high flow rate (Patent Documents 1 to 6). In particular, the systems disclosed in Patent Documents 1 and 2 are those in which a threaded member is arranged in the middle of a flow path, and the water flow is further increased in speed by the thread valley or the gap formed between the opposing threaded members. It is said that it can improve cavitation efficiency and generate microbubbles at a higher density.

また、特許文献1、2が開示するノズルは、ねじ部材と液流との衝突と、キャビテーションに伴う溶存気体の減圧沸騰とにより、ねじ部材の周囲に顕著な乱流攪拌領域が形成され、ここに液体と気体の混相流に供給することで、気体を液体に対し効率的に溶解することが可能である。この溶解により新たに液体に溶解した気体は、ねじ部材との接触により再度キャビテーションにより気泡化しうる。例えば溶存空気量が欠乏した被処理水を用いる場合においても、混相流の形で空気を供給しながらノズルを通過させることにより溶存空気量を補うことができ、十分なキャビテーション処理が可能となる。 Further, in the nozzles disclosed in Patent Documents 1 and 2, a remarkable turbulent agitation region is formed around the threaded member due to the collision between the threaded member and the liquid flow and the reduced pressure boiling of dissolved gas accompanying cavitation. By supplying the gas to a multiphase flow of liquid and gas, it is possible to efficiently dissolve the gas in the liquid. The gas newly dissolved in the liquid due to this dissolution can become bubbles again due to cavitation when it comes into contact with the screw member. For example, even when using water to be treated that lacks the amount of dissolved air, the amount of dissolved air can be supplemented by passing through the nozzle while supplying air in the form of a multiphase flow, making it possible to perform sufficient cavitation treatment.

WO2016-178436号公報WO2016-178436 publication WO2016-195116号公報WO2016-195116 publication 特開2018-144018号公報JP 2018-144018 Publication

特許文献1~3においては、ノズルに供給する混相流を形成する手段として、ノズル本体に形成された気体導入孔を介して、ねじ部材を配置した絞り部(キャビテーション処理部)に気体を直接導入するか、ノズルの上流側に設けたティー継手やベンチュリエジェクタにより近液混合する方法が採用されている。しかし、この方法では、ねじ部材と接触ずる気泡(気相)のサイズが大きくなりすぎ、液体への気体の溶解効率が悪い欠点がある。この場合、溶存気体量が欠乏した被処理液体を用いる場合、混相流の形で外部から気体を補っても、該気体の溶解が進みにくければ、十分なキャビテーションを生じさせることは期待できない。 In Patent Documents 1 to 3, as a means for forming a multiphase flow to be supplied to a nozzle, gas is directly introduced into a constriction part (cavitation treatment part) in which a screw member is arranged through a gas introduction hole formed in the nozzle body. Alternatively, a method of near-liquid mixing using a tee joint or venturi ejector provided upstream of the nozzle is adopted. However, this method has the drawback that the size of the bubbles (gas phase) that come into contact with the screw member becomes too large, and the efficiency of gas dissolution into the liquid is poor. In this case, when using a liquid to be treated that is deficient in the amount of dissolved gas, even if the gas is supplemented from the outside in the form of a multiphase flow, if the dissolution of the gas is difficult to proceed, sufficient cavitation cannot be expected to occur.

本発明の課題は、ねじ部材を用いてキャビテーション処理を行なう構造の液体処理ノズルを用いた気体溶解処理を、従来よりも大幅に効率的に行うことができ、溶存気体量が欠乏した被処理液体を用いる場合においても、十分なキャビテーションを生じさせることができる液体処理装置を提供することにある。 An object of the present invention is to be able to perform gas dissolution treatment using a liquid treatment nozzle having a structure in which cavitation treatment is performed using a threaded member much more efficiently than before, and to solve the problem of dissolving a liquid to be treated which is deficient in dissolved gas amount. An object of the present invention is to provide a liquid treatment device that can generate sufficient cavitation even when using a liquid treatment device.

上記の課題を解決するために、本発明の液体処理装置は、
一端に液体入口を、他端に液体出口を有する単一の液体流路が形成されるとともに、該液体流路の一部区間がキャビテーション処理部として定められたノズル本体と、キャビテーション処理部にてノズル本体に脚部先端側が流路内側に突出するように組付けられる複数のねじ部材とを備え、気体が溶存した液体を液体入口から液体出口に向けて流通させ、キャビテーション処理部にてねじ部材の脚部外周面に形成されたねじ谷に液体を増速しつつ接触させることにより、該液体に溶存ガスの減圧析出に基づくキャビテーション処理を行なうようにした液体処理ノズルと、
一端に流入口、他端に流出口が形成される中空の外筒部材と、外筒部材の内側に設けられ、流入口と流出口とをつなぐ螺旋状流路を、該螺旋状流路の螺旋軸線が外筒部材の中心軸線に沿うように形成する流路形成部材とを備え、螺旋状流路が液体処理ノズルの液体流路に連通するように、液体処理ノズルの液体入口側に設けられる気液ミキサーと、
気液ミキサーの流入口に、気体と液体との混相流を供給する混相流供給部とを備え、
混相流中の気泡を、気液ミキサーの螺旋状流路内を流通させることにより微粉砕しつつ液体処理ノズルに供給し、キャビテーション処理部に生ずる乱流域に微粉砕された気体を巻き込ませて溶解させるようにしたことを特徴とする。
In order to solve the above problems, the liquid processing device of the present invention includes:
A single liquid flow path having a liquid inlet at one end and a liquid outlet at the other end is formed, and a part of the liquid flow path is formed between a nozzle body defined as a cavitation treatment section and a cavitation treatment section. The nozzle body is equipped with a plurality of threaded members that are attached to the nozzle body so that the tip ends of the legs protrude inside the flow path, and the liquid in which gas is dissolved flows from the liquid inlet to the liquid outlet. A liquid processing nozzle that performs cavitation treatment on the liquid based on reduced pressure precipitation of dissolved gas by bringing the liquid into contact with the thread valley formed on the outer circumferential surface of the leg while increasing the speed;
A hollow outer cylinder member having an inlet at one end and an outlet at the other end, and a spiral flow path provided inside the outer cylinder member connecting the inlet and the outlet. a flow path forming member whose helical axis is formed along the central axis of the outer cylindrical member, and provided on the liquid inlet side of the liquid processing nozzle so that the spiral flow path communicates with the liquid flow path of the liquid processing nozzle. a gas-liquid mixer,
A multiphase flow supply section that supplies a multiphase flow of gas and liquid to the inlet of the gas-liquid mixer,
The air bubbles in the multiphase flow are pulverized by flowing through the spiral flow path of the gas-liquid mixer and then supplied to the liquid processing nozzle, and the pulverized gas is drawn into the turbulent area generated in the cavitation treatment section and dissolved. It is characterized by being made to do.

上記本発明に使用される液体処理ノズルは、液体がねじ部材に衝突してその下流に迂回する際に、ねじ谷内にて絞られることにより増速してキャビテーションを起こすので、液体の溶存ガス成分は負圧により過飽和となり、気泡を析出しつつ液体を激しく撹拌し乱流域を生ずる。このとき、乱流域に供給する液体に気相(気体)を混合して混相流となすことで、上記攪拌により気液混合・攪拌が進行し、気相成分(気体成分)の液体への溶解が進行する。しかし、混相流がねじ部材に衝突する際に、ねじ谷の内側空間の全体が大きな気泡で覆われてしまうと、溶存気体を含有した液体とねじ谷との接触効率が下がり、キャビテーション効率の大幅な低下につながる(つまり、そのねじ谷は、キャビテーションポイントとして有効なねじ谷としての機能を失う)。その結果、気相成分の混合・攪拌の駆動力を生ずる乱流域の形成が顕著でなくなり、気体溶解効率が低下することにつながる。また、キャビテーション処理特有の液体の浸透性あるいは洗浄性等を向上させる効果が損なわれやすくなる場合もある。 In the liquid processing nozzle used in the present invention, when the liquid collides with the threaded member and detours downstream, it is throttled in the thread trough, increasing the speed and causing cavitation, so dissolved gas components of the liquid The liquid becomes supersaturated due to negative pressure, and bubbles are precipitated while the liquid is violently agitated, creating a turbulent region. At this time, by mixing the gas phase (gas) with the liquid supplied to the turbulent region to form a multiphase flow, the above stirring progresses gas-liquid mixing and agitation, and the gas phase components (gas components) are dissolved in the liquid. progresses. However, when the multiphase flow collides with a threaded member, if the entire inner space of the thread valley is covered with large bubbles, the contact efficiency between the liquid containing dissolved gas and the thread valley decreases, and the cavitation efficiency is significantly reduced. (i.e., the thread valley loses its function as an effective thread valley as a cavitation point). As a result, the formation of a turbulent region that generates the driving force for mixing and stirring gas phase components becomes less pronounced, leading to a decrease in gas dissolution efficiency. Furthermore, the effect of improving liquid permeability or cleaning performance, which is unique to cavitation treatment, may be easily impaired.

しかし、本発明の液体処理装置においては、液体処理ノズルの上流側に螺旋状流路を有した気液ミキサーを設ける。これにより、混相流は気液ミキサーの螺旋状流路内を流通させることにより、強制的に生ずる螺旋流の遠心力により気相と液相との攪拌・混合が進むので、気相は細かい気泡に粉砕された状態で液体処理ノズルのねじ部材に供給される。これにより、気体を含有した液体とねじ谷との接触効率が上昇し、気体溶解効率を高めることができる。 However, in the liquid processing apparatus of the present invention, a gas-liquid mixer having a spiral flow path is provided upstream of the liquid processing nozzle. As a result, the multiphase flow is passed through the spiral flow path of the gas-liquid mixer, and the centrifugal force of the forcedly generated spiral flow promotes stirring and mixing of the gas and liquid phases, so the gas phase is made up of fine bubbles. It is supplied to the threaded member of the liquid treatment nozzle in a pulverized state. As a result, the contact efficiency between the gas-containing liquid and the thread valley can be increased, and the gas dissolution efficiency can be increased.

気液ミキサーは、ねじ部材のねじピッチをh(mm)として気泡を、1.5h以下の気泡径に微粉砕するように構成することが望ましい。気液ミキサーでの微粉砕により得られる気泡径が1.5hを超えると、気体溶解効率の改善効果が顕著でなくなる場合がある。該気泡径は、より望ましくは1.0h以下であるのがよい。また、該気泡径の下限値に制限はないが、螺旋状流路を有した気液ミキサーによる混合攪拌の場合、0.2h程度が粉砕の限界となる場合もあり得る。 The gas-liquid mixer is desirably configured to finely pulverize bubbles to a bubble diameter of 1.5 h or less, with the thread pitch of the screw member being h (mm). If the diameter of the bubbles obtained by pulverization in the gas-liquid mixer exceeds 1.5 hours, the effect of improving gas dissolution efficiency may not be significant. The bubble diameter is more preferably 1.0 h or less. Further, there is no limit to the lower limit of the bubble diameter, but in the case of mixing and stirring using a gas-liquid mixer having a spiral flow path, about 0.2 hours may be the limit for pulverization.

気液ミキサーの流路形成部材は、帯状の金属板の幅方向の中心軸線を螺旋軸線とする形で該金属板をねじり加工したねじり板部材として構成できる。このようなねじり板部材を用いることで、気液ミキサーの螺旋状流路を簡単かつ安価に形成することができる。また、該ねじり板部材を用いることで螺旋状流路は、ねじり板部材の第一主面と外筒部材の円筒状の内周面との間の空間がなす第一螺旋状流路と、ねじり板部材の第二主面と外筒部材の円筒状の内周面との間の空間がなす第二螺旋状流路とからなるものとして構成できる。これにより、ねじり板部材の両側に、回転位相の異なる螺旋流を2系統形成でき、気相の粉砕効率を簡単な構造によりさらに向上できる。 The flow path forming member of the gas-liquid mixer can be configured as a twisted plate member obtained by twisting a band-shaped metal plate so that the central axis in the width direction of the metal plate is the helical axis. By using such a twisted plate member, the spiral flow path of the gas-liquid mixer can be easily and inexpensively formed. Further, by using the twisted plate member, the spiral flow path is formed by a first spiral flow path formed by a space between the first main surface of the twisted plate member and the cylindrical inner peripheral surface of the outer cylinder member, It can be configured to include a second spiral flow path formed by a space between the second main surface of the torsion plate member and the cylindrical inner circumferential surface of the outer cylinder member. Thereby, two systems of spiral flows having different rotational phases can be formed on both sides of the torsion plate member, and the gas phase crushing efficiency can be further improved with a simple structure.

外筒部材は、螺旋流路が1周期以上の螺旋区間を含むように全長が定められているのがよい。螺旋流路に含まれる螺旋区間が1周期未満であると、気液ミキサーの気相粉砕効率が低下し、下流側の液体処理ノズルにおける気体溶解効率が不十分となる場合がある。外筒部材は、よりのぞましくは、螺旋流路が1.5周期以上、より望ましくは2周期以上の螺旋区間を含むように全長が定められているのがよい。 It is preferable that the total length of the outer cylinder member is determined so that the spiral flow path includes a spiral section of one period or more. If the spiral section included in the spiral flow path is less than one period, the gas phase pulverization efficiency of the gas-liquid mixer may decrease, and the gas dissolution efficiency in the downstream liquid processing nozzle may become insufficient. More preferably, the total length of the outer cylindrical member is determined such that the helical flow path includes a helical section of 1.5 cycles or more, more preferably 2 cycles or more.

また、外筒部材の円筒状の内周面の内径をDx(mm)、ねじり板部材の螺旋周期長をλ(mm)として、λ/Dxの値は1.5以上4以下に設定されているのがよい。λ/Dxの値が4を超えると、気液ミキサーの気相粉砕効率を確保するために必要な螺旋流路の周期数を確保する際に、外筒部材の全長が大きくなりすぎる不具合を招く場合がある。また、λ/Dxの値が1.5未満であると、ねじり板部材が形成する螺旋流路の流通抵抗が大きくなりすぎ、気液ミキサーの気相粉砕効率が低下して、下流側の液体処理ノズルにおける気体溶解効率が不十分となる場合がある。 Further, the value of λ/Dx is set to 1.5 or more and 4 or less, where the inner diameter of the cylindrical inner peripheral surface of the outer cylinder member is Dx (mm), and the helical period length of the torsion plate member is λ (mm). It's good to be there. If the value of λ/Dx exceeds 4, the total length of the outer cylindrical member becomes too large, causing a problem when securing the number of cycles of the spiral flow path necessary to ensure the gas phase pulverization efficiency of the gas-liquid mixer. There are cases. In addition, if the value of λ/Dx is less than 1.5, the flow resistance of the spiral flow path formed by the twisted plate member becomes too large, the gas phase crushing efficiency of the gas-liquid mixer decreases, and the downstream side Gas dissolution efficiency in the processing nozzle may be insufficient.

液体処理ノズルに使用するねじ部材は、ねじピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下のものを使用できる。この場合、キャビテーション処理部には、液体流路の中心軸線と直交する仮想的なねじ配置面を該中心軸線に沿って複数設定することができ、上記のねじ部材は、各ねじ配置面に対し2つ以上分配される形で脚部の長手方向が該ねじ配置面に沿うように配置することができる。これを前提として、液体処理ノズルはさらに以下のような構成とすることができる。
・総数にて8以上のねじ部材が各ねじ配置面に対し2つ以上分配される形で配置される(以下、1つのねじ配置面に配置されたねじ部材のグループのことを「面ねじ組」ともいう)。
・各ねじ配置面において、液体流路の全断面積に占める液体流通領域の割合として定められる面内流通面積率が40%以上に確保され、液体流路の液体流通領域の面積が3.8mm以上確保される。
・中心軸線と直交する平面への投影にて液体流路の断面中心から該液体流路の半径の70%以内の領域に位置する谷点の全ねじ配置面間で合計した総数を、液体流路の断面積で除した70%谷点面積密度と定義したとき、70%谷点面積密度の値が2.0個/mm以上に確保される。
・中心軸線方向に互いに隣接するねじ配置面の間隔が公称ねじ径以上に確保される。
The threaded member used in the liquid treatment nozzle may have a thread pitch and thread depth of 0.20 mm or more and 0.40 mm or less, and a nominal thread diameter M of 1.0 mm or more and 2.0 mm or less. In this case, a plurality of virtual screw placement planes perpendicular to the central axis of the liquid flow path can be set in the cavitation treatment section along the central axis, and the above-mentioned screw members are attached to each screw placement surface. Two or more legs can be distributed such that the longitudinal direction of the legs is along the screw placement surface. On this premise, the liquid treatment nozzle can be further configured as follows.
・A total of 8 or more screw members are arranged in such a way that two or more screw members are distributed to each screw arrangement surface (hereinafter, a group of screw members arranged on one screw arrangement surface is referred to as a "plane screw group"). ).
・In each screw arrangement surface, the in-plane flow area ratio defined as the ratio of the liquid flow area to the total cross-sectional area of the liquid flow path is ensured to be 40% or more, and the area of the liquid flow area of the liquid flow path is 3.8 mm. 2 or more is secured.
・The total number of trough points located within 70% of the radius of the liquid flow path from the cross-sectional center of the liquid flow path when projected onto a plane perpendicular to the central axis is calculated as When defined as the 70% valley point areal density divided by the cross-sectional area of the road, the value of the 70% valley point areal density is ensured to be 2.0 pieces/mm 2 or more.
- The distance between adjacent screw placement surfaces in the central axis direction is ensured to be greater than or equal to the nominal screw diameter.

これらの特徴を具備することによりの液体処理ノズルは、通常水道水圧程度にて十分な液体流速を確保しつつ70%谷点密度を飛躍的に向上でき、特に流路断面積を大幅に拡大した大流量ノズルにおいても単純な構造により70%谷点密度を十分な値に確保することができる。そして、該本発明特有の気液ミキサーを前処理として流通させることにより、液体処理ノズルに供給する混相流の気泡径を縮小でき、気相含有率の高い混相流を用いる場合でも、70%谷点が高密度化しているにも関わらずそれらをキャビテーションポイントとして有効に機能させることができ、大流量ノズルにおいても気体溶解効率を大幅に高めることができる。 A liquid processing nozzle equipped with these features can dramatically improve the 70% trough point density while ensuring a sufficient liquid flow rate at the normal tap water pressure, and in particular, it has significantly expanded the cross-sectional area of the flow path. Even in a large flow rate nozzle, a sufficient 70% valley point density can be ensured with a simple structure. By circulating the gas-liquid mixer unique to the present invention as a pre-treatment, the bubble diameter of the multiphase flow supplied to the liquid processing nozzle can be reduced, and even when using a multiphase flow with a high gas phase content, it is possible to reduce the bubble diameter by 70%. Even though the points are highly dense, they can effectively function as cavitation points, and gas dissolution efficiency can be greatly increased even in a high-flow nozzle.

以下、上記構成の液体処理ノズルについて、さらに詳細に説明する。
ねじ部材のねじ山ピッチ及びねじ谷深さの数値範囲を上記のように設定するとよい理由については、以下の通りである。まず、ねじ谷の深さが0.2mm未満ではねじ谷におけるキャビテーション効果(溶存気体の減圧による気泡析出効果)が顕著でなくなり、ねじ谷深さが0.40mm以上ではキャビテーション効果の向上は頭打ちとなる。また、ねじ山ピッチが0.40mm以上に増大すると、ねじ脚部の単位長当たりのねじ谷数が減じるので、70%谷点の面積密度を向上できなくなる。よって、ねじ山ピッチ及びねじ谷深さは0.20mm以上0.40mm以下に設定するのがよい。また、ねじ部材の強度確保と、流路断面がねじ部材により過度に占有されないようにすること、ひいては水道圧程度の通常の送液圧でも液体流通量を十分確保できるようにする観点から、ねじ部材の公称ねじ径は1.0mm以上2.0mm以下に設定するのがよい。この公称ねじ径の値の範囲は、上記のねじ山ピッチ及びねじ谷深さをカバーするJIS並目ピッチねじの公称ねじ径の範囲とほぼ一致する。そして、上記のねじ部材は液体流路内に総数にて8以上配置するのがよい。この8以上のねじ部材を1つのねじ配置面内に密集させて配置するのではなく、複数(2以上)の面ねじ組に区分して複数のねじ配置面に分散配置することにより、70%谷点密度の増加を図ることができる。
The liquid processing nozzle having the above configuration will be described in more detail below.
The reason why it is preferable to set the numerical ranges of the thread pitch and thread depth of the threaded member as described above is as follows. First, when the thread valley depth is less than 0.2 mm, the cavitation effect (bubble precipitation effect due to reduced pressure of dissolved gas) in the thread valley becomes less noticeable, and when the thread valley depth is 0.40 mm or more, the improvement in the cavitation effect reaches a plateau. Become. Furthermore, if the thread pitch increases to 0.40 mm or more, the number of thread troughs per unit length of the screw leg portion decreases, making it impossible to improve the areal density at the 70% trough point. Therefore, the thread pitch and thread depth are preferably set to 0.20 mm or more and 0.40 mm or less. In addition, from the viewpoints of ensuring the strength of the threaded member, preventing the cross section of the flow path from being excessively occupied by the threaded member, and ensuring sufficient liquid flow rate even at normal liquid delivery pressures such as water pressure, The nominal thread diameter of the member is preferably set to 1.0 mm or more and 2.0 mm or less. The value range of this nominal thread diameter almost matches the range of the nominal thread diameter of the JIS coarse pitch screw, which covers the above thread pitch and thread root depth. It is preferable that eight or more screw members are disposed in the liquid flow path in total. By dividing these 8 or more screw members into multiple (2 or more) surface screw sets and distributing them over multiple screw placement surfaces instead of arranging them densely on one screw placement surface, 70% It is possible to increase the valley point density.

各ねじ配置面において面内流通面積率が過度に小さくなると、水流とねじ部材との接触面積が過剰となり、圧損による流量低下が著しくなる。その結果、通常水道圧による液体流通時において十分な流速が得られる領域は、断面中心から半径70%よりもさらに縮小し、キャビテーションポイントとして有効に機能する谷点数を十分に確保できなくなる場合がある。また、面内流通面積率がある程度大きくても、流路断面内径の縮小により液体流通領域の面積の絶対値が小さくなりすぎると、流量低下が同様に著しくなる場合がある。このような状況に鑑み鋭意検討した結果、各ねじ配置面にて、面内流通面積率が40%以上に確保され、液体流通領域の面積が3.8mm以上確保されていれば、上記のような問題が解消され、個々のねじ配置面を液体流が通過する際の圧損が顕著に減じられることが判明した。そして隣接するねじ配置面(面ねじ組)の間隔を、使用されるねじ部材の公称ねじ径以上に確保することで、上記のような条件を充足する面ねじ組を流路中心軸線方向に複数連ねて配置しても、面ねじ組を単独で配置する場合と比較した場合の圧損の増加代を極めて小さくとどめることができ、1つの液体流路内に従来よりも多くのねじ部材が配置されているにも関わらず、断面内にて必要な流速を十分に確保できるようになる。その結果、70%谷点面積密度の値を従来実現不能だった1.6個/mm以上に設定した場合に、70%谷点をなすねじ谷にて十分な流速が確保され、キャビテーション効率に極めて優れた液体処理ノズルが実現できる。 If the in-plane flow area ratio becomes too small on each screw arrangement surface, the contact area between the water flow and the screw member becomes excessive, and the flow rate decreases significantly due to pressure loss. As a result, the area where a sufficient flow rate can be obtained when liquid flows under normal water pressure becomes smaller than the 70% radius from the center of the cross section, and it may not be possible to secure a sufficient number of valley points that effectively function as cavitation points. . Further, even if the in-plane flow area ratio is large to some extent, if the absolute value of the area of the liquid flow region becomes too small due to a reduction in the cross-sectional inner diameter of the flow path, the flow rate may similarly decrease significantly. As a result of careful consideration in view of this situation, we found that if the in-plane flow area ratio is secured at 40% or more on each screw placement surface, and the area of the liquid flow area is secured at 3.8 mm2 or more, the above It has been found that such problems are eliminated and the pressure drop when the liquid flow passes through the individual screw placement surfaces is significantly reduced. By ensuring that the distance between adjacent screw arrangement surfaces (plane thread sets) is greater than or equal to the nominal thread diameter of the screw member used, multiple plane thread sets that satisfy the above conditions can be installed in the direction of the center axis of the flow path. Even if they are arranged in series, the increase in pressure loss can be kept extremely small compared to when the face thread assembly is arranged alone, and more thread members are arranged in one liquid flow path than before. Despite this, the required flow velocity within the cross section can be ensured sufficiently. As a result, when the value of the area density at the 70% valley point was set to 1.6 particles/mm2 or higher, which was previously impossible to achieve, a sufficient flow velocity was secured at the thread valley forming the 70% valley point, and cavitation was prevented. A liquid processing nozzle with extremely high efficiency can be realized.

各ねじ配置面にて、面内流通面積率が40%未満の場合、あるいは液体流通領域の面積が3.8mm未満の場合は、ねじ配置面に配置される個々の面ねじ組の圧損が大きくなり、70%谷点をなすねじ谷にて十分な流速を確保できなくなる。また、隣接する2つのねじ配置面(面ねじ組)の間隔が使用されるねじ部材の公称ねじ径よりも小さくなると、それら2つの面ねじ組の合成圧損が大きくなり、同様に70%谷点をなすねじ谷にて十分な流速を確保できなくなることにつながる。 If the in-plane flow area ratio is less than 40% on each screw placement surface, or if the area of the liquid circulation area is less than 3.8 mm2 , the pressure loss of each surface screw set placed on the screw placement surface will be This increases and makes it impossible to secure a sufficient flow velocity at the thread valley, which is the 70% valley point. Furthermore, if the interval between two adjacent screw arrangement surfaces (plane thread set) becomes smaller than the nominal thread diameter of the threaded member used, the combined pressure loss of those two plane thread sets becomes large, and similarly, the 70% trough point This leads to the inability to secure a sufficient flow velocity at the thread valley that forms the

上記の液体処理ノズルは、液体流路の液体流通領域の面積を、各ねじ配置面においてより望ましくは5.0mm以上確保するのがよい。本発明者は、面内流通面積率を40%以上に確保しつつ液体流通領域の面積を種々に変更した液体処理ノズルを作成し、通常水道圧における通水テストを実施した結果、液体流通領域の面積が5.0mm以上の領域では、該面積の増加に伴い流量がほぼ直線的に増加する傾向を示すのに対し、5.0mm未満となる領域では、流量は該直線的な関係から下方に外れ、液体流通領域の面積の対数に依存して急速に減少することを見出した。これは、通常の水道圧による流通条件では、液体流通領域の面積が5.0mm未満となったとき、ノズル内の面ねじ組の挿入数が1つ増えるごとに増大する圧損の増加代が急激に大きくなり、断面積に見合った流量が得られなくなることを意味する。よって、面ねじ組の数を増やし、70%谷点面積密度の値をさらに増加させる構成を実現する上で、液体流通領域の面積を5.0mm以上に確保することは極めて重要である。この場合、70%谷点面積密度の値は2.0個/mm(特許文献2が開示する最大値(1.1個/mm)の約2倍)以上に確保することも可能となる。 In the liquid processing nozzle described above, it is preferable that the area of the liquid flow area of the liquid flow path is more preferably 5.0 mm 2 or more on each screw arrangement surface. The present inventor created liquid processing nozzles in which the area of the liquid circulation area was varied in various ways while ensuring an in-plane circulation area ratio of 40% or more, and as a result of conducting a water flow test at normal water pressure, the inventor found that the liquid circulation area In areas where the area is 5.0 mm2 or more, the flow rate tends to increase almost linearly as the area increases, whereas in areas where the area is less than 5.0 mm2 , the flow rate shows a linear relationship. It was found that the curve deviates downward from the curve and rapidly decreases depending on the logarithm of the area of the liquid flow region. This means that under normal water pressure flow conditions, when the area of the liquid flow area is less than 5.0 mm2 , the increase in pressure drop increases each time the number of surface screw sets inserted in the nozzle increases. This means that the flow rate increases rapidly, making it impossible to obtain a flow rate commensurate with the cross-sectional area. Therefore, in order to increase the number of surface threads and further increase the value of the 70% valley point areal density, it is extremely important to ensure the area of the liquid circulation region to be 5.0 mm 2 or more. In this case, it is possible to ensure that the value of the 70% valley point area density is 2.0 pieces/mm 2 (approximately twice the maximum value (1.1 pieces/mm 2 ) disclosed in Patent Document 2) or more. Become.

ねじ配置面上にてねじ部材は、液体流路の円形の軸断面の直径に脚部の長手方向を一致させる位置関係にて配置することが望ましい。液体流路の円形の軸断面の直径に脚部の長手方向を一致させることで、ねじ部材の先端は流速が大きくなる液体流路の断面中心に近づくので、70%谷点数を増加させる上で有利に作用する。この場合、ねじ部材を3本以上含むねじ配置面を中心軸線方向に2面以上設定することで、ノズル全体の70%谷点面積密度の値を顕著に向上でき、キャビテーション発生効率を大幅に高めることができる。また、ねじ配置面上の3本以上のねじ部材は、各ねじの脚部の先端面が断面中心を取り囲むことにより中心ギャップを形成するように配置することで、最も高流速となる断面中央の流れ(中心流)が液体流通ギャップの形成により妨げられにくくなり、キャビテーション発生効率のさらなる向上を図ることができる。 It is desirable that the screw members be arranged on the screw arrangement surface in such a positional relationship that the longitudinal direction of the legs coincides with the diameter of the circular axial cross section of the liquid flow path. By matching the longitudinal direction of the leg with the diameter of the circular axial cross section of the liquid flow path, the tip of the threaded member approaches the center of the cross section of the liquid flow path where the flow velocity increases, so it is possible to increase the number of trough points by 70%. Works in your favor. In this case, by setting two or more screw placement surfaces containing three or more screw members in the central axis direction, the value of the 70% valley point area density of the entire nozzle can be significantly improved, and the cavitation generation efficiency can be significantly increased. be able to. In addition, three or more screw members on the screw arrangement surface can be arranged so that the end surfaces of the legs of each screw surround the center of the cross section to form a center gap. The flow (center flow) is less likely to be obstructed by the formation of the liquid flow gap, and cavitation generation efficiency can be further improved.

互いに隣接するねじ配置面間にてねじ部材の脚部は、平面への投影において長手方向を一致させつつ互いに重なり合う位置関係にて配置することが望ましい。該構成によると、多数のねじ部材との接触が許容されているにも関わらず圧損が特に小さい液体処理ノズル、ひいては70%谷点数を飛躍的に増加させつつも低圧損となる液体処理ノズルを実現することができる。構成の液体処理ノズルにおいては、隣接するねじ配置面(面ねじ組)間の距離をねじ部材の公称ねじ径に等しい限界値にまで接近させても圧損増加が生じにくく、結果として流路中心軸線方向におけるねじ部材の配置間隔をより密にすることができ、キャビテーション発生効率に優れた液体処理ノズルをコンパクトに構成できる利点が生ずる。該効果は、隣接するねじ配置面(面ねじ組)間の距離を、公称ねじ径の2倍以下にとどめたときに特に顕著である。また、ねじ部材として脚部よりも径大の頭部を有するものを使用する際には、ねじ配置面(面ねじ組)の間隔は該頭部の外径よりも大きく設定されることとなる。 It is desirable that the leg portions of the screw member be placed between mutually adjacent screw placement surfaces in a positional relationship in which they overlap each other while making the longitudinal directions coincide when projected onto a plane. According to this configuration, it is possible to create a liquid treatment nozzle that has a particularly low pressure loss even though contact with a large number of threaded members is allowed, and a liquid treatment nozzle that has a low pressure loss while dramatically increasing the number of 70% valley points. It can be realized. In the liquid processing nozzle of this configuration, even if the distance between adjacent screw arrangement surfaces (plane thread set) approaches a limit value equal to the nominal thread diameter of the threaded member, an increase in pressure loss is unlikely to occur, and as a result, the flow path center axis The arrangement interval of the screw members in the direction can be made more dense, and there is an advantage that a liquid treatment nozzle with excellent cavitation generation efficiency can be configured compactly. This effect is particularly remarkable when the distance between adjacent screw arrangement surfaces (plane thread set) is kept at twice the nominal screw diameter or less. Additionally, when using a screw member with a head with a larger diameter than the leg, the interval between the screw placement surfaces (plane screw set) must be set larger than the outer diameter of the head. .

例えば、互いに隣接するねじ配置面のそれぞれにおいて3以上の同数のねじ部材が、脚部が液体流路の断面半径方向に沿うように断面中心周りに等角度間隔にて配置される構成を採用する場合、断面中心周りにおけるねじ部材の配置角度位相が隣接するねじ配置面間にて一致するように定めておくとよい。このようにすると、同じねじ配置面内にて隣り合うねじ部材が軸線方向に壁部状に連なりあい、流路断面は該壁部状のねじ列により分割区画されとともに、その区画された領域内には他のねじ部材が介在しないため、多数のねじが配置されるにもかかわらず液体の衝突抵抗は大きく低減される。そして、上記壁部状のねじ列の内面には個々のねじ部材のねじ谷が多数密に配列し、キャビテーション効率を飛躍的に高めることができる。 For example, a configuration is adopted in which the same number of three or more screw members are arranged on each of the adjacent screw arrangement surfaces at equal angular intervals around the center of the cross section so that the legs follow the cross-sectional radial direction of the liquid flow path. In this case, it is preferable to set the arrangement angle phase of the screw member around the center of the cross section to be the same between adjacent screw arrangement surfaces. In this way, adjacent screw members in the same screw arrangement plane are connected in the axial direction like a wall, and the flow path cross section is partitioned by the wall-like screw row, and within the partitioned area. Since no other screw member is interposed in the screw, the liquid collision resistance is greatly reduced even though a large number of screws are arranged. Further, on the inner surface of the wall-like screw row, a large number of thread valleys of the individual screw members are densely arranged, and the cavitation efficiency can be dramatically increased.

一方、互いに隣接するねじ配置面間でねじ部材の脚部は、平面への投影において長手方向を互いに交差させる位置関係にて配置することも可能である。この構成では、複数の面ねじ組を液体流が通過する際の、個々のねじ部材と液体流との衝突による損失はやや大きくなるが、液体を衝突により生ずる乱流により攪拌する効果がより顕著となる。例えば、上記構成の液体処理ノズルにまた、気体(空気、酸素、炭酸ガス、窒素、水素、オゾンなどから選ばれる1種又は2種以上)と液体(水、食用油、ガソリンや軽油などの液体化石燃料、アルコールなど)との混合流を供給すれば、上記の攪拌効果により液体に気体を溶解させる効率を高めることができる。また、相互溶解度の小さい液体同士(例えば、親水性の小さい有機液体と水系液体)を攪拌混合して、エマルジョンを形成したりする目的にも有効に採用可能である。 On the other hand, the leg portions of the screw member between adjacent screw placement surfaces can also be placed in a positional relationship such that their longitudinal directions intersect with each other when projected onto a plane. In this configuration, when the liquid flow passes through the multiple surface screw sets, the loss due to the collision between the individual screw members and the liquid flow is slightly larger, but the effect of stirring the liquid by the turbulence generated by the collision is more pronounced. becomes. For example, a liquid processing nozzle with the above configuration may also be used for gases (one or more selected from air, oxygen, carbon dioxide, nitrogen, hydrogen, ozone, etc.) and liquids (water, edible oil, gasoline, light oil, etc.). By supplying a mixed flow of gas (fossil fuel, alcohol, etc.), the efficiency of dissolving gas in liquid can be increased due to the above-mentioned stirring effect. Furthermore, it can be effectively employed for the purpose of forming an emulsion by stirring and mixing liquids with low mutual solubility (for example, an organic liquid and an aqueous liquid with low hydrophilicity).

上記の構成では、中心軸線方向におけるねじ配置面の間隔をねじ部材の公称ねじ径の2.0倍以上に設定するのがよい。これにより、複数の面ねじ組に液体を流通させる際の圧損低減を図ることができる。ねじ配置面の間隔は、より望ましくは4.0倍以上に設定するのがよい。例えば、互いに隣接するねじ配置面のそれぞれにおいて3以上の同数のねじ部材が、脚部が液体流路の断面半径方向に沿うように断面中心周りに等角度間隔にて配置される場合、上記の構成を採用するには、断面中心周りにおけるねじ部材の配置角度位相が隣接するねじ配置面間にて互いにずれた形で定められることとなる。 In the above configuration, it is preferable that the interval between the screw arrangement surfaces in the central axis direction be set to 2.0 times or more the nominal screw diameter of the screw member. Thereby, it is possible to reduce pressure loss when flowing liquid through the plurality of face screw sets. The interval between the screw arrangement surfaces is more preferably set to 4.0 times or more. For example, if the same number of screw members (three or more) are arranged on each of the adjacent screw arrangement surfaces at equal angular intervals around the center of the cross section so that the legs follow the cross-sectional radial direction of the liquid flow path, the above-mentioned In order to employ this configuration, the arrangement angular phase of the screw members around the center of the cross section is determined in such a manner that adjacent screw arrangement surfaces are shifted from each other.

本発明の作用及び効果の詳細については、「課題を解決するための手段」の欄にすでに記載したので、ここでは繰り返さない。 The details of the operation and effects of the present invention have already been described in the "Means for Solving the Problems" section, so they will not be repeated here.

本発明の液体処理装置の一例を使用形態とともに示す概念図。FIG. 1 is a conceptual diagram showing an example of a liquid treatment device of the present invention together with a usage pattern. 図1Aの液体処理装置に使用する気液ミキサーの一例を示す横断面図及び側面。1A is a cross-sectional view and a side view showing an example of a gas-liquid mixer used in the liquid processing device of FIG. 1A. FIG. 図1Aの液体処理装置に使用する液体処理ノズルの一例を示す横断面図。FIG. 1B is a cross-sectional view showing an example of a liquid treatment nozzle used in the liquid treatment apparatus of FIG. 1A. 図1Cの液体処理ノズルの各ねじ配置面におけるねじ部材レイアウトを示す軸断面図。FIG. 1C is an axial cross-sectional view showing the screw member layout on each screw arrangement surface of the liquid treatment nozzle of FIG. 1C. 図2の要部を拡大して示す軸断面図。FIG. 3 is an axial sectional view showing an enlarged main part of FIG. 2; 図1Cの液体処理ノズルにおいて、図2のレイアウトの面ねじ組を中心軸線方向に4組配置した液体処理ノズルの要部横断面図。FIG. 1C is a cross-sectional view of a main part of the liquid treatment nozzle in FIG. 1C, in which four sets of plane threads having the layout in FIG. 2 are arranged in the central axis direction. 同じく8組配置した液体処理ノズルの要部横断面図。FIG. 7 is a cross-sectional view of the main parts of eight liquid treatment nozzles arranged in the same manner. 図1Cの液体処理ノズルにおいて、一方の面ねじ組を45°回転させた構造を示す要部横断面図。FIG. 1C is a cross-sectional view of a main part of the liquid treatment nozzle of FIG. 1C, showing a structure in which one surface screw set is rotated by 45 degrees. 図1Cの液体処理ノズルにおいて、一方の面ねじ組を図6のレイアウトとした液体処理ノズルの要部横断面図。FIG. 7 is a cross-sectional view of a main part of the liquid processing nozzle shown in FIG. 1C, in which one surface screw set has the layout shown in FIG. 6; 図7の構造において、面ねじ組を互いに直交するねじ部材対に分割し、それぞれ中心軸線方向に位置をずらせて配置した液体処理ノズルの要部横断面図。FIG. 8 is a cross-sectional view of a main part of the liquid processing nozzle in which the surface screw set is divided into mutually orthogonal screw member pairs, and the respective positions are shifted in the central axis direction in the structure of FIG. 7 . 図7の液体処理ノズルと同様の面ねじ組の対を中心軸線方向に2組配置した液体処理ノズルの要部横断面図。FIG. 8 is a cross-sectional view of a main part of a liquid treatment nozzle in which two pairs of surface screw sets similar to the liquid treatment nozzle of FIG. 7 are arranged in the central axis direction. 図1の液体処理装置の気液ミキサーにベンチュリエジェクタを接続した状態を示す横断面図。FIG. 2 is a cross-sectional view showing a venturi ejector connected to the gas-liquid mixer of the liquid processing apparatus shown in FIG. 1; 面ねじ組を3本のねじ部材で構成した液体処理ノズルの要部軸断面図。FIG. 2 is an axial cross-sectional view of a main part of a liquid processing nozzle in which a surface screw set is composed of three screw members. 面ねじ組を8本のねじ部材で構成した液体処理ノズルの要部軸断面図。FIG. 2 is an axial sectional view of a main part of a liquid processing nozzle in which a surface screw set is composed of eight screw members. 面ねじ組を4本のねじ部材により、中心ギャップを形成しない形で構成した液体処理ノズルの要部軸断面図。FIG. 2 is an axial sectional view of a main part of a liquid processing nozzle in which a surface screw set is configured by four screw members without forming a center gap. 図13の面ねじ組を中心軸線方向に2組配置した液体処理ノズルの要部横断面図。FIG. 14 is a cross-sectional view of a main part of a liquid processing nozzle in which two sets of plane threads shown in FIG. 13 are arranged in the central axis direction. 4本のねじ部材を十字状に配置した液体処理ノズルにおいて、一定動水圧にて水を流通させた時の、液体流通領域の面積と流量との関係を示すグラフ。2 is a graph showing the relationship between the area of the liquid flow area and the flow rate when water is caused to flow under a constant dynamic water pressure in a liquid treatment nozzle in which four screw members are arranged in a cross shape. 4本のねじ部材を十字状に配置した液体処理ノズルの断面内流速分布を、断面内径が4.2mm以上のノズルと断面内径が3.5mmノズルとで比較して示すグラフ。A graph showing a comparison of the cross-sectional flow velocity distribution of a liquid processing nozzle in which four threaded members are arranged in a cross shape between a nozzle with a cross-sectional inner diameter of 4.2 mm or more and a nozzle with a cross-sectional inner diameter of 3.5 mm. 面ねじ組を交互に45°回転させて複数配置した各種液体処理ノズルの通水動水圧と流量との関係を、比較例の液体処理ノズルについての結果とともに示すグラフ。2 is a graph showing the relationship between water flow dynamic pressure and flow rate of various liquid processing nozzles in which a plurality of liquid processing nozzles are arranged by alternately rotating the surface screw set by 45 degrees, together with the results for the liquid processing nozzle of a comparative example. 面ねじ組を互いに重なる位相関係にて複数配置した各種液体処理ノズルの通水動水圧と流量との関係を、面ねじ組を互いに45°回転させて二組配置した液体処理ノズルについての結果とともに示すグラフ。The relationship between water flow dynamic pressure and flow rate of various liquid processing nozzles in which a plurality of face screw sets are arranged in a mutually overlapping phase relationship, together with the results for liquid processing nozzles in which two sets of face thread sets are arranged with the face thread sets rotated by 45 degrees from each other. Graph showing. 処理水のぬめり汚れ除去能力を評価する装置の構造を示す図。The figure which shows the structure of the apparatus which evaluates the slime dirt removal ability of treated water. 比較例の液体処理ノズルの要部軸断面図。FIG. 3 is an axial sectional view of a main part of a liquid treatment nozzle of a comparative example. 実験例に使用した液体処理ノズルの各部の寸法関係を説明する図。The figure explaining the dimensional relationship of each part of the liquid processing nozzle used in the experimental example. 通水テストに使用した試験装置の模式図。Schematic diagram of the test equipment used for the water flow test.

以下、本発明の実施の形態を添付の図面に基づき説明する。
図1Aは、本発明の一実施形態をなす液体処理装置の一例を使用形態とともに示す概念図である。液体処理装置300は、液体流通方向(矢印)において下流側から液体処理ノズル1、気液ミキサー150及び混相流供給部165をこの順序に直列連通形態に配置したものであり、液体貯留部250(タンク、貯留槽、池など)に貯留された液体を循環させる循環配管180上に設けられている。処理対象となる液体は、例えば水(あるいは必要に応じて所望の溶質成分を溶かし込んだ水溶液)であるが、水以外の液体(例えば、アルコール等の有機溶媒、ガソリンや軽油などの化石燃料、食用油など)を用いてもよい。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1A is a conceptual diagram showing an example of a liquid treatment device according to an embodiment of the present invention together with a usage pattern. The liquid processing device 300 has a liquid processing nozzle 1, a gas-liquid mixer 150, and a multiphase flow supply section 165 arranged in series communication in this order from the downstream side in the liquid distribution direction (arrow), and includes a liquid storage section 250 ( It is provided on a circulation pipe 180 that circulates liquid stored in a tank, storage tank, pond, etc.). The liquid to be treated is, for example, water (or an aqueous solution in which desired solute components are dissolved as necessary), but liquids other than water (for example, organic solvents such as alcohol, fossil fuels such as gasoline or diesel oil, (edible oil, etc.) may also be used.

循環配管180上にはポンプ175が設けられ、該ポンプ175の作動により、液体貯留部250内の液体が循環配管180に流れ込み、液体処理装置300の混相流供給部165に供給される。液体Wには、該混相流供給部165にて気体供給配管171を経て気体供給源170より気体が混合され、さらに気液ミキサー150にて導入された気体が微粉砕され、液体処理ノズル1にて該気体の少なくとも一部が溶解され、液体貯留部250に戻される。気体の種類は、本実施形態においては空気(気体供給源170はエアコンプレッサー)であるが、それ以外の気体、例えば酸素、窒素、炭酸ガス、水素ガス、オゾンなどを用いてもよく、それらから選ばれる2種以上の混合ガスを用いてもよい。 A pump 175 is provided on the circulation pipe 180 , and when the pump 175 operates, the liquid in the liquid storage section 250 flows into the circulation pipe 180 and is supplied to the multiphase flow supply section 165 of the liquid processing device 300 . Gas is mixed into the liquid W from the gas supply source 170 via the gas supply pipe 171 in the multiphase flow supply section 165, and the gas introduced by the gas-liquid mixer 150 is finely pulverized and sent to the liquid processing nozzle 1. At least a portion of the gas is dissolved and returned to the liquid reservoir 250. The type of gas is air in this embodiment (the gas supply source 170 is an air compressor), but other gases such as oxygen, nitrogen, carbon dioxide, hydrogen gas, and ozone may also be used. A mixed gas of two or more selected types may be used.

図1Bは、図1Aの液体処理装置に使用する気液ミキサー150の一例を示すものである。気液ミキサー150は、外筒部材151と流路形成部材155とを備える。外筒部材151は、一端に流入口159、他端に流出口160が形成される中空円筒状に形成される。材質は例えば金属ないしポリ塩化ビニル等のプラスチックであり、本実施形態ではステンレス鋼が採用されている。外筒部材151の両端部には他の配管要素と接続するための継ぎ手部、本実施形態ではおねじ部152が形成されている。 FIG. 1B shows an example of a gas-liquid mixer 150 used in the liquid processing apparatus shown in FIG. 1A. The gas-liquid mixer 150 includes an outer cylinder member 151 and a flow path forming member 155. The outer cylinder member 151 is formed into a hollow cylindrical shape with an inlet 159 formed at one end and an outlet 160 formed at the other end. The material is, for example, metal or plastic such as polyvinyl chloride, and in this embodiment stainless steel is used. At both ends of the outer cylindrical member 151, a joint portion for connecting to another piping element, and in this embodiment, a male thread portion 152 is formed.

一方、流路形成部材155は外筒部材151の内側に設けられ、流入口159と流出口160とをつなぐ螺旋状流路157、158を、該螺旋状流路157、158の螺旋軸線HCが外筒部材151の中心軸線に沿うように形成する。本実施形態において流路形成部材155は、帯状の金属板の幅方向の中心軸線Oを螺旋軸線HCとする形で該金属板をねじり加工したねじり板部材(以下、ねじり板部材155ともいう)として構成できる。流路形成部材155の材質は、本実施形態ではステンレス鋼が採用されている。 On the other hand, the flow path forming member 155 is provided inside the outer cylinder member 151, and the spiral flow paths 157 and 158 connecting the inlet 159 and the outlet 160 are formed so that the helical axis HC of the helical flow paths 157 and 158 It is formed along the central axis of the outer cylinder member 151. In this embodiment, the flow path forming member 155 is a twisted plate member (hereinafter also referred to as the twisted plate member 155) obtained by twisting a band-shaped metal plate so that the central axis O in the width direction is the helical axis HC. It can be configured as In this embodiment, the material of the flow path forming member 155 is stainless steel.

該外筒部材151の内側にてねじり板部材155は、該ねじり板部材155の第一主面と外筒部材151の内周面との間に第一螺旋状流路157を、同じく第二主面と外筒部材151の内周面との間に第二螺旋状流路158を形成している。そして、外筒部材151は、螺旋状流路が1周期以上、本実施形態では2周期の螺旋区間156を含むように全長が定められている。また、外筒部材151の円筒状の内周面の内径をDx(mm)、ねじり板部材155の螺旋周期長をλ(mm)として、λ/Dxの値は1.5以上4以下に設定されている。Dxは例えば5mm以上30mm以下(例えば15mm)あり、λの値は例えば20mm以上300mm以下(例えば50mm)である。また、ねじり板部材155を構成する板材の厚みはDxの1/4超えない範囲にて、例えば0.3mm以上4mm以下の範囲で選定される(例えば1mm)。 Inside the outer cylindrical member 151, the torsion plate member 155 has a first helical flow path 157 between the first main surface of the torsion plate member 155 and the inner circumferential surface of the outer cylindrical member 151, and a second helical flow path 157 between the first main surface of the torsion plate member 155 and the inner peripheral surface of the outer cylindrical member 151. A second spiral flow path 158 is formed between the main surface and the inner peripheral surface of the outer cylinder member 151. The total length of the outer cylindrical member 151 is determined so that the helical flow path includes a helical section 156 of one period or more, and in this embodiment, two periods. Further, the value of λ/Dx is set to 1.5 or more and 4 or less, where the inner diameter of the cylindrical inner peripheral surface of the outer cylinder member 151 is Dx (mm), and the helical period length of the torsion plate member 155 is λ (mm). has been done. Dx is, for example, 5 mm or more and 30 mm or less (for example, 15 mm), and the value of λ is, for example, 20 mm or more and 300 mm or less (for example, 50 mm). Further, the thickness of the plate material constituting the torsion plate member 155 is selected within a range not exceeding 1/4 of Dx, for example, in a range of 0.3 mm or more and 4 mm or less (for example, 1 mm).

図1Cは、液体処理ノズル1の一例を示す横断面図である。この液体処理ノズル1は、液体流路3が形成されたノズル本体2を備える。ノズル本体2は円筒状に形成され、その中心軸線Oの向きに円形断面の1つの液体流路3が貫通形成されている。液体流路3は一方の端(図面右側)に液体入口4を、他方の端に液体出口5を開口しており、その流れ方向中間位置には液体入口4及び液体出口5よりも径小の絞り部9が液体流路3の一部区間をなす形で形成されている。液体流路3は絞り部9よりも液体入口4側が流入室6とされ、液体出口5側が流出室7とされる。そして、絞り部9には、脚部先端側が流路内側に突出するようにねじ部材10が組み付けられ、キャビテーション処理部CVを形成している。 FIG. 1C is a cross-sectional view showing an example of the liquid treatment nozzle 1. This liquid processing nozzle 1 includes a nozzle body 2 in which a liquid flow path 3 is formed. The nozzle body 2 is formed into a cylindrical shape, and one liquid flow path 3 having a circular cross section is formed through the nozzle body 2 in the direction of the central axis O thereof. The liquid flow path 3 has a liquid inlet 4 at one end (on the right side of the drawing) and a liquid outlet 5 at the other end, and at an intermediate position in the flow direction there is a liquid inlet 4 with a diameter smaller than that of the liquid inlet 4 and the liquid outlet 5. A constriction portion 9 is formed to form a partial section of the liquid flow path 3. In the liquid flow path 3, the side closer to the liquid inlet 4 than the constriction part 9 is an inflow chamber 6, and the side closer to the liquid outlet 5 is an outflow chamber 7. A screw member 10 is attached to the constriction part 9 so that the tip side of the leg protrudes inside the flow path, thereby forming a cavitation treatment part CV.

ノズル本体2の材質は、たとえばABS、ナイロン、ポリカーボネート、ポリアセタール、PTFEなどの樹脂であるが、ステンレス鋼や真鍮などの金属やアルミナ等のセラミックスとしてもよく、用途に応じて適宜選択される。また、ねじ部材10の材質はたとえばステンレス鋼であるが、用途に応じて、より耐食性の高いチタンやハステロイ、インコネル(いずれも商標名)などの耐熱合金を用いてもよいし、耐摩耗性が問題となる場合は石英やアルミナなどのセラミック材料を用いることも可能である。特に、金属コンタミを嫌う分野(たとえば半導体分野)への適用には、石英の採用が好適であり、この場合は樹脂製のノズル本体2はたとえばPTFEで構成するとよい。 The material of the nozzle body 2 is, for example, a resin such as ABS, nylon, polycarbonate, polyacetal, or PTFE, but may also be a metal such as stainless steel or brass, or a ceramic such as alumina, and is appropriately selected depending on the application. Further, the material of the screw member 10 is, for example, stainless steel, but depending on the application, a heat-resistant alloy such as titanium, Hastelloy, or Inconel (all trademarks) with higher corrosion resistance may be used, or a material with higher wear resistance may be used. If this poses a problem, it is also possible to use ceramic materials such as quartz or alumina. In particular, quartz is suitable for application to fields where metal contamination is averse (for example, the semiconductor field), and in this case, the resin nozzle body 2 is preferably made of, for example, PTFE.

ねじ部材10は、ねじピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下のものが使用されている。本実施形態にてねじ部材10は、JISに定められた0番1種なべ小ねじが使用されている。キャビテーション処理部CVには、液体流路3の中心軸線Oと直交する仮想的なねじ配置面が該中心軸線Oに沿って複数、図1CにおいてはLP1、LP2の2面が設定されている。上記のねじ部材10は、脚部の長手方向が個々のねじ配置面LP1、LP2に沿うように配置される。図1Cの実施形態においてねじ部材10の総数は8であり(後述するように、8を超える数であってもよい)、各ねじ配置面LP1、LP2に対し2つ以上、図1Cにおいては4つずつ分配されている。 The threaded member 10 used has a thread pitch and thread root depth of 0.20 mm or more and 0.40 mm or less, and a nominal thread diameter M of 1.0 mm or more and 2.0 mm or less. In this embodiment, the screw member 10 is a No. 0 class 1 pan head machine screw defined by JIS. In the cavitation treatment section CV, a plurality of virtual screw arrangement surfaces perpendicular to the central axis O of the liquid flow path 3 are set along the central axis O, two surfaces LP1 and LP2 in FIG. 1C. The screw member 10 described above is arranged so that the longitudinal direction of the leg portions is along the respective screw arrangement surfaces LP1 and LP2. In the embodiment of FIG. 1C, the total number of screw members 10 is eight (as described later, the number may exceed eight), and there are two or more screw members 10 for each screw placement surface LP1, LP2, and four in FIG. 1C. are distributed one by one.

図1Cにおいて各ねじ配置面LP1、LP2においてねじ部材10は、図2に示すレイアウトに従い配置されている。具体的には、各ねじ配置面LP1、LP2上の4本のねじ部材10は互いに直交する十字形態に配置され、各々ノズル本体2に形成されたねじ孔19内面のめねじ部19fにて、その壁部外周面側から脚部先端が絞り部9内へ突出するようにねじ込まれている。ねじ孔19とねじ部材10とは接着剤等によりセッティング固定することができる。図3は、絞り部9の内側をさらに拡大して示すものであり、ねじ部材10と絞り部9の内周面との間には主流通領域21が形成されている。また、各絞り部9において、4つの衝突部10が形成する十字の中心位置には、液体流通ギャップ15が形成されている。液体流通ギャップ15(図3)を形成する4つの衝突部10の先端面は平坦に形成され、前述の投影において液体流通ギャップ15は正方形状に形成されている。 In FIG. 1C, the screw members 10 are arranged on each screw arrangement surface LP1, LP2 according to the layout shown in FIG. 2. Specifically, the four screw members 10 on each of the screw placement surfaces LP1 and LP2 are arranged in a cross shape orthogonal to each other, and each has a female threaded portion 19f on the inner surface of the screw hole 19 formed in the nozzle body 2. The legs are screwed so that the tips of the legs protrude into the constricted portion 9 from the outer peripheral surface of the wall. The screw hole 19 and the screw member 10 can be set and fixed using an adhesive or the like. FIG. 3 shows a further enlarged view of the inside of the constricted portion 9, and a main circulation region 21 is formed between the screw member 10 and the inner circumferential surface of the constricted portion 9. Further, in each constriction section 9, a liquid circulation gap 15 is formed at the center position of the cross formed by the four collision sections 10. The end surfaces of the four collision parts 10 forming the liquid circulation gap 15 (FIG. 3) are formed flat, and the liquid circulation gap 15 is formed in a square shape in the projection described above.

図3において、各ねじ配置面LP1、LP2における液体流通領域の面積(以下、全流通断面積ともいう)aを、液体流路の投影領域の外周縁内側の全面積(ここでは、図1Cの絞り部9の円形軸断面の面積:内径をdとしてπd/4))をS1、衝突部10(4本のねじ部材)の投影領域面積をS2として、
a=S1-S2 (単位:mm
として定義する。この実施形態では、主流通領域21と液体流通ギャップ15との合計面積が全流通断面積aに相当する。図1Cに示すごとく、液体入口4及び液体出口5の開口径は、絞り部9の内径よりも大きい。すなわち、液体入口4及び液体出口5の開口断面積は全流通断面積aよりも大きく設定されている。また、流入室6及び流出室7の絞り部9に連なる内周面はそれぞれテーパ部13、14とされている。液体出口5側のテーパ部14と液体入口4側のテーパ部13とは絞り比は同じであるが、区間長はテーパ部14の方が大きく設定されている。そして、各ねじ配置面LP1、LP2において、全流通断面積aは3.8mm以上確保され、液体流路の全断面積S1に占める液体流通領域の割合(すなわち、a/S1×100(%))として定められる面内流通面積率は40%以上に確保されている。
In FIG. 3, the area of the liquid flow area (hereinafter also referred to as the total flow cross-sectional area) a on each of the screw arrangement surfaces LP1 and LP2 is defined as the total area inside the outer periphery of the projected area of the liquid flow path (herein, the area in FIG. 1C The area of the circular shaft cross section of the throttle part 9: where the inner diameter is d, πd 2 /4)) is S1, and the projected area area of the collision part 10 (four screw members) is S2,
a=S1-S2 (unit: mm 2 )
Define as . In this embodiment, the total area of the main flow area 21 and the liquid flow gap 15 corresponds to the total flow cross-sectional area a. As shown in FIG. 1C, the opening diameters of the liquid inlet 4 and the liquid outlet 5 are larger than the inner diameter of the constriction part 9. That is, the opening cross-sectional area of the liquid inlet 4 and the liquid outlet 5 is set larger than the total flow cross-sectional area a. Further, the inner circumferential surfaces of the inflow chamber 6 and the outflow chamber 7 that are connected to the constricted portion 9 are tapered portions 13 and 14, respectively. The tapered portion 14 on the liquid outlet 5 side and the tapered portion 13 on the liquid inlet 4 side have the same aperture ratio, but the section length of the tapered portion 14 is set larger. In each screw arrangement surface LP1, LP2, a total flow cross-sectional area a of 3.8 mm2 or more is ensured, and the ratio of the liquid flow area to the total cross-sectional area S1 of the liquid flow path (i.e., a/S1×100(% )) The in-plane distribution area ratio defined as 40% or more is ensured.

図3において、ねじ部材(衝突部)10の投影外形線に現れる谷部21の深さhは0.2mm以上確保されている。また、中心軸線Oの投影点を中心として液体流路の内周縁までの距離の70%に相当する半径にて描いた円を基準円C70として定めたとき、谷部21の最底位置を表す谷点のうち、基準円C70の内側に位置するもの(○で表示)の数、つまり、中心軸線Oと直交する平面への投影にて液体流路3の断面中心から該液体流路3の半径の70%以内の領域に位置する谷点の数を70%谷点数N70と定義する。そして、該70%谷点数N70の値を全ねじ配置面について合計した値を、液体流路3(絞り部9)の断面積S1で除した値を70%谷点面積密度と定義する。図1Cの液体処理ノズル1においては、70%谷点面積密度の値が1.6個/mm以上に確保されている。 In FIG. 3, the depth h of the valley portion 21 appearing on the projected outline of the screw member (collision portion) 10 is ensured to be 0.2 mm or more. In addition, when a circle drawn with a radius corresponding to 70% of the distance to the inner peripheral edge of the liquid flow path is defined as the reference circle C 70 with the projected point of the central axis O as the center, the bottom position of the trough 21 is Among the valley points represented, the number of valley points located inside the reference circle C 70 (indicated by ○), that is, the number of valley points located inside the reference circle C 70, that is, the number of valley points located from the cross-sectional center of the liquid channel 3 to the center of the liquid channel 3 when projected onto a plane orthogonal to the central axis O. The number of valley points located in an area within 70% of the radius of 3 is defined as the number of 70% valley points N70 . Then, the value obtained by dividing the sum of the values of the 70% valley point number N70 for all the screw arrangement surfaces by the cross-sectional area S1 of the liquid flow path 3 (throttled portion 9) is defined as the 70% valley point area density. In the liquid treatment nozzle 1 of FIG. 1C, the value of the 70% valley point area density is ensured to be 1.6 nozzles/mm 2 or more.

図1Cにおいて、互いに隣接するねじ配置面LP1、LP2間にてねじ部材10の脚部は、中心軸線Oと直交する平面への投影において長手方向を一致させつつ互いに重なり合う位置関係にて配置されている。具体的には、十字状に配置された4本のねじ部材10からなる面ねじ組が、ねじ配置面LP1、LP2間にて互いに重なり合う位置関係(すなわち、十字状の面ねじ組の中心軸線O周りの配置角度位相が互いに一致する位置関係:以下、このような配置を「同相配置」という)にて配置されている。また、隣接するねじ配置面LP1、LP2間の間隔dpは、図2のねじ頭部10hの外径をdh、ねじ脚部10fの公称ねじ径をMとして、例えば1.05dh以上2M以下に設定されている。 In FIG. 1C, the legs of the screw member 10 are arranged between mutually adjacent screw placement surfaces LP1 and LP2 in a positional relationship in which they overlap each other while making their longitudinal directions coincide when projected onto a plane orthogonal to the central axis O. There is. Specifically, a plane screw assembly consisting of four screw members 10 arranged in a cross shape overlaps each other between the screw arrangement surfaces LP1 and LP2 (i.e., a central axis O of the cross-shaped plane screw assembly). They are arranged in a positional relationship in which the surrounding arrangement angle phases match each other (hereinafter, such an arrangement will be referred to as "in-phase arrangement"). Further, the distance dp between the adjacent screw arrangement surfaces LP1 and LP2 is set to, for example, 1.05dh or more and 2M or less, where dh is the outer diameter of the screw head 10h in FIG. 2, and M is the nominal thread diameter of the screw leg 10f. has been done.

図1Cの液体処理ノズル1に対し、たとえば、液体出口5側を開放して液体入口4に動圧が通常水道圧(例えば、0.077MPa)程度となるように、液体として例えば水を流通させた場合の作用について説明する。この水はたとえば、空気が溶存しているものとする(たとえば、20℃(常温)での酸素濃度は約8ppm)。水流はまずテーパ部13及び絞り部9で絞られ、ねじ部材10と絞り部9内周面との間に形成される図2の主流通領域21と液体流通ギャップ15とからなる液流通領域にてねじ部材10に衝突しながらこれを通過する。 In the liquid processing nozzle 1 of FIG. 1C, for example, the liquid outlet 5 side is opened and water, for example, is passed through the liquid inlet 4 so that the dynamic pressure is about the normal water pressure (for example, 0.077 MPa). We will explain the effect when It is assumed that air is dissolved in this water (for example, the oxygen concentration at 20° C. (normal temperature) is about 8 ppm). The water flow is first constricted by the tapered part 13 and the constricted part 9, and then flows into a liquid circulation area formed between the screw member 10 and the inner peripheral surface of the constricted part 9, which is formed by the main circulation area 21 and the liquid circulation gap 15 in FIG. It passes through the threaded member 10 while colliding with it.

そして、ねじ部材10の外周面を通過するときに、ねじ谷部に高速領域を、ねじ山部に低速領域をそれぞれ形成する。すると、ねじ谷部の高速領域はベルヌーイの定理により負圧領域となり、キャビテーションが生ずる。ねじ谷部はねじ部材の外周に複数巻形成され、かつ8本以上のねじ部材10が複数のねじ配置面LP1、LP2に分配配置されていることから、キャビテーションは絞り部9内の谷部にて同時多発的に起こることとなる。すると、水流がねじ部材10に衝突する際に、ねじ谷部での溶存空気の減圧析出が沸騰的に激しく起こり、ねじ部材10の表面及び液体流路3の内面との間で水流を激しく摩擦しつつ撹拌する。 When passing through the outer circumferential surface of the threaded member 10, a high speed region is formed at the thread root and a low speed region is formed at the thread crest. Then, the high-speed region of the thread root becomes a negative pressure region according to Bernoulli's theorem, and cavitation occurs. Since the thread trough is formed with multiple turns around the outer periphery of the threaded member, and eight or more threaded members 10 are distributed over the plurality of screw placement surfaces LP1 and LP2, cavitation occurs in the trough in the constricted portion 9. This will occur multiple times at the same time. Then, when the water flow collides with the threaded member 10, dissolved air is violently precipitated under reduced pressure at the thread root, causing violent friction between the water flow and the surface of the threaded member 10 and the inner surface of the liquid flow path 3. Stir while stirring.

図1Cの液体処理ノズル1は、各ねじ配置面LP1、LP2にて、面内流通面積率が40%以上に確保され、全流通断面積が3.8mm以上に確保され、さらに隣接するねじ配置面LP1、LP2(面ねじ組)の間隔dpが、使用されるねじ部材10の公称ねじ径よりも大きく確保されている。これにより、面ねじ組を流路中心軸線Oの方向に複数連ねて配置してもノズルの圧損増加を極めて小さくとどめることができる。その結果、1つの液体流路3内に従来よりも多くのねじ部材が配置されているにも関わらず、断面内にて必要な流速を十分に確保できるようになる。例えば、特許文献2では1.1個/mm程度が限界と思われていた70%谷点面積密度の値を、十分な流速を確保しつつも一挙に1.6個/mm以上もの大きな値に設定できるようになる。 The liquid treatment nozzle 1 in FIG. 1C has an in-plane flow area ratio of 40% or more on each screw arrangement surface LP1, LP2, a total flow cross-sectional area of 3.8 mm 2 or more, and an adjacent screw The interval dp between the arrangement surfaces LP1 and LP2 (plane screw set) is ensured to be larger than the nominal thread diameter of the screw member 10 used. As a result, even if a plurality of surface screw sets are arranged in series in the direction of the flow path center axis O, the increase in pressure loss of the nozzle can be kept extremely small. As a result, even though more screw members are arranged in one liquid flow path 3 than in the past, a sufficient flow velocity can be ensured within the cross section. For example, in Patent Document 2, the value of the 70% trough area density, which was thought to be about 1.1 pieces/ mm2 , has been increased to 1.6 pieces/ mm2 or more while ensuring a sufficient flow velocity. You can set it to a large value.

本発明者は、特許文献2において、当該文献に開示された液体処理ノズルによりキャビテーション処理を行なった水は肌や髪などへの浸透性が向上すること、該浸透性の向上効果は、液体処理ノズルの70%谷点密度が大きくなるほど顕著となることを示唆した。また、肌や髪の構成成分は高分子であるたんぱく質であり、こうした高分子ネットワークからなる構造体への分子レベルでの水の浸透性改善については、水の中に微小気泡が介在することによる効果のみでは説明がつかない側面があること、例えば、水の物理的な性状、特に、極性分子である水の集団的(統計的)な振る舞いに微細気泡が関与し、水の浸透力等が増している可能性があること、などについても言及した。しかし、70%谷点面積密度の値が上記の大きな値に拡大したノズルを用いてキャビテーション処理を行なった場合に、処理後の液体の特性がどのように改善されるかについては、特許文献2は沈黙している。一方、また、特許文献3には、ねじ部材を円形断面の流路に1つだけ組み込んだコア部材を、ノズルケーシングに8枚重ねて収容したシステムノズルが開示されているが、8つのねじ部材を流れ方向に1本ずつ分散させて配置する構成のため、キャビテーション処理部を構成する流路長が大きくなりすぎ、圧損が生じやすい問題がある。 The present inventor has disclosed in Patent Document 2 that water subjected to cavitation treatment using the liquid treatment nozzle disclosed in the document has improved permeability into skin, hair, etc., and that the permeability improvement effect is due to liquid treatment. It was suggested that the larger the 70% trough point density of the nozzle, the more pronounced this becomes. Furthermore, the constituent components of skin and hair are proteins, which are macromolecules, and the improvement of water permeability at the molecular level into structures made of polymer networks is due to the presence of microbubbles in the water. There are aspects that cannot be explained by effects alone, such as the physical properties of water, especially the involvement of microbubbles in the collective (statistical) behavior of water, which is a polar molecule, and the penetrating power of water. He also mentioned that the number may be increasing. However, how the characteristics of the liquid after treatment are improved when cavitation treatment is performed using a nozzle in which the value of the 70% valley point area density has expanded to the above-mentioned large value is disclosed in Patent Document 2. is silent. On the other hand, Patent Document 3 discloses a system nozzle in which a nozzle casing accommodates eight core members in which only one threaded member is incorporated in a flow path with a circular cross section, but eight threaded members are stacked in a nozzle casing. Because of the configuration in which the cavitation treatment section is arranged one by one in a dispersed manner, the length of the flow path constituting the cavitation treatment section becomes too large, resulting in a problem that pressure loss is likely to occur.

特許文献1~3が開示するノズルにてキャビテーション処理を行なった水は、例えばレーザー回折式粒度計などにより測定すれば、平均径が100nm~300nm程度のナノ域の微小気泡を多量に含んだ水になっていることを確認できる。しかし、後述の実験結果から明らかな通り、レーザー回折式粒度計によって確認できる上記平均径の微小気泡は、キャビテーション処理後タンクなどに貯留して数分放置すれば大部分が消失し、通常の感度のレーザー回折式粒度計では検出できなくなる。しかし、この微小気泡が検出されなくなった貯留後の処理水であっても、上記のように70%谷点面積密度をさらに高めた液体処理ノズルを用いれば、キャビテーション処理に伴う浸透性改善等の効果は同様に発揮されるのである。 Water subjected to cavitation treatment using the nozzles disclosed in Patent Documents 1 to 3 is water containing a large amount of microbubbles in the nano-range with an average diameter of about 100 nm to 300 nm, for example, when measured using a laser diffraction particle size meter. You can confirm that it is. However, as is clear from the experimental results described below, most of the microbubbles with the above average diameter that can be confirmed by a laser diffraction particle size analyzer disappear if they are stored in a tank etc. after cavitation treatment and left for a few minutes, and the sensitivity is normal. It becomes undetectable with a laser diffraction particle size analyzer. However, even in treated water after storage in which microbubbles are no longer detected, if a liquid treatment nozzle with a further increased 70% valley point area density as described above is used, it is possible to improve permeability due to cavitation treatment. The effect is achieved in the same way.

図10に示すように、液体処理装置300において気液ミキサー150は、螺旋状流路157、158が液体処理ノズル1の液体流路3に連通するように、液体処理ノズル1の液体入口側に配置されている。具体的には、外筒部材151の流出口側のおねじ部152をノズル本体2のめねじ部16に螺合させる形で接続されている。気液ミキサー150と液体処理ノズル1との間には中継配管等の別配管要素(図示せず)が介在していてもよいが、該別配管要素内を流通する間に二次気泡BSが合体・粗大化する懸念もあり、気液ミキサー150と液体処理ノズル1とは図10のように直結されていることが望ましい。 As shown in FIG. 10, in the liquid processing apparatus 300, the gas-liquid mixer 150 is installed on the liquid inlet side of the liquid processing nozzle 1 so that the spiral channels 157 and 158 communicate with the liquid channel 3 of the liquid processing nozzle 1. It is located. Specifically, the male threaded portion 152 on the outlet side of the outer cylinder member 151 is screwed into the female threaded portion 16 of the nozzle body 2 . A separate piping element (not shown) such as a relay pipe may be interposed between the gas-liquid mixer 150 and the liquid processing nozzle 1, but secondary air bubbles BS may be present while flowing through the separate piping element. There is also a concern that the gas-liquid mixer 150 and the liquid processing nozzle 1 are connected directly as shown in FIG. 10, as there is a concern that they may coalesce and become coarse.

また、混相流供給部165は、気液ミキサー150の流入口159に、気体と液体との混相流を供給する。本実施形態では混相流供給部165はベンチュリエジェクタとして構成され、その絞り部に連通する気体供給孔166に気体導入用継手167を介して気体供給配管171(図1A)により気体が供給され、混相流が形成される。本実施形態では、混相流供給部165もまた気液ミキサー150の流入口159側に直結されている。混相流は、第一螺旋状流路157及び第二螺旋状流路158に分配され、それぞれ第一螺旋流TR1と第二螺旋流TR2を形成しつつ気相を二次気泡BSに粉砕する。 Further, the multiphase flow supply unit 165 supplies a multiphase flow of gas and liquid to the inlet 159 of the gas-liquid mixer 150 . In this embodiment, the multiphase flow supply section 165 is configured as a venturi ejector, and gas is supplied from a gas supply pipe 171 (FIG. 1A) through a gas introduction joint 167 to a gas supply hole 166 communicating with the constriction section. A flow is formed. In this embodiment, the multiphase flow supply section 165 is also directly connected to the inlet 159 side of the gas-liquid mixer 150. The multiphase flow is distributed into a first spiral flow path 157 and a second spiral flow path 158, and crushes the gas phase into secondary bubbles BS while forming a first spiral flow TR1 and a second spiral flow TR2, respectively.

該混相流中の一次気泡BPは、気液ミキサー150の螺旋状流路157、158内を流通させることにより遠心力により液体と混合・微粉砕され、図1Cの液体処理ノズル1のねじ部材10のねじピッチをh(mm)として、気泡径1.5h以下(望ましくは1h以下)の二次気泡BSに微粉砕される。二次気泡BSを含んだ液体は液体処理ノズル1に供給され、キャビテーション処理部CVに生ずる乱流域に巻き込まれることにより溶解する。 The primary bubbles BP in the multiphase flow are mixed with the liquid and finely pulverized by centrifugal force by flowing through the spiral channels 157 and 158 of the gas-liquid mixer 150, and are mixed with the liquid and finely pulverized by the threaded member 10 of the liquid processing nozzle 1 in FIG. 1C. The secondary cells BS are pulverized into secondary cells BS having a cell diameter of 1.5h or less (preferably 1h or less), with the screw pitch of h (mm). The liquid containing the secondary bubbles BS is supplied to the liquid treatment nozzle 1, and is dissolved by being caught in the turbulent region generated in the cavitation treatment section CV.

混相流中の気相が、より細かい二次気泡BSに粉砕された状態で液体処理ノズル1のねじ部材に供給されることにより、気体を含有した液体とねじ谷との接触効率が上昇する。これにより、気相成分の混合・攪拌の駆動力を生ずる乱流域の形成が顕著となり、気体溶解効率を高めることができる。また、キャビテーション処理部CV内では、溶解した気体の一部は直ちにキャビテーションにより再析出することから、ねじ谷部内でのキャビテーション効率は大幅に改善される。よって、得られる液体の浸透性あるいは洗浄性等が向上する効果も損なわれにくくなる。 By supplying the gas phase in the multiphase flow to the screw member of the liquid treatment nozzle 1 in a state in which it is crushed into finer secondary bubbles BS, the contact efficiency between the gas-containing liquid and the screw root increases. As a result, the formation of a turbulent region that generates a driving force for mixing and stirring the gas phase components becomes significant, and the gas dissolution efficiency can be improved. Further, in the cavitation treatment section CV, a portion of the dissolved gas is immediately reprecipitated by cavitation, so that the cavitation efficiency within the thread root portion is significantly improved. Therefore, the effect of improving the permeability or detergency of the obtained liquid is also less likely to be impaired.

以下、本発明にて採用可能な液体処理ノズルの種々の変形例について説明する。
図4は、図1Cの液体処理ノズル1のキャビテーション処理部CVを、図2に示すレイアウトの面ねじ組を中心軸線Oの方向に4組配置した構成を示す。具体的には、中心軸線Oの向きに4つのねじ配置面LP1~LP4が、図1Cと同じ面間隔dpにて配置され、図2の十字状の面ねじ組が互いに重なるように(すなわち、同相に)配置されている。この場合、16本のねじ部材10が4つのねじ配置面LP1~LP4に分配されることとなる。また、図5は、図2の面ねじ組を8つのねじ配置面LP1~LP8に対し同相に配置したキャビテーション処理部CVの例を示す。この場合、32本のねじ部材10が8つのねじ配置面LP1~LP8に分配されることとなる。各キャビテーション処理部CVの70%谷点面積密度は、図2の構成と比較して、図4の構成では2倍に、図5の構成では4倍に増加させることができる。
Hereinafter, various modifications of the liquid treatment nozzle that can be employed in the present invention will be described.
FIG. 4 shows a configuration in which the cavitation treatment section CV of the liquid treatment nozzle 1 of FIG. 1C has four sets of surface threads arranged in the direction of the central axis O in the layout shown in FIG. Specifically, the four screw arrangement surfaces LP1 to LP4 are arranged in the direction of the central axis O with the same surface spacing dp as in FIG. 1C, so that the cross-shaped surface screw sets in FIG. in phase). In this case, the 16 screw members 10 will be distributed to the four screw placement surfaces LP1 to LP4. Further, FIG. 5 shows an example of a cavitation treatment section CV in which the surface screw set of FIG. 2 is arranged in the same phase with respect to eight screw arrangement surfaces LP1 to LP8. In this case, 32 screw members 10 will be distributed to eight screw placement surfaces LP1 to LP8. The 70% valley point area density of each cavitation treatment section CV can be increased twice in the configuration of FIG. 4 and four times in the configuration of FIG. 5 compared to the configuration in FIG. 2.

次に、図6は、図1Cの液体処理ノズル1と同様の面ねじ組を45°回転させた状態を示している。そして、図1Cの液体処理ノズル1の2つのねじ配置面LP1、LP2のうち、一方のねじ配置面LP2の十字状の面ねじ組を、他方のねじ配置面LP1の面ねじ組に対して中心軸線Oの周りに45°だけ回転させ、図6の状態とした場合のキャビテーション処理部CVの例を、図7に示している。該構成のキャビテーション処理部CVは、図2の構成と同等の70%谷点面積密度を実現できるが、ねじ配置面LP1、LP2の面間隔dpが図1Cの構成と同一の場合は、液体流通時の圧損が若干大きくなる。しかし、面間隔dpを適度に拡大することで該圧損は減じられ、図2の構成のキャビテーション処理部CVとほぼ同等のキャビテーション処理能力を発揮する。また、液体の乱流攪拌効果は図1Cの構成よりも大きいため、混相流供給により気体を液体に溶解させる目的においてはより有利となる。 Next, FIG. 6 shows a state in which a face screw set similar to the liquid treatment nozzle 1 of FIG. 1C is rotated by 45 degrees. Of the two screw placement surfaces LP1 and LP2 of the liquid treatment nozzle 1 in FIG. FIG. 7 shows an example of the cavitation treatment section CV when the cavitation treatment section CV is rotated by 45 degrees around the axis O to be in the state shown in FIG. The cavitation treatment section CV with this configuration can achieve the same 70% valley point area density as the configuration in FIG. The pressure drop will be slightly larger. However, by appropriately enlarging the surface spacing dp, this pressure loss is reduced, and cavitation processing capacity approximately equivalent to that of the cavitation processing section CV having the configuration shown in FIG. 2 is exhibited. Furthermore, since the turbulent agitation effect of the liquid is greater than that of the configuration shown in FIG. 1C, this configuration is more advantageous for the purpose of dissolving gas in liquid by supplying a multiphase flow.

図8は、図7の構成において、面ねじ組を互いに直交するねじ部材対に分割し、それぞれ中心軸線Oの向きに位置をずらせて配置したキャビテーション処理部CVの例を示す。具体的には、図1Cにおいてねじ配置面LP1、LP2上に配置されていた各々4本のねじ部材10が、図7の構成では、ねじ部材10の公称ねじ径Mだけ隔てられた2つのねじ配置面LP1、LP1’及びLP2、LP2’に、互いに直交する2本ずつを分散させて配置している。すなわち、8本のねじ部材10を4つのねじ配置面LP1、LP1’、LP2、LP2’に分配した例を示すものである。また、ねじ配置面LP1’とねじ配置面LP2との間隔は、公称ねじ径Mよりも大きく(例えば1.5M~2.0M程度)に設定されている。該構成における70%谷点面積密度は図2の構成と同等である。 FIG. 8 shows an example of the cavitation treatment section CV in which the surface screw set is divided into mutually orthogonal screw member pairs, and the respective positions are shifted in the direction of the central axis O in the configuration of FIG. 7. Specifically, the four screw members 10 arranged on the screw arrangement surfaces LP1 and LP2 in FIG. 1C are replaced by two screws separated by the nominal thread diameter M of the thread members 10 in the configuration of FIG. Two wires perpendicular to each other are distributed and arranged on the arrangement planes LP1, LP1' and LP2, LP2'. That is, an example is shown in which eight screw members 10 are distributed to four screw placement surfaces LP1, LP1', LP2, and LP2'. Further, the distance between the screw placement surface LP1' and the screw placement surface LP2 is set to be larger than the nominal thread diameter M (for example, about 1.5M to 2.0M). The 70% valley point area density in this configuration is equivalent to the configuration in FIG.

また、図9は、図2のレイアウトの面ねじ組と、図6のレイアウトの面ねじ組とを、4つのねじ配置面LP1~LP4に対し、交互に2つずつ合計4組配置したキャビテーション処理部CVの例を示す。この例では、16本のねじ部材10が4つのねじ配置面LP1~LP4に4本ずつ分配配置されている。該構成における70%谷点面積密度は図2の構成の2倍となる。 In addition, FIG. 9 shows cavitation treatment in which two sets of surface screws having the layout of FIG. 2 and two sets of surface screws having the layout of FIG. 6 are arranged alternately on the four screw placement surfaces LP1 to LP4. An example of part CV is shown below. In this example, 16 screw members 10 are distributed and arranged, four each on four screw placement surfaces LP1 to LP4. The 70% valley point areal density in this configuration is twice that of the configuration in FIG.

上記の種々の実施形態では、ねじ配置面に対しねじ部材を4本十字状に配置していたが、ねじ配置面におけるねじ部材の配置数及び配置形態はこれらに限定されるものではない。図11は、面ねじ組を3本のねじ部材10で構成した例を示すものである。3本のねじ部材10の先端面は三角形状の中心ギャップ15を形成している。 In the various embodiments described above, four screw members are arranged in a cross shape on the screw arrangement surface, but the number and arrangement form of the screw members on the screw arrangement surface are not limited to these. FIG. 11 shows an example in which a surface screw set is composed of three screw members 10. The tip surfaces of the three screw members 10 form a triangular center gap 15.

また、図1Cの構成において、液体流路3(絞り部9)の内径が拡大した場合、全流通断面積が3.8mm以上確保され、かつ、面内流通面積率が40%以上に確保される条件が充足されるのであれば、1つのねじ配置面上に配置するねじ部材の数、すなわち、面ねじ組の構成ねじ部材数は4つを超えた数とすること、例えば6本や8本としてもよい。図12は、面ねじ組を8本のねじ部材で構成した例を示している。 In addition, in the configuration of Fig. 1C, when the inner diameter of the liquid flow path 3 (throttled portion 9) is expanded, the total flow cross-sectional area is ensured to be 3.8 mm2 or more, and the in-plane flow area ratio is ensured to be 40% or more. If the conditions described above are satisfied, the number of screw members arranged on one screw arrangement surface, that is, the number of screw members constituting the surface screw set, should be more than four, for example, 6 or 8. It can also be used as a book. FIG. 12 shows an example in which the surface screw set is composed of eight screw members.

また、ねじ部材を液体流路3(絞り部9)の内径(直径)に沿って配置する場合、該内径を横断するねじ部材を用いることで、中心ギャップを省略する構成も可能である。図13は、面ねじ組を4本のねじ部材により、中心ギャップを形成しない形で構成した例を示す。また、図14は、図13の面ねじ組を、中心軸線方向に位置をずらせ、かつ角度位相を45°ずらせて2組配置した例を示すものである。特に、絞り部9の内径が10mmを超える大流量のノズルにおいては、中心ギャップを省略しても断面中心付近の流速は十分に確保でき、高流速となる断面中心付近のねじ谷数を増加させる上での支障がない。 Further, when the threaded member is arranged along the inner diameter (diameter) of the liquid flow path 3 (throttled portion 9), it is also possible to omit the center gap by using a threaded member that crosses the inner diameter. FIG. 13 shows an example in which a surface screw set is constructed by four screw members without forming a center gap. Moreover, FIG. 14 shows an example in which two sets of the surface screw sets shown in FIG. 13 are arranged with their positions shifted in the central axis direction and their angular phases shifted by 45 degrees. In particular, in a large flow rate nozzle where the inner diameter of the constriction part 9 exceeds 10 mm, a sufficient flow velocity near the center of the cross section can be ensured even if the center gap is omitted, and the number of thread valleys near the center of the cross section where high flow speed can be achieved is increased. There is no problem above.

また、図1Bの気液ミキサー150は、ねじり板部材を流路形成部材155として使用する形態に限定されない。例えば、ねじり板部材が占める空間と第二螺旋状流路158が占める空間とを合わせた形状の中実鋳造部材として流路形成部材を形成し、これを該当部材151内に挿入することもできる。この場合、図1Bにおける第二螺旋状流路158は流路形成部材により占有されるので、第一螺旋状流路157のみが形成された気液ミキサーとなる。 Further, the gas-liquid mixer 150 in FIG. 1B is not limited to the form in which a twisted plate member is used as the flow path forming member 155. For example, the flow path forming member may be formed as a solid cast member having a shape that combines the space occupied by the torsion plate member and the space occupied by the second spiral flow path 158, and this may be inserted into the corresponding member 151. . In this case, the second spiral flow path 158 in FIG. 1B is occupied by the flow path forming member, resulting in a gas-liquid mixer in which only the first spiral flow path 157 is formed.

以下、液体処理ノズルの効果を確認するために行った種々の実験の結果について説明する。
試験用の液体処理ノズル(以下、「試験ノズル」と称する)として、図1Cに示す形状のものを種々作成した。図21に図1Cの各部の寸法関係を図示している。ノズル本体2の材質はABS樹脂であり、液体入口4と液体出口5の内径はφ20mm、流入室6及び流出室7の流れ方向の長さはそれぞれ15mm及び45mmである。また、キャビテーション処理部において絞り部9の長さは12mm(面ねじ組数4まで)ないし17mm(面ねじ組数8)、絞り部9の内径Dはφ3.8~φ11.5mmの種々の値に設定した。
Below, the results of various experiments conducted to confirm the effectiveness of the liquid treatment nozzle will be explained.
Various liquid processing nozzles for testing (hereinafter referred to as "test nozzles") having the shapes shown in FIG. 1C were created. FIG. 21 illustrates the dimensional relationship of each part in FIG. 1C. The material of the nozzle body 2 is ABS resin, the inner diameter of the liquid inlet 4 and the liquid outlet 5 is 20 mm, and the lengths of the inlet chamber 6 and the outlet chamber 7 in the flow direction are 15 mm and 45 mm, respectively. In addition, in the cavitation treatment section, the length of the constricted part 9 is 12 mm (up to 4 face screw sets) to 17 mm (8 face thread sets), and the inner diameter D of the constricted part 9 is various values from φ3.8 to φ11.5 mm. It was set to

採用したねじ部材は、JIS:B0205(1997)に規定されたメートル並目ピッチを有する0番1種なべ小ねじであり、材質はステンレス鋼(SUS304)である。また、脚部の公称ねじ径はM1.0(ねじピッチ:0.25mm、ねじ頭外径:1.8mm)、M1.4(ねじピッチ:0.30mm、ねじ頭外径:2.0mm)、M1.6(ねじピッチ:0.35mm、ねじ頭外径:2.4mm)、M2.0(ねじピッチ:0.40mm、ねじ頭外径:3.0mm)である。キャビテーション処理部におけるねじ配置面(面ねじ組)の数は1~8であり、種々の面間隔にて設定している。なお、図20に示す如く、キャビテーション処理部に形成した隔壁部8に2つの絞り孔9を形成し、各絞り孔9について十字形態に4本のねじ部材10を配置した液体処理ノズルも作成した。 The screw member used was a No. 0 class 1 pan head machine screw with a metric coarse pitch specified in JIS: B0205 (1997), and the material was stainless steel (SUS304). In addition, the nominal screw diameter of the legs is M1.0 (screw pitch: 0.25 mm, screw head outer diameter: 1.8 mm), M1.4 (screw pitch: 0.30 mm, screw head outer diameter: 2.0 mm). , M1.6 (thread pitch: 0.35 mm, screw head outer diameter: 2.4 mm), M2.0 (screw pitch: 0.40 mm, screw head outer diameter: 3.0 mm). The number of screw arrangement surfaces (surface screw sets) in the cavitation treatment section is from 1 to 8, and is set at various surface spacings. In addition, as shown in FIG. 20, a liquid treatment nozzle was also created in which two throttle holes 9 were formed in the partition wall 8 formed in the cavitation treatment section, and four screw members 10 were arranged in a cross shape for each throttle hole 9. .

各ねじ配置面のねじ部材(面ねじ組)の配置数及びレイアウトは、図11に示す3本、図2及び図6に示す4本及び図12に示す8本であり、隣接するねじ配置面の面ねじ組の位置関係(角度位相)は、図1C、図4、図5に示す同相か、図7~図9に示す45°(ねじ配置面が3以上の場合は交互に45°ずらせた配置)のいずれかとした。また、個々のねじ配置面の全流通断面積aは3.4~56.8mm、面内流通面積率は37.5%~73.7%の種々の値とした。なお、表3の番号13及び番号15の試験ノズルについては、直径方向に2本のみねじ部材を配置した1つのねじ配置面を1つ含むように構成した(表中、「1/2」と表示)。 The number and layout of screw members (plane screw sets) on each screw arrangement surface are three shown in FIG. 11, four shown in FIGS. 2 and 6, and eight shown in FIG. The positional relationship (angular phase) of the plane screw sets is either the same phase as shown in Figures 1C, 4, and 5, or 45° as shown in Figures 7 to 9 (if there are three or more screw placement planes, alternately shifted by 45°) (configuration). Further, the total flow cross-sectional area a of each screw placement surface was set to 3.4 to 56.8 mm 2 and the in-plane flow area ratio was set to various values from 37.5% to 73.7%. Note that the test nozzles numbered 13 and 15 in Table 3 were configured to include one screw arrangement surface with only two threaded members arranged in the diametrical direction (in the table, "1/2" and display).

また、絞り部内のねじ部材のレイアウトを示す投影画像上で各ねじ配置面上の基準円内側の70%谷点数を計数し、これをねじ配置面で合計した値を絞り孔の全断面積で除することにより、70%谷点面積密度の値を各試験ノズルについて算出した。作成した各ノズルについて、絞り部内径、組内ねじ数、面ねじ組配置、面ねじ組間隔、面内流通断面積、面内流通面積率、70%谷点総数及び70%谷点面積密度の各値を、表1~表4にまとめて示している。なお、表1及び表3の各試験ノズルにおいては、公称ねじ径が上記M1.4のねじ部材を使用している。 In addition, the number of 70% valley points inside the reference circle on each screw placement surface was counted on the projected image showing the layout of the screw members in the throttle section, and the total value on the screw placement surface was calculated as the total cross-sectional area of the throttle hole. A 70% valley point areal density value was calculated for each test nozzle by dividing the 70% valley point areal density value. For each nozzle created, the inside diameter of the constricted part, the number of screws in the assembly, the arrangement of surface screws, the spacing between surface screws, the in-plane flow cross-sectional area, the in-plane flow area ratio, the total number of 70% valley points, and the 70% valley point areal density. Each value is summarized in Tables 1 to 4. In addition, in each of the test nozzles in Tables 1 and 3, a screw member with a nominal screw diameter of M1.4 was used.

Figure 0007370534000001
Figure 0007370534000001

Figure 0007370534000002
Figure 0007370534000002

Figure 0007370534000003
Figure 0007370534000003

Figure 0007370534000004
Figure 0007370534000004

次に、図1Bに示す気液ミキサー150を、次のようにして作成した。外筒部材151の全長は200mm、内径Dxを20mmのステンレス鋼管部材とした。また、ねじり板部材155は、厚さ1mm、幅14.8mm長さ200mmのステンレス帯部材に、ねじり周期λが20~100mmの種々の値となるよう、ねじり加工を施して作成した(表5:番号501~504)。そして、図1Aの装置系にて液体として水道水を用い、液体処理ノズル1を取り外した状態でポンプ175(東振テクニカル製ベーンポンプ:TVP-MS1803-A)を作動させ、循環配管180上に取り付けた流量計(図示せず)により、開放時流量として測定した。また、エアコンプレッサー170から混相流供給部(ベンチュリエジェクタ)165に供給するエアの体積流量を、気体供給配管171上に設けた流量調整バルブ172により、上記の循環水の開放時流量を基準としてその15%となるように調整し、気液ミキサー150の流出口側で得られる混相流を、レーザー散乱式粒度計(島津製作所製:SALD2200)のフローセルにインラインにて導き、含まれる二次気泡の平均径を測定した(ミキサ通過後平均気泡径ds(μm))。 Next, a gas-liquid mixer 150 shown in FIG. 1B was created as follows. The outer cylinder member 151 was a stainless steel pipe member having a total length of 200 mm and an inner diameter Dx of 20 mm. The torsion plate member 155 was created by twisting a stainless steel band member with a thickness of 1 mm, a width of 14.8 mm, and a length of 200 mm so that the torsion period λ would be various values from 20 to 100 mm (Table 5 : Numbers 501 to 504). Then, using tap water as the liquid in the device system shown in FIG. The open flow rate was measured using a flowmeter (not shown). Further, the volumetric flow rate of the air supplied from the air compressor 170 to the multiphase flow supply unit (Venturi ejector) 165 is controlled by a flow rate adjustment valve 172 provided on the gas supply pipe 171, based on the flow rate when the circulating water is opened. The multiphase flow obtained at the outlet side of the gas-liquid mixer 150 is guided in-line to the flow cell of a laser scattering particle size meter (Shimadzu Corporation: SALD2200), and the secondary air bubbles contained are adjusted to 15%. The average diameter was measured (average bubble diameter ds (μm) after passing through the mixer).

次いで、液体貯留部250(樹脂製水槽:容積150L)内の水を、水道水への窒素ガス吹込みによるストリッピング処理により、溶存酸素量を1ppmまで低減させた試験用脱酸素水と入れ替えた。次にて、上記の気液ミキサー150の下流側に、表4の番号21、22及び24の試験ノズルを図1Aに示す如く接続し、空気を混合しない状態でポンプ175を動作させたときの流量を計測した。そして、循環配管180の流出側端部を別の回収槽(図示せず)内に差し替え、循環配管180のその流量の15%となるように空気流量を再調整しつつポンプ175を動作させ、液体貯留部250からの水を、液体処理装置300を1パスだけ通過させる形で空気混合しつつ回収槽に回収し、その溶存酸素量を光学式溶存酸素計にて測定した。また、比較例として、気液ミキサー150を省略した形についても、同様の測定を行った(番号506:「*」は比較例であることを示す)。以上の結果を表5に示す。 Next, the water in the liquid storage part 250 (resin water tank: volume 150 L) was replaced with test deoxygenated water in which the amount of dissolved oxygen was reduced to 1 ppm by stripping treatment by blowing nitrogen gas into tap water. . Next, test nozzles numbered 21, 22, and 24 in Table 4 were connected to the downstream side of the gas-liquid mixer 150 as shown in FIG. 1A, and when the pump 175 was operated without mixing air. The flow rate was measured. Then, the outflow side end of the circulation pipe 180 is replaced in another recovery tank (not shown), and the pump 175 is operated while readjusting the air flow rate to 15% of the flow rate of the circulation pipe 180. Water from the liquid storage section 250 was collected into a recovery tank while being mixed with air by passing through the liquid processing device 300 only once, and the amount of dissolved oxygen was measured using an optical dissolved oxygen meter. Furthermore, as a comparative example, similar measurements were conducted for a case in which the gas-liquid mixer 150 was omitted (number 506: "*" indicates a comparative example). The above results are shown in Table 5.

Figure 0007370534000005
Figure 0007370534000005

これによると、いずれの試験ノズルを組み込んだ場合も、1パスによる空気混合により、溶存酸素量は試験開始前の1ppmから増加しているが、その増加代は、気液ミキサー150を接続しない場合よりも、接続した場合の方が良好であることがわかる。該結果をより詳しく見るに、液体処理ノズルに使用するねじ部材のねじピッチをhとして、気液ミキサー150の出口で得られるミキサー通過後平均気泡径dsが1.5h以下(つまり、ds/hが1.5以下)となる場合、特に1.0h以下となる場合に、1パス空気混合後の溶存酸素濃度がより顕著に増加していることがわかる。また、平均気泡径dsは、λ/Dxが4以下のときに縮小傾向が顕著であることもわかる。一方、λ/Dxが1.5以下となる番号501の気液ミキサーは、開放時流量の減少がやや大きく、圧損が増加していることが表5の結果から読み取れる。 According to this, when any test nozzle is installed, the amount of dissolved oxygen increases from 1 ppm before the test starts due to air mixing in one pass, but this increase is the same as when the gas-liquid mixer 150 is not connected. It can be seen that the results are better when connected. Looking at the results in more detail, assuming that the thread pitch of the threaded member used in the liquid processing nozzle is h, the average bubble diameter ds after passing through the mixer obtained at the outlet of the gas-liquid mixer 150 is 1.5 h or less (that is, ds/h 1.5 or less), especially when it is 1.0 h or less, it can be seen that the dissolved oxygen concentration after one-pass air mixing increases more markedly. It can also be seen that the average bubble diameter ds tends to shrink significantly when λ/Dx is 4 or less. On the other hand, it can be seen from the results in Table 5 that in the gas-liquid mixer numbered 501, in which λ/Dx is 1.5 or less, the decrease in the flow rate when open is somewhat large and the pressure drop is increased.

次に、表1~表4の試験用ノズルを用い、以下のような試験を行なった。
(1)通水テスト
図22に示す試験装置を構築し、各試験ノズルを組み込んで通水テストを行なった。具体的には、水温20℃、溶存酸素濃度5ppmの水道水を容量50Lの貯留タンクに注水した。配管系は内径20mmのPVC管を用いて作成した。吸引配管は一端をベーンポンプの吸引側に接続し、他端側を貯留タンクに挿入した。一方、ポンプ吐出側の配管は試験ノズルを装着する試験配管と、試験ノズルを経由しない逃がし配管とに分岐し、逃がし配管を通る水は貯留タンクに戻される。試験配管の先端には試験ノズルを含む本発明の液体処理装置が装着され、その上流に動水圧計と流量計とが挿入される。この状態でベーンポンプを駆動することにより、試験ノズルを開放通水したときの動水圧と流量とが読み取り可能である。また、試験ノズルを通過した処理水は回収タンクに回収される。逃がし配管上には流量調整弁が設けられ、その開度を調整することで、ノズルに付加される動水圧及び流量が任意の値に無段階に設定可能である。
Next, the following tests were conducted using the test nozzles shown in Tables 1 to 4.
(1) Water flow test A test device shown in FIG. 22 was constructed, each test nozzle was installed, and a water flow test was conducted. Specifically, tap water with a water temperature of 20° C. and a dissolved oxygen concentration of 5 ppm was poured into a storage tank with a capacity of 50 L. The piping system was created using a PVC pipe with an inner diameter of 20 mm. One end of the suction piping was connected to the suction side of the vane pump, and the other end was inserted into the storage tank. On the other hand, the pipe on the pump discharge side branches into a test pipe to which a test nozzle is attached and a relief pipe that does not pass through the test nozzle, and water passing through the relief pipe is returned to the storage tank. The liquid treatment device of the present invention including a test nozzle is attached to the tip of the test pipe, and a dynamic hydraulic pressure gauge and a flow meter are inserted upstream thereof. By driving the vane pump in this state, it is possible to read the hydraulic pressure and flow rate when water is passed through the test nozzle in an open manner. In addition, the treated water that has passed through the test nozzle is collected in a collection tank. A flow rate adjustment valve is provided on the relief pipe, and by adjusting the opening degree of the valve, the hydraulic pressure and flow rate applied to the nozzle can be set to arbitrary values in a stepless manner.

通水テストにおいては、全ての試験ノズルについて動水圧を0.077MPaに固定設定し、空気を導入せずに水流通した時の流量を測定した。また、特に選定したいくつかの試験ノズルについては、動水圧を種々に変更した時の流量変化についての測定を行なっている。また、ねじ配置面を1面のみとし、ねじ部材(面ねじ組)の配置数及びレイアウトを図2に示す4本とし、絞り孔9の内径及びねじ部材10の公称ねじ径Mにより全流通断面積aを種々に変更した試験ノズルを用い、動水圧を0.077MPaに固定設定した時の流通断面積と流量の関係を調べる試験も別途行なっている。 In the water flow test, the dynamic water pressure was fixed at 0.077 MPa for all test nozzles, and the flow rate when water flowed without introducing air was measured. In addition, for some particularly selected test nozzles, we measured the flow rate changes when the hydrodynamic pressure was varied in various ways. In addition, the screw arrangement surface is only one surface, and the number and layout of the screw members (plane screw set) are four as shown in FIG. A separate test was also conducted to investigate the relationship between the flow cross-sectional area and the flow rate when the hydrodynamic pressure was fixed at 0.077 MPa using test nozzles with variously changed areas a.

(3)気液ミキサーと組み合わせたときの空気溶解能力評価
図10の液体処理装置300が構築されるように、気液ミキサー150(表5の番号503のもの)と試験ノズルとを組み込み、表5に結果を示した試験と同様に溶存酸素量を1ppmまで低減させた試験用脱酸素水を用い、空気混合しない場合の水流量を基準に体積比にてその15%の空気を導入しつつ、液体処理装置300を1パスだけ通過させる形で回収した水の溶存酸素濃度を測定した。
(3) Evaluation of air dissolution ability when combined with a gas-liquid mixer In order to construct the liquid processing device 300 shown in FIG. Similar to the test results shown in 5, using deoxygenated water for testing with the amount of dissolved oxygen reduced to 1 ppm, while introducing 15% air by volume based on the water flow rate without air mixing. The dissolved oxygen concentration of the water collected after passing through the liquid treatment device 300 only once was measured.

(4)ぬめり汚れ洗浄力評価テスト
バイオフィルムに類似したぬめり汚れのモデルとしてひきわり納豆を用い、図19の装置200を用いて、各試験ノズルを含む液体処理装置を通水させた水道水(初期酸素濃度:5ppm)を試験水として、その洗浄力評価を行なった。装置200の要部をなす散水ノズル201は、内径20mmのPVC管の先端をキャップで封止するとともに、管軸線方向に5mm間隔で管壁部を貫通するノズル孔を複数ドリル孔設したものである。この散水ノズルを水平に支持するとともに、基端側に試験水を供給することで各ノズル孔から下向きに噴射される。
(4) Slimy stain cleaning power evaluation test Using Hikiwari natto as a model for slimy stains similar to biofilm, tap water ( The detergency was evaluated using test water (initial oxygen concentration: 5 ppm). The water nozzle 201, which constitutes the main part of the device 200, is a PVC pipe with an inner diameter of 20 mm, the tip of which is sealed with a cap, and a plurality of nozzle holes are drilled through the pipe wall at intervals of 5 mm in the pipe axis direction. be. By supporting this water nozzle horizontally and supplying test water to the base end, it is sprayed downward from each nozzle hole.

試験水は、図22の装置系を用い、(1)の通水テストの条件を、最終的な回収水中の溶存酸素濃度が6ppmに調整されるように流量調整して空気導入するように変更するとともに、液体処理装置の通過により空気導入されつつキャビテーション処理された処理済み水を試験水として回収タンクに回収した(ただし、動水圧は0.077MPaに設定している)。次いで、貯留タンクを試験水が回収された回収タンクと置き換え、さらに液体処理装置を散水ノズルと交換した。これにより、図22を援用して説明すれば、回収タンク内の試験水がベーンポンプにより吸い上げられ、図19のごとく散水ノズル201から噴射されることとなる。散水ノズル201の直下には整流用タイル207が垂直に立てた状態で設置される。整流用タイル207の上面に向け斜め手前に水流が当たるように、散水ノズル201は軸線周り手前に傾けてセッティングしてあり、各ノズル孔から噴射された水流WFは、整流用タイル207上で広がって一体化し、水膜状となって流下する。 The test water used the equipment system shown in Figure 22, and the conditions for the water flow test in (1) were changed to introduce air by adjusting the flow rate so that the final dissolved oxygen concentration in the recovered water was adjusted to 6 ppm. At the same time, the treated water, which had undergone cavitation treatment while being introduced with air through the liquid treatment device, was collected as test water in a collection tank (however, the hydraulic pressure was set at 0.077 MPa). The storage tank was then replaced with a recovery tank from which the test water was collected, and the liquid treatment device was replaced with a water spray nozzle. As a result, referring to FIG. 22, the test water in the recovery tank is sucked up by the vane pump and sprayed from the water nozzle 201 as shown in FIG. 19. Directly below the water spray nozzle 201, a rectifying tile 207 is installed vertically. The water spray nozzle 201 is tilted forward around the axis so that the water stream hits the upper surface of the rectifying tile 207 diagonally in front of the rectifying tile 207, and the water stream WF injected from each nozzle hole spreads on the rectifying tile 207. It becomes a single body and flows down like a film of water.

汚れモデルNTを塗布したサンプルタイル206は整流用タイル207の直下に配置され、整流タイルからの水膜状の洗浄水流WFが幅方向に均等に流下する。サンプルタイル206はスペーサ205により、下端側が前方にせり出す形で約3°傾けられている。散水ノズル201の水流噴射区間の幅は約30cmである。また、整流用タイル207及びサンプルタイル206は、片面に白色・平滑な釉薬層が形成された陶器製であり、高さTHが9cm、幅TWが18cmである。サンプルタイル206上の汚れモデルNTの幅は3~4cmに設定され、噴射される処理水の総流量は6L/分、汚れモデルNTに当たる実質流量は0.6~0.7L/分に調整されている。これにより、汚れモデルNTの除去に対しては、水流の衝突運動エネルギーよりも、納豆粒子をタイルに付着させているぬめり層への浸潤が効果として主体的となる。 The sample tile 206 coated with the dirt model NT is arranged directly below the rectifying tile 207, and the film-like cleaning water flow WF from the rectifying tile flows down evenly in the width direction. The sample tile 206 is tilted by about 3 degrees by the spacer 205 so that the lower end side protrudes forward. The width of the water jet section of the water spray nozzle 201 is about 30 cm. Further, the rectifying tile 207 and the sample tile 206 are made of ceramic with a white and smooth glaze layer formed on one side, and have a height TH of 9 cm and a width TW of 18 cm. The width of the dirt model NT on the sample tile 206 is set to 3 to 4 cm, the total flow rate of the treated water to be injected is 6 L/min, and the actual flow rate hitting the dirt model NT is adjusted to 0.6 to 0.7 L/min. ing. As a result, for the removal of the dirt model NT, the main effect is the infiltration of the natto particles into the slimy layer that adheres to the tile, rather than the impact kinetic energy of the water flow.

汚れモデルNTはひきわり納豆であり、染料により赤く着色してサンプルタイル206に塗付されている。ひきわり納豆に含まれる豆粒子のサイズは2~3mmであり、塗布総重量はデジタルスケールを用いて1g(粒子数:40~50個)に統一している。汚れモデルNTを塗布後のサンプルタイルは、20℃、湿度50%RHの空調室内で90分乾燥させたのち試験に供した。試験中、洗浄進行に伴いサンプルタイル206から納豆粒子が落下・除去されてゆく様子を動画撮影し、サンプルタイル206上の初期総粒子数に対する除去粒子数の比率の通水経過に伴う変化を動画から読み取った。具体的には、試験水を流通させる場合と通常水を流通させる場合のそれぞれについて3回同じ試験を繰り返し、除去率が50%となる通水時間の3回の平均値を読み取るようにした。 The dirt model NT is made of Hikiwari natto, which is colored red with a dye and applied to the sample tile 206. The size of the bean particles contained in Hikiwari Natto is 2 to 3 mm, and the total coating weight is standardized to 1 g (number of particles: 40 to 50) using a digital scale. The sample tile after applying the stain model NT was dried for 90 minutes in an air-conditioned room at 20° C. and 50% RH, and then subjected to the test. During the test, a video was taken of the falling and removal of natto particles from the sample tile 206 as the cleaning progressed, and a video was taken of the change in the ratio of the number of removed particles to the initial total number of particles on the sample tile 206 as the water flow progressed. I read it from. Specifically, the same test was repeated three times for each case of circulating test water and normal water, and the average value of the three water passage times at which the removal rate was 50% was read.

試験水の洗浄力は、上記の通水時間により評価したが、キャビテーション処理を行なっていない通常水道水や、異なる試験ノズルによる試験水の間での比較を行いやすくするために、次のような手法を用いた。
・試験水については、回収タンクに回収後、10分間静置状態で放置したのち、試験に供した。10分放置後の試験水は、レーザー回折式粒度計(島津製作所製:SALD2200)により微細気泡が計測されるか否かを確認したが、いずれの試験ノズルによる試験水も、通常水である水道水とともに測定結果は検出限界以下となった。
・洗浄性の評価は、複数の試験ノズルの試験水間で通水時間の絶対値を横断的に比較するのではなく、同条件にて作成したサンプルタイルを用いたときの、キャビテーション処理を行わない通常水(ブランク水)と試験水との通水時間比(除去率:50%)で比較するようにした。以上の試験結果を、表1~表4にまとめて示している。
The cleaning power of the test water was evaluated by the water flow time described above, but in order to facilitate comparison between normal tap water that has not been subjected to cavitation treatment and test water using different test nozzles, the following measures were taken. method was used.
・The test water was collected in a collection tank, left undisturbed for 10 minutes, and then used for testing. The test water after being left for 10 minutes was checked with a laser diffraction particle size meter (Shimadzu Corporation: SALD2200) to see if microbubbles could be measured. Along with water, the measurement results were below the detection limit.
・Evaluation of cleanability was performed by performing cavitation treatment using sample tiles created under the same conditions, rather than by comparing the absolute value of water flow time across multiple test nozzles. The water flow time ratio (removal rate: 50%) between normal water (blank water) and test water was compared. The above test results are summarized in Tables 1 to 4.

以下、得られた結果について説明する。
図15は、ねじ配置面を1面のみとし、ねじ配置面の全流通断面積(液体流通領域の面積)を種々に変更した試験ノズルにより、動水圧を通常水道圧領域の0.077MPaに固定設定したときの、流通断面積aと流量ρの関係を調べた結果を示すグラフである。このグラフから明らかな通り、ねじ配置面における流通断面積aが5.0mm以上となる領域では、該面積aの増加に伴い流量ρがaの一次関数:
ρ=1.75a+2.93・・・(I)
に従って直線的に増加する傾向を示していることがわかる。一方、流通断面積aが5.0mmとなる領域では、流量ρは上記直線的な関係から下方に外れ、全流通断面積aの縮小に伴って、該面積aの対数に依存する関数:
ρ=9.28×ln(a)-3.37・・・(II)
に従い、流量ρが急速に減少していることがわかる。これは、通常の水道圧領域による流通条件では、全流通断面積aが5.0mm未満となったとき、ノズル内の面ねじ組の挿入数が1つ増えるごとに増加する圧損が急激に大きくなり、流通断面積に見合った流量が得られなくなることを意味している。全流通断面積aが5.0mmとなる具体的な条件は、例えば、絞り部9の内径を4.2mmに設定し、M1.4のねじ部材を図2のレイアウトに従い4本配置した場合に相当する。
The obtained results will be explained below.
Figure 15 shows test nozzles with only one screw placement surface and various total flow cross-sectional areas (liquid flow area) of the screw placement surface, with dynamic water pressure fixed at 0.077 MPa, which is in the normal water pressure region. It is a graph showing the result of examining the relationship between the flow cross-sectional area a and the flow rate ρ when set. As is clear from this graph, in the region where the flow cross-sectional area a on the screw arrangement surface is 5.0 mm2 or more, as the area a increases, the flow rate ρ becomes a linear function of a:
ρ=1.75a+2.93...(I)
It can be seen that it shows a tendency to increase linearly. On the other hand, in a region where the flow cross-sectional area a is 5.0 mm2 , the flow rate ρ deviates downward from the above linear relationship, and as the total flow cross-sectional area a decreases, a function that depends on the logarithm of the area a:
ρ=9.28×ln(a)-3.37...(II)
It can be seen that the flow rate ρ is rapidly decreasing. This means that under normal water pressure flow conditions, when the total flow cross-sectional area a is less than 5.0 mm2 , the pressure drop increases rapidly as the number of face thread sets in the nozzle increases. This means that it becomes impossible to obtain a flow rate commensurate with the flow cross-sectional area. The specific conditions for the total flow cross-sectional area a to be 5.0 mm 2 are, for example, when the inner diameter of the constriction part 9 is set to 4.2 mm and four M1.4 screw members are arranged according to the layout shown in Figure 2. corresponds to

図16は、面ねじ組の数を増やし70%谷点面積密度の値をさらに増加させる上で、全流通断面積aを5.0mm以上に確保することが重要である事情を説明するものである。横軸は、円形のねじ配置面をなす絞り孔の、断面半径方向の流速分布を示すものである。断面内にねじ部材が配置されるので、流速分布形状はその影響を当然受けると考えられるが、ねじ部材配置の対称性を考慮すれば、断面内にねじ部材が配置されていない場合と同様に、断面中心が極大値となる放物線状の流速分布を仮定することは、おおむね妥当と考えられる(図中の実線)。この状態から、例えば絞り部9の内径を3.5mmに縮小すると、全流通断面積aは3.5mmとなる。この領域においても、面積aに対し流量ρが(I)式が示す一次関数に従い変化すると考えた場合、(I)式のa=3.5mmへの外挿値から推定される流量は約9.0L/minとなる。しかし、実際には圧損増大のため該領域での流量はaの対数を含む(II)式に支配され、(I)式の上記外挿値よりも10%低い8.3L/min前後となることがわかる。 Figure 16 explains the reason why it is important to ensure the total flow cross-sectional area a to be 5.0 mm2 or more in order to increase the number of face thread sets and further increase the value of the 70% valley point area density. It is. The horizontal axis represents the flow velocity distribution in the radial direction of the cross section of the throttle hole that forms the circular screw arrangement surface. Since the threaded member is placed within the cross section, the shape of the flow velocity distribution is naturally considered to be affected by this, but if we consider the symmetry of the threaded member arrangement, it will be the same as when no threaded member is placed within the cross section. , it is generally reasonable to assume a parabolic flow velocity distribution with the maximum value at the center of the cross section (solid line in the figure). From this state, if the inner diameter of the constricted portion 9 is reduced to, for example, 3.5 mm, the total flow cross-sectional area a becomes 3.5 mm 2 . Even in this region, if we consider that the flow rate ρ changes according to the linear function shown by equation (I) with respect to the area a, the flow rate estimated from the extrapolated value of equation (I) to a = 3.5 mm 2 is approximately It becomes 9.0L/min. However, in reality, due to the increase in pressure drop, the flow rate in this region is governed by equation (II), which includes the logarithm of a, and is around 8.3 L/min, which is 10% lower than the extrapolated value of equation (I). I understand that.

この場合、該領域でも圧損の影響が小さく(I)式が成立していれば、断面半径方向の流速分布はa=5.0mmの場合と同じになるはずであるが、実際には断面半径方向の流速分布は、図16に破線で示すように、a=5.0mmの場合から最大値が10%減じた放物線状となる。断面半径の70%となる位置では、最大値ρのほぼ1/2の流速となる。よって、最大流速が(I)式による外挿値から10%減ずれば、a=5.0mmの場合の最大値ρの1/2の流量となる断面半径位置は、計算によると70%位置から67%位置へ縮小する。このような特性の面ねじ組を、流路軸線方向にさらに一組追加すれば、ρの1/2を与える断面半径位置はさらに縮小して63%位置となる。 In this case, if the influence of pressure drop is small in this region and equation (I) holds true, the flow velocity distribution in the radial direction of the cross section should be the same as in the case of a = 5.0 mm 2 , but in reality The flow velocity distribution in the radial direction has a parabolic shape with the maximum value reduced by 10% from the case of a=5.0 mm 2 , as shown by the broken line in FIG. 16 . At a position corresponding to 70% of the cross-sectional radius, the flow velocity becomes approximately 1/2 of the maximum value ρ M. Therefore, if the maximum flow velocity is reduced by 10% from the extrapolated value from equation (I), the cross-sectional radius position where the flow rate is 1/2 of the maximum value ρ M when a = 5.0 mm 2 is calculated to be 70 Reduce from the % position to the 67% position. If one more set of plane screws having such characteristics is added in the direction of the flow path axis, the cross-sectional radius position that provides 1/2 of ρ M is further reduced to a 63% position.

絞り部9の内径が3.5mm、ねじ部材の公称ねじ径Mが1.4の場合、幾何学的な計算によると、70%ねじ谷数は8個となるのに対し、63%ねじ谷数は半分の4個に減ずる。このように、a=3.5mmの面ねじ組は、仮に軸線方向に2組配置して流路断面内のねじ部材数を倍増させても、圧損増加により、面ねじ組を1組のみとした場合と比較して70%ねじ谷数の増加には全く寄与できなくなることがわかる。逆に、a>3.5mmに設定される面ねじ組であれば、軸線方向に2組配置したときの圧損増加がa=3.5mmの場合よりも小さくなるので、面ねじ組の増加は70%ねじ谷数の増加、すなわち70%谷点面積密度の増加に理論的には貢献すると考えられる。この場合、望ましい全流通断面積aの下限値は3.8mm前後となるが、より好ましくは上記(I)式が成立する5.0mm以上に設定するのがよい。そして、実験結果に基づいて以下に詳細に説明するごとく、面ねじ組を構成する十字状の4つのねじ部材を、互いに隣接するねじ配置面間で同相に配置する(つまり、ねじ部材の脚部を、長手方向を一致させつつ互いに重なり合う位置関係にて配置する)構成を採用するとき、面ねじ組の追加に伴う圧損増加はほとんど生じなくなり、70%ねじ谷数を劇的に増加させることができる。また、互いに隣接するねじ配置面間で角度位相をずらせて面ねじ組を配置した場合も、面ねじ組間の距離を増加させることにより、面ねじ組の追加に伴う圧損増加を抑制でき、70%ねじ谷数を同様に増加させることができるようになるのである。 When the inner diameter of the throttle part 9 is 3.5 mm and the nominal thread diameter M of the screw member is 1.4, according to geometric calculation, the number of 70% thread valleys is 8, whereas the number of 70% thread valleys is 8. The number is reduced by half to four. In this way, even if two sets of surface screws with a = 3.5 mm 2 are arranged in the axial direction and the number of screw members in the flow path cross section is doubled, only one set of surface screws will be installed due to the increase in pressure loss. It can be seen that it cannot contribute to an increase in the number of thread roots by 70% compared to the case where On the other hand, if the surface screw set is set to a > 3.5 mm 2 , the increase in pressure loss when two sets are arranged in the axial direction is smaller than when a = 3.5 mm 2 . The increase is thought to theoretically contribute to a 70% increase in the number of thread roots, ie, an increase in the 70% root area density. In this case, the lower limit of the total flow cross-sectional area a is preferably around 3.8 mm 2 , but it is more preferably set to 5.0 mm 2 or more so that the above formula (I) holds true. Then, as explained in detail below based on the experimental results, the four cross-shaped screw members constituting the surface screw set are arranged in the same phase between the adjacent screw arrangement surfaces (that is, the legs of the screw members When adopting a configuration in which the screws are arranged in a positional relationship in which they overlap each other while matching the longitudinal direction, there is almost no increase in pressure loss due to the addition of surface threads, and it is possible to dramatically increase the number of thread roots by 70%. can. Furthermore, even when surface screw sets are arranged with the angular phase shifted between mutually adjacent screw arrangement surfaces, by increasing the distance between the surface screw sets, it is possible to suppress the increase in pressure loss due to the addition of surface thread sets, and 70 % thread root number can be similarly increased.

図17は、絞り部の内径を5.0mmとし、十字状の4つのねじ部材(M1.4)からなる面ねじ組を、ねじ配置面間隔が1.4mm~8.4mm(公称ねじ径をMとして、1.0M~6.0M)となるように設定し、図7のごとく、それらを互いに45°ずれた角度位相にて配置した試験ノズル(番号1~5、以下、45°ノズルという:前述の表1にて、洗浄性評価に供したのは番号2及び4のみ)を用いて行った通水テストの結果を示すものである。動水圧は0.046MPa~0.089MPaの種々の値に設定され、各々測定された流量の値を、設定動水圧の値に対してプロットしている。また、比較用のノズルとして、面ねじ組を1組のみとしたもの(番号101)、面ねじ組を1組のみとしつつねじ部材の本数を8本に増加させたもの(番号102)、絞り孔を図20の2孔タイプとしたもの(番号103)を用いた場合の結果についても併せて示している。 Figure 17 shows a surface screw set consisting of four cross-shaped screw members (M1.4) with an inner diameter of 5.0 mm in the constricted part, and a screw arrangement surface interval of 1.4 mm to 8.4 mm (nominal screw diameter). Test nozzles (numbered 1 to 5, hereinafter referred to as 45° nozzle : In Table 1 above, only numbers 2 and 4 were used for cleaning evaluation). The hydraulic pressure is set to various values from 0.046 MPa to 0.089 MPa, and each measured flow rate value is plotted against the set dynamic hydraulic pressure value. In addition, as comparison nozzles, one with only one set of surface screws (number 101), one with only one set of surface screws and the number of screw members increased to eight (number 102), The results obtained using the two-hole type shown in FIG. 20 (number 103) are also shown.

上記の結果によると、ねじ配置面間隔dpが公称ねじ径と等しくなる1.4mm(1.0M)の場合は、面ねじ組を1組のみとした番号101のノズルと比較すれば圧損増加は大きいが、同一面内に8本のねじ部材を配置した番号102のノズルよりは流量が大きくなっており、面ねじ組を軸線方向に分散配置することによる圧損減少効果が明確に認められる。また、ねじ配置面間隔dpを1.5Mに拡大した番号2のノズルは流量が大幅に増加しており、圧損減少効果は極めて顕著となる。この傾向はねじ配置面間隔dpがさらに拡大することによってより顕著となり(番号3:dp=3.0M)、ねじ配置面間隔dpが4.5Mに達すると、面ねじ組を軸線方向に多重化しない番号101及び番号103と比較しても流量特性はほぼ等しくなる。すなわち、このような配置面間隔を採用することで、角度移相をずらせた形で面ねじ組を追加しても、圧損増加がほとんど生じていないことがわかる。 According to the above results, when the screw arrangement surface spacing dp is 1.4 mm (1.0M), which is equal to the nominal screw diameter, the increase in pressure loss is reduced when compared with nozzle number 101, which has only one set of surface screws. Although it is large, the flow rate is larger than the nozzle No. 102 in which eight screw members are arranged in the same plane, and the effect of reducing pressure loss by distributing the plane screw sets in the axial direction is clearly recognized. In addition, the flow rate of the nozzle No. 2 in which the screw arrangement surface spacing dp was increased to 1.5M was significantly increased, and the pressure loss reduction effect was extremely significant. This tendency becomes more pronounced as the screw arrangement surface spacing dp further increases (number 3: dp = 3.0M), and when the screw arrangement surface spacing dp reaches 4.5M, the surface screw set is multiplexed in the axial direction. Even when compared with numbers 101 and 103, which do not have the same flow rate, the flow characteristics are almost the same. In other words, it can be seen that by adopting such an arrangement surface spacing, almost no increase in pressure loss occurs even if a surface screw set is added with a shifted angular phase shift.

図18は、絞り部の内径を5.0mmとし、十字状の4つのねじ部材(M1.4)からなる面ねじ組を、ねじ配置面間隔dpが2.1mm(=1.5M)となるように設定し、図2、図4及び図5のごとく、それらを互いに同相にて2~8組配置した試験ノズル(番号6~8)を用いて行った通水テストの結果を示すものである。動水圧は0.046MPa~0.089MPaの種々の値に設定され、各々測定された流量の値を、設定動水圧の値に対してプロットしている。また、同じねじ配置面間隔を有する、図17の番号2の45°ノズルの結果についても併せて示している。面ねじ組を同相配置することにより、面ねじ組の数を8組まで増加させても、圧損はほとんど増加していないことがわかる。また、同じ面間隔による45°ノズル(番号2)よりも、流量の値は大幅に増加していることもわかる。 Fig. 18 shows a plane screw set consisting of four cross-shaped screw members (M1.4) with the inner diameter of the constriction part being 5.0 mm, and the screw arrangement surface spacing dp is 2.1 mm (=1.5M). This shows the results of a water flow test conducted using test nozzles (numbers 6 to 8) in which 2 to 8 sets of test nozzles (numbers 6 to 8) were set as shown in Figures 2, 4, and 5 and arranged in the same phase. be. The hydraulic pressure is set to various values from 0.046 MPa to 0.089 MPa, and each measured flow rate value is plotted against the set dynamic hydraulic pressure value. Also shown are the results for the 45° nozzle numbered 2 in FIG. 17, which has the same screw arrangement surface spacing. It can be seen that by arranging the plane screw sets in the same phase, the pressure loss hardly increases even if the number of plane screw sets is increased to eight sets. It can also be seen that the flow rate value is significantly increased compared to the 45° nozzle (number 2) with the same surface spacing.

以下、各ノズルについて行ったぬめり汚れ洗浄力評価テストの結果について、表1~表4を参照しつつ説明する。表1は、上記通水テストで用いた番号2及び番号4の45°ノズル及び番号6の同相ノズルについての結果を、番号101~103の比較用ノズルについての結果とともに示している。また、番号200は、キャビテーション処理を行わない通常の水道水をブランク水(通常水)として用いた場合の結果を示すものである。評価は前述のごとく、除去率が50%となるときのブランク水に対する試験水の通水時間比(除去率:50%)で行っており、この通水時間比の値が1のとき、ぬめり汚れに対する洗浄力はブランク水と同等であり、1より小さいときは、ブランク水より短時間でぬめり汚れを除去できていることを意味し、その絶対値が小さいほどぬめり汚れに対する洗浄力に優れていることを示す。 The results of the slime/stain cleaning power evaluation test conducted for each nozzle will be explained below with reference to Tables 1 to 4. Table 1 shows the results for the 45° nozzles No. 2 and No. 4 and the in-phase nozzle No. 6 used in the water flow test, together with the results for the comparative nozzles No. 101 to 103. Moreover, the number 200 shows the result when normal tap water without cavitation treatment was used as blank water (normal water). As mentioned above, the evaluation is based on the water flow time ratio (removal rate: 50%) of the test water to the blank water when the removal rate is 50%, and when the value of this water flow time ratio is 1, the slime The detergency against dirt is equivalent to that of blank water, and when it is less than 1, it means that slimy dirt can be removed in a shorter time than blank water, and the smaller the absolute value, the better the detergency against slimy dirt. Show that there is.

まず、面ねじ組を1組のみとした番号101のノズルによる処理水は、通水時間比が1よりも小さい値となっており、ブランク水よりは洗浄力が明らかに良好である。また、面ねじ組を1組のみとしつつねじ部材の本数を8本に増加させた番号102のノズル、及び絞り孔を2孔タイプとした番号103についての結果も、ブランク水よりは良好であることを示している。 First, the water treated by the nozzle No. 101 with only one set of surface threads has a water flow time ratio of less than 1, and has clearly better cleaning power than blank water. In addition, the results for nozzle No. 102, which had only one set of face screws but increased the number of screw members to eight, and Nozzle No. 103, which had two aperture holes, were also better than the blank water. It is shown that.

ここで、番号102のノズルは70%谷点面積密度が番号101のノズルの1.8倍程度となっており、特に良好な洗浄効果を示している。また、面内流通面積率も5.1mm確保されており、キャビテーションに必要な流速は十分確保されていると考えられるが、面内流通面積率の値が26%と小さく、流量も6.8L/minと小さい。なお、汚れ洗浄力評価テストは、処理水をブランク水にて2倍(ないし3倍)に希釈した水についても同様に行っているが、番号102のノズルは2倍希釈した場合も通水時間比は0.5以下と良好な値を示す。表中には、70%谷点数を動水圧0.077MPaでの通水流量で除して得られる70%谷点流量密度の計算値も併せて示しているが、この値が大きいほど通水時間比が示す洗浄能力が良好となることも把握できる。 Here, the nozzle No. 102 has a 70% valley point area density of about 1.8 times that of the nozzle No. 101, and exhibits a particularly good cleaning effect. In addition, the in-plane flow area ratio was also secured at 5.1 mm2 , and it is considered that the flow velocity necessary for cavitation is sufficiently secured, but the value of the in-plane flow area ratio is as small as 26%, and the flow rate is also 6.1 mm2. It is small at 8L/min. In addition, the stain cleaning power evaluation test is also conducted using treated water diluted two times (or three times) with blank water. The ratio shows a good value of 0.5 or less. The table also shows the calculated value of the 70% valley point flow density obtained by dividing the 70% valley point number by the water flow rate at a hydraulic pressure of 0.077 MPa; It can also be understood that the cleaning ability indicated by the time ratio becomes better.

次に、番号2、4、6の試験ノズルの結果については、番号101及び番号103のノズルと比較して70%谷点面積密度が大きいため、処理水の洗浄能力はより優れていることがわかる。他方、70%谷点流量密度の比較では、番号102のノズルよりも若干劣っており、洗浄能力はこれには及ばないものの、これに近い能力が発揮されており、かつ、番号102のノズルと比較したとき、面内流通面積率が増大していることにより、流量については圧倒的に良好な結果を示している。 Next, regarding the results of test nozzles No. 2, 4, and 6, the cleaning ability of the treated water is superior because the 70% valley point area density is larger than that of nozzles No. 101 and No. 103. Recognize. On the other hand, in a comparison of the 70% trough point flow density, it is slightly inferior to the nozzle No. 102, and although the cleaning ability is not as good as this, it is similar to the Nozzle nozzle No. 102. When compared, the results show overwhelmingly good flow rates due to the increased in-plane flow area ratio.

表2は、同相配置にて面ねじ組の数を増加させた番号7及び番号8のノズルについての結果を、番号101及び番号6の試験ノズルの結果と比較して示すものである。番号7及び番号8のノズルは、面ねじ組数の増加に伴う圧損増加が小さいため、大流量を維持しつつ70%谷点面積密度及び70%谷点流量密度がいずれも顕著に増加している。その結果、希釈率を2倍ないし3倍に増加させた場合においても通水時間比が示す洗浄能力はより良好である。 Table 2 shows the results for the No. 7 and No. 8 nozzles, which have an increased number of face threads in an in-phase arrangement, compared to the results for the No. 101 and No. 6 test nozzles. Nozzles No. 7 and No. 8 have a small increase in pressure loss due to an increase in the number of surface threads, so while maintaining a large flow rate, both the 70% valley point area density and the 70% valley point flow density increase significantly. There is. As a result, even when the dilution rate is increased two to three times, the cleaning ability indicated by the water flow time ratio is better.

表3は、M1.4のねじ部材を用いつつ、絞り部内径、面ねじ組のねじ本数及び面ねじ組の数を種々に変更した試験ノズル(番号9~15)についての結果をまとめたものである。また、番号109、111、112及び113は、番号9、11、12及び13の試験ノズルと同じ構成の面ねじ組を1組のみ設けたノズルを表している。番号10のノズルは、3本のねじ部材で構成した図11に示す面ねじ組を用いたものであり、番号15は、絞り部内径が10mmを超える値に設定される一方、面ねじ組を図12に示す8本にて構成したものである。また、番号13及び番号15のノズルは、4本ないし8本の面ねじ組を用いつつ、1層だけねじ本数を1/2(4本の面ねじ組については、直径方向に対抗する2本のみとし、8本の面ねじ組については、十字状の4本のみに間引いたもの)に縮小したものとして構成している。番号9~15の実施例の試験ノズルは、絞り部9の内径の拡大に伴い流量が30L/min以上に増加しているにも関わらず、70%谷点面積密度を2.0個/mm以上に確保できており、面ねじ組を1組のみ設けた番号109、111、112及び113のノズルよりも、より良好な洗浄性能が発揮されている。 Table 3 summarizes the results of test nozzles (numbers 9 to 15) in which M1.4 screw members were used, but the inner diameter of the throttle part, the number of screws in the surface screw set, and the number of the surface screw sets were variously changed. It is. Further, numbers 109, 111, 112, and 113 represent nozzles having only one set of surface threads having the same configuration as the test nozzles numbered 9, 11, 12, and 13. Nozzle No. 10 uses a surface screw assembly shown in FIG. 11, which is composed of three screw members, and Nozzle No. 15 uses a surface screw assembly, in which the inner diameter of the throttle part is set to a value exceeding 10 mm. It is composed of eight wires shown in FIG. 12. In addition, the nozzles numbered 13 and 15 use 4 to 8 surface screws, but the number of screws is halved for one layer (for 4 surface screws, two diametrically opposing nozzles are used). The eight face screw sets are thinned out to only four cross-shaped screws). The test nozzles of Examples Nos. 9 to 15 had a 70% valley point area density of 2.0 nozzles/mm even though the flow rate increased to 30 L/min or more due to the expansion of the inner diameter of the constriction part 9. 2 or more, and exhibits better cleaning performance than the nozzles numbered 109, 111, 112, and 113, which were provided with only one set of surface threads.

表4は、面内流通断面積の値をほぼ同等に設定しつつ、使用するねじ部材の公称ねじ径を変更することにより、70%谷点密度を種々の値に設定した試験ノズル(番号21~24)についての結果を示すものである。いずれも良好な洗浄性能を発揮しているが、ねじ谷深さの大きいM1.4~M2.0のねじ部材を用いた番号22~番号24のノズルは、ねじ谷深さの小さいM1.0のねじ部材を用いた番号21のノズルと比較して、より小さい70%谷点面積密度にて同等の洗浄性能が達成できていることがわかる。 Table 4 shows test nozzles (number 21 -24). All of them exhibit good cleaning performance, but the nozzles numbered 22 to 24, which use screw members with a large thread depth of M1.4 to M2.0, have a small thread depth of M1.0. It can be seen that the same cleaning performance can be achieved with a smaller 70% valley point area density compared to the nozzle No. 21 using the threaded member.

このように、表1~表4のいずれのノズルについても、気液ミキサー150(表5の番号503のもの)と組み合わせて本発明の液体処理装置を構成することで、通常水道水よりも良好な洗浄性が発揮される。また、試験用脱酸素水を用いた空気溶解能力評価(溶存酸素濃度)においても、いずれも良好な結果が得られていることがわかる。 In this way, any of the nozzles in Tables 1 to 4 can be used in combination with the gas-liquid mixer 150 (the one with number 503 in Table 5) to configure the liquid treatment device of the present invention. Delivers excellent cleaning performance. Furthermore, it can be seen that good results were obtained in all evaluations of air dissolution ability (dissolved oxygen concentration) using deoxygenated test water.

1 液体処理ノズル
2 ノズル本体
3 液体流路
5 液体出口
4 液体入口
9 絞り孔
10 ねじ部材
150 気液ミキサー
151 外筒部材
155 流路形成部材
156 螺旋区間
157 第一螺旋状流路
158 第二螺旋状流路
159 流入口
160 流出口
300 液体処理装置
LP1~LP4 ねじ配置面
CV キャビテーション処理部

1 Liquid processing nozzle 2 Nozzle body 3 Liquid flow path 5 Liquid outlet 4 Liquid inlet 9 Restriction hole 10 Screw member 150 Gas-liquid mixer 151 Outer cylinder member 155 Channel forming member 156 Spiral section 157 First spiral channel 158 Second spiral Flow path 159 Inlet 160 Outlet 300 Liquid treatment device LP1 to LP4 Screw arrangement surface CV Cavitation treatment section

Claims (13)

一端に液体入口を、他端に液体出口を有する単一の液体流路が形成されるとともに、該液体流路の一部区間がキャビテーション処理部として定められたノズル本体と、前記キャビテーション処理部にて前記ノズル本体に脚部先端側が流路内側に突出するように組付けられる複数のねじ部材とを備え、気体が溶存した液体を前記液体入口から前記液体出口に向けて流通させ、前記キャビテーション処理部にて前記ねじ部材の脚部外周面に形成されたねじ谷に前記液体を増速しつつ接触させることにより、該液体に溶存した前記気体の減圧析出に基づくキャビテーション処理を行なうようにした液体処理ノズルと、
一端に流入口、他端に流出口が形成される中空の外筒部材と、前記外筒部材の内側に設けられ、前記流入口と前記流出口とをつなぐ螺旋状流路を、該螺旋状流路の螺旋軸線が前記外筒部材の中心軸線に沿うように形成する流路形成部材とを備え、前記螺旋状流路が前記液体処理ノズルの前記液体流路に連通するように、前記液体処理ノズルの前記液体入口側に設けられる気液ミキサーと、
前記気液ミキサーの前記流入口に、前記気体と前記液体との混相流を供給する混相流供給部とを備えた液体処理装置であって
該液体処理装置は、前記混相流中の気泡を、前記気液ミキサーの前記螺旋状流路内を流通させることにより微粉砕しつつ前記液体処理ノズルに供給し、前記キャビテーション処理部に生ずる乱流域に前記微粉砕された気体を巻き込ませて溶解させるようにされており、
前記液体処理ノズルは、前記ねじ部材がねじピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下のものが使用され、前記キャビテーション処理部には、前記液体流路の中心軸線と直交する仮想的なねじ配置面が該中心軸線に沿って複数設定され、前記ねじ部材が各前記ねじ配置面に対し2つ以上分配される形で前記脚部の長手方向が該ねじ配置面に沿うように配置された構造を有してなり、総数にて8以上の前記ねじ部材が各前記ねじ配置面に対し2つ以上分配される形で配置されるとともに、前記液体流路の液体流通領域の面積が各前記ねじ配置面において3.8mm 以上確保され、前記液体流路の全断面積に占める液体流通領域の割合として定められる面内流通面積率が40%以上に確保され、前記中心軸線と直交する平面への投影にて前記液体流路の断面中心から該液体流路の半径の70%以内の領域に位置する谷点の全ねじ配置面間で合計した総数を、前記液体流路の断面積で除した70%谷点面積密度と定義したとき、前記70%谷点面積密度の値が1.6個/mm 以上に確保され、さらに、前記液体流路の中心軸線方向に互いに隣り合う前記ねじ配置面の間隔が前記公称ねじ径以上に確保されてなり、
互いに隣接する前記ねじ配置面のそれぞれにおいて3以上の同数の前記ねじ部材が、前記脚部が前記液体流路の断面半径方向に沿うように前記断面中心周りに等角度間隔にて配置されるとともに、前記断面中心周りにおける前記ねじ部材の配置角度位相が隣接する前記ねじ配置面間にて一致するように定められてなることを特徴とする液体処理装置。
A single liquid flow path having a liquid inlet at one end and a liquid outlet at the other end is formed, and a part of the liquid flow path is connected to a nozzle body defined as a cavitation treatment section and to the cavitation treatment section. and a plurality of screw members assembled to the nozzle body so that the tip end side of the leg protrudes inside the flow path, the liquid in which gas is dissolved flows from the liquid inlet to the liquid outlet, and the cavitation treatment is performed. A liquid that performs cavitation treatment based on vacuum precipitation of the gas dissolved in the liquid by bringing the liquid into contact with the thread valley formed on the outer circumferential surface of the leg of the screw member at an increased speed. a processing nozzle;
A hollow outer cylindrical member having an inlet at one end and an outlet at the other end, and a spiral flow path provided inside the outer cylindrical member and connecting the inlet and the outlet. a flow path forming member formed such that the helical axis of the flow path is along the central axis of the outer cylinder member, and the liquid a gas-liquid mixer provided on the liquid inlet side of the processing nozzle;
A liquid processing device comprising: a multiphase flow supply unit that supplies a multiphase flow of the gas and the liquid to the inlet of the gas-liquid mixer,
The liquid processing device supplies the bubbles in the multiphase flow to the liquid processing nozzle while pulverizing them by flowing them through the spiral flow path of the gas-liquid mixer, and eliminates the turbulent area generated in the cavitation processing section. The finely pulverized gas is drawn into and dissolved in the pulverized gas ,
In the liquid treatment nozzle, the threaded member has a thread pitch and thread depth of 0.20 mm or more and 0.40 mm or less, and a nominal thread diameter M of 1.0 mm or more and 2.0 mm or less, and the cavitation treatment section In the method, a plurality of virtual screw placement surfaces perpendicular to the central axis of the liquid flow path are set along the central axis, and two or more screw members are distributed to each of the screw placement surfaces. The leg has a structure in which the longitudinal direction of the leg is arranged along the screw arrangement surface, and the screw members, a total of eight or more, are arranged in such a manner that two or more screw members are distributed to each of the screw arrangement surfaces. At the same time, the area of the liquid circulation area of the liquid flow path is secured at 3.8 mm 2 or more on each of the screw arrangement surfaces, and the in-plane circulation is determined as the ratio of the liquid circulation area to the total cross-sectional area of the liquid flow path. A full thread with a valley point that has an area ratio of 40% or more and is located in an area within 70% of the radius of the liquid flow path from the cross-sectional center of the liquid flow path when projected onto a plane orthogonal to the central axis. When defined as the 70% valley point areal density obtained by dividing the total number between the arrangement surfaces by the cross-sectional area of the liquid flow path, ensure that the value of the 70% valley point areal density is 1.6 pieces/mm2 or more . further, the distance between the screw arrangement surfaces adjacent to each other in the central axis direction of the liquid flow path is ensured to be equal to or larger than the nominal screw diameter,
On each of the mutually adjacent screw arrangement surfaces, three or more of the same number of screw members are arranged at equal angular intervals around the center of the cross section so that the leg portions are along the radial direction of the cross section of the liquid flow path, and . A liquid processing device, wherein the arrangement angle phase of the screw member around the center of the cross section is determined to be the same between the adjacent screw arrangement surfaces.
前記気液ミキサーは、前記ねじ部材のねじピッチをh(mm)として前記気泡を、1.5h以下の気泡径に微粉砕するものである請求項1記載の液体処理装置。 2. The liquid processing apparatus according to claim 1, wherein the gas-liquid mixer finely pulverizes the bubbles to a bubble diameter of 1.5 h or less, with a screw pitch of the screw member being h (mm). 前記気液ミキサーの前記流路形成部材は、帯状の金属板の幅方向の中心軸線を前記螺旋軸線とする形で該金属板をねじり加工したねじり板部材として構成され、前記螺旋状流路として、前記ねじり板部材の第一主面と前記外筒部材の円筒状の内周面との間の空間がなす第一螺旋状流路と、前記ねじり板部材の第二主面と前記外筒部材の円筒状の内周面との間の空間がなす第二螺旋状流路とからなる請求項1又は請求項2に記載の液体処理装置。 The flow path forming member of the gas-liquid mixer is configured as a twisted plate member obtained by twisting a strip-shaped metal plate such that the central axis in the width direction of the metal plate is the helical axis, and the spiral flow path is , a first spiral flow path formed by a space between the first main surface of the torsion plate member and the cylindrical inner circumferential surface of the outer cylinder member; a second main surface of the torsion plate member and the outer cylinder; 3. The liquid treatment device according to claim 1, further comprising a second spiral flow path formed by a space between the member and the cylindrical inner circumferential surface of the member. 前記外筒部材は、前記第一螺旋状流路及び前記第二螺旋状流路、それぞれ1.5周期以上の螺旋区間を含むように全長が定められている請求項3記載の液体処理装置。 4. The liquid processing device according to claim 3, wherein the outer cylinder member has a total length determined such that the first spiral flow path and the second spiral flow path each include a spiral section of 1.5 periods or more. . 前記外筒部材の円筒状の内周面の内径をDx(mm)、前記ねじり板部材の螺旋周期長をλ(mm)として、λ/Dxが1.5以上4以下に設定されている請求項3又は請求項4に記載の液体処理装置。 A claim in which λ/Dx is set to 1.5 or more and 4 or less, where the inner diameter of the cylindrical inner peripheral surface of the outer cylinder member is Dx (mm), and the helical periodic length of the torsion plate member is λ (mm). The liquid treatment device according to claim 3 or 4. 前記液体流路の液体流通領域の面積が各前記ねじ配置面において5.0mm以上確保され、前記70%谷点面積密度の値が2.0個/mm以上に確保されてなる請求項1ないし請求項5のいずれか1項に記載の液体処理装置。 Claim: The area of the liquid flow region of the liquid flow path is ensured at 5.0 mm 2 or more on each of the screw arrangement surfaces, and the value of the 70% valley point area density is ensured at 2.0 pieces/mm 2 or more. The liquid treatment device according to any one of claims 1 to 5 . 前記ねじ配置面上にて前記ねじ部材は前記液体流路の円形の軸断面の直径に前記脚部の長手方向を一致させる位置関係にて配置されてなる請求項1ないし請求項6のいずれか1項に記載の液体処理装置。 Any one of claims 1 to 6, wherein the screw member is arranged on the screw arrangement surface in a positional relationship such that the longitudinal direction of the leg matches the diameter of the circular axial cross section of the liquid flow path. The liquid treatment device according to item 1 . 前記ねじ部材を3本以上含むねじ配置面が前記中心軸線方向に2面以上設定されてなる請求項記載の液体処理装置。 2. The liquid processing device according to claim 1 , wherein two or more screw arrangement surfaces including three or more of the screw members are set in the direction of the central axis. 前記ねじ配置面上の3本以上の前記ねじ部材は、各ねじの前記脚部の先端面が前記断面中心を取り囲むことにより中心ギャップを形成するように配置されてなる請求項記載の液体処理装置。 9. The liquid treatment according to claim 8 , wherein the three or more screw members on the screw arrangement surface are arranged such that a tip end surface of the leg portion of each screw surrounds the center of the cross section to form a center gap. Device. 前記ねじ部材は前記脚部よりも径大の頭部を有し、前記ねじ配置面の間隔が該頭部の外径よりも大きく設定されてなる請求項記載の液体処理装置。 2. The liquid processing device according to claim 1 , wherein the screw member has a head having a larger diameter than the leg, and an interval between the screw arrangement surfaces is set to be larger than an outer diameter of the head. 前記中心軸線方向における前記ねじ配置面の間隔が前記ねじ部材の公称ねじ径の2.0倍以上に設定されてなる請求項に記載の液体処理装置。 The liquid treatment device according to claim 1 , wherein the interval between the screw arrangement surfaces in the central axis direction is set to be 2.0 times or more the nominal screw diameter of the screw member. 前記中心軸線方向における前記ねじ配置面の間隔が前記ねじ部材の公称ねじ径の4.0倍以上に設定されてなる請求項11記載の液体処理装置。
12. The liquid treatment device according to claim 11 , wherein an interval between the screw arrangement surfaces in the direction of the central axis is set to be 4.0 times or more the nominal screw diameter of the screw member.
一端に液体入口を、他端に液体出口を有する単一の液体流路が形成されるとともに、該液体流路の一部区間がキャビテーション処理部として定められたノズル本体と、前記キャビテーション処理部にて前記ノズル本体に脚部先端側が流路内側に突出するように組付けられる複数のねじ部材とを備え、気体が溶存した液体を前記液体入口から前記液体出口に向けて流通させ、前記キャビテーション処理部にて前記ねじ部材の脚部外周面に形成されたねじ谷に前記液体を増速しつつ接触させることにより、該液体に溶存した前記気体の減圧析出に基づくキャビテーション処理を行なうようにした液体処理ノズルと、
一端に流入口、他端に流出口が形成される中空の外筒部材と、前記外筒部材の内側に設けられ、前記流入口と前記流出口とをつなぐ螺旋状流路を、該螺旋状流路の螺旋軸線が前記外筒部材の中心軸線に沿うように形成する流路形成部材とを備え、前記螺旋状流路が前記液体処理ノズルの前記液体流路に連通するように、前記液体処理ノズルの前記液体入口側に設けられる気液ミキサーと、
前記気液ミキサーの前記流入口に、前記気体と前記液体との混相流を供給する混相流供給部とを備えた液体処理装置であって、
該液体処理装置は、前記混相流中の気泡を、前記気液ミキサーの前記螺旋状流路内を流通させることにより微粉砕しつつ前記液体処理ノズルに供給し、前記キャビテーション処理部に生ずる乱流域に前記微粉砕された気体を巻き込ませて溶解させるようにされており、
前記液体処理ノズルは、前記ねじ部材がねじピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下のものが使用され、前記キャビテーション処理部には、前記液体流路の中心軸線と直交する仮想的なねじ配置面が該中心軸線に沿って複数設定され、前記ねじ部材が各前記ねじ配置面に対し2つ以上分配される形で前記脚部の長手方向が該ねじ配置面に沿うように配置された構造を有してなり、総数にて8以上の前記ねじ部材が各前記ねじ配置面に対し2つ以上分配される形で配置されるとともに、前記液体流路の液体流通領域の面積が各前記ねじ配置面において3.8mm 以上確保され、前記液体流路の全断面積に占める液体流通領域の割合として定められる面内流通面積率が40%以上に確保され、前記中心軸線と直交する平面への投影にて前記液体流路の断面中心から該液体流路の半径の70%以内の領域に位置する谷点の全ねじ配置面間で合計した総数を、前記液体流路の断面積で除した70%谷点面積密度と定義したとき、前記70%谷点面積密度の値が1.6個/mm 以上に確保され、
前記ねじ配置面として、前記液体流路の中心軸線に沿って、少なくとも第1ねじ配置面、第2ねじ配置面、第3ねじ配置面、及び、第4ねじ配置面が、この順番で設定されるとともに、各ねじ配置面では、3本以上の同数の前記ねじ部材が、前記脚部が前記液体流路の断面半径方向に沿うように前記断面中心周りに等角度間隔にて配置され、
前記第1ねじ配置面、前記第2ねじ配置面、前記第3ねじ配置面、及び、前記第4ねじ配置面では、前記中心軸線方向に互いに隣り合う前記ねじ配置面の間隔が前記公称ねじ径の1.5倍以上に確保され、且つ、前記断面中心周りにおける前記ねじ部材の配置角度位相が、前記隣り合うねじ配置面間にて互いにずれた形で定められ、
前記第1ねじ配置面と前記第3ねじ配置面間では、前記ねじ部材の配置角度位相が互いに一致するように定められ、
前記第2ねじ配置面と前記第4ねじ配置面間では、前記ねじ部材の配置角度位相が互いに一致するように定められていることを特徴とする液体処理ノズル
A single liquid flow path having a liquid inlet at one end and a liquid outlet at the other end is formed, and a part of the liquid flow path is connected to a nozzle body defined as a cavitation treatment section and to the cavitation treatment section. and a plurality of screw members assembled to the nozzle body so that the tip end side of the leg protrudes inside the flow path, the liquid in which gas is dissolved flows from the liquid inlet to the liquid outlet, and the cavitation treatment is performed. A liquid that performs cavitation treatment based on vacuum precipitation of the gas dissolved in the liquid by bringing the liquid into contact with the thread valley formed on the outer circumferential surface of the leg of the screw member at an increased speed. a processing nozzle;
A hollow outer cylindrical member having an inlet at one end and an outlet at the other end, and a spiral flow path provided inside the outer cylindrical member and connecting the inlet and the outlet. a flow path forming member formed such that the helical axis of the flow path is along the central axis of the outer cylinder member, and the liquid a gas-liquid mixer provided on the liquid inlet side of the processing nozzle;
A liquid processing device comprising: a multiphase flow supply unit that supplies a multiphase flow of the gas and the liquid to the inlet of the gas-liquid mixer,
The liquid processing device supplies the bubbles in the multiphase flow to the liquid processing nozzle while pulverizing them by flowing them through the spiral flow path of the gas-liquid mixer, and eliminates the turbulent area generated in the cavitation processing section. The finely pulverized gas is drawn into and dissolved in the pulverized gas,
In the liquid treatment nozzle, the threaded member has a thread pitch and thread depth of 0.20 mm or more and 0.40 mm or less, and a nominal thread diameter M of 1.0 mm or more and 2.0 mm or less, and the cavitation treatment section In the method, a plurality of virtual screw placement surfaces perpendicular to the central axis of the liquid flow path are set along the central axis, and two or more screw members are distributed to each of the screw placement surfaces. The leg has a structure in which the longitudinal direction of the leg is arranged along the screw arrangement surface, and the screw members, a total of eight or more, are arranged in such a manner that two or more screw members are distributed to each of the screw arrangement surfaces. At the same time, the area of the liquid circulation area of the liquid flow path is secured at 3.8 mm 2 or more on each of the screw arrangement surfaces, and the in-plane circulation is determined as the ratio of the liquid circulation area to the total cross-sectional area of the liquid flow path. A full thread with a valley point that has an area ratio of 40% or more and is located in an area within 70% of the radius of the liquid flow path from the cross-sectional center of the liquid flow path when projected onto a plane orthogonal to the central axis. When defined as the 70% valley point areal density obtained by dividing the total number between the arrangement surfaces by the cross-sectional area of the liquid flow path, ensure that the value of the 70% valley point areal density is 1.6 pieces/mm2 or more . is,
As the screw placement surface, at least a first screw placement surface, a second screw placement surface, a third screw placement surface, and a fourth screw placement surface are set in this order along the central axis of the liquid flow path. and on each screw arrangement surface, the same number of three or more screw members are arranged at equal angular intervals around the center of the cross section so that the leg portions are along the radial direction of the cross section of the liquid flow path,
In the first screw placement surface, the second screw placement surface, the third screw placement surface, and the fourth screw placement surface, the distance between the screw placement surfaces adjacent to each other in the central axis direction is equal to the nominal screw diameter. 1.5 times or more, and the arrangement angle phase of the screw member around the center of the cross section is determined in a manner shifted from each other between the adjacent screw arrangement surfaces,
Between the first screw placement surface and the third screw placement surface, the placement angle phases of the screw members are determined to match each other,
A liquid processing nozzle, wherein the arrangement angle phases of the screw members are determined to match each other between the second screw arrangement surface and the fourth screw arrangement surface.
JP2019096414A 2019-05-22 2019-05-22 liquid processing equipment Active JP7370534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096414A JP7370534B2 (en) 2019-05-22 2019-05-22 liquid processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096414A JP7370534B2 (en) 2019-05-22 2019-05-22 liquid processing equipment

Publications (2)

Publication Number Publication Date
JP2020189274A JP2020189274A (en) 2020-11-26
JP7370534B2 true JP7370534B2 (en) 2023-10-30

Family

ID=73454245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096414A Active JP7370534B2 (en) 2019-05-22 2019-05-22 liquid processing equipment

Country Status (1)

Country Link
JP (1) JP7370534B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112827687B (en) * 2020-12-30 2022-10-18 浙江工业大学 Spiral pipeline oscillation atomizer based on bionic surface
CN113230788B (en) * 2021-04-15 2023-04-25 西安石油大学 Fine dust spraying and dust falling system and intelligent atomization and dust falling method thereof
CN114046627A (en) * 2021-11-02 2022-02-15 上海睿昇半导体科技有限公司 Water cooling device with double-layer spiral water channel and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327958A (en) 2000-05-19 2001-11-27 Kajima Corp Apparatus for reducing dissolved oxygen in water
JP3139460U (en) 2007-10-30 2008-02-21 渉 室田 Mass production equipment for gas-dissolved liquid by continuous pressurized flow system
WO2013012069A1 (en) 2011-07-21 2013-01-24 株式会社シバタ Bubble generating mechanism and showerhead with bubble generating mechanism
JP2013215421A (en) 2012-04-10 2013-10-24 Shibata:Kk Showerhead
JP2015174056A (en) 2014-03-17 2015-10-05 株式会社シバタ Carbon dioxide gas dissolution device
WO2016178436A2 (en) 2015-05-07 2016-11-10 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device
WO2016195116A2 (en) 2015-06-02 2016-12-08 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device
JP2018015756A (en) 2017-03-03 2018-02-01 丸福水産株式会社 Blending treatment body, blending treatment, fluid mixer, fluid mixing processor, seafood cultivation system, and seafood cultivation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327958A (en) 2000-05-19 2001-11-27 Kajima Corp Apparatus for reducing dissolved oxygen in water
JP3139460U (en) 2007-10-30 2008-02-21 渉 室田 Mass production equipment for gas-dissolved liquid by continuous pressurized flow system
WO2013012069A1 (en) 2011-07-21 2013-01-24 株式会社シバタ Bubble generating mechanism and showerhead with bubble generating mechanism
JP2015062906A (en) 2011-07-21 2015-04-09 株式会社シバタ Bubble generating mechanism and shower head with bubble generating mechanism
JP2013215421A (en) 2012-04-10 2013-10-24 Shibata:Kk Showerhead
JP2015174056A (en) 2014-03-17 2015-10-05 株式会社シバタ Carbon dioxide gas dissolution device
WO2016178436A2 (en) 2015-05-07 2016-11-10 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device
WO2016195116A2 (en) 2015-06-02 2016-12-08 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device
JP2018015756A (en) 2017-03-03 2018-02-01 丸福水産株式会社 Blending treatment body, blending treatment, fluid mixer, fluid mixing processor, seafood cultivation system, and seafood cultivation method

Also Published As

Publication number Publication date
JP2020189274A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP7370534B2 (en) liquid processing equipment
JP6673591B2 (en) Internal structure
US9370784B2 (en) Bubble generating mechanism and showerhead with bubble generating mechanism
JP5660510B2 (en) Micro-nano bubble generation method, micro-nano bubble generator, and micro-nano bubble generator
US20200261869A1 (en) Fluid supply device, internal structure, and method for manufacturing the same
JP6353936B1 (en) Fine bubble generator
JP7376904B2 (en) liquid handling nozzle
TWI829174B (en) Internal structure, fluid characteristic changing device, and device utilizing the fluid characteristic changing device
JP6780179B1 (en) Fluid supply device and internal structure
JP7094541B2 (en) Fluid supply pipe
JP2022091818A (en) Liquid treating nozzle
JP2004024931A (en) Gas-liquid mixing apparatus for generating fine bubble in large quantity
JP7355377B2 (en) fluid supply device
JP2011251202A (en) Stirring mixer
JPWO2019069349A1 (en) Bubble generation device, bubble generation method
JP2022111965A (en) Flexible pipe unit
JP2022111961A (en) Liquid processing nozzle
JP2022184559A (en) Internal structure, fluid characteristic change device and utilization device for the same
JP2017042899A (en) Electric discharge processing liquid treatment apparatus, manufacturing method of electric discharge processing product and electric discharge processing apparatus
JP6792254B1 (en) Fine bubble generator
KR20150111631A (en) Apparatus for condensing dissolved oxygen
KR102603862B1 (en) Fine-bubble generator device
JP2023005665A (en) Fine bubble generator for pipeline root
JP2018134587A (en) Microbubble generator
CN115151374A (en) Fluid supply device for inducing cavitation and coanda effect

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231010

R150 Certificate of patent or registration of utility model

Ref document number: 7370534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150